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Abstract

Developing new fluorophores needed for ad-
vanced bioimaging techniques requires the explo-
ration of previously unexplored chemical space.
Generative Al approaches for the creation of
novel dye scaffolds are promising in that they
explore diverse regions of chemical space, but
previous attempts have yielded synthetically in-
tractable dye candidates due to the absence of
reaction constraints, thus impeding experimental
validation. Here, we present SyntheFluor, a gen-
erative Al model that employs known reaction
libraries and molecular building blocks to create
readily synthesizable fluorescent molecule scaf-
folds. SyntheFluor designed 11,590 molecules,
which were filtered to a set of 19 diverse candi-
date molecules predicted to have dye-like proper-
ties. These 19 candidates were further examined
by time-dependent density functional theory cal-
culations, and 14 were successfully synthesized
and 13 were experimentally validated. The pho-
tophysical properties of the three most fluores-
cent molecules were characterized in depth, and
the top scaffold in particular showed robust fluo-
rescence properties comparable to a known dye,
demonstrating the utility of SyntheFluor.
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1. Introduction

Fluorescent dyes with highly optimized photophysical prop-
erties are critical for advanced imaging methods to de-
tect and interrogate biomolecules (Suzuki et al., 2007;
Datta et al., 2021). A variety of microscopy techniques,
such as STORM (Stochastic Optical Reconstruction Mi-
croscopy), PALM (Photoactivated Localization Microscopy)
(Lelek et al., 2021; Henriques et al., 2011), single-molecule
FRET (Fluorescence Resonance Energy Transfer) (Sasmal
et al., 2016), single-particle tracking (SPT), light-sheet
microscopy (Santi, 2011), multi-photon fluorescence mi-
croscopy (Gratton et al., 2001), and fluorescence recovery
after photobleaching (FRAP), have significantly enhanced
our ability to investigate cellular structures and processes
with improved spatio-temporal resolution. As these method-
ologies evolve, the demand for a diverse array of fluorescent
dyes—each characterized by unique photophysical proper-
ties tailored to each specific imaging technique—becomes
increasingly critical. For example, techniques such as SPT
would benefit from dyes that are longer lived, whereas
FRAP would benefit from dyes that are rapidly bleached.

Recently, machine learning (ML) models have emerged as a
potentially transformative tool for de novo molecular design
(Sousa et al., 2021). However, they often face challenges
due to the generation of synthetically intractable scaffolds
(Gao & Coley, 2020).

One approach that addresses this limitation is SyntheMol-
RL (Swanson et al., 2025), a generative Al model that uses
reinforcement learning (RL) to design easy-to-synthesize
molecules with desirable properties. SyntheMol-RL assem-
bles molecules from a set of molecular building blocks and
well-established reactions available in the Enamine REAL
Space (Grygorenko et al., 2020), which contains over 30
billion molecules that are easy to synthesize. Its architecture
utilizes graph neural networks to predict molecular proper-
ties, and it dynamically weights these predicted properties to
generate molecules with optimal combinations of properties.
In its original form, SyntheMol-RL was applied to generate
antibiotic candidates targeting Staphylococcus aureus with
in vitro and in vivo validation of the generated molecules.

In this study, we developed SyntheFluor, a new version
of SyntheMol-RL that assembles readily-synthesizable flu-
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orescent molecule scaffolds. Our main contributions are
outlined below.

1. To guide SyntheFluor, we train both graph neural net-
work (GNN) and multilayer perceptron (MLP) property
predictors on experimental measurements of three critical
fluorescent properties: photoluminescence quantum yield
(PLQY), absorption wavelength, and emission wavelength.

2. To expand SyntheFluor’s chemical space, we introduce
57 new reactions relevant for fluorescent molecule design
to complement the 13 existing reactions in SyntheMol-RL.

3. We design SyntheFluor to simultaneously optimize for
four properties that are essential for fluorescence—PLQY,
absorption wavelength, emission wavelength, and -
conjugated network size—compared to only two properties
for SyntheMol-RL.

4. We applied SyntheFluor to generate 11,590 candi-
date molecules, of which we experimentally validated 13
molecules for their fluorescent properties. This resulted in
the discovery of multiple diverse fluorescent compounds,
including one with brightness comparable to a known dye.

2. Related Work

Machine learning (ML) approaches have been used to iden-
tify promising candidates for fluorescent dyes. Prior work
has successfully employed ML to accurately predict fluo-
rescent properties, such as PLQY, absorption, and emission
to identify molecules with potential fluorescence within
databases of known compounds (Wang et al., 2021; Ye
et al., 2020; Ju et al., 2021; Huang et al., 2024; Bu & Peng,
2023). Trained property predictors can then be used to iden-
tify promising fluorescent molecules from large databases
(Wang et al., 2021). However, these methods are limited
by the finite library sizes of existing chemical compounds,
reducing the diversity of the resulting candidates.

