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ABSTRACT

Auxiliary Learning (AL) is a form of Multi-Task Learning in which a model lever-
ages auxiliary tasks to improve performance on a primary task. AL has boosted
performance across multiple domains, including navigation, image classification,
and natural language processing. One of the main weaknesses of AL is the need
for labeled auxiliary tasks, which can require human effort and domain expertise to
generate. Furthermore, it has been shown that not all auxiliary tasks are equally
beneficial to aid primary task performance. Therefore, deciding how to weight an
auxiliary task or sample during training is also a hard problem. Recent work ad-
dresses the task-creation problem by learning auxiliary labels using Meta Learning
approaches, often via bi-level optimization. However, these methods assume uni-
form weighting across data points. Other works present selecting weights for known
tasks. In this work, we propose Weight-Aware Meta Auxiliary Learning (WAMAL),
a novel framework that jointly learns both auxiliary labels and per-sample auxiliary
loss weights to better guide the main task. Our method improves upon existing
approaches by allowing more nuanced and adaptive task supervision. Across
multiple benchmarks WAMAL surpasses both handcrafted auxiliaries and prior
meta-auxiliary baselines. On CIFAR-100 (20 super-classes, VGG16) it reaches
80.2% test accuracy (+5.6 pp over human-designed auxiliaries; +2.8 pp over weight-
unaware meta-learning). When fine-tuning ViT-B/16 on Oxford-IIIT Pet, WAMAL
improves accuracy by 0.62 pp. These results underscore the importance of learning
both which auxiliary tasks to use and how strongly to weight them at the sample
level. Code repo will be released after submission. Anonymized version: https:
//anonymous.4open.science/r/wamal-66EF/README.md.

1 INTRODUCTION

Motivation. Auxiliary Learning (AL) improves generalization by utilizing additional supervision, it
is limited by two considerations: (i) which auxiliary labels to use, and (ii) how strongly each training
sample should influence the auxiliary loss. Handcrafted labels may be suboptimal or unavailable,
and uniform weighting can emphasize the wrong information in regard to helping the primary task.
We aim to address both choices jointly, within a bi-level framework that directly optimizes for
primary-task improvements.

Auxiliary Learning (AL) is a technique by which learned or pre-labeled auxiliary tasks are provided
as an additional objective to a network during its training with the intended goal of improving
the network’s performance on a desired primary task. Auxiliary Learning can be thought of as
a sub-field of multi-task learning, in which the objective of the training is to improve the main
network’s performance on the primary task while the auxiliary tasks regularize the training (Caruana,
1997; Ponti, 2021). It has been demonstrated that the inclusion of auxiliary tasks during training
improves generalization and network performance on unseen samples across a large range of domains,
including speech recognition, navigation, and image classification (Jaderberg et al., 2016; Goyal
et al., 2019; Mirowski et al., 2016; Liebel and Körner, 2018; Toshniwal et al., 2017). Even small,
tangentially related tasks have been shown to provide significant support to the main task (Liebel
and Körner, 2018). The intuition is that using the auxiliary task pushes the network to learn a shared
representation of the data that guards against overfitting on the primary task (Liu et al., 2019).

A historic weakness of Auxiliary Learning has been the need for additional human labeling during
the creation of supervised auxiliary tasks. This requires a large amount of human effort and domain
expertise for each auxiliary task. Furthermore, we know that poor task selection can ultimately harm
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primary task performance (Gururangan et al., 2020). Therefore, the manner in which primary and
auxiliary tasks should be optimally combined during the weight update procedure can be ambiguous
and require expert knowledge.

Meta Auxiliary Learning (MAXL) attempts to alleviate the problem of auxiliary task labeling through
the procedural generation of an auxiliary task that optimizes the performance on the given primary
task (Liu et al., 2019). The MAXL framework works by organizing the inputs of the primary task into
hierarchical subclasses for each primary class using an additional label generation network. As such,
MAXL is one of several approaches for dynamic label generation that utilize bi-level optimization
(Navon et al., 2020; Chen et al., 2023). Bi-level optimization, which is at the heart of many Meta
Learning procedures, arises here as the gradients of the label network are calculated with respect
to the performance of the main network on the primary task, resulting in a Hessian-inverse vector
calculation and generally increased implementation complexity.

In this work, we will extend the bi-level optimization approaches for Meta Auxiliary Learning by
learning sample-level auxiliary weights as the auxiliary task is learned. Our approach involves
adding a weight-selection head to a label generation network that enables the new network to select a
new auxiliary task label and decide how much that sample should be weighted during the auxiliary
training. Several techniques have been explored in the literature to optimize auxiliary task weighting
but our novel focus is the dynamic selection of the auxiliary task labels and also the weights at a
sample-level (Kung et al., 2021; Grégoire et al., 2023; Abbas and Tap, 2019; Chennupati et al., 2019).
We demonstrate that WAMAL outperforms single-task learning and weight-unaware Meta Auxiliary
Learning on a variety of tasks and network architectures.

Enabling a network architecture to work with a bi-level optimization-based auxiliary task generation
often requires bespoke implementations for each chosen architecture. To help alleviate the burden of
adapting new architectures, our framework presents generic wrappers that facilitate the conversion of
virtually any image classification network into WAMAL-ready (and MAXL-ready) primary networks
and label-weight generating networks. This will be expanded to more generic use-cases in the future.
We demonstrate that this approach works across several architectures and has enabled us to be perhaps
the first to use Vision Transformers (ViTs) in the Meta Auxiliary Learning space (Dosovitskiy et al.,
2020).

Contributions. (1) We introduce WAMAL, a bi-level framework that jointly learns auxiliary labels
and per-sample auxiliary weights to guide the primary objective. (2) We motivate bounded weights
as a mechanism to stabilize the bi-level optimization and explore the role of the entropy term in
preventing label collapse. (3) We provide generic Python wrappers that turn standard image classifiers
into WAMAL-ready primary and label-weight networks, lowering the barrier to adoption. (4) Across
VGG16, ResNet50, and ViT-B/16, WAMAL improves over single-task training and weight-unaware
meta-auxiliary baselines.

