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Figure 1. Our method CamCtrl3D generates videos of scene fly-throughs, given an initial image for frame #0 and a 3D camera trajectory
(bottom row). The generated videos are high-quality and closely match the ground truth (top row).

Abstract
We propose a method for generating fly-through videos

of a scene, from a single image and a given camera tra-
jectory. We build upon an image-to-video latent diffusion
model [5]. We condition its UNet [25] denoiser on the
camera trajectory, using four techniques. (1) We condition
UNet’s temporal blocks on raw camera extrinsics, similar to
MotionCtrl [36]. (2) We use images containing camera ray
parameters, similar to CameraCtrl [14]. (3) We re-project
the initial image to subsequent frames and condition on the
resulting video. (4) We introduce a global 3D representa-
tion using 2D ⇔ 3D transformers [32], which implicitly
conditions on the camera poses. We combine all conditions
in a ContolNet-style [42] architecture. We then propose a
metric that evaluates overall video quality and the ability
to preserve details with view changes, which we use to an-
alyze the trade-offs of individual and combined conditions.
Finally, we identify an optimal combination of conditions.
We calibrate camera positions in our datasets for scale con-
sistency across scenes, and we train our scene exploration
model, CamCtrl3D, demonstrating state-of-the-art results.

1. Introduction

Generating fly-through videos of a scene from a single im-
age and a predefined camera trajectory has been a long-
standing challenge in the fields of computer graphics and
computer vision. The ultimate goal is to provide users the
ability to walk into their own photographs; to turn a sin-
gle, specific view of a scene into a full, immersive viewing
experience with minimal capturing effort.

Recent advances in image and video generation tech-
niques [2, 5, 16, 36], have brought us closer to realizing
this goal. In this work, we present an approach that inte-
grates precise 3D camera controls directly into a pre-trained
generative video model. Our approach leverages the priors
learned by the video model to generate realistic and control-
lable explorations of a scene captured in a single image.

Several recent works have explored incorporating cam-
era control into existing video models using indirect con-
ditioning signals, such as raw camera extrinsics [36] or
images with camera ray coordinates [14, 37]. We adopt
these two signals and propose two additional, novel ap-
proaches: (1) integrating a global 3D representation into
the video generation model, using a physically accurate



2D ⇔ 3D feature exchange mechanism (Section 3.5), and
(2) re-projecting the initial image over subsequent frames
and using the resulting video as a conditioning signal (Sec-
tion 3.4). The first approach introduces explicit 3D under-
standing in the model and enables inter-frame interactions
that are consistent with principles of light transport. This
implicitly conditions the model on the 3D camera poses.
The second approach generates re-projected sequences that
closely resemble the ground truth for surfaces observed in
the initial image, allowing the network to efficiently copy
these regions with minimal modification.

We implement these four conditioning approaches (raw
camera extrinsics, camera rays, 2D ⇔ 3D transformer, ini-
tial image reprojection) into a unified framework and pro-
pose a ControlNet-style approach for their combination
(Section 3.6). To identify the optimal combination, we ex-
amine the trade-offs of individual and combined conditions,
using a dataset [10] with precise metric-scale camera poses
(Section 4.3). For precise evaluation, we introduce a met-
ric that considers both the overall quality of the generated
videos and the model’s ability to accurately preserve input
image details during view changes (Section 4.1).

Finally, we use the identified optimal conditioning com-
bination (substantial weight given to camera extrinsics,
2D ⇔ 3D, and initial image re-projection; small weight,
albeit still important and improving results quality, given
to camera rays), and we train our scene exploration video
model CamCtrl3D (Section 4.4). We use two datasets that
offer crisp videos with natural framing and diverse con-
tent. The camera poses in these datasets are estimated with
structure-from-motion [28], and are thus precise only up to
an unknown per-scene global scaling factor. Thus, to ensure
accurate interpretation of scale during camera movement,
we calibrate both datasets to metric scales, using a contem-
porary metric depth estimation method (Section 4.2).