In contrast, generative approaches, such as SyntheFluor, en-
able the design of novel and diverse compounds (Tan et al.,
2023). Generative models have been gaining traction for de
novo molecular design (Sousa et al., 2021). With access to
a vast chemical space, these models allow for the discovery
of novel scaffolds that do not currently exist in fluorophore
libraries. However, while some generative Al approaches
have been employed to discover novel fluorescent molec-
ular structures (Sumita et al., 2022; Tan et al., 2023), few
consider the fragments and reactions needed to develop
synthesizable molecules. As a result, current generative
approaches to molecule design often produce synthetically
intractable scaffolds (Gao & Coley, 2020).

One notable generative approach to fluorescent molecule
design used the model ChemTS to generate fluorescent
dye candidates, of which one novel fluorophore scaffold
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Figure 1. SyntheFluor pipeline overview. First, the training set
is curated, followed by property predictor model development.
Next, SyntheFluor generates molecules using the property predic-
tors within a chemical space of synthesizable molecules. These
molecules are then filtered based on TD-DFT calculations, struc-
tural diversity, predicted property thresholds, and novelty. Finally,
selected molecules are synthesized and experimentally validated.

was experimentally validated (Sumita et al., 2022). This
compute-intensive approach (utilizing 1024 cores over 5
days to generate candidates) used random forest models
and time-dependent density functional theory (TD-DFT)
quantum chemistry calculations in the generative process.

SyntheFluor, unlike ChemTS and most generative mod-
els for small molecules, efficiently generates candidate
molecules (in < 24 hours with 32 cores) that are readily
synthesizable, enabling the synthesis of a larger proportion
of generated compounds and easing the transition from in
silico design to experimental validation.

3. Methods

SyntheFluor generates fluorescent molecule candidates by
using fluorescent property predictors to guide the explo-
ration of an RL algorithm within a chemical space of eas-
ily synthesizable molecules (Figure 1). Below, we intro-
duce the property predictors (Section 3.1) and the chemical
space (Section 3.2) followed by the SyntheFluor generative
model (Section 3.3), which uses RL to learn how to generate
molecules to optimize a dynamically weighted combination
of fluorescent properties. After generation, additional fluo-
rescent properties are calculated via the Gaussian software,
which runs physics simulations, to help filter the generated
molecules (Section 3.4).
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3.1. Property Prediction

SyntheFluor designs fluorescent molecules by optimizing
for four fluorescent properties: PLQY, absorption wave-
length, emission wavelength, and sp? network size. The first
three are predicted using machine learning models while the
last is calculated directly, as detailed below.

3.1.1. NEURAL PROPERTY PREDICTORS

Two machine learning model architectures were designed
to predict PLQY, absorption wavelength, and emission
wavelength: (1) Chemprop (Yang et al., 2019), a graph
neural network that processes molecular graphs and com-
puted features, and (2) an MLP, which uses only com-
puted molecular features. Two types of features were
tested for both models: Morgan fingerprints, which encode
local chemical structures, and RDKit features, compris-
ing 200 physicochemical properties computed with RDKit
(Team, 2024). In both cases, molecular features were aug-
mented with four experimentally derived solvent proper-
ties—polarizability (SP), dipolarity (SdP), acidity (SA), and
basicity (SB)—corresponding to the solvent used during
experimental measurements. These features are relevant
for assessing the solvent effect (Catalan, 2009). Figure 2
depicts the resulting four different property prediction archi-
tectures: (1) Chemprop-Morgan, (2) Chemprop-RDKit, (3)
MLP-Morgan, and (4) MLP-RDKit.
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Figure 2. Visualizations of graph neural network architectures com-
bined with either Morgan fingerprints or RDKit fingerprints (top
two) and MLP architectures using Morgan fingerprints or RDKit
fingerprints (bottom two).