In summary, we demonstrate a method to dynamically learn sample-level loss weights and an auxiliary
task at the same time using bi-level optimization. Our approach, WAMAL, significantly improves
main network performance on a variety of tasks and provides greater improvement than weight-
unaware approaches. This paper focuses on image classification. However, we discuss how the
framework extends to other domains, leaving experimental verification to future work.

2 RELATED WORK

2.1 AUXILIARY AND MULTI-TASK LEARNING IN VISION

Multi-task Learning (MTL) is a well-studied and widely used method to have a network learn multiple
tasks simultaneously (Caruana, 1997; Liebel and Körner, 2018; Zhang and Yang, 2017). Auxiliary
Learning (AL) is a special case of MTL, in which there is one primary task of importance and one
or more auxiliary tasks that support the performance of the main task (Liu et al., 2019). MTL and
AL have been shown to improve target task performance compared to networks trained on a single
task, particularly in low data contexts (Standley et al., 2019; Zhang and Yang, 2017). There has
been extensive work using MTL and AL in the vision domain, such as the auxiliary classifiers in
GoogLeNet (Szegedy et al., 2014), multi-task cascaded convolutional networks (Zhang et al., 2016),
and state-of-the-art performance on three vision tasks using one convolutional network (Eigen and
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Figure 1: Sample WAMAL Setup

Fergus, 2014), among many others (Strezoski et al., 2023; Kokkinos, 2017; Rasmus et al., 2015).
Figure 4 shows a classic auxiliary task setup and a label-network auxiliary task setup.

2.2 TASK WEIGHTING

The standard loss formulation in Auxiliary Learning is given by:

Ltotal(θ) = Lprim(θ) +

k∑
i=1

λiL(i)
aux(θ) (1)

Where k is the number of auxiliary tasks, λi represents the weight of the task i, and the network is
parametrized by θ. The Taskonomy framework provides a methodology to investigate the relationship
between candidate auxiliary tasks and map their relationship based on their contribution to target task
performance (Zamir et al., 2018). (Standley et al., 2019) took this a step further and demonstrated
that not all possible tasks are helpful for learning. As such, several papers in the field have attempted
to learn optimal λi loss weights on a per-task basis . (Kendall et al., 2017) introduced the idea of
using homoscedastic aleatoric uncertainty to weight known auxiliary tasks. (Liebel and Körner,
2018) extended this work but enforced positive regularization values to achieve improved results
(Gong et al., 2019). GradNorm demonstrated strong results by normalizing gradient magnitudes on a
per-task basis (Chen et al., 2017) . Task weighting as a Pareto multi-objective optimization was also
attempted (Sener and Koltun, 2018).

While the previously mentioned approaches attempt to weight on a per-task basis, SLGrad presents a
sample-level weighting approach for known auxiliary tasks that scales each sample on the cosine-
similiarity of the sample’s loss gradient and the primary task’s validation gradient (Grégoire et al.,
2023). Auxilearn also presents a framework to learn sample-specific weights for a known task using
bi-Level optimization with implicit differentiation (Navon et al., 2020).

2.3 TASK GENERATION

MAXL started the label network paradigm for dynamic task generation in the Auxiliary Learning
space using Bi-Level Optimization (Liu et al., 2019). The MAXL framework trains a label network
to create an auxiliary task that optimizes the main network’s performance on the target primary task.
Figure 5 in the Appendix shows how the setup of a label network is used to generate the auxiliary
task. For a label network gϕ, the per-sample loss can be constructed as:

ℓtotal(xi, yi) = ℓprimary

(
fθprimary(xi), yi

)
+ λ ℓaux

(
fθaux(xi), g

ϕ(xi)
)

(2)

Bi-Level optimization approaches attempt to find the optimal primary network weights θ∗ and
auxiliary labeling network weights ϕ∗ that satisfy:

ϕ∗ = argmin
ϕ
Laux

(
θ∗(ϕ)

)
, s.t. θ∗(ϕ) = argmin

θ
Lprim(θ, ϕ) (3)
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The gradient update of the label network is given by:

∇ϕ Laux

(
θ∗(ϕ)

)
= −∇θLaux ·

(
∇2

θLprim

)−1 · ∇ϕ∇θLprim (4)

Auxilearn, another approach using Bi-Level Optimization, attempted to use Neumann approximation
to optimize this update (Navon et al., 2020). Other Bi-Level Optimization approaches in task
creation involve generating features/samples on the fly and finding useful "questions" as general
value functions (Veeriah et al., 2019; Chen et al., 2023).

There have been several attempts at task generation without Bi-Level optimization. These approaches
generally involve selecting task objectives from a predefined or procedurally generated pool of tasks.
Approaches include using Beta-Bernoulli multi-armed bandit framing (Guo et al., 2019), search over
unified taxonomy (Dery et al., 2023), and trial-and-error search over generated features (Rafiee et al.,
2023).

3 PROBLEM FORMULATION

This work focuses on learning sample-level weights for the auxiliary task in addition to learning
auxiliary task labels.

Let our dataset be represented as D = {(xi, yi)}Ni=1, x ∈ X, y ∈ Y . We construct a label-weight
selection network gϕ that maps an input in X to a new set of labels Ŷ and weight between [2−r, 2r],
where r is a hyperparameter representing the range of the weight output. The label network will have
two heads represented as gϕlabel : X → Ŷ and gϕweight : X → [2−r, 2r]. The size of Ŷ is an integer
multiple of the size of Y , s.t. ψ|Y | = |Ŷ | for some ψ ∈ Z. ψ represents the hierarchy factor by
which each main task label is expanded into auxiliary sub-classes. We have found r = 5 to provide
an effective range for weight selection and this selection is substantiated in our ablation experiments.

