
UniGAD: Unifying Multi-level Graph Anomaly
Detection

Yiqing Lin1∗, Jianheng Tang2,3, Chenyi Zi3, H.Vicky Zhao1, Yuan Yao2, Jia Li2,3†
1Tsinghua University

2Hong Kong University of Science and Technology
3Hong Kong University of Science and Technology (Guangzhou)

linyq20@mails.tsinghua.edu.cn, jtangbf@connect.ust.hk,
barristanzi666@gmail.com, vzhao@tsinghua.edu.cn, {yuany,jialee}@ust.hk

Abstract

Graph Anomaly Detection (GAD) aims to identify uncommon, deviated, or sus-
picious objects within graph-structured data. Existing methods generally focus
on a single graph object type (node, edge, graph, etc.) and often overlook the
inherent connections among different object types of graph anomalies. For in-
stance, a money laundering transaction might involve an abnormal account and
the broader community it interacts with. To address this, we present UniGAD,
the first unified framework for detecting anomalies at node, edge, and graph lev-
els jointly. Specifically, we develop the Maximum Rayleigh Quotient Subgraph
Sampler (MRQSampler) that unifies multi-level formats by transferring objects
at each level into graph-level tasks on subgraphs. We theoretically prove that
MRQSampler maximizes the accumulated spectral energy of subgraphs (i.e., the
Rayleigh quotient) to preserve the most significant anomaly information. To
further unify multi-level training, we introduce a novel GraphStitch Network to
integrate information across different levels, adjust the amount of sharing required
at each level, and harmonize conflicting training goals. Comprehensive experi-
ments show that UniGAD outperforms both existing GAD methods specialized
for a single task and graph prompt-based approaches for multiple tasks, while
also providing robust zero-shot task transferability. All codes can be found at
https://github.com/lllyyq1121/UniGAD.

1 Introduction
Graph Anomaly Detection (GAD) involves identifying a minority of uncommon graph objects that
significantly deviate from the majority within graph-structured data [17, 2]. These anomalies can
manifest as abnormal nodes, unusual relationships, irregular substructures within the graph, or
entire graphs that deviate significantly from others. GAD has many practical applications in various
contexts, including the identification of bots and fake news on social media [3, 1, 4, 30], detection
of sensor faults and internet invasions in IoT networks [8, 14], and prevention of fraudsters and
money laundering activities in transaction networks [19, 55]. The mainstream GAD models originate
from the Graph Neural Networks (GNNs), which have recently gained popularity for mining graph
data [52, 24, 57, 16]. To address the specific challenges of graph anomalies such as label imbalance
[34, 31], relation camouflage [12, 38], and feature heterophily [50, 15], numerous adaptations of
standard GNNs have been proposed [9, 67, 13, 40, 39, 10, 53, 41, 62].

However, existing GAD approaches typically focus on a single type of graph object, such as node-level
or graph-level anomaly detection, often overlooking the inherent correlations between different types

∗Work done as a visiting student at Hong Kong University of Science and Technology.
†Corresponding Author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/lllyyq1121/UniGAD

GNN
Encoder

Pre-train Shared GNN

…

Node

Edge

Graph

MQRSampler Pool
ing

Subgraph
Sampling

Graph
Representation

Input

node

edge

graph

Multi-level
Layer1

		𝛼!
		𝛼"
		𝛼#

Stitch
Layer1

Stitch
Layer2

Multi-level
Layer2

…

node

edge

graph

Prediction

Node
Anomalies

Edge
Anomalies

Graph
Anomalies

(I) Unify multi-level formats. (II) Unify multi-level training.

Output		𝛼!
		𝛼"
		𝛼#

Figure 1: The overall framework of UniGAD.

of objects in graph-structured data. For example, a money laundering transaction might involve both
an abnormal account and the broader community it interacts with, while the specific cancer of a cell is
determined by particular proteins or protein complexes within the cell. Although some unsupervised
methods fuse information from nodes, edges, and subgraphs through reconstruction [27, 10, 47]
or contrastive pre-training [58, 13, 36], they are still limited to single-level label supervision or
prediction. There is a need for a unified approach that considers these correlations information across
different levels and performs multi-level anomaly detection.