The Chemprop-Morgan model consists of the Chemprop

GNN model augmented with the Morgan fingerprint, which
indexes the presence of specific substructures centered
around each atom in the molecule. The model takes as input
a molecular graph representation of each training molecule,
with atoms as nodes and bonds as edges. The GNN aggre-
gates features — such as atom and bond type for each atom
and bond in the molecule — through three message passing
steps, creating vector representations of local neighborhoods
in the molecule within the neural network layers. The 300-
dimensional vector representation is concatenated with Mor-
gan fingerprints, which are 2,048 bits and were calculated
with a radius of 2 using the cheminiformatics package RD-
Kit’s GetMorganFingerprintAsBitVect function.
Four numerical solvent features (SP, SdP, SA, SB) corre-
sponding to polarizability, dipolarity, acidity, and basicity
are also concatenated to the feature vector. The combined
feature vector is passed through an MLP with one hidden
layer, with a final activation that is a sigmoid for classifi-
cation tasks (PLQY) or a linear layer for regression tasks
(absorption, emission). The Chemprop-RDKit model con-
sists of the same GNN, but instead of the Morgan fingerprint,
200 molecular features computed by RDKit and the four
solvent features are appended to the 300-dimensional vector
output from the GNN and input to the MLP layer. The MLP-
Morgan and MLP-RDKit models have the same architecture
as the MLP layer in the corresponding Chemprop models
but do not include the GNN; thus, each model takes either a
2,052-dimensional feature vector (Morgan fingerprint with
solvent features) or 204-dimensional feature vector (RDKit
fingerprint with solvent features).

3.1.2. sP2 NETWORK SIZE ALGORITHM

The presence of a m-conjugated system is critical for a
molecule to be fluorescent (Yamaguchi et al., 2008; Zhang
et al., 2023), and larger m-conjugated systems reduce the
HOMO-LUMO gap, shifting electronic transitions to the
visible spectrum. To incorporate this information, we de-
rive an sp? network size algorithm that utilizes a depth-first
search (DFS) approach to calculate the size of the largest
network of connected atoms with sp? hybridization in each
molecule’s molecular graph representation (see Appendix
A).

3.2. Chemical Space

SyntheFluor is designed to generate molecules within the
Enamine REAL Space, which contains over 30 billion
molecules that can be readily synthesized in 3-4 weeks
from combinations of around 139,000 molecular building
blocks (Grygorenko et al., 2020). SyntheFluor combines
these building blocks using a set of 70 chemical reactions,
of which 13 were previously used by SyntheMol-RL and 57
are new to SyntheFluor. These 57 new reactions were specif-
ically selected since many of them produce molecules with
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extended aromatic systems — a critical feature for fluorescent
dyes (Figure 3).
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Figure 3. An example of a non-ring forming reaction in the orig-
inal set of 13 reactions (top), and a ring-forming reaction in the
extended set of 70 reactions (bottom).

3.3. SyntheFluor

We developed SyntheFluor to generate fluorescent molecule
candidates (Figure 4). SyntheFluor retains the core gen-
erative process of SyntheMol-RL (Swanson et al., 2025),
which uses an RL value function — implemented as either a
Chemprop or MLP model — to guide its selection of molec-
ular building blocks to form a molecule. The value function
learns to compute the expected property score of one or
more building blocks, allowing SyntheMol-RL to select
combinations of building blocks that lead to promising full
molecules.

3.3.1. RL ALGORITHM

SyntheFluor uses the SyntheMol-RL reinforcement learning
algorithm to generate molecules. This algorithm takes a
chemical synthesis tree T" as input. Each node N € T has
N1, Which is a set of one or more molecular building
blocks from a chemical space (e.g., the Enamine REAL
Space). SyntheMol-RL defines a value function V() on
all nodes, which is a model that takes in the building blocks
in a node’s N,,,,; as input and outputs a prediction of the
property score. During each rollout, V() is applied to
all nodes created at a given step, and nodes are sampled
proportional to ¥ (N)/7 where 7 is a temperature parameter
that can be tuned to affect the RL policy’s exploration or
exploitation. After a molecule m is constructed at the end
of a rollout, it is scored by a weighted combination of L
property predictors, My, for k € {1, ..., L} with weights wy,
for k € {1, ..., L} to obtain the molecule’s overall property

score, p(m) = Z,’;‘:l wy, * My (m).

Extending from the original application of SyntheMol-RL
to antibiotic design, which only optimized for two proper-
ties, SyntheFluor optimizes for four properties. The reward
function of SyntheFluor evaluates the quality of full, gener-
ated molecules by scoring their fluorescent properties, and
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Figure 4. Schematic of the SyntheFluor reinforcement learning
algorithm. Step 1 shows the selection of building blocks with
intermediate RL value scoring conducted by four MLP-Morgan
models (PLQY in blue, absorption in green, emission in purple,
sp? in red), and the pairing of the final selected building blocks
via Reaction 2718 to create the target molecule. Step 2 shows
the evaluation of the candidate model via four reward models
(Chemprop-Morgan for PLQY in light blue, absorption in light
green, and emission in light purple, and the sp? algorithm for sp?
network size in light red). Step 3 shows how the reward scores
from Step 2 are used to update the corresponding RL value function
MLP models in Step 1 and re-weight the building blocks for the
next rollout.

these scores provide feedback to the RL value function to
improve its ability to evaluate the quality of the molecule’s
component building blocks.