We will train a main network f , parameterized by θ, that has two output heads fθprim : X → Y and
fθaux : X → Ŷ . We will train the network with the following per-sample loss:

ℓtotal(xi, yi) = ℓprim
(
fθprim(xi), yi

)
+ gϕweight(xi) ℓaux

(
fθaux(xi), g

ϕ
label(xi)

)
(5)

The weight update of the gϕ network is done only with respect to the primary loss:

ℓprim(fθprim(xi), yi) (6)

And the gradient update is still calculated as in Equation 4. Figure 1 provides a visual representation
of WAMAL’s setup.

3.1 LABEL HIERARCHY AND LOSS ENTROPY

MAXL employs hierarchy-constrained label generation through the use of a Masked Soft-max (Liu
et al., 2019). In other words, each class in the primary task will have some fixed number of subclasses
in the auxiliary task.

If z are the logits generated from an input (xi, yi) and yi represents the integer index of the primary
label, then the following gives the probability for auxiliary label k:

pk =
exp(zk)mk∑K
j=1 exp(zj)mj

,mk =

{
1 if ψ · yi ≤ k < ψ · (yi + 1)

else 0
(7)

where K is the number of auxiliary classes, z represents raw logits, and m ∈ {0, 1}K acts as the
mask. MAXL employs a hierarchy factor ψ that dictates how many subclasses a primary task class
will have in the auxiliary task. Masking auxiliary logits with a per-class partition (Eq 7) guarantees
coverage of each primary class with a fixed number of subclasses. This minimizes complexity and
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provides a straightforward guard against collapse. Alternative approaches are possible but are out of
the scope of this work.

In order to avoid collapsed auxiliary class labels, MAXL uses an entropy factor over the label space
that is added to the loss. This encourages the label network to use the entire auxiliary class space. We
can formulate this entropy factor in our setup asH(gϕlabel(x)(b)) per evaluation batch b:

H
(
gϕlabel(x)(b)

)
=

K∑
k=1

gϕlabel(x)
k
(b) log g

ϕ
label(x)

k
(b), gϕlabel(x)

k
(b) =

1

N

N∑
n=1

gϕlabel(x)
k
(b)[n] (8)

where K is again the number of auxiliary classes and N is the batch size. We ran ablations over the
impact of the weight of this entropy factor as part of our experimentation.

Focal loss is used after the Masked Soft-max to promote the use of the entire auxiliary label space.

4 METHODOLOGY

4.1 NETWORKS

We experiment with various network architectures. The majority of our experimental setups have
the backbone architecture of the main network match the backbone of the label-weight generation
network. In addition to this, we conducted ablations in which the two backbones are network
architectures of different sizes/capacities. We leave the exhaustive exploration of the optimization
of the size of the two backbone networks for future work. The results presented in this paper focus
on the performance of the WAMAL framework using VGG16 (Liu and Deng, 2015), ResNet50 (He
et al., 2015), and Vision Transformer (ViT-B/16) (Dosovitskiy et al., 2020) as the backbone.

4.1.1 WEIGHT SELECTION

Our label-weight generation network is fitted with a weight-head composed of 2 linear layers that can
output a scalar auxiliary sample weight. The weight for sample xu is generated as follows:

wu = σ(W2 · ReLU(W1g
ϕ
backbone(xu) + b1) + b2) (9)

The selected unscaled weight wu, is then used to get the true selected weight as:

22rwu−r (10)

This gives us constrained auxiliary sample weights w ∈ [2−r, 2r] as in Equation equation 10.
Bounded weights (i) prevent dominance or vanishing of the auxiliary term, (ii) promote numerically
stable implicit-differentiation steps as it constrains the norm of Hessian–vector product. A theoretical
justification can be found in the appendix. Our ablations over this hyperparameter reveal the
importance of constraining these weights and justify our selection of r value.

4.1.2 WAMAL/MAXL WRAPPER

To enable rapid experimentation and flexible integration of novel architectures into the WAMAL
framework, we introduce two lightweight Python modules that can generically wrap any standard
image classification backbone. These wrappers create a level of abstraction that allows an arbitrary
network to be deployed in a Meta Auxiliary Learning pipeline with low overhead. Both work by first
stripping the backbone network of its final classification layer.

The primary network wrapper then adds primary and auxiliary task heads, which are two-layer
feedforward networks. The interface exposes parameter overrides to enable gradient-based Meta
Learning approaches that require inner-loop optimization.

The label-weight generation network adds a classifier head, to attribute auxiliary task labels, and
a scalar weight head, which outputs a value in the range of [0, 1] as defined in Equation 9. This
framework is suitable both for training networks from scratch and fine-tuning pretrained architectures.

5
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Remark (entropy against collapse). In the MAXL framework, it was shown that adding batch
entropy on gϕlabel discourages degenerate solutions where only a few subclasses are used. We study
the impact of this entropy on our framework in our ablations.

5 EXPERIMENTAL SETUP

This section summarizes datasets, preprocessing, model configurations, and training schedules used
across experiments.

5.1 DATASETS

CIFAR-10 and CIFAR-100 have become ubiquitous benchmark datasets in the Auxiliary Learning
space(Grégoire et al., 2023; Chen et al., 2023; Fan et al., 2018; Cubuk et al., 2018; Liu et al., 2019;
Navon et al., 2020; Krizhevsky, 2009).

CIFAR-100 provides a 20 superclass hierarchy. Each of the 100 classes in the dataset is mapped into
one of the 20 Superclasses such that each superclass is composed of 5 of the 100 classes (Krizhevsky,
2009). Table 2 in the Appendix shows how the Superclasses are constructed. This is a very useful
human-labeled auxiliary task benchmark, against which we can compare our proposed methodology.

We additionally evaluate on SVHN (Street View House Numbers) (Netzer et al., 2011), Oxford–IIIT
Pet (Parkhi et al., 2012), Food101 (Bossard et al., 2014), and CUB-200-2011 (Wah et al., 2011)

5.2 TRAINING

We adopt a standard alternating training procedure in which the label-weight generation network
is trained for one epoch, followed by one epoch of main network training on both the primary and
auxiliary tasks. Our training algorithm is outlined in Section A.13 in the Appendix. In all experiments
we capture performance metrics after one round of training for both networks.

