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Abstract. The rapid advancements in 2D generative models and effi-
cient 3D reconstruction techniques are fueling the growth of the 3D visual
generative AI field. In this work, we address the challenge of 3D super-
resolution by developing a consistent multi-view super-resolution model
and leveraging 3D reconstruction techniques to obtain high-quality 3D
models from the ones of lower quality. Our approach is versatile, gener-
alizing to various inputs, including renderings of digital 3D assets and
turn-around videos of real-world objects. Its adaptability also allows it
to serve as a post-processing step for any existing 3D generative method,
regardless of the underlying geometry representation.
We introduce 3D-GSR, a model that integrates 2D super-resolution with
3D reconstruction to enhance the 3D generation process. Central to
our approach, we propose the Multi-View Super-Resolution (MV-SR)
adapter, designed to leverage arbitrary single-image SR model to gener-
ate consistent multi-view frames of the same object. We tested our MV-
SR technique with four common SR models: R-ESRGAN [32], SwinIR
[15], HAT-L [6], and SD-XL based [21], showing how our adapter in-
creases each model’s accuracy in the multi-view scenario. The geometry
of the asset is reconstructed using a novel 3D Gaussian Splatting [12]
model. Our 3D-GSR model is adept at both geometric transformations
and appearance enhancements, producing assets with intricate geometry
and exceptional fidelity, excelling in capturing high-fidelity details of the
high-frequency components in particular.

Keywords: Super-Resolution · 3D Gaussian Splatting · Multi-view ·
Novel View Synthesis · High-Resolution Novel View Synthesis

1 Introduction

The creation of 3D models through generative techniques has advanced signif-
icantly, with various approaches [22, 24, 27, 30] now enabling the generation of
3D assets, sometimes guided by text prompts [4, 7, 34, 36, 40] or reference im-
ages [16, 18, 37, 43]. These techniques leverage both image-based and 3D data
for training, allowing for rapid production of diverse outputs. However, despite
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Fig. 1: Our 3D-GSR model upscales the low-resolution (LR) 3D model to a high-
resolution (HR) using our multi-view adapter MV-SR for arbitrary single-image SR.
Our model improves both large-scale and high-frequency details of the final 3D model.

these advancements, the 3D models generated by these methods still fall short
in terms of detail and precision when compared to the latest generative models
used for producing images [19,21,23] or videos [2, 17].

Novel View Synthesis (NVS) has long been a challenging problem in computer
vision and graphics. The introduction of Neural Radiance Fields (NeRF) [20]
marked a significant breakthrough, showcasing the power of implicit neural rep-
resentations for generating novel views. More recently, 3D Gaussian Splatting
(3D GS) [12] has emerged as a popular alternative, offering a primitive-based
representation that surpasses NeRF in both rendering speed and reconstruction
quality. Despite these advantages, 3DGS faces a significant limitation when per-
forming high-resolution novel view synthesis (HRNVS) [39] from low-resolution
inputs, often resulting in noticeably degraded renderings.

In this work, we tackle the problem of 3D super-resolution and HRNVS by
leveraging the 3D Gaussian Splatting [12] geometry optimization model with our
multi-view modification of the single image SR model.

In summary, our contributions are:

– We propose a novel MV-SR adapter, a multi-view modification of the original
2D super-resolution model to consistently upscale and refine the low-quality
multi-view frames of the same object. It can be used with any single-image
upscaler, and we train four common SR models in our multi-view scenario:
R-ESRGAN [32], SwinIR [15], HAT-L [6], and SD-XL based [21].

– We propose our 3D super-resolution model 3D-GSR by integrating the pre-
trained Multi-View SD-XL refiner together with the 3D Gaussian Splatting
[12] for geometry reconstruction.

– We demonstrate the generalization of 3D-GSR to various inputs of different
natures, such as real-life and digital ones. Moreover, 3D-GSR can be applied
as a post-processing refinement stage for any 3D generative model using
arbitrary representations of the geometry.
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2 Related Works

2.1 Image Super-Resolution

The image super-resolution task aims to enhance the resolution of low-quality
images, producing high-resolution counterparts while preserving details and re-
ducing artifacts. One of the pioneering models in this domain is ESRGAN [33],
which leveraged a GAN-based architecture with introduced perceptual loss to
improve image quality and realistic textures. Building on ESRGAN, the im-
proved R-ESRGAN [32] incorporated residual connections to further stabilize
training and enhance performance, particularly in challenging cases like real-
world images.

With the recent rapid advancements of the denoising diffusion models for
image generation are also intensively explored in the super-resolution task [11,
13,14,21,25,42].

There are also a lot of transformers-based SR models [5, 6, 8, 15]. SwinIR
(Swin Transformer for Image Restoration) [15] in particular utilizes a hierarchical
transformer-based architecture to capture both local and global features, achiev-
ing state-of-the-art performance in image super-resolution tasks. HAT-L [6] is the
most recent SOTA transformers-based upscaler incorporating a hybrid attention
technique.