Following the RL-MLP version of SyntheMol-RL, we im-
plement the value function using MLP models, and we
implement the reward function using Chemprop models.
We chose this version over the RL-Chemprop version of
SyntheMol-RL, which uses Chemprop models for both
value function and reward function, due to the increased
speed of the MLP models with only a minor loss of accu-
racy.

Specifically, for the RL value function V (N'), we employed
MLP-Morgan models for the four properties PLQY, ab-
sorption wavelength, emission wavelength, and sp? net-
work size. V() is a weighted combination of models
where V(N) = Zé:l wi * Z(Nmot), and Z1, ..., Z, are
the MLP-Morgan models (L = 4), and wy, ..., wy, are the
same property weights used in the reward property score
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p(m). After each rollout, the algorithm stores tuples of
(N, M1(m), ..., M1 (m)) for every node N created along
the path of nodes that ultimately led to molecule m, creating
a training set of nodes and the property prediction scores of
the final molecule created from them. The RL value mod-
els are trained at set intervals over the rollouts to predict
property prediction scores for a generated molecule based
on the building blocks of a node in its path using a mean
squared error (MSE) loss, thus updating V' (V). For the
reward function property predictors My, we utilized three
Chemprop-Morgan models trained to predict PLQY, absorp-
tion wavelength, and emission wavelength, as well as the
sp? network size algorithm (see Appendix A).

Notably, to ensure that fluorescence properties were as-
sessed under relevant aqueous experimental conditions, all
molecules evaluated by the MLP and Chemprop models
within SyntheFluor were represented as a concatenation of
their Morgan fingerprint with the four solvent features — SP,
SdP, SA, and SB — corresponding to water.

3.3.2. DYNAMIC WEIGHTING

SyntheFluor utilizes the SyntheMol-RL dynamic tuning
mechanism to automatically adjust the RL temperature
and property weights over time to optimize the generated
molecules for both diversity and the four desired properties.

The RL temperature is important in defining the balance
of exploration and exploitation and therefore the diversity
of the generated molecules. The dynamic tuning method
adjusts the RL temperature to obtain a molecular similarity
among generated molecules of A* on average during gener-
ation. We set the RL temperature target similarity A* = 0.6,
which means that on average the Tanimoto similarity of a
newly generated molecule to the most similar previously
generated molecule is 0.6.

Dynamic property weight tuning computes the average suc-
cess rate on each rollout and adjusts the property weights
based on the rolling average success rate. The success rate is
determined by whether each generated molecule surpasses
pre-determined success thresholds for each property.

3.4. Gaussian

To further estimate the fluorescent properties of some of
the generated molecules, we used the software Gaussian
to perform time-dependent density functional theory (TD-
DFT) calculations (Jacquemin et al., 2011). We first used
the B3LYP functional with the 3-21G* basis set to optimize
the molecular geometry, facilitating convergence by bypass-
ing eigenvalue checks, calculating the full force constant
matrix, and setting the maximum number of optimization
cycles to 1,000. Solvent effects were simulated using the
Self-Consistent Reaction Field (SCRF) approach, with wa-

ter modeled as the implicit solvent. After geometry opti-
mization, TD-DFT computed the electronic excited states,
specifically the first five singlet states.

These calculations provided excitation wavelengths, oscil-
lator strengths, and dipole moments. The initial molecular
coordinates were determined using a Merck molecular force
field (MMFF) as calculated by RDKit, and the most stable
conformations were selected. For each molecule, a Gaus-
sian calculation was run on 12 CPUs per job, either until
full optimization or for up to 48 hours. We reported the
excited-state energy, oscillator strength, and dipole moment
of the final optimization round.

4. Results

We applied SyntheFluor to generate candidate fluorescent
molecules. Below, we introduce the dataset of known flu-
orescent compounds (Section 4.1), which we used to train
the property prediction models (Section 4.2) that guide Syn-
theFluor. Then, we detail how we applied SyntheFluor to
generate molecules (Section 4.3), followed by a series of fil-
tering steps to select the most promising molecules (Section
4.4). Finally, we describe the synthesis and experimental
validation of our top molecules (Section 4.5).

4.1. Fluorescence Dataset

The property prediction models were trained using the
ChemFluor dataset (Ju et al., 2021). This dataset contains
2,912 unique molecules dissolved in 63 different solvents,
resulting in 4,336 unique molecule-solvent pairs. In addi-
tion to the SMILES strings that correspond to each molecule
and the solvent the molecule is dissolved in, the dataset also
contains experimentally derived PLQY values, absorption
spectra, and emission spectra as well as the solvent constants
(SP, SdP, SA, and SB).