All experiments, unless otherwise noted, were trained using Stochastic Gradient Descent (for both the
primary and label-weight networks), Hierarchy Factor(ψ)=5, Range Hyperparameter(r)=5, Label-
Weight Network Optimizer Decay=5e-4, Scheduler Step Size=50, and Scheduler Gamma(γ)=0.5.
The default training parameters for the VGG16 architecture were: Primary Learning Rate=1e-2,
Label-Weight Learning Rate=1e-3. The default training parameters for ViT-B/16 were: Primary
Learning Rate=5e-4, Label-Weight Learning Rate=1e-3. For ResNet50, the default parameters were:
Primary Learning Rate=1e-2, Label-Weight Learning Rate=1e-2.

When training on the CIFAR and SVHN datasets, the provided 32x32 resolution images were used.
All other datasets were resized to 224x224. Standard transformations were applied for each dataset.
When fine-tuning the ViT architecture, the provided image processor was applied to the images
during training and testing.

All experiments that involved training networks from scratch were trained for 200 epochs. All
fine-tuning experiments were trained for 75 epochs.

6 RESULTS AND DISCUSSION

We present our results comparing WAMAL to standard Single-Task Learning (STL) and Meta
Auxiliary Learning (MAXL) task generation.

6.1 EXPERIMENTS

6.1.1 VGG16

As mentioned previously, the CIFAR100 dataset provides a 20-Superclass hierarchy. We conducted
an experiment to compare a VGG16 backbone architecture trained from scratch on the 20-Superclass
CIFAR100 task. In addition to STL, MAXL and WAMAL, we will also use the 100-class labels as a
human auxiliary task (as was done in (Liu et al., 2019)).

6
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Table 1: Comparison of test accuracy across different architectures and tasks using Single Task,
MAXL, and WAMAL (in percentage), with SGD optimizer used throughout. Results reflect the
average accuracy of 3 runs.

Task Architecture Optimizer Accuracy (%)
Single Task MAXL WAMAL

SVHN VGG16 SGD 0.9395 ± 0.0003 0.9454 ± 0.0012 0.9554 ± 0.0012
CIFAR100-20 VGG16 SGD 0.7378 ± 0.0028 0.7726 ± 0.0005 0.8022 ± 0.0023
CIFAR10 ResNet50 (fine-tune) SGD 0.8783 ± 0.0015 0.9035 ± 0.0021 0.9114 ± 0.0012
CUB200 ResNet50 (fine-tune) SGD 0.6981 ± 0.0046 0.7110 ± 0.0039 0.7179 ± 0.0036
CUB200 ViT-B/16 (fine-tune) SGD 0.8132 ± 0.0011 0.8113 ± 0.0009 0.8136 ± 0.0012
Oxford-IIIT Pet ViT-B/16 (fine-tune) SGD 0.9222 ± 0.0028 0.9221 ± 0.0013 0.9284 ± 0.0007
Oxford-IIIT Pet (30%) ViT-B/16 (fine-tune) SGD 0.9190 ± 0.0045 0.9160 ± 0.0021 0.9225 ± 0.0016
Food101 ViT-B/16 (fine-tune) SGD 0.8665 ± 0.0006 0.8587 ± 0.0008 0.8787 ± 0.0010

As is clear from Figure 2a, our WAMAL (80.22%) approach significantly outperforms both MAXL
(77.26 %) and the human auxiliary task (74.64%).

6.1.2 VIT-B/16

We ran several fine-tuning experiments using a pretrained ViT-B/16 backbone. We ran full fine-tuning
experiments on CUB200, Oxford-IIIT, and Food101. WAMAL did notably well on the Food101 task,
providing a 1.2% performance improvement over both approaches. The Oxford-IIIT Pet task also saw
a notable 0.62% improvement with the assistance of WAMAL. We also see a modest improvement
for the CUB200 dataset, which may be attributed to the large amount of sample data in the training
set.

We also conducted additional fine-tuning experiments using only 30% of the Oxford-IIIT Pet dataset.
In this data-constrained setup, we notice an improvement with our approach.

6.1.3 RANGE ABLATION

We study the impact of r selection by training VGG16 on the CIFAR-100 20 Superclass problem
with r selections in the range [0,40]. We see significant training instability at and above r = 10, with
r = 40 preventing convergence entirely. We also see that low values (r = 1.25, 79.8%) perform
worse than larger viable values. This further emphasizes the significance of sample weighting
overall. A selection in the range [2.5,5] is optimal (r=5, 81.6%). This supports the claim that weight
constraining is critical to training stabilization in this framework.

6.1.4 ADAM ABLATION

We ran ablation experiments to observe the impact of using Adam as the optimizer in place of SGD
with WAMAL. We trained VGG16-based WAMAL architecture using a wide range of learning rates.
Our results, as seen in the Technical Appendix, reveal that using Adam makes the training setup
sensitive to learning rate selection. Adam (79.3%) does not perform as well as SGD (80.9%) even
with an exhaustive search for learning rate. Adam’s adaptive learning rate and momentum may
compound with large auxiliary task weights, resulting in suboptimal training curves.

6.1.5 ASYMMETRIC BACKBONE CAPACITIES ABLATION

We study the effect of using backbones with different capacities in the primary and label backbones
using the CIFAR-10 dataset. We see that using a smaller backbone network can provide results on
par with using the same primary network backbone. Using a larger label network than the primary
network does not provide additional benefit. We leave an exhaustive exploration into the trade-offs of
different model capacities to future work.

6.2 WEIGHT ANALYSIS

To understand the contribution of the weight selection on the primary task training, we explore how
the label-weight network learns to attribute weights.