In summary, our contributions are: (1) We propose two
novel camera conditioning techniques based on principles
of light transport; (2) We integrate these with techniques
from existing works [14, 36, 37] into a unified framework;
we analyze the trade-offs of individual and combined condi-
tions and propose an optimal combination, and then train a
scene exploration model CamCtrl3D with the optimal com-
bination of conditioning strategies, demonstrating state-of-
the-art results. (3) We propose a precise metric that evalu-
ates both overall quality and ability to preserve details with
view changes. We then calibrate camera positions in our
datasets, enabling models to interpret scales correctly.

2. Related work
Novel view synthesis Gaussian splatting and NeRF-based
methods [2, 3, 19, 21] achieve high quality novel view syn-
thesis, but require a large number of images as input and
are often trained on a per-scene basis. SparseFusion [46]

and ReconFusion [40] combine NeRF with diffusion model
priors to reduce the required input images, but still need
more than one. While these methods can generate fly-
through videos, they all require more than one image as
input, and significantly more for non-object-centric cases.
Two recent works, CAT3D [11] and 4DiM [37], demon-
strate impressive novel view synthesis results from as few as
a single image, but require extensive training data. CAT3D
is trained ≈1M posed videos, while 4DiM is trained on
30M unposed videos and ≈250K posed ones. In con-
trast, our model is trained on just 10K posed videos. We
quantitatively benchmark our method against 4DiM in Sec-
tion 4.4, utilizing their reported FVD and PSNR metrics
on the RealEstate10K dataset [45]. We do not compare to
CAT3D, due to the absence of both single-image quantita-
tive evaluation results and publicly available source code for
this method.

Video models as priors The success of diffusion models
in image generation [16, 22, 31] has inspired a wave of re-
cent research on video generation [1, 5, 13, 15, 17, 24, 44],
both from textual prompts and from single images. Our
method builds on one of these works, namely Stable Video
Diffusion [5] (SVD). Most of these methods offer only
coarse control over the generated videos, primarily through
the input textual prompts and images. AnimateDiff [12] al-
lows transferring motion between videos, while VideoCom-
poser [34] allows control through textual, spatial, and tem-
poral 2D conditions. Two recent works, MotionCtrl [36]
and CameraCtrl [14], condition video models on 3D cam-
era trajectories. We adopt their conditioning signals in our
model (Sections 3.2 and 3.3). We further compare to Mo-
tionCtrl in Sections 4.3 and 4.4. CameraCtrl requires ad-
ditional textual prompts with input images which is not
needed in CamCtrl3D

Global 3D representations Several recent works propose
the use of structured latent 3d representation for novel-
view-synthesis. SynSin [39] and WorldSheet [18] recon-
struct 3D geometry from a single view and use a differ-
entiable renderer to propagate gradients after re-projection.
Our re-projection condition (Section 3.4) also leverages ge-
ometry, but uses a traditional forward-only renderer. Ad-
ditionally, the strong priors of the base video model elim-
inate re-sampling artifacts common to SynSin and World-
Sheet. DeepVoxels [29] extracts a volumetric representation
from several views of a scene, using a voxel-based encoder-
decoder. PixelNerf [41] extracts pixel-aligned features from
a sparse set of input views and uses them to predict volumet-
ric density and color at Nerf query points. GenNVS [7] lifts
a single input view into a volumetric latent feature grid, with
the help of a neural network. VQ3D [27] relies on depth es-
timation to build a tri-plane representation of a scene. Sev-
eral concurrent works [8, 9, 38] rely on generalizable gaus-
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Figure 2. Top left: We add camera conditioning to the UNet denoiser of SVD [5] by modifying its layers. Top right: We attach the camera
extrinsics and the 2D⇔3D transformer conditions to UNet’s temporal layers (Sections 3.2 and 3.5). Bottom: We add additional top-level
convolutional layers for the camera ray and re-projected image conditions (Sections 3.3 and 3.4)

sian splatting to renderer novel views from a sparse set of
inputs. RayTran [32] relies on sparse 2D⇔3D transformers
to build a global 3D representation for both 3D reconstruc-
tion and rendering novel views. Our method takes inspira-
tion from these works and proposes a conditioning approach
built using RayTran’s 2D ⇔ 3D sparse transformers.

3. Proposed Approach

CamCtrl3D takes an initial RGB image I0 and a sequence
of camera poses {ci}Ni=0 as input. The image depicts a vir-
tual 3D scene V from the perspective of the first camera. As
output, CamCtrl3D generates a sequence of views {Ii}Ni=0

of the virtual scene V, corresponding to the remaining cam-
eras.

