
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a workshop paper at ICLR 2025

WHEN RNN-BASED MARKED POINT PROCESSES FAIL
IN REAL-WORLD FINANCE: A TINY PAPER

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Marked Temporal Point Process (MTPP) models have shown promise
in controlled benchmarks for forecasting and event pattern modeling in finance.
However, when deploying Recurrent Neural Network (RNN)-based MTPPs on
large-scale, high-dimensional financial event streams, we encountered unexpected
challenges: ballooning parameter sizes, increased computational costs, and train-
ing instability. This short paper outlines (1) the financial use case, (2) the
literature-proposed neural MTPP solution, (3) the negative outcomes observed,
and (4) our investigation into why standard MTPPs fail to generalize as promised
in real-world conditions.

1 USE CASE: HIGH-DIMENSIONAL FINANCIAL EVENT STREAMS

Financial firms often track event streams at high frequency (e.g., limit-order book (LOB) updates or
requests-for-quotes) for many instruments. Practitioners rely on forecast models for trading strate-
gies, liquidity management, or risk assessment. Each event has a time stamp and a mark (e.g.,
transaction type), and these marks easily span dozens of categories.

2 SOLUTION PROPOSED IN DEEP LEARNING LITERATURE

Several works have proposed RNN-based MTPPs to capture cross-excitation among multiple marks
in continuous time (Du et al., 2016; Mei & Eisner, 2017). The approach encodes past events in a
hidden state and uses neural layers to parameterize the conditional intensity functions for different
event types. On synthetic or low-dimensional benchmarks, these neural MTPPs have outperformed
classical (e.g., Hawkes) processes.

3 NEGATIVE OUTCOMES IN REAL-WORLD DEPLOYMENTS

Parameter Explosion. When the number of event types or exogenous features exceeded a few
dozen, the RNN input-to-hidden transformations became prohibitively large, leading to:

• Memory and compute overhead: Even moderate hidden sizes inflated total parameters into
tens or hundreds of thousands, slowing training.

• Overfitting and instability: The network fit training data well but generalized poorly out-
of-sample.

Domain Mismatch. We also found that standard neural MTPPs often assume data are “clean” and
well-conditioned. In finance, microstructure noise, market closures, and heavy-tailed distributions
break these assumptions, yielding inconsistent performance gains.

4 WHY IT DID NOT WORK AS EXPECTED

(1) Complex Input Structure. Contrary to simplified benchmarks, real financial features are not
a single fixed-size vector; they arise from multi-asset, multi-venue, and multi-event interactions.
Classic RNN layers scale poorly, as each new feature dimension inflates the weight matrices.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a workshop paper at ICLR 2025

(2) Lack of Regularization for Cross-Excitation. While the RNN-based MTPP is powerful in
principle, it lacks strong inductive biases for how real market events excite or dampen future events.
Absent domain-inspired constraints, the model overfits ephemeral correlations.

(3) Computational and Latency Constraints. Finance often imposes tight latency requirements.
Training large RNN-based MTPPs under these constraints was unsuccessful in practice—we faced
frequent restarts or truncated backpropagation windows, reducing the model’s efficacy.

5 DISCUSSION AND (PARTIAL) LESSONS LEARNED

Tensor Decomposition (Partial Fix). A subsequent attempt used tensor decomposition in the
RNN’s weight matrices to control parameter blow-up (Oseledets, 2011; Novikov et al., 2015). This
improved memory usage and partially alleviated overfitting, but introduced its own tuning complex-
ities (e.g., choosing the TT-rank).

Needs Domain-Driven Architecture. We suspect that domain constraints, such as feature grouping
(e.g., treating each instrument’s features together), or physically meaningful cross-terms, would
regularize the model more effectively than purely black-box RNNs.

Future Considerations. Even with compression, training remains sensitive to hyperparameters and
partial distribution shifts. Real-time online updates and robust confidence intervals are still open
challenges for neural MTPPs in finance.

6 CONCLUSION

We presented a real-world deployment attempt of RNN-based MTPPs in high-dimensional finance
and discovered issues of parameter inflation, data mismatch, and performance instability that are
not highlighted in typical benchmarks. Our partial fix with tensor decomposition points to the
broader need for domain-driven neural architectures and specialized regularization when applying
deep learning solutions to complex real-world event streams.

ACKNOWLEDGMENTS

We thank colleagues in quantitative research and ML engineering for helpful discussions.

REFERENCES

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: embedding event history to vector. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1555–1564, 2016.

Jian Mei and Jason Eisner. Neural hawkes process: A neurally self-modulating multivariate point
process. In Advances in Neural Information Processing Systems (NIPS), 2017.

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing neural
networks. In Advances in Neural Information Processing Systems (NIPS), pp. 442–450, 2015.

Ivan V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

2


	Use Case: High-Dimensional Financial Event Streams
	Solution Proposed in Deep Learning Literature
	Negative Outcomes in Real-World Deployments
	Why It Did Not Work as Expected
	Discussion and (Partial) Lessons Learned
	Conclusion

