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ABSTRACT

Neural Marked Temporal Point Process (MTPP) models have shown promise
in controlled benchmarks for forecasting and event pattern modeling in finance.
However, when deploying Recurrent Neural Network (RNN)-based MTPPs on
large-scale, high-dimensional financial event streams, we encountered unexpected
challenges: ballooning parameter sizes, increased computational costs, and train-
ing instability. This short paper outlines (1) the financial use case, (2) the
literature-proposed neural MTPP solution, (3) the negative outcomes observed,
and (4) our investigation into why standard MTPPs fail to generalize as promised
in real-world conditions.

1 USE CASE: HIGH-DIMENSIONAL FINANCIAL EVENT STREAMS

Financial firms often track event streams at high frequency (e.g., limit-order book (LOB) updates or
requests-for-quotes) for many instruments. Practitioners rely on forecast models for trading strate-
gies, liquidity management, or risk assessment. Each event has a time stamp and a mark (e.g.,
transaction type), and these marks easily span dozens of categories.

2 SOLUTION PROPOSED IN DEEP LEARNING LITERATURE

Several works have proposed RNN-based MTPPs to capture cross-excitation among multiple marks
in continuous time (Du et al., 2016; Mei & Eisner, 2017). The approach encodes past events in a
hidden state and uses neural layers to parameterize the conditional intensity functions for different
event types. On synthetic or low-dimensional benchmarks, these neural MTPPs have outperformed
classical (e.g., Hawkes) processes.

3 NEGATIVE OUTCOMES IN REAL-WORLD DEPLOYMENTS

Parameter Explosion. When the number of event types or exogenous features exceeded a few
dozen, the RNN input-to-hidden transformations became prohibitively large, leading to:

• Memory and compute overhead: Even moderate hidden sizes inflated total parameters into
tens or hundreds of thousands, slowing training.

• Overfitting and instability: The network fit training data well but generalized poorly out-
of-sample.

Domain Mismatch. We also found that standard neural MTPPs often assume data are “clean” and
well-conditioned. In finance, microstructure noise, market closures, and heavy-tailed distributions
break these assumptions, yielding inconsistent performance gains.

4 WHY IT DID NOT WORK AS EXPECTED

(1) Complex Input Structure. Contrary to simplified benchmarks, real financial features are not
a single fixed-size vector; they arise from multi-asset, multi-venue, and multi-event interactions.
Classic RNN layers scale poorly, as each new feature dimension inflates the weight matrices.
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(2) Lack of Regularization for Cross-Excitation. While the RNN-based MTPP is powerful in
principle, it lacks strong inductive biases for how real market events excite or dampen future events.
Absent domain-inspired constraints, the model overfits ephemeral correlations.

(3) Computational and Latency Constraints. Finance often imposes tight latency requirements.
Training large RNN-based MTPPs under these constraints was unsuccessful in practice—we faced
frequent restarts or truncated backpropagation windows, reducing the model’s efficacy.

5 DISCUSSION AND (PARTIAL) LESSONS LEARNED

Tensor Decomposition (Partial Fix). A subsequent attempt used tensor decomposition in the
RNN’s weight matrices to control parameter blow-up (Oseledets, 2011; Novikov et al., 2015). This
improved memory usage and partially alleviated overfitting, but introduced its own tuning complex-
ities (e.g., choosing the TT-rank).

Needs Domain-Driven Architecture. We suspect that domain constraints, such as feature grouping
(e.g., treating each instrument’s features together), or physically meaningful cross-terms, would
regularize the model more effectively than purely black-box RNNs.

Future Considerations. Even with compression, training remains sensitive to hyperparameters and
partial distribution shifts. Real-time online updates and robust confidence intervals are still open
challenges for neural MTPPs in finance.

6 CONCLUSION

We presented a real-world deployment attempt of RNN-based MTPPs in high-dimensional finance
and discovered issues of parameter inflation, data mismatch, and performance instability that are
not highlighted in typical benchmarks. Our partial fix with tensor decomposition points to the
broader need for domain-driven neural architectures and specialized regularization when applying
deep learning solutions to complex real-world event streams.
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