7
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(a) CIFAR100-20 (VGG16) (b) CIFAR10 (ResNet50)

(c) SVHN (VGG16) (d) Oxford-IIIT Pets (ViT-B/16)

Figure 2: Sample test accuracy curves over multiple runs for WAMAL, MAXL, and Single Task
training setups across datasets. Additional curves can be found in the appendix.

(a) Low Weight (CIFAR100) (b) Low Weight (Oxford Pets) (c) Low Weight (CUB200)

(d) High Weight (CIFAR100) (e) High Weight (Oxford Pets) (f) High Weight (CUB200)

Figure 3: High and Low Weight Training Samples.

6.2.1 WEIGHT DISTRIBUTION ANALYSIS

We collected the distribution of the unscaled weights (prior to the application of Equation 10)
attributed to training datapoints from several model and task setups. We present the results to show
how our label-weight generation network is attributing weights to the training data.

As we can observe in Figure 11 in the Appendix, the label-weight generation networks tend to learn a
normal-like distribution across all training data-points. The label-weight networks also clearly use a
wide range of values within their selection space and do not seem to be limited by our choice of r
value. It is interesting to note that the different setups have different weight biases. This supports the
idea that our weight selector learns how well the primary task and network respond to auxiliary tasks
during training.

WAMAL yields larger gains when auxiliary structure is rich (e.g., many fine-grained modes) and the
base model has headroom, while improvements diminish as base accuracy saturates (e.g., strong ViT
fine-tuning). This suggests that learned sample-level weighting is most impactful when the auxiliary
signal is heterogeneous and not uniformly useful.

8
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6.2.2 QUALITATIVE ANALYSIS

We collected and visually examined the images with the highest and lowest weights from the label-
weight generation model.

Qualitatively, there seems to be a trend that the lower-weighted samples are generally of lower
quality and clarity. The low-weight CIFAR100 samples, for example, seem to be noisier and
less representational than their high-weight counterparts. The high-weight samples in CIFAR100,
generally contain distinct, recognizable objects. Similarly, the low-weight Oxford-IIIT samples
include images that contain humans and less informational perspectives. The high-weight CUB200
images tend to have more colorful and novel birds and varied backgrounds compared to the low-weight
images.

6.2.3 ETHICAL CONSIDERATIONS

Per-sample weighting can unintentionally underweight minority classes or lead to the discarding of
safety-related samples. We recommend monitoring per-class weight statistics as it pertains to safety.

6.3 LIMITATIONS

Although WAMAL yields strong results across various tasks and architectures, it exhibits some
limitations in specific scenarios:

Performance on ViT with Abundant Data - WAMAL and MAXL did not provide significant gains
over Single-Task learning when fine-tuning ViT-B/16 on CUB200. One potential reason is that ViT’s
can learn robust representations in the presence of an abundance of data, reducing the benefit of
auxiliary tasks.

Instabilities with Adam - We observed that training WAMAL with Adam could lead to less stable
learning. Adam’s adaptive learning rate and momentum may compound with large auxiliary task
weights, resulting in suboptimal training curves.

7 CONCLUSION

In this work, we presented WAMAL, a novel bi-level optimization framework that jointly learns
auxiliary labels and per-sample weights to enhance a primary classification task. Our experiments
show that incorporating sample-level weighting alongside task label generation yields performance
gains over both single-task training and weight-unaware Meta Auxiliary Learning across multiple
datasets and architectures. Notably, WAMAL surpasses both human-designed and MAXL-based
auxiliary tasks on the CIFAR-100 20-Superclass benchmark. We also demonstrate that WAMAL
improves fine-tuning results for ResNet50 and ViT-B/16, including a 1.2% accuracy boost on Food101
and a 0.62% boost on Oxford-IIIT Pet. Our analysis suggests that adaptively emphasizing certain
training samples significantly strengthens auxiliary-task effectiveness.

In addition, we introduce an open-source library that converts arbitrary image classifiers into WAMAL-
ready primary and label-weight generation networks. This library facilitates rapid experimentation
with Meta Auxiliary Learning pipelines.

Looking ahead, we plan to extend our approach beyond image classification. Similar dynamic
sample-level weighting could be explored in NLP or applied to tasks like image segmentation and
dense prediction. Another promising direction is multi-task learning, where an auxiliary task could
be crafted to improve multiple target tasks simultaneously instead of focusing on a single task.

Overall, these results highlight the importance of learning not only what auxiliary tasks to use, but
also how to assign weights to samples dynamically. We hope this work will spur further development
and refinement of Meta Auxiliary Learning frameworks.
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A APPENDIX

A.1 CIFAR100 20-SUPERCLASS PROBLEM

Superclass Classes
Aquatic mammals beaver, dolphin, otter, seal, whale
Fish aquarium fish, flatfish, ray, shark, trout
Flowers orchids, poppies, roses, sunflowers, tulips
Food containers bottles, bowls, cans, cups, plates
Fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
Household electrical devices clock, computer keyboard, lamp, telephone, television
Household furniture bed, chair, couch, table, wardrobe
Insects bee, beetle, butterfly, caterpillar, cockroach
Large carnivores bear, leopard, lion, tiger, wolf
Large man-made outdoor things bridge, castle, house, road, skyscraper
Large natural outdoor scenes cloud, forest, mountain, plain, sea
Large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
Medium-sized mammals fox, porcupine, possum, raccoon, skunk
Non-insect invertebrates crab, lobster, snail, spider, worm
People baby, boy, girl, man, woman
Reptiles crocodile, dinosaur, lizard, snake, turtle
Small mammals hamster, mouse, rabbit, shrew, squirrel
Trees maple, oak, palm, pine, willow
Vehicles 1 bicycle, bus, motorcycle, pickup truck, train
Vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 2: CIFAR-100 20 Superclass and Corresponding Single Classes
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A.2 AUXILIARY TASK SETUPS

We provide a visual sample of the difference between the training setups for Auxiliary Learning in
three scenarios: (i) The auxiliary task is known/provided by human labels, (ii) The auxiliary task is
created from a label network (MAXL), (iii) The auxiliary task and per-sample weights are generated
by WAMAL.