To design a unified model for addressing multi-level GAD, we identify two key challenges:
1. How to unify multi-level formats? Addressing node-level, edge-level, and graph-level tasks
uniformly is challenging due to their inherent differences. Some recent works provide insights into
unifying these tasks through the use of large language models (LLMs) or prompt tuning. While some
methods leverage the generalization capability of LLMs [32, 54, 29] on text-attributed graphs, such
semantic information is often unavailable in anomaly detection scenarios due to privacy concerns.
On the other hand, graph prompt learning methods [48, 37, 61] design induced k-hop graphs to
transform node or edge levels into graph-level tasks. Nevertheless, their sampling strategies are not
specifically tailored to anomaly data, resulting in inappropriate node selections that ‘erase’ critical
anomaly information. This oversight can severely impact the effectiveness of anomaly detection.
2. How to unify multi-level training? Training a single model for multi-level tasks involves various
influencing factors, such as transferring information between different levels and achieving a balanced
training of these level tasks. There is limited research on multi-task learning in the graph learning
domain. Efforts like ParetoGNN [23] employ multiple self-supervised learning objectives (e.g.,
similarity, mutual information) as independent tasks, but these are insufficient for managing multi-
level supervision. A comprehensive approach is needed to effectively integrate and balance the
training of different level tasks in multi-level GAD.

In this paper, we propose UniGAD, a unified GAD model that leverages the transferability of
information across node-level, edge-level, and graph-level tasks. To address the first challenge, we
develop a novel subgraph sampler, MRQSampler, that maximizes accumulated spectral energy
(i.e., the Rayleigh quotient) in the sampled subgraph with theoretical guarantee, ensuring that the
sampled subgraphs contain the most critical anomaly information from nodes and edges. For the
second challenge, we introduce the GraphStitch Network, which unifies multi-level training by
integrating separate but identical networks for nodes, edges, and graphs into a unified multi-level
model. This is achieved using a novel GraphStitch Unit that facilitates information sharing across
different levels while maintaining the effectiveness of individual tasks. We perform comprehensive
experiments on 14 GAD datasets and compare 17 state-of-the-art methods covering both node-level
and graph-level GAD techniques, as well as prompt-based general multi-task graph learning methods.
Results show that UniGAD achieves superior performance and offers robust zero-shot transferability
across different tasks.

2 Related Work and Preliminaries
Graph Anomaly Detection. Leveraging deep learning techniques in GAD has led to significant
advancements and a wide range of applications [3, 14, 1, 4, 19, 65], thoroughly reviewed in a
comprehensive survey [43]. Node-level anomaly detection, the most prevalent scenario in GAD,
has witnessed numerous adaptations and improvements in graph neural networks (GNNs) aimed at

2

enhancing performance from either a spatial [34, 38, 25] or spectral [28, 50, 15] perspective. Despite
these advancements, recent benchmarks such as BOND [33] for unsupervised settings and GADBench
[49] for supervised settings reveal that no single model excels across all datasets, highlighting the
need for model selection tailored to specific datasets and task characteristics. For graph-level
anomaly detection, various methodologies have been proposed, including transformation learning
[66], knowledge distillation [42], and evolutionary mapping [44]. SIGNET [35] employs information
bottleneck to generate informative subgraphs for explaining graph-level anomalies, while Rayleigh
Quotient GNN [11] explores the spectral properties of anomalous graphs. Although both node-level
and graph-level anomaly detection are rapidly evolving fields, to the best of our knowledge, there is
no existing model that supports the joint detection of both node-level and graph-level anomalies.