Since PLQY, absorption, and emission measurements were
not available for all entries, three separate training sets
were curated, one for each prediction task. All molecule-
solvent entries that contained the SMILES string; SP, SdP,
SA, and SB entries; and the relevant measurement (either
PLQY value, absorption wavelength, or emission wave-
length) were included in the relevant dataset. For the 50 du-
plicate molecule-solvent pairs, the measurement of interest
was averaged across identical entries. This resulted in 3,055
molecule-solvent pairs with PLQY measurements, 4,202
molecule-solvent pairs with absorption wavelengths, and
4,333 molecule-solvent pairs with emission wavelengths.

4.2. Developing Property Prediction Models

Using this dataset, we trained four different property pre-
diction architectures to predict each fluorescence property:
(1) Chemprop-Morgan, (2) Chemprop-RDK:it, (3) MLP-
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Morgan, and (4) MLP-RDKit (all using the Chemprop pack-
age v1.6.1). Chemprop and MLP models were trained as
either binary classifiers or regressors, depending on the
task. PLQY prediction was modeled as a binary classi-
fication task using a threshold of PLQY > 0.5, while
absorption and emission wavelength predictions were mod-
eled as regression tasks. All models were trained using
10-fold cross-validation with an 80% training, 10% valida-
tion, and 10% testing split, completing in under 60 minutes
on an 8-CPU machine. PLQY models were trained on 3,055
molecule-solvent pairs, absorption models on 4,202 pairs,
and emission models on 4,333 pairs.

Across all three tasks (PLQY, absorption, and emission) and
both the Chemprop and MLP model architectures, the Mor-
gan fingerprints outperformed the RDKit features (Figure
5). The Chemprop-Morgan and MLP-Morgan architectures
showed comparable performance on the PLQY classifica-
tion task (Chemprop-Morgan: ROC-AUC = 0.895 + 0.019
; MLP-Morgan: ROC-AUC = 0.896 + 0.019). Chemprop-
Morgan demonstrated a slight advantage over MLP-Morgan
for both absorption (Chemprop-Morgan MAE = 13.118 +
1.203; MLP-Morgan MAE = 13.657 £ 1.083) and emission
(Chemprop-Morgan MAE = 18.951 + 0.986; MLP-Morgan
MAE = 19.829 + 1.268) regression tasks. Based on its supe-
rior performance across most tasks, the Chemprop-Morgan
architecture was selected for the reward scoring function in
the SyntheFluor generation process, while the MLP-Morgan
architecture was selected for the RL value function due to
it’s faster speed.
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Figure 5. ROC curves and PRC curves for PLQY classification
models (left). Predicted absorption versus actual absorption
and predicted emission vs actual emission for the correspond-
ing Chemprop-Morgan regression models (right).
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change in weight associated with each MLP model (PLQY, absorp-
tion, emission, and sp?) in SyntheFluor’s value function over the
10,000 rollouts.

4.3. Generating Molecules with SyntheFluor

We built SyntheFluor using the above property prediction
models to guide its generation. For dynamic property weight
tuning, we used the following success thresholds. PLQY:
the probability of PLQY > 0.5 (the classification threshold)
is at least 0.5 (i.e., p(PLQY > 0.5) > 0.5). Absorption:
the predicted wavelength is within 420 nm to 750 nm (i.e.,
visible spectrum). Emission: the predicted wavelength is
within 420 nm to 750 nm (i.e., visible spectrum). sp?: the
largest sp? network is > 12 atoms.

We ran SyntheFluor for 10,000 rollouts, completing the gen-
eration process in 16 hours, 38 minutes, and 26 seconds and
generating 11,590 candidate fluorescent molecules. These
generated molecules used 18 unique reactions, five of which
were from the new set of reactions (Figure 6A). Notably,
SyntheFluor dynamically place the highest weight on the
PLQY property throughout the generation process (Figure
6B).

To evaluate SyntheFluor’s efficacy in generating molecules
with optimized fluorescent properties, we compared the
PLQY, absorption wavelengths, emission wavelengths, and
sp? network sizes of the generated molecules against a ran-
dom sample of 10,000 molecules from the Enamine REAL
Space. Molecules generated by SyntheFluor had a higher
probability of PLQY > 0.5 and larger sp? network sizes
compared to the random sample while matching the overall
absorption and emission wavelength distributions (Figure
7), thereby demonstrating that SyntheFluor successfully en-
riched for key fluorescent properties.

4.4. Filtering Generated Molecules

To identify the most promising candidates, we applied a
multi-step filtering process. First, molecules with an sp? net-
work size smaller than 12 were removed, excluding 5,479
molecules. Next, only molecules with p(PLQY > 0.5) >
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togram of sp? network sizes (top right) on the generated molecules
versus a random sample of 10,000 molecules in the REAL Space.
Distribution of Chemprop-Morgan predicted absorption wave-
lengths (bottom left) and emission wavelengths (bottom right)
on generated molecules versus the REAL Space random sample.