Figure 4: Classic Auxiliary Task Setup

Figure 5: Label Network Training Setup
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Figure 6: WAMAL Training Setup
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A.3 AUXILEARN

AuxiLearn is a bi-level framework that uses implicit differentiation to learn new auxiliary tasks or
weight existing tasks (Navon et al., 2020). Auxilearn introduced the use of auxiliary sets, which
are small validation splits held out from the training data and used solely to tune the auxiliary-loss
parameters. The Auxilearn researchers demonstrated that their procedure benefits from the use of
an auxiliary set. Moreover, the researchers demonstrate that their framework surpasses MAXL in
helpful auxiliary task creation.

A.3.1 AUXILEARN EXPERIMENTS

In these experiments, we compare Auxilearn to WAMAL using their open-source Python optimizer.
We tested their procedure with 10% auxiliary set against WAMAL.

(a) CIFAR 100 20-Superclass - VGG16 (b) SVHN - VGG16

Figure 7: Sample Training Curves - Auxilearn

Dataset Method Value

CIFAR100 20-Superclass

WAMAL 0.8153
AUXILEARN 0.8033
MAXL 0.7665
HUMAN 0.7577
STL 0.7268

SVHN

WAMAL 0.9582
AUXILEARN 0.9579
MAXL 0.9485
STL 0.9396

Table 3: Test Accuracies compared to Auxilearn

We see that our framework out performs Auxilearn from the results of the experiments given in Table
3 and Figure 7.
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A.3.2 AUXILIARY SET EXPERIMENTS

Auxilearn has been shown to benefit from the use of auxiliary sets. We verify the importance of the
auxiliary set for Auxilearn on the 20-Superclass problem. Moreover, we test the impact of the use of
a 10% auxiliary set on WAMAL. We also experimented with using auxiliary sets when fine-tuning
ViT-B/16 on the Oxford-IIIT Pets and Food101 datasets.

(a) CIFAR 100 20-Superclass - VGG16 (b) SVHN - VGG16

Figure 8: Sample Training Curves - VGG16 w/ Auxiliary Set

Method SVHN CIFAR100-20
WAMAL 0.9582 0.8153
WAMAL w/ Aux Set 0.9566 0.8074
AUXILEARN 0.9579 0.8033
AUXILEARN w/o Aux Set – 0.7948

Table 4: Test accuracy of VGG16 using Auxiliary Sets

(a) Oxford-IIIT Pets - ViT-B/16 (b) Food101 - ViT-B/16

Figure 9: Sample Training Curves - ViT w/ Auxiliary Set

We find that WAMAL is not significantly positively impacted by the use of an Auxiliary Set.
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Dataset Method Value

Oxford Pet WAMAL 0.9239
WAMAL w/ Aux Set 0.9269

Food101 WAMAL 0.8782
WAMAL w/ Aux Set 0.8781

Table 5: Test Accuracies of ViT w/ Auxiliary Set
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A.4 STATISTICAL-SIGNIFICANCE

To confirm that the observed performance gaps are not due to random chance, we study the statistical
significance of our findings. Across 3 runs for each of the tables below we collected the statistical
indicators for our following experiments.

We list the sample mean, the sample standard deviation and the associated 95% confidence interval
obtained from the two-tailed Student t distribution with n− 1 = 2 degrees of freedom. For every
pair of methods we carry out a two-sided Welch t-test and report the mean difference ∆, its 95%
confidence interval, the resulting p-value. All numerical results can be found in the tables below.

CIFAR-100 (20 SUPERCLASSES), VGG16 PRIMARY

Table 6: Test accuracy (n=3).

Method Accuracy

Single-Task 0.7378± 0.0028
Human labels 0.7464± 0.0017
MAXL 0.7726± 0.0005
WAMAL 0.8022± 0.0023

Table 7: Welch t-tests on CIFAR-100 accuracy.

Comparison ∆ 95% CI p

STL vs MAXL −0.0348 [−0.0414,−0.0282] 0.0016
STL vs WAMAL −0.0644 [−0.0703,−0.0585] < 10−4

MAXL vs WAMAL −0.0296 [−0.0350,−0.0242] 0.0013

CIFAR-10, RESNET-50 PRIMARY

Table 8: Test accuracy (n=3).

Method Accuracy

Single-Task 0.8783± 0.0015
MAXL 0.9035± 0.0021
WAMAL 0.9114± 0.0012

Table 9: Welch t-tests on CIFAR-10 accuracy.

Comparison ∆ 95% CI p

STL vs MAXL −0.0252 [−0.0295,−0.0210] 1.2× 10−4

STL vs WAMAL −0.0331 [−0.0363,−0.0298] 1.2× 10−5

MAXL vs WAMAL −0.0078 [−0.0120,−0.0036] 0.009
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SVHN, VGG16 PRIMARY

Table 10: Test accuracy (n=3).

Method Accuracy

Single-Task 0.9395± 0.0003
MAXL 0.9454± 0.0012
WAMAL 0.9554± 0.0012

Table 11: Welch t-tests on SVHN accuracy.

Comparison ∆ 95% CI p

STL vs MAXL −0.0058 [−0.0087,−0.0029] 0.012
STL vs WAMAL −0.0158 [−0.0185,−0.0132] 0.0011
MAXL vs WAMAL −0.0100 [−0.0127,−0.0073] 5.2× 10−4

Across all three benchmarks WAMAL consistently achieves the highest mean accuracy. Every
improvement over MAXL or single-task remains statistically significant, confirming the impact of
our work.

(a) CIFAR-100 20 Superclass - VGG16 (b) CIFAR-10 - ResNet-50

(c) SVHN - VGG16

Figure 10: Per-epoch test accuracy with 95% confidence intervals.
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A.5 WEIGHT DISTRIBUTIONS

The following are the bar graphs showing the distribution of weights as described in Section 6.2.