To achieve this, we modify a pretrained video genera-
tion model, Stable Video Diffusion [5] (SVD), and more
precisely its UNet denoiser. We condition UNet’s temporal
blocks on the raw camera extrinsics (Section 3.2). We fur-
ther provide UNet with images containing the camera ray
origin oi ∈ RW×H×3 and directions di ∈ RW×H×3 for
each frame i (Section 3.3). We re-project the input image
with the camera poses using estimated depth and we con-
dition UNet on the resulting video (Section 3.4). We intro-
duce 3D understanding to UNet, using a global 3D repre-

sentation and sparse 2D ⇔ 3D transformer blocks, and we
condition UNet in 3D (Section 3.5). Finally, we combine
all conditions in a ControlNet-style [42] architecture (Sec-
tion 3.6).

3.1. Preliminaries

SVD [5] is a latent video diffusion model [6], fine-tuned
for high-resolution image-to-video generation. It uses a re-
verse diffusion [30] process with a learned UNet denoiser
to generate videos in a latent representation, and a varia-
tional autoencoder [6] to convert to and from an RGB rep-
resentation. UNet has an encoder-decoder architecture with
residual connections. It is built from alternating spatial and
temporal blocks. Spatial blocks operate on video frames in-
dependently, across their pixels. Temporal blocks operate
across time, independently within each pixel. In the fol-
lowing sections, we introduce camera pose conditioning, by
modifying UNet’s inputs and its temporal blocks.

3.2. Condition on raw camera extrinsics

Temporal blocks consist of self-attention across time, fol-
lowed by cross-attention, with features extracted from the
input image using CLIP [23]. We condition on the raw cam-
era extrinsics, by inserting a residual block between the two
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Figure 3. We re-project the surfaces observed on the initial image
to all subsequent frames, using ZoeDepth [4] to estimate a point
cloud. We use the resulting frames as a condition (Section 3.4) and
during evaluation (Section 4.1).

attention layers (Figure 2). In it, we concatenate the 12 en-
tries of the 4× 3 camera extrinsics matrix to the features of
each pixel in each frame. We then use a feed forward net-
work to compress the features to match the cross-attention
dimensions. This is similar to MotionCtrl [36], however we
incorporate the feed forward outputs as residuals to facili-
tate back propagation.

3.3. Condition on camera rays

For each frame, we compute two new guiding images: di

and oi. The first contains the direction of the camera rays
passing through each pixel of frame i in world space co-
ordinates, the second contains the camera origins, again in
world space coordinates. We normalize di’s values to the
range [0, 1], by adding 1 and dividing by 2. To ensure all
values in oi are positive, we offset all camera origins into
the positive octant (+++) beforehand.

We encode the two resulting videos into a latent repre-
sentation using SVD’s VAE. We feed the result into a new
convolutional layer and add its output to UNet’s first con-
volutional layer (Figure 2). Similar to Section 3.2, this con-
ditions the model on the camera parameters, however this
representation is more natural as the model can reason about
camera motion at pixel level.

3.4. Condition on re-projected initial image

We re-project the surface observed in the initial image to
the rest of the frames and condition UNet on the resulting
video. To do this, we first apply a metric-space monocular
depth estimation model ZoeDepth [4] to the input image.
We combine the resulting depth with the pixel colors and
unproject using the parameters of the first camera c0. This
results in a point cloud, which we render onto the subse-
quent frames using their respective cameras ci (Figure 3).
We encode the resulting video into latent space, we feed the
result into a new convolutional layer, and similar to Sec-
tion 3.3 we add the output to UNet’s first convolutional layer
(Figure 2).

The point cloud captures the visible surface of the input
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Figure 4. We apply conditions to a clone of the UNet encoder (Sec-
tion 3.6), and we add its outgoing residual connections to those of
the original encoder, after passing through zero convolutions [42].

image. Assuming a static scene, the rendered video tracks
this surface consistently with the camera motion. Addition-
ally, we use a distinct background color during rendering
that is unlikely to occur naturally. This allows the model to
both stay consistent with the initial image and generate new
content in place of the background color.