0.5 were retained, eliminating 4,256 molecules. Molecules
with predicted absorption and emission wavelengths outside
the visible range (420-750 nm) were also removed, exclud-
ing 21 molecules based on absorption and 1,203 based on
emission. This left 631 molecules.

We evaluated the novelty of these molecules by calculating
the Tanimoto similarity between each generated molecule
and each ChemFluor molecule. Of the 631 generated
molecules that passed the PLQY, absorption, emission, and
sp? filtering steps, 630 had Tanimoto similarities < 0.5
with all ChemFluor molecules, indicating novel structures.
Additionally, a qualitative comparison was performed us-
ing a t-SNE analysis on the Morgan fingerprints of these
molecules with Tanimoto similarity as the distance metric
and PCA for initialization, comparing 2,000 samples each
from Enamine REAL molecules, the ChemFluor dataset,
and SyntheFluor-generated molecules (Figure 8). The t-
SNE plot revealed that the generated molecules occupy a
novel chemical space. The fact that the generated molecules
appear to occupy the subset of Enamine REAL space that is
closest to the ChemFluor molecules indicates that they are
more likely to possess fluorescent properties than random
REAL molecules.

Next, to ensure that we test generated molecules with struc-
tural diversity, we grouped the 631 generated molecules
into 100 clusters using K-means clustering on Morgan fin-
gerprints using Tanimoto similarity. Then, we manually
selected one molecule per cluster to maintain diversity, yield-
ing 52 candidates. Of these, 34 (65%) were available for

e ChemFluor Training Set
e Random 10K REAL Molecules
Generated Molecules
% 19 Selected Molecules
. Y Brightest Molecule

Figure 8. A t-SNE representation of ChemFluor training set
molecules, randomly selected molecules in REAL Space, gen-
erated molecules, the final 19 selected molecules, and the brightest
of validated compounds.

synthesis by Enamine.

To evaluate the potential fluorescence of the 34 candi-
date molecules, we used Gaussian to estimate the excita-
tion wavelengths, oscillator strengths, and dipole moments.
Gaussian-estimated excitation wavelengths correlated well
with experimentally derived emission wavelengths from a
subset of ChemFluor molecules (122= 0.63) (Supplementary
Figure Al). We kept molecules with oscillator strengths
above 0.1, where the oscillator strength quantifies the proba-
bility of absorption or emission in an electromagnetic transi-
tion. Of our 34 molecules, 19 passed the oscillator strength
threshold and were thus selected for synthesis and subse-
quent experimental validation.

4.5. Experimental Characterization

Fourteen of the 19 candidates were successfully synthesized
by Enamine (Kyiv, Ukraine), and their identity and purity
were confirmed by LC-MS. However, one molecule was
decomposed at the time of receipt, leaving 13 molecules
for experimental testing. Excitation and emission scans
were performed to determine the spectra, EXpax, and Empx
for the compounds, and these values were compared to
quinine sulfate as a reference standard (Drobnik & Yeargers,
1966) (Figure 9A; see Appendix B for detailed experimental
methods).

Based on emission intensities, the three brightest com-
pounds were identified as Compounds 13, 2, and 11, in
descending order of brightness (Supplementary Figure A2).
Compound 13 had the highest emission intensity, compara-
ble to a known and regularly used fluorescent dye, quinine
sulfate. Additionally, six additional compounds showed
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Figure 9. A) Emissions spectra of 13 synthesized molecules com-
pared to the quinine sulfate standard at 10 mM. B) Structure of
the brightest compound (13) at 10 mM in chloroform under UV
lamp excitation. C) Normalized excitation and emissions spectrum
of compound 13 (Exmax = 363 nm, Empax = 460 nm). D) Fluo-
rescence lifetime of compound 13 obtained from time-correlated
single photon counting. Red line is double exponential fit with
mean lifetime of 11.55 ns.

fluorescence emission within two orders of magnitude of
compound 13 (Figure 9A). Compound 13 was visibly the
brightest upon UV excitation (Figure 9B); its excitation and
emission spectra are shown in Figure 9C.

The top three fluorescent compounds were structurally di-
verse and each contained a distinct chromophore: a benzoth-
iadiazole, a benzofuran, and an isoxazolopyridine. Fluores-
cence lifetime measurements were performed on these top
three brightest compounds using a 10 MHz pulsed nanoLED
at 405 nm, with emission recorded at the respective Emyyax
for each compound. Time-resolved fluorescence decay
curves were tail-fitted to a bi-exponential model, yielding
fluorescence lifetimes of 11.55 ns for Compound 13 (Figure
9D), 1.8 ns for Compound 2, and 1.5 ns for Compound 11
(Supplementary Figure A2, Supplementary Figure A3).