(a) CIFAR100 - VGG16 (b) CUB200 - ResNet50

(c) CUB200 - ViT (d) Oxford-IIIT Pets - ViT

Figure 11: Weight Distributions from Label-Weight Network
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A.6 ADDITIONAL TEST ACCURACY CURVE SAMPLES

(a) Oxford-IIIT Pets (ViT-B/16, 30 epochs)

(b) Food101 (ViT-B/16)

Figure 12: Sample test accuracy curves for WAMAL, MAXL, and Single Task setups on Oxford-IIIT
Pets (30 epochs) and Food101.
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A.7 ASYMMETRIC–BACKBONE ABLATION

In these experiments we study the impact of using primary and label network backbones of different
types/sizes. For each primary network we replace the label/weight generator’s backbone with a lighter
or heavier architecture, keeping all other hyper-parameters fixed (Table 18) for the Cifar10 task.

Table 12: Effect of asymmetric backbones. Rows list the label and weight generating backbone.
Columns list the primary backbone. Light generators (below the diagonal) provide the same benefit
than heavier ones; oversizing yields little extra gain.

Label-gen↓ Primary backbone

ResNet-18 ResNet-50 VGG-16

ResNet-18 0.878 0.908 0.931
VGG-16 0.881 0.914 0.929
ResNet-50 0.883 0.917 0.930

STL 0.852 0.899 0.889

(a) ResNet-18 Primary Network (b) ResNet-50 Primary Network

(c) VGG-16 Primary Network

Figure 13: Various primary network architectures with their accuracy while using different label
network architectures.

We see that pairing a light ResNet-18 generator with any primary already yields strong gains. For
example, ResNet-50 jumps from the STL baseline of 0.899 to 0.908. Meanwhile using larger
generators offers, at best, marginal extra performance. Using a larger architecture for the label/weight
generating network does not provide significant improvement to smaller networks. Every WAMAL
configuration remains well above its single-task counterpart, so a small label/weight generator is
clearly better than no WAMAL procedure. We leave a more exhaustive exploration into size trade-offs
to future work.
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A.8 RANGE ABLATION

To understand how the weight bound r influences stability and performance, we re-trained the VGG16
architecture on the CIFAR-100 20-Superclass task while sweeping r ∈ {0, 1.25, 2.5, 5, 10, 20, 40}.
All other hyper-parameters were fixed to the defaults in Table 18. Our results can be found in Table
13 and in Figure 14.

Table 13: Impact of the log-range bound r on CIFAR-100 20-Superclass (VGG16, last-15-epoch
mean).

Range r Accuracy (%) Cross-entropy loss

0 78.59 0.8148
1.25 79.78 0.7664
2.5 80.74 0.7025
5 81.60 0.6174
10 61.12 0.9257
20 73.24 0.5809
40 5.00 43.7491

Figure 14: Range Ablation Accuracy Curves

We see that any dynamic re-weighting (r > 0) is better than a fixed auxiliary sample weight.
Performance peaks at r ≈ 5, aligning with our default. Beyond r ≥ 10, the vast dynamic range
magnifies the implicit degrades optimisation; at r = 40 training collapses entirely, empirically
validating the stability bound of Section A.12.
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A.9 BATCH WEIGHT NORMALIZATION

In these experiments we examine the effect of normalizing the weights for the auxiliary task samples
within a batch. We normalize such that the mean of the batch is equal to 1 after applying the weight
scaling.

(a) OXFORD PET – ViT

(b) SVHN – VGG16 (c) Food-101 – ViT

Figure 15: Sample Training Curves using Batch Weight Normalization.

Table 14: WAMAL with Batch Weight Normalization

Method SVHN Food-101 OXFORD PET
WAMAL 0.9582 0.8782 0.9239
WAMAL (Weight Normalised) 0.9453 0.8583 0.9312

In Table 14 and Figure 15 we see that weight normalization is generally not beneficial. However, the
Oxford-IIIT Pet dataset did benefit from normalization. This is likely likely due to the fact that the
average of the learned weights for the Oxford-IIIT Pet dataset was close to 1, as we saw in the weight
distribution exploration. Therefore, conversion of the weights to mean 1 did not have a negative
impact on performance.
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A.10 ADAM OPTIMIZER

In these experiments we observe the impact of using Adam as the optimizer in place of SGD with
WAMAL. We trained VGG16-based WAMAL architecture using a wide range of learning rates.
Table 15 and Figure 16 demonstrate the findings of these experiments. We find that using Adam
with WAMAL is feasible but requires careful selection of the Learning Rate, as the training setup is
revealed to be extremely sensitive to changes in Learning Rate. Even with the extensive Learning
Rate search, the results are still outperformed by SGD, which is more robust to varied Learning Rates.

With this knowledge, we attempted to fine-tune the ViT-B/16 using Adam with an optimized learning
rate. Table 16 and Figure 17 present these results. We see that with careful selection of Learning
Rate, fine-tuning of the ViT architecture yields strong results. The results on the Oxford-IIIT Pet
dataset are even improved using Adam over SGD.

Optimizer Learning Rate Test Accuracy
SGD 0.01 0.8093
ADAM 2.5× 10−5 0.6773
ADAM 5× 10−5 0.7255
ADAM 0.00012 0.7742
ADAM 0.0003125 0.7930
ADAM 0.000625 0.7881
ADAM 0.00125 0.7681
ADAM 0.0025 0.6700
ADAM 0.005 0.6489
ADAM 0.01 0.5667
ADAM 0.02 0.5276
ADAM 0.04 0.3915

Table 15: Results of WAMAL Trained using Adam with various Learning Rates

Figure 16: VGG16 CIFAR100 20-Superclass Test Accuracy - Adam Optimizer with Varied Learning
Rates

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) Oxford-IIIT Pet - ViT (b) Food101 - ViT

Figure 17: Sample Training Curves - ViT with Adam

Dataset Optimizer Learning Rate Value
Food101 SGD 5× 10−4 0.8782
Food101 ADAM 5× 10−6 0.8754
Food101 ADAM 5× 10−4 0.4930
Oxford Pet SGD 5× 10−4 0.9239
Oxford Pet ADAM 5× 10−6 0.9264
Oxford Pet ADAM 5× 10−4 0.6168

Table 16: Test accuracies fine-tuning ViT with Adam
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A.11 ADDITIONAL TRAINING DETAILS

Training was conducted on 2080Ti and 4090 GPU systems. Each experiment was run on a single
GPU. The 4090’s were used for the ViT-B/16 experiments and the 2080Tis were used for everything
else.