3.5. Condition using 2D⇔3D transformers

Intrinsically, UNet operates in 2D, on arrays of 2D grids
corresponding to each frame. They are connected through
the time dimension, in UNet’s temporals blocks. We pro-
pose to supplement these with a new type of block that op-
erates on a global 3D representation (Figure 2).

As input, the block accepts an array of 2D features, as
well as their corresponding camera parameters (intrinsic
and extrinsic camera matrices). We use a voxel grid of fea-
tures as a 3D representation. The grid has fixed dimensions
and it is centered w.r.t. the camera origins. Its resolution
varies, depending on where the block is placed inside UNet.
We use sparse ray-traced attention [32] to project the input
2D array into the voxel grid, with the given camera parame-
ters. We then use a convolutional 3D encoder-decoder with
residual connections to enable reasoning in 3D. Finally, we
project back onto the 2D array using sparse ray-traced at-
tention once more. We also embed time into the feature
vectors before a 2D ⇒ 3D projection, using positional en-
coding. This allows reasoning across time in the 3D repre-
sentation, thus enabling dynamic scenes. We use the new
3D blocks alongside UNet’s temporal blocks, and we add
their outputs.

Ray-traced attention embeds knowledge about the im-
age formation process directly into the model. It allows
the network to jointly analyze all views and to consolidate
the extracted information into a global 3D representation.
It is known to work well for 3D reconstruction from RGB
videos [26, 32], as well as for view interpolation [32, sup-
plementary material]. In our case, ray-traced attention al-
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Figure 5. Re-projection (Sec. 3.4) identifies regions within a frame
originating from the initial image (e.g. frame #12 here). We apply
the resulting mask to both ground truth and generated images and
measure image difference (Section 4.1) to assess the model’s abil-
ity to maintain visual consistency during camera change.

lows the network to reason about the world contents directly
in 3D, and to then project this into the individual video
frames.

3.6. Combine conditions with ControlNet

We incorporate the above conditions into UNet in a
ControlNet-style [42] architecture. We clone UNet’s en-
coder and we attach all conditioning layers to it. We attach
zero convolution layers [42] to its outgoing residual con-
nections and we add their outputs to the respective residual
connections in the original encoder (Figure 4).

4. Experiments
We first perform a set of ablations to study the trade-offs
of the different conditioning methods (Section 4.3). Build-
ing on insights from this study, we develop an optimal con-
ditioning strategy and we train a final high-quality video
model CamCtrl3D (Section 4.4).

4.1. Evaluation metric

To assess the quality of the generated videos, we consider
two key factors: (1) the overall quality of the generated
videos, and (2) the model’s ability to maintain details from
the input image as the view changes.

For (1), we compare the distribution of the generated
videos to that of the test set, using Fréchet Video Dis-
tance [33] (FVD). For (2), we assume a static scene and
known pixel depths in the first frame. Similar to Section 3.4,
we re-project the first frame onto each subsequent frame,
using the provided camera poses. This creates a binary
mask per frame, identifying pixels that originate from the
first frame versus those with new content (Figure 5). We use
this mask to compare the generated video against ground
truth, ensuring masked pixels match exactly. We measure
peak signal-to-noise ratio (PSNR) for the difference of these
pixels, along with LPIPS [43] and SSIM [35]. In some

Ground truth, #0 Ground truth, #12 Ground truth, #24

Calibrated, #12 Calibrated, #24

Uncalibrated, #12 Uncalibrated, #24

Figure 6. Metric-calibration on DL3DV, frames #12 and #24. Un-
calibrated re-projections (top row) deviate significantly from the
ground truth (middle row), hindering both the re-projected condi-
tion (Section 3.4) and evaluation (Section 4.1). Calibration (bot-
tom row) rectifies this discrepancy.

cases, we also report peak signal-to-noise ratio computed
on the full video frame (FPSNR), disregarding the mask.

4.2. Datasets

We use three datasets in our experiments: ScanNet [10],
RealEstate10K [45], and DL3DV [20]. ScanNet contains
videos of indoor spaces, captured with an RGB-D sensor. It
offers ground-truth depth maps and precise camera poses.
Because of this, we use it in our ablation studies, train-
ing on 1194 videos, and evaluating on 312. RealEstate10K
and DL3DV contain videos of indoor and outdoor spaces.
They offer crisp videos with natural framing and diverse
content. We use them for our final model, training on 4937
RealEstate10K and 4497 DL3DV videos, and evaluating on
312 different videos from each dataset respectively.