2.2 3D Super-Resolution

There are several important works tackling the 3D super-resolution problem.
SuperGaussian [28] is a recent approach that leverages the GAN-based video
super-resolution model VideoGigaGAN [38] to enhance and upscale the frame-
wise images in consistent manner as a video.

There are also methods that build-up upon Neural Radiance Fields for en-
hancing the visual fidelity of the reconstruction [31]. The SOTA 3D upscaling
model CROC [39] uses a multi-view image SR model to upscale the quality
of NeRF reconstruction. Our approach is highly inspired by the image-to-3D
generative Unique3D [35] model that leverages multi-view diffusion.

After the recent development of the groundbreaking 3D Gaussian Splatting
(3D GS) model [12], there are several crucial studies on 3D super-resolution using
the 3D GS. GaussianSR [41] leverages the SDS loss [22], initially proposed for the
text-to-3D generation by DreamFusion [22]. SRGS [10] introduces a densification
and texture learning to enhance the representation ability of primitives of 3D
GS by leveraging the image SR.

3 Approach

Achieving generation consistency across multiple images is known to be a chal-
lenging task ( [29]). The main idea of our approach is to processs the super-
resolution upscaling with a single inference of the generative model to achieve
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consistency. For that, we process the renderings not in the frame-wise manner,
but rather by composing a model sheet of them and leveraging the SR model
to multi-view data, inspired by the recent multi-view SR model for NeRF in
CROC [39].

Fig. 2: Our MV-SR adapter makes the SD-based upscaling model provide consistent
refinement across multiple views, while the original model creates inconsistent details.

3.1 Model sheet

The concept was first introduced in the MVDream [29] study on 3D generation
using diffusion models. The authors trained a multi-view diffusion model to
generate four orthogonal views arranged in a grid. Following a similar approach,
we also organize orthogonal frames into a grid, which we refer to as a model
sheet, as this method ensures consistent generations and upscalings.

3.2 Multi-View Super-Resolution

To leverage the capabilities of any SR upscaling model for 3D super-resolution,
we adapted it to a multi-view setup, training the model on multi-view data to
enhance the resolution of multiple perspectives of 3D objects simultaneously.
This approach, termed MV-SR, focuses on generating consistent high-resolution
outputs across various angles of the same object. Moreover, its generalization
makes it possible to use any image SR model to extend it to multi-view data.
More specifically, we tested four main image upscaling models in out multi-view
scenario: R-ESRGAN [32], SwinIR [15], HAT-L [6], and SD-XL based [21].

We utilized the Objaverse 1.0 dataset [9], which contains over 800K 3D mod-
els. For each 3D asset, we generated a set of random renderings from 4 orthogonal
angles, composing them into a single model sheet. Each model sheet, consist-
ing of 4 frames, is being classically downscaled by x4 to create the LR and HR
pairs for our MV-SR training. We trained the MV-SR as a x4 upscaler and re-
finer. In this setup, the image super-resolution model was trained to enhance the
resolution of the model sheet, aiming to produce high-fidelity outputs that are
consistent across all views.

The training process employed the MV-SR model to learn a mapping from
low-resolution input model sheets to high-resolution original renderings. For a
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given high-resolution model sheet mHR composed of 4 key frames, it is down-
scaled to the low-resolution image mLR for the model to predict the high-
resolution output from it, minimizing the reconstruction loss between the pre-
dicted and target high-resolution images. For the loss function, we use the Char-
bonnier loss [3]:

L =
√
∥mHR − ϕ(mLR)∥2 + ϵ2, (1)

where ϕ is our MV-SR model, and ϵ is an empirically set constant to 10−3.
To ensure consistency across multiple views, the model was trained to under-

stand the spatial relationships between the different angles, thereby producing
outputs that are coherent when viewed from any perspective. This multi-view
consistency is crucial for maintaining the structural integrity of the 3D object
in high resolution, avoiding artifacts that could arise from processing each view
independently.

Fig. 3: Our 3D-GSR architecture. The core component is our MV-SR adapter, which
leverages an arbitrary single-image SR model to multi-view data in model sheets. The
SfM component creates the base point cloud from the original frames only for the best
consistency, and the geometry is then refined with 3D GS on the upscaled frames.

3.3 3D-GSR

We can easily extend our Multi-View SR modification to the 3D task in our
3D-GSR pipeline by composing the model sheets from the low-resolution turn-
around images of the object.

For the final 3D reconstruction, we incorporate the original implementation
of 3D Gaussian Splatting [12] model. The model optimizes the initial Gaussians
extracted from the original point cloud to match the updated appearance. The
initially reconstructed splats are rendered into separate frames and composed
into a model sheet, which is then passed to the MV-SR upscaler to produce con-
sistent high-resolution frames with an enhanced appearance. The last iterations
of the optimization process guide the 3D reconstruction using upscaled images,
producing 3D assets of higher quality.