Table 17: Per-experiment configuration summary. All runs used a single GPU; ViT-B/16 on 4090,
others on 2080Ti.

Task Backbone GPU Img Batch Epochs

CIFAR100-20 VGG16 2080Ti 32 128 200
SVHN VGG16 2080Ti 32 128 200
CIFAR10 (ft) ResNet50 2080Ti 32 256 75
CUB200 (ft) ResNet50 2080Ti 224 64 75
Oxford-Pet (ft) ViT-B/16 4090 224 64 75
Food101 (ft) ViT-B/16 4090 224 64 75

Table 18: Recommended default configuration (practical starting point).

Component Default

Optimizer SGD
Primary LR 0.01
Label/Gen LR 1× 10−3

Label/Gen weight decay 5× 10−4

LR schedule StepLR (step size 50, γ = 0.5)
Batch size 100
Hierarchy Factor ψ = 5
Entropy loss factor 0.2
Range r 5

Table 19: Notation summary.

Symbol Meaning

D = {(xi, yi)} dataset with inputs/primary labels
Y , Ŷ primary and auxiliary label sets
fθ primary network with primary/aux heads
gϕ label/weight network with two heads
ψ subclasses per primary class (hierarchy factor)
K number of auxiliary classes (K = ψ|Y |)
r weight-range hyperparameter (w ∈ [2−r, 2r])
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A.12 BOUNDED-WEIGHT STABILITY PROPOSITION

Assumptions. We assume ℓprim and ℓaux are β-smooth in θ, the masked softmax map is Lipschitz in
its logits.

Let the total objective be

Ltotal(θ, ϕ) = Lprim(θ, ϕ) + w(ϕ)Laux(θ, ϕ), w(ϕ) ∈ [2−r, 2 r],

and define the bilevel value function g(ϕ) = Laux
(
θ∗(ϕ), ϕ

)
with θ∗(ϕ) = argminθ Ltotal(θ, ϕ).

Assume:

• Lprim(θ, ϕ) and Laux(θ, ϕ) are β-smooth in θ;

•
∥∥∇θLaux(θ, ϕ)

∥∥ ≤ γ;

•
∥∥∇ϕ∇θLprim(θ, ϕ)

∥∥ ≤ ρ;

•
∥∥∇ϕ∇θLaux(θ, ϕ)

∥∥ ≤ κ;

•
∥∥∇ϕw(ϕ)

∥∥ ≤ ω.

Then the gradient update

∇ϕg(ϕ) = −∇θLaux
(
θ∗(ϕ), ϕ

) (
∇2

θLtotal(θ
∗(ϕ), ϕ)

)−1∇ϕ∇θLtotal
(
θ∗(ϕ), ϕ

)
is bounded ∥∥∇ϕg(ϕ)

∥∥ ≤ γ

β

(
ρ + 2 rκ + ω γ

)
.

Proof. By β-smoothness in θ,
∥∥∇2

θLtotal(θ
∗(ϕ), ϕ)

∥∥ ≤ β, so
∥∥(∇2

θLtotal(θ
∗(ϕ), ϕ)

)−1∥∥ ≤ 1/β.
Expanding the mixed derivative gives

∇ϕ∇θLtotal
(
θ∗(ϕ), ϕ

)
= ∇ϕ∇θLprim

(
θ∗(ϕ), ϕ

)
+w(ϕ)∇ϕ∇θLaux

(
θ∗(ϕ), ϕ

)
+
(
∇ϕw(ϕ)

) (
∇θLaux

(
θ∗(ϕ), ϕ

))⊤
.

Taking norms and using the assumptions with w(ϕ) ≤ 2 r yields∥∥∇ϕ∇θLtotal
(
θ∗(ϕ), ϕ

)∥∥ ≤ ρ+ 2 rκ+ ω γ.

Therefore,∥∥∇ϕg(ϕ)
∥∥ ≤ ∥∥∇θLaux(θ

∗(ϕ), ϕ)
∥∥ ∥∥(∇2

θLtotal(θ
∗(ϕ), ϕ)

)−1∥∥ ∥∥∇ϕ∇θLtotal(θ
∗(ϕ), ϕ)

∥∥ ≤ γ

β

(
ρ+2 rκ+ω γ

)
. □

This tells us that r provides a bound on the gradient update with respect to the auxiliary task
labels/network (via the 2 r factor).
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A.13 WAMAL ALGORITHM

Algorithm 1 WAMAL (outer: label/weight net gϕ, inner: primary fθ)

1: Input: Dataset D, hierarchy ψ, weight range r, losses ℓprim, ℓaux
2: Initialize θ, ϕ
3: Split D into Dmeta and Dprim

4: repeat
5: (Inner step: update θ for primary)
6: repeat
7: Sample minibatch Bprim ⊂ Dprim

8: Compute per-sample loss ℓprim(f
θ(x), y) + gϕweight(x) ℓaux(f

θ(x), gϕlabel(x))
9: Update θ ← θ − ηθ∇θℓtotal

10: until All Dprim batches are used
11: (Outer step: update ϕ for labels/weights)
12: repeat
13: Sample minibatch Bmeta ⊂ Dmeta

14: Compute gϕlabel(x, y;ψ), g
ϕ
weight(x) for x ∈ Bmeta

15: Compute ∇̂ϕ via Eq. equation 4
16: Update ϕ← ϕ− ηϕ ∇̂ϕ

17: until All Dmeta batches are used
18: until epochs complete
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