Sampling clips The videos in these datasets are much
longer than our models’ output. Therefore, we sample clips
matching that length, at varying sampling speeds. During
training, we choose a random starting frame f and a ran-
dom fractional sampling speed s, between 1 and 10. We
take the F frames with indices ⌊f + is⌋, where F is the
output length of our model, and i ∈ [0, F ) is an integer.
Conversely, during evaluation we always start from the first
frame and we use a fixed sampling speed of either 1, 2, 4,
or 8.

Varying the sampling speed offers control over camera
motion during both training and evaluation. Furthermore,
it influences the ratio of pixels observed on the initial im-
age versus newly generated pixels within a frame. For the
test split of ScanNet, this ratio increases proportionally with
sampling speed: 4.9% at speed ×1, 10.5% at speed ×2,
21.8% at speed ×4, and 36.7% at speed ×8.



Speed ×1 Speed ×2 Speed ×4 Speed ×8

Condition FVD↓ PSNR↑ SSIM↑ LPIPS↓ FVD↓ PSNR↑ SSIM↑ LPIPS↓ FVD↓ PSNR↑ SSIM↑ LPIPS↓ FVD↓ PSNR↑ SSIM↑ LPIPS↓

Baseline 218.4 13.0 0.49 0.41 149.7 13.3 0.52 0.38 163.0 13.7 0.58 0.34 303.6 14.2 0.65 0.28
X 172.1 13.9 0.51 0.38 132.2 14.0 0.53 0.36 158.9 14.4 0.59 0.32 248.2 14.7 0.66 0.27
C 78.3 17.1 0.59 0.28 106.8 16.8 0.60 0.28 138.4 16.1 0.63 0.28 172.8 16.0 0.69 0.24
P 47.3 23.9 0.79 0.15 71.5 22.7 0.78 0.16 107.2 21.4 0.77 0.18 146.6 20.3 0.78 0.18
R1 51.5 21.8 0.73 0.18 76.3 20.9 0.72 0.19 118.0 20.0 0.73 0.20 149.8 19.2 0.76 0.19
R2 47.9 22.4 0.75 0.17 73.1 21.3 0.74 0.18 116.3 20.3 0.74 0.19 152.3 19.5 0.76 0.19
R3 49.0 22.2 0.74 0.17 73.5 21.2 0.74 0.18 117.4 20.3 0.74 0.19 146.9 19.4 0.76 0.19
R4 50.6 21.9 0.73 0.18 74.8 20.9 0.72 0.19 113.8 20.0 0.73 0.20 148.5 19.3 0.76 0.19
C +R2 49.5 22.2 0.74 0.17 73.6 21.1 0.73 0.18 110.1 20.2 0.74 0.19 145.7 19.3 0.76 0.19
X +R2 48.6 22.8 0.76 0.16 72.7 21.6 0.75 0.18 111.2 20.5 0.75 0.19 150.6 19.5 0.77 0.18
X +R2 + P 44.4 24.8 0.82 0.14 68.3 23.3 0.80 0.15 109.2 21.9 0.79 0.17 143.3 20.9 0.80 0.17
X +R2 + P + C 42.6 24.8 0.82 0.14 68.2 23.4 0.80 0.15 108.8 22.1 0.79 0.17 143.7 21.0 0.80 0.17
MotionCtrl [36] 221.6 14.1 0.44 0.41 198.9 11.2 0.47 0.11 176.6 16.1 0.61 0.67 252.4 13.3 0.63 0.34

Table 1. Performance of our ablation models from Section 4.3 and MotionCtrl [36] on the test set of ScanNet, at different sampling
speeds. The best result for each metric is highlighted in bold. X denotes raw extrinsics conditioning (Section 3.2), C denotes camera rays
(Section 3.3), P denotes initial image re-projection (Section 3.4), and Rx denotes 2D⇔3D transformers (Section 3.5) attached to x UNet
layers. We use an SVD model fine-tuned over ScanNet as baseline. See text for more detail.