For the initialization of 3D Gaussians, an initial point cloud is used. For that,
we run a Structure from Motion (SfM) algorithm from COLMAP [26] library.
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Our key observation from the experiments is that it should be initialized from
low-resolution originals only to create a consistent carcass for the geometry.

To train the model, we adopted the train-test split approach from Mip-NeRF
360 [1], allocating 7/8 of the input images for training and reserving the remain-
ing 1/8 for testing. We then evaluated the rendering quality on the test set
using SSIM and PSNR metrics, comparing the performance of two models—one
trained on original images and the other on the upscaled versions. Addition-
ally, we disabled the 3D Gaussian Splatting (GS) feature for optimizing view-
dependent colors with spherical harmonics (SH) coefficients.

4 Experiments

4.1 3D-SR

We trained four main image upscaling models in our multi-view scenario with
our MV-SR adapter: R-ESRGAN [32], SwinIR [15], HAT-L [6], and SD-XL
based [21], shifting each model from the single-view scenario to the multi-view.
We conducted an experiment by comparing the super-resolution upscaling and
refining process of our MV models with their original versions on the model
sheets. We compare them in Fig. 4, which visualizes how our proposed modifi-
cation achieves consistency on different frames.

Fig. 4: We show the consistent multi-view refinements with our MV-SR adapter applied
and trained for four single-image SR models: R-ESRGAN [32], SwinIR [15], HAT-L [6],
and SD-XL based [21].

To evaluate the performance of our MV super-resolution models on the multi-
view super-resolution task, we compared the average PSNR and SSIM scores on
our dataset, as shown in Tab. 1. We assessed the similarity to the input image
(ensuring the output maintains consistency with the input) and the overall qual-
ity of the super-resolved image. For comparison, we tested each of the original
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Table 1: Comparison of PSNR and SSIM metrics on model sheets with the original
single-image SR models R-ESRGAN [32], SwinIR [15], HAT-L [6], and SD-XL based
[21], and our multi-view modifications with MV-SR.

Model PSNR ↑ SSIM ↑

MV R-ESRGAN
(our) 32.29 0.922

R-ESRGAN
(model sheet) 31.87 0.917

R-ESRGAN
(frame-wise) 31.89 0.917

MV SwinIR
(our) 32.33 0.932

SwinIR
(model sheet) 32.09 0.928

SwinIR
(frame-wise) 32.21 0.926

Model PSNR ↑ SSIM ↑

MV HAT-L
(our) 33.61 0.933

HAT-L
(model sheet) 33.48 0.932

HAT-L
(frame-wise) 33.5 0.932

MV SD-XL
(our) 33.59 0.931

SD-XL
(model sheet) 33.31 0.926

SD-XL
(frame-wise) 38.46 0.931

models using two different approaches: processing the whole model sheet (sim-
ilar to our MV models) and processing individual frames sequentially, which is
closer to the model’s original training distribution. All of our multi-view mod-
els outperformed the originals in both scenarios, indicating that they provide
more accurate and realistic super-resolution results, more consistent in multi-
view cases than the default single-image models.

4.2 Results

We show the 3D upscaling results produced with 3D-GSR in Figs. 1, 5 and 6.
Our model excels at generating high-quality 3D assets that accurately reflect
the upscaling process done upon low-quality inputs. 3D-GSR is adept at both
geometric transformations and appearance enhancements, producing assets with
intricate geometry and exceptional fidelity.

Fig. 5: Upscaling results of 3D-GSR on real-life objects.
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Fig. 6: Upscaling results of 3D-GSR on digital objects.

We also present examples of 3D-GSR applied to turn-around images of real-
world objects in Fig. 5. We show how we can enhance the visual quality of the
initially blurry object with our upscaling process.

5 Conclusions

In this work, we propose MV-SR adapter, a technique to modify arbitrary single-
image 2D super-resolution model to work with multi-view data, extending its
application to 3D super-resolution tasks with our 3D-GSR pipeline. We trained
four common SR models in our multi-view scenario: R-ESRGAN [32], SwinIR
[15], HAT-L [6], and SD-XL based [21], showing how our adapter increases each
model’s accuracy in the multi-view scenario.

We propose 3D-GSR, a novel approach to tackle the 3D super-resolution task
by leveraging our Multi-View SR model, which allows for high-quality super-
resolution of 3D assets to ensure consistent enhancement across multiple views.
For geometry estimation, we utilize a pipeline of the 3D Gaussian Splatting
model [12] for accurate reconstruction of 3D assets.

Our method is generalizable to both digital and real-life inputs and can be
applied as a post-hoc enhancement stage for any existing 3D generative model
with arbitrary geometry representation. Our model is capable of object-level
refinement, while scene-level would require additional training.

Our work opens new possibilities for leveraging any 2D super-resolution mod-
els in multi-view contexts, extending beyond the single image-specific task. We
propose a novel technique for 3D super-resolution, achieving high-quality up-
scaling and refinement of the low-quality 3D models while preserving object
consistency.
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