Multi-task Learning on Graphs. Multi-task learning involves training a model to handle multiple
tasks simultaneously, utilizing shared representations and relationships within the graph to enhance
performance across all tasks. Recently, techniques such as graph prompt-based approaches and large
language model (LLM)-based approaches have shown promise in this area. Prompt frameworks [69]
like GraphPrompt [37], All-in-One [48], PRODIGY [22], MultiGPrompt [61], and SGL-PT [68] are
designed to address a wide array of graph tasks. These approaches transform tasks at other levels into
graph-level tasks by leveraging induced graphs. The All-in-One framework enhances connectivity
by adding links between the prompt graph and the original graph, whereas GraphPrompt inserts the
prompt token into graph nodes through element-wise multiplication. On the other hand, LLM-based
frameworks [32, 54, 29, 6, 51] utilize the power of LLMs to learn from different levels, but they
require graphs with text attributes or descriptions, which are not applicable in most anomaly detection
scenarios. Additionally, some multi-task GNN efforts [23] focus on multiple self-supervised specific
objectives (such as similarity and mutual information) as independent tasks, which are not suitable
for unifying GAD with multi-level label supervision and prediction.

Notation. Let G = {V, E ,X} denote a connected undirected graph, where V = {v1, v2, ..., vN} is
the set of N nodes, E = {eij} is the set of edges, and X ∈ Rn×F is node features. Let A be the
corresponding adjacency matrix, D be the degree matrix with Dii =

∑
j Aij . Laplacian matrix L is

then defined as D −A (regular) or as I −D− 1
2AD− 1

2 (normalized), where I is an identity matrix.
The Laplacian matrix is a symmetric matrix and can be eigen-decomposed as L = UΛUT , where
the diagonal matrix Λ consists of real eigenvalues (graph spectrum). Besides, we define the subgraph
as Gi centered on node vi and our sampled subgraph for node vi as Si.
Problem Formulation. The multi-level graph anomaly detection problem introduces a more universal
challenge compared to traditional single-level approaches, described as follows:

Definition 2.1 (Multi-level GAD). Given a training set T r(N , E ,G) containing nodes, edges, and
graphs with arbitrary labels at any of these levels, the goal is to train a unified model to predict
anomalies in a test set T e(N , E ,G), which also contains arbitrary labels at any of these levels.

Note that our approach does not require the presence of labels at all three levels simultaneously. It is
feasible to have labels at one or more levels. Our proposed model aims to leverage the transferability
of information across different levels to enhance its predictive capability.

3 Methodology
This section details the proposed model UniGAD for multi-level GAD, comprising a GNN encoder,
MRQSampler, and GraphStitch Network, as shown in Fig. 1. Firstly, a shared pre-trained unsuper-
vised GNN encoder is utilized to learn a more generalized node representation. To unify multi-level
formats, the MRQSampler employs spectral sampling to extract subgraphs that contain the highest
amount of anomalous information from nodes and edges, thus converting tasks at all three levels
into graph-level tasks (Sec. 3.1). To unify multi-level training, the GraphStitch Network integrates
information from different levels, adjusts the amount of sharing required at each level, and harmonizes
conflicting training goals. (Sec. 3.2).

3.1 Spectral Subgraph Sampler for Unifying Multi-level Formats
In this subsection, we present the Maximum Rayleigh Quotient Subgraph Sampler (MRQSampler),
the core module of our unified framework. By sampling subgraphs of nodes or edges, we transform
node-level and edge-level tasks into graph-level tasks. Our sampler optimizes these subgraphs to
maximize the Rayleigh quotient, ensuring that the sampled subgraphs retain a higher concentration
of anomaly information.

3

Message
Passing

Graph Rooted Subtree Sampled Subtree

Sampling

Figure 2: Message passing in GNNs and rooted subtree sampling.

3.1.1 Analysis of the Subgraph Sampling
What is a suitable subgraph for GAD? Existing methods on selecting subgraphs for target nodes or
edges often use straightforward approaches like r-ego or k-hop subgraphs [48]. However, the size of
the subgraph is critical for classification outcomes. If the subgraph is too large, it includes too many
irrelevant nodes, while if it is too small, it may not align effectively with graph-level tasks.