Metric calibration The camera poses in RealEstate10K
and DL3DV are estimated with structure-from-motion [28]
(SfM), and are thus precise only up to an unknown per-
scene global scaling factor. This is problematic when con-
ditioning on a single image, as the model cannot learn the
meaning of scale in the user-provided input camera path.
Moreover, the video’s motion becomes inconsistent with the
re-projected motion described in Section 3.4, making this
conditioning approach inappropriate (Figure 6).

We thus calibrate the two datasets. For each frame, we
first estimate a metric-scale depth map, using ZoeDepth [4].
We then project the SfM point cloud onto the frame. For
each SfM point, the ratio of its camera depth to the depth
provided by ZoeDepth serves as an estimate of the global
scaling factor for the entire video. We calculate a robust es-
timate of this factor by taking the mean of the depth ratios
across all points and frames, after excluding the smallest
and largest 10% of values. We then apply the global scal-
ing factor to the camera positions for the video, multiply-
ing them accordingly. To assess the accuracy of this esti-
mation, we examined 10 random videos from each dataset,
along with the 10 videos exhibiting the highest variability
in per-point scales. In every instance, the observed motion
within the videos closely aligned with the motion of the re-
projected first frame from Section 3.4.

4.3. Ablation studies

To investigate the trade-offs of different conditioning tech-
niques, we conduct ablation studies, starting with individual
experiments for each of the methods from Section 3: raw
extrinsics denoted as X below (Section 3.2), camera rays
denoted as C (Section 3.3), and initial image re-projection
denoted as P (Section 3.4). For the 2D⇔3D transformers

condition (Section 3.5), denoted as Rx, we additionally ab-
late on the number x of UNet blocks that the condition is
attached to (1, 2, 3, or 4), as the decreasing resolution of
the 2D grids in deeper UNet blocks could potentially de-
grade the performance of this conditioning technique. We
then conduct experiments on combinations of conditioning
techniques.

In each experiment, we train a model to generate 14-
frame videos with a resolution of 512x320 pixels. We use
the train split of ScanNet [10] for training, the val split for
evaluation, and we sample clips as described above. We
resize the dataset videos to the model’s resolution in an
aspect-preseving way, using center cropping.

Given the resolution difference between our models and
the publicly released SVD model, we first fine-tune the lat-
ter on ScanNet videos for 360K steps. We use the resulting
model to initialize training in our ablation studies and we
also benchmark against it. We train all ablation models for
250K steps. Consistent with ControlNet [42], we observe
sudden convergence, at around 25K steps for the Rx and P
conditions, while C and X converge later, at around 60K
steps.

The results of our experiments are summarized in Ta-
ble 1. All conditioning methods demonstrate an improve-
ment over the baseline. When evaluated independently, the
re-projected image condition P performs best. This is ex-
pected, as significant portions of the condition closely re-
semble the ground truth videos, allowing the network to
readily incorporate them with minimal modification. The
2D⇔3D transformer conditions Rx follow closely in per-
formance. Among them, attaching to two UNet layers
performs best (R2). Models conditioned directly on raw
extrinsic matrices X perform worst, as this approach re-



Method Dataset and speed FVD↓ PSNR↑ LPIPS↓ FPSNR↑
MotionCtrl [36] RealEstate10K ×1 777.5 16.1 0.37 15.6

4DiM [37] RealEstate10K ×1 195.1 - 18.1
CamCtrl3D RealEstate10K ×1 72.8 21.4 0.13 20.6

CamCtrl3D RealEstate10K ×2 105.1 20.0 0.15 18.6
CamCtrl3D RealEstate10K ×4 152.7 18.9 0.16 16.5
CamCtrl3D DL3DV ×1 245.1 17.7 0.26 15.9

Table 2. Performance of our final model CamCtrl3D (Section 4.4)
and MotionCtrl [36], on the RealEstate10K and DL3DV datasets,
at different sampling speeds. We also include metrics for 4DiM, as
reported in [37]. Our model achieves significantly better quality,
compared to MotionCtrl and 4DiM.

quires learning the complex relationship between 3D extrin-
sic matrix values and their corresponding 2D image changes
across all frames.