Our experimental validation identified three promising,
structurally diverse scaffolds, one of which fluoresced in
a range comparable to a known dye. Additionally, six of
our 13 chemically stable dyes exhibited fluorescence within
two orders of magnitude of our brightest compound, indicat-
ing SyntheFluor’s utility in identifying promising, diverse
candidate scaffolds for fluorescent molecules.

5. Discussion

In this study, we developed SyntheFluor, a generative Al
model capable of generating diverse, readily-synthesizable

fluorescent dye scaffolds from a vast chemical space of
over 30 billion molecules. SyntheFluor’s synthesis-aware
approach, in which scaffolds can be accessed from readily-
available building blocks and established reactions, en-
ables facile experimental validation. We showed that three
SyntheFluor-generated molecules absorbed UV light and
fluoresced in the visible range. These scaffolds had diverse
chromophores, demonstrating the potential of SyntheFluor
for the design of new fluorescent molecules.

To accomplish our goals, we needed SyntheFluor to robustly
predict fluorescent properties. Because reinforcement learn-
ing value models require a model architecture that is differ-
entiable, we exclusively experimented with neural property
predictor architectures, including graph neural networks and
MLPs.

Since PLQY, absorption, and emission properties depend
on solvent, it was necessary to encode solvent features in
our property predictor models. Doing so increased model
expressivity and allowed us to train our model on more
molecules, given that there exists no standardized experi-
mental training data. Future improvement is likely to come
from curating a larger fluorescence dataset, particularly one
with a wider range of absorption and emission wavelengths.

Central to SyntheFluor’s development from the core
SyntheMol-RL algorithm is the adaptation of the multi-
parameter objective from two antibiotic properties to four
fluorescent properties: PLQY, absorption wavelength, emis-
sion wavelength, and sp? network size.

Optimizing for these four parameters ensured that the candi-
date molecules possess the structural and electronic proper-
ties necessary for fluorescence. Additionally, to increase the
number of promising candidate scaffolds generated by Syn-
theFluor, we incorporated 57 new reactions, many of which
have the potential to expand sp? networks. Eight of the
fourteen molecules that were successfully synthesized used
a reaction from this extended set, indicating the importance
of including these reactions.

We selected 19 diverse molecules for experimental vali-
dation, 14 of which were successfully synthesized, and
13 of which were chemically stable. Of these 13, one
compound (compound 13) was by far the brightest; how-
ever, 6 additional compounds showed fluorescence emission
within two orders of magnitude of compound 13. Notably,
the chromophores of the three most strongly fluorescent
molecules were all different. From brightest to dimmest,
these molecules contained a benzothiadiazole, a benzofu-
ran, and an isoxazolopyridine, respectively. These three
molecules all fluoresce in a similar spectral region, but
their lifetimes span an order of magnitude range. While
benzofuran- and benzothiadiazole-based fluorophores have
been previously described, these two derivatives have not



Generating Readily Synthesizable Dye Scaffolds with SyntheFluor

previously been synthesized and evaluated for their flu-
uorescent properties (Belmonte-Vazquez et al., 2019; Chen
et al., 2023; Neto et al., 2022; Niu et al., 2015). Both scaf-
folds have been seen to be highly tunable and photostable,
which has resulted in their use in various bioimaging modal-
ities. Importantly, owing to the design of SyntheFluor, it is
straightforward to obtain derivatives of these experimentally
validated molecules for further optimization.

SyntheFluor is the first generative AI model to design di-
verse, readily-synthesizable fluorescent scaffolds, enabling
an easy path from Al-driven molecular design to experi-
mental validation. Future work will enhance both its prop-
erty predictors via an extended training set and its building
block and reaction scoring capabilities for better fluorescent
molecule design and tunability.

Impact Statement

This paper presents work aimed at advancing the field of
Machine Learning. The underlying architecture of Syn-
theFluor, SyntheMol-RL, carries potential societal implica-
tions. SyntheMol-RL can be dual-use: it may contribute
positively by aiding the development of useful molecules
such as fluorescent dyes or antibiotics, but it also carries the
risk of misuse, such as the generation of toxic compounds.
That said, we do not believe this specific paper raises any
immediate societal concerns. The creation of fluorescent
compounds is a well-studied area, with primary applications
in industrial and academic research.
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Appendix
A. sp2 Algorithm

Algorithm 1 sp? Network Size
Input: Molecule, represented as an adjacency matrix
Output: Size of the largest connected component of sp? atoms