To measure anomaly information in a subgraph, recent studies [50, 11] have identified a ‘right-
shift’ phenomenon in the spectral energy distribution, moving from low to higher frequencies. This
accumulated spectral energy can be quantified by the Rayleigh quotient [20]:

RQ(x,L) =
xTLx

xTx
=

∑
(i,j)∈E Aij(xj − xi)

2∑
i∈V x2

i

. (1)

The following lemma [50] illustrates the relationship between the Rayleigh quotient RQ(x,L) and
anomaly information:

Lemma 1 (Tang, 2022). Rayleigh quotient RQ(x,L), i.e. the accumulated spectral energy of the
graph signal, is monotonically increasing with the anomaly degree.

Thus, for any node vi, our sampling objective is to identify the induced subgraph with the highest
Rayleigh quotient containing the most anomaly information.

Where to Sample Subgraph From? To preserve the properties of target nodes, it is essential to
sample subgraphs centered around these nodes, capturing key surrounding nodes. The most intuitive
methods are r-ego graphs or k-hop graphs. However, considering the message-passing mechanisms
of most GNNs [24, 56, 16], a classical work [57] provides valuable insight:

Lemma 2 (Xu, 2018). A GNN recursively updates each node’s feature vector through its rooted
subtree structures to capture the network structure and features of surrounding nodes.

As shown in Fig. 2, the message-passing process of GNNs suggests that a rooted subtree centered on
the target node is more consistent with the GNN’s architecture. Therefore, we sample subgraphs from
these rooted subtree structures. The remaining question is: How to implement subgraph sampling
based on the above? To address this, we introduce a novel MRQSampler in the next subsection.

3.1.2 Maximum Rayleigh Quotient Subgraph Sampler (MRQSampler)
Building on the motivation in Section 3.1.1, our approach involves sampling subgraphs for each
node starting from the rooted subtree with the node as its root. The target node is always included.
We then select the subtree with the maximum Rayleigh quotient from all possible subtrees as the
representative subgraph for that node to ensure it contain the maximum anomaly information. We
formulate this as the following optimization problem:

S⋆ = argmax
S⊆G

∑
(p,q)∈ES

(xp − xq)
2∑

p∈S x2
p

,

s.t. v ∈ S,
∀vp ∈ S, (v, vp) is accessible.

(2)

where G represents k-depth rooted subtree from v, and S is a possible subgraph from G. The first
constraint ensures the target node is included, and the second constraint ensures message passability.
Generally, similar selecting subgraphs in this manner is considered an NP-Hard problem [59].
However, leveraging the properties of trees, we propose an algorithm to solve the optimal solution.

4

Down into
Simpler Sub-problems?

? ?
?

? ? ? ? ? ? ? ?

Decouple into
4 unconnected subtrees

Decouple into
9 independent nodes

Each Child’s Subtree Rooted Subtree

Definition of Sub-problem：
Ø Compute the optimal nodeset with

Δ!"#	 in rooted tree.
Ø (Sub) Compute the optimal nodeset

with ∆!"#%&' in each child's rooted tree.

Recursively solve the sub-problem
from the bottom up

Figure 3: MRQSampler: (i) Derive the condition (Theorem 2) satisfied with the optimal subtree. (ii)
Decompose the problem into simpler sub-problems by recursing through the tree depth to solve the
optimal subtree with the dynamic programming (DP) algorithm.