Combining raw camera extrinsics with 2D⇔3D trans-
formers linked to two UNet layers, outperforms either con-
ditioning method alone (X + R2). Adding initial image
re-projection further enhances performance (X +R2 + P ),
outperforming all individual conditioning methods. Adding
camera ray conditioning yields marginal improvements, re-
sulting in the optimal technique (X +R2 + P + C).

We also measure the performance of MotionCtrl [36]
on our test set using our evaluation metric (see Table 1).
For a fair comparison, we maximize MotionCtrl’s perfor-
mance on our test set by tuning its FPS and motion mag-
nitude parameters. MotionCtrl performs on-par with our
re-implementation X . All other conditioning methods out-
perform it. Our optimal configuration X +R2+P +C has
5.2 times lower FVD, and 10.7 dB higher PSNR, at video
sampling speed ×1.

4.4. Scene exploration model CamCtrl3D

For our final scene exploration model CamCtrl3D, we em-
ploy the optimal combination of conditioning strategies
identified in Section 4.3. We maintain a resolution of
512 × 320, while generating 25 frames per sequence. We
initialize our model with the weights from the official 25-
frame SVD model. We use the RealEstate10K and DL3DV
datasets, with splits and sampling strategies as described in
Section 4.2. Rather than pre-training and freezing as in Sec-
tion 4.3 we train the full model, including the original UNet
encoder and decoder, for 1.66M steps.

Figure 7 shows the outputs of our model on the
RealEstate10K and DL3DV test sets, while Table 2 presents
its quantitative evaluation. Our model generates high-
fidelity videos with accurate camera trajectories, even for
complex scenes, typical for the RealEstate10K and DL3DV
datasets.

We benchmark our model against two state-of-the-art
methods for camera control in video generation: MotionC-
trl [36] and 4DiM [37]. Direct comparison on identical

datasets and metrics (Table 2) shows our model’s signifi-
cant improvement over MotionCtrl, achieving an order of
magnitude better FVD and 5.3 dB PSNR gain. Without ac-
cess to runnable source code for 4DiM, we compare our
model’s FVD and FPSNR to their reported values. We use
the metric-calibrated test set of RealEstate10K at ×1 sam-
pling speed, since both works report numbers on it, albeit
with different calibration approaches. Our model achieves
significantly better quality, with 2.7× lower FVD (72.8 vs.
195.1) and 2.5 dB higher FPSNR (20.6 vs. 18.1). At the
same time our model requires significantly less training data
(10K posed videos) than 4DiM (30M unposed videos and
≈250K posed videos).

5. Discussion
We have shown that by leveraging priors from video mod-
els, along with a carefully selected set of conditioning tech-
niques, CamCtrl3D can generate fly-throughs of scenes
from a single image. Due to the nature of our task, our train-
ing sets primarily consist of videos of static scenes. Thus,
CamCtrl3D tends to mainly output videos of static scenes.
Occasionally, the model is able to animate parts of them
(e.g. waves moving in the ocean) due to the video priors.
We observe that the model relies on the different condition-
ing techniques to a varying extent based on the content of
the initial image, thus allowing for motion in certain kinds
of scenes. We expect that fine-tuning the model on a dataset
of dynamic scenes with calibrated camera parameters will
enhance its ability to generate videos that accurately capture
complex motion and scene dynamics.

We observed that models generating 25-frame sequences
are better at maintaining video quality with greater cam-
era motion, compared to models generating 14-frame se-
quences. We attribute this to better temporal reasoning en-
abled by the smaller inter-frame changes. However, extend-
ing sequences further (up to 80 frames) led to a decline in
quality. Since we fine-tune SVD with only 10K videos, it is
likely that the limited number of training examples does not
provide sufficient information to effectively train the base
model for generating longer sequences.

In conclusion, we introduced two novel camera condi-
tioning techniques based on light transport principles and
combined these with existing methods within a unified
framework. Our approach enables the generation of fly-
through videos from a single image and a camera trajectory,
achieving state-of-the-art performance.
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Figure 7. Results generated by the final model (Section 4.4). In all examples, we show frames #0, #8, #16, and #24 from the 25 frame
video. The top 3 examples show videos from the test sets of RealEstate10K and DL3DV. Each example contains two rows, one showing
ground truth (top) and another showing generated results (bottom). The bottom two examples contain video sequences generated from
images in the wild. Both examples show orbiting camera motion.
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