Compute sp2_atom_idxs + indices of all sp? atoms in the molecule
Compute sp2_neighbors[atom_idx] < sp? neighbors of each sp? atom
visited_global <+ ()

max_count < 0

function DFS(atom_idx, visited_local)
Append atom_idx to visited_local
Append atom_idx to visited_global
for each neighbor_idzx in sp2_neighbors[atom_idz] do
if neighbor_idx ¢ visited_local then
DFS(neighbor_idx, visited_local)
end if
end for
return len(visited_local)
end function

for each atom_idx in sp2_atom_idxs do
if atom_idx ¢ visited_global then
component_size < DFS(atom_idx, )
mazx_count < max(mazx_count, component_size)
end if
end for

Output: max_count

B. Experimental Validation Measurements
B.1. Measurements of excitation, emission, and fluorescence lifetimes

Excitation and emission spectra were collected using a Fluorolog 3 spectrofluorometer (Horiba Jobin Yvon). The spectra
of 10 mM of each molecule in chloroform were acquired through 1 nm increment wavelength scans with excitation and
emission slit widths set to 4 nm and a 0.1 s integration time. For excitation, a tungsten lamp served as the source, while
photon collection was obtained using a photomultiplier tube (PMT) and recorded as counts per second (CPS).

Fluorescence lifetimes were measured using a Horiba time-correlated single-photon counting (TCSPC) unit, equipped with
a nanoLED405LH (pulse duration: 705 ps) operated at a repetition rate of 1 MHz. Emission signals were collected using a
PMT across 4,096 channels with a total time span of 200 ns (0.055 ns/channel). The instrument response function (IRF) was
recorded using a 1000-fold dilution of the Ludox-40 scattering solution obtained from Sigma, generating a FWHM of 660
ps. Fluorescence decay profiles were tail fit to a double exponential model in Python to determine the amplitude-weighted
mean fluorescence lifetime (7).

B.2. Quantum yield and molar extinction coefficient

The fluorescent quantum yield (® ¢), defined as the ratio of photons emitted to photons absorbed by a fluorescent molecule,
was determined using the relative method with quinine sulfate as the fluorescence standard (P54 = 0.62). Emission spectra
were collected for 20 uM quinine sulfate in 0.1 M sulfuric acid and 20 M compound X in chloroform, using a 330 nm
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excitation wavelength. The absorbance of both solutions at 330 nm was approximately identical (~0.077). The relative

. . .. . 2
uantum yield was calculated from the integrated emission spectra using the formula: ® ; = &4 x —— x -2—, where [
q y g p g f T X n

std
and I are the integrated fluorescence intensities of the sample and standard, respectively, and n and n:q are the refractive
indices of the solvents. Measurements were performed under identical conditions to ensure an accurate comparison with the
reference standard.

The molar extinction coefficient (¢) was determined using the Beer-Lambert law: A = ecl, where A is the maximum
absorbance, c is the molar concentration of the solution and [ is the path length of the cuvette (1 cm). Absorbance was
measured using a Beckman DU 640 spectrophotometer with a 1 cm quartz cuvette and compound titrations ranging from 20

to 500 uM. e was obtained from the slope of the concentration versus absorbance data using linear regression (y-intercept =
0).

= =
S ° 2 800
2 900 . 5
2 ©
2 g
g 800 = 700

. &
S 700 4 . ° =
o . . £ 600
2 o 3
o 600 - . . . Bt

9
3 . .+ 500]
g 500 4 R o0 © S . . g
5 . .' . ° 0. ¢ 8
2 4001 ¢ .o . . £ 400
(] e o °° . K]
7] . 4
% 300 4 . 8 300 °
O 480 500 520 540 560 580 300 400 500 600 700
Chemprop-Morgan estimated emission wavelength Experimentally determined emission wavelength

Figure Al. Plots of Gaussian-estimated excitation wavelength versus Chemprop-Morgan estimated emission wavelength among a subset
of generated molecules (left) and of Gaussian-estimated excitation wavelength versus experimentally-determined emission wavelength
among a subset of ChemFluor molecules (right).
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Figure A2. Fluorescent properties of the three brightest compounds generated by SyntheFluor.
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Figure A3. Fluorescence lifetime decay profiles of SyntheFluor compounds. Decay profiles are fit to a double exponential decay function
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Data and Code Availability

All the data and code are available here: https://drive.google.com/file/d/1C99rng0_PftLi418u3GH_
CjdplHegCOe

Supporting Information Available

Remaining supplementary figures and tables available here: https://drive.google.com/drive/folders/
1ROJjS31EDO60J4em30prLLiHWvnEf781in

Figure S6: UV/HPLC and mass spectrometry analysis of compound 13

Figure S7: UV/HPLC and mass spectrometry analysis of compound 2

Figure S8: UV/HPLC and mass spectrometry analysis of compound 11

Table S1: Metrics for model performance on PLQY classification (Excel spreadsheet)

Table S2: 13 synthesized compounds ordered by brightness (CPS) (Excel spreadsheet)
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