We first determine the conditions that increase a subgraph’s Rayleigh quotient when adding a node,
presented in the following theorem:

Theorem 1. For a graph G, let one of its subgraphs be S , and let its Rayleigh quotient be RQ(S). If
a new node vnew ∈ G − S is added to S, the Rayleigh quotient RQ(S) will increase if and only if:

∆(vnew) =

∑
vr∈S(xnew − xr)

2

x2
new

> RQ(S). (3)

The proof of Theorem 1 can be found in Appendix A.1. We can extend this theorem from a single
new node vnew to a new node set Vnew, leading to the following corollary:

Corollary 1. For a graph G, let one of its subgraphs be S, and let its Rayleigh quotient be RQ(S).
If a new nodeset Vnew ⊂ G − S is added to S, the Rayleigh quotient RQ(S) will increase if and
only if:

∆(Vnew) =
∑

(i,r)∈ES+Vnew
(xnewi

− xr)
2 +

∑
(i,j)∈EVnew

(xnewi
− xnewj

)2∑
vnew∈Vnew

x2
new

> RQ(S). (4)

The proof details are also in Appendix A.2. While the above analysis can indeed increase the
Rayleigh quotient of the sampled subgraph, the sampling order may cause the results to fall into a
local optimum, which may not guarantee a globally optimal solution. To identify the nodes that must
be sampled in the optimal subgraph, we present the following theorem:

Theorem 2. For a graph G, let one of its subgraph be S, the S∗ be its final optimal subgraph, and
S ⊂ S∗. For a new connected nodeset Ṽnew ∩ S = ∅, it is contained in S∗ when it satisfies:

∆max(Ṽnew) = max
Ṽnew⊆G−S

∆(Ṽnew), and ∆max(Ṽnew) > RQ(S). (5)

We refer readers to Appendix A.3 for the rigorous proof. Through the above analysis, we derive
the conditions of the nodeset contained in the optimal subtree (Theorem 2). When Ṽnew satisfies
Eq. (5), it always increases the Rayleigh quotient based on the current subgraph, ensuring that Vnew
is contained in the optimal solution. Thus, we decouple the problem of finding the subgraph with
the maximum Rayleigh quotient into a process of finding the maximum ∆max(Vnew) each time,
until adding any node/node set fails to increase the RQ(S). Following this, we design a dynamic
programming (DP) algorithm to ensure the optimal subset satisfies these conditions.

MRQSampler Algorithm. We introduce the Maximum Rayleigh Quotient Subgraph Sampler
(MRQSampler), which uses dynamic programming (DP) to find the optimal solution. We break down
the computation for the central node into sub-problems, storing the results of sub-problems to avoid
redundant computations in future calculations. For a rooted subtree with the target node (edge) as
the root, its children are unconnected to each other. In Fig. 3, we consider a 2-depth subtree and
summarize our algorithm as follows:

• Stage 1: We recursively compute and store the maximum ∆(Ṽnew) for each subtree, which can
be down into simpler sub-problems similar to the previous one and calculates each layer in the
tree recursively from the bottom up.

5

node

edge

graph

Multi-level
Layer1

GraphStitch Unit

Multi-level
Layer2

node

edge

graph

…

…

…

[𝛼!",𝛼!! , 𝛼!#]

[𝛼"",𝛼"! , 𝛼"#]

[𝛼#",𝛼#! , 𝛼##]

[𝛼!",𝛼!! , 𝛼!#]

[𝛼"",𝛼"! , 𝛼"#]

[𝛼#",𝛼#! , 𝛼##]

GraphStitch Unit

Separate but Identical
Architecture

Separate but Identical
Architecture

Figure 4: GraphStitch network structure in UniGAD. Node level is highlighted.

• Stage 2: Based on Theorem 2, we iteratively select the descendant with the maximum
∆max(Ṽnew) (within its own rooted subtree) of the target node and the currently selected
nodeset, until the conditions of Theorem 2 are no longer satisfied, i.e., when the Rayleigh
quotient of the sampled subgraph no longer increases.

For efficiency, this approach can obtain the subgraph with the maximum Rayleigh quotient of the
target node/edge’s rooted subtree while reducing the algorithmic complexity to O(N logN). It can be
further accelerated in parallel since the computation for different nodes is independent. Additionally,
the sampling process only needs to be computed once in training and inference processes, minimally
impacting model efficiency. For the detailed pseudocode of the algorithm, please refer to Appendix
B. Note that we use mean pooling for entire graphs, but for subgraphs, we use weighted pooling to
highlight central nodes/edges, with an exponential decay based on the number of hops to the central
nodes/edges. This method transforms node-level and edge-level tasks into graph-level tasks, ensuring
that the most anomaly information is retained in the sampled subgraphs.

3.2 GraphStitch Network for Unifying Multi-level Training
After obtaining graph representations, training them together through a fully connected layer can
negatively impact individual levels due to the inherent differences across different-level anomalies.
This can result in mediocre performance at all levels. A key challenge, therefore, is to facilitate
information transfer between multi-levels without compromising single-level effectiveness. Inspired
by work in the computer vision field [45], we introduce the novel GraphStitch Network to jointly
consider multi-level representations.

Specifically, we train separate but identical networks for each level and use the GraphStitch unit
to combine these networks into a multi-level network, managing the degree of sharing required at
different levels. This approach aims to maintain single-level effectiveness while enhancing multi-level
information transfer. The network structure is illustrated in Fig. 4.

To elaborate, we denote eN , eE , and eG as the embeddings for nodes, edges, and graphs, respec-
tively. The node embedding eN = (enn, ene, eng)

⊤ consists of outputs from three separate but
identically structured networks specialized for nodes, edges, and graphs. Similarly, the edge and
graph embeddings are represented as eE = (een, eee, eeg)

⊤ and eG = (egn, ege, egg)
⊤.

We define a GraphStitch operation as follows:

(ẽN , ẽE , ẽG) = diag

[(
αnn αne αng

αen αee αeg

αgn αge αgg

)
(eN , eE , eG)

]
. (6)

The sharing of representations is achieved by learning a linear combination of the outputs from the
three networks. This linear combination is parameterized using learnable α. In particular, when
training data lacks a certain level, the influence of that level on other levels is defined as zero during
training but still retains the influence of other levels on this level. In this way, it allows the labels for
training and testing to be arbitrary. Besides, if all the cross terms (αne, αng , αen, αeg , αgn, αge) are
equal to 0 means that training the three networks jointly is equivalent to training them independently.
Finally, the embeddings for nodes, edges, and graphs are fed into three independent multi-layer
perceptrons (MLPs) to compute the abnormal probabilities pNi , pEi , and pGi , respectively.

6

In addition to the GraphStitch structure, UniGAD optimizes the loss functions for multi-level tasks.
Specifically, the gradients of each level task’s loss may conflict in direction or magnitude, potentially
causing negative effects and resulting in worse performance compared to learning single-level tasks
individually. Therefore, UniGAD uses a multi-level weighted cross-entropy loss for training:

L =
∑

{N ,E,G}

∑
i

β{N ,E,G}
[
γy

{N ,E,G}
i log

(
p
{N ,E,G}
i

)
+
(
1− y

{N ,E,G}
i

)
log
(
1− p

{N ,E,G}
i

)]
. (7)

where γ is the ratio of anomaly labels (yi = 1) to normal labels (yi = 0), and β{N ,E,G} are adaptive
weights for different tasks. We adopt a ‘Gradient Surgery’ approach [60] to adjust the β{N ,E,G},
altering the gradients by projecting each onto the normal plane of the others. This prevents the
interfering components of the gradients from affecting the network and minimizes interference
among different-level GAD tasks. In this way, UniGAD ensures that each level remains relatively
independent while facilitating cross-passing of relevant information between multi-level tasks.

4 Experiments
In this section, we conduct experiments to evaluate our UniGAD with node-level, edge-level, and
graph-level tasks by answering the following questions: Q1: How effective is UniGAD in unifying
in multi-level anomaly detection? Q2: Can UniGAD transfer information across different levels in
zero-shot learning? Q3: What are the contributions of the modular design in the UniGAD model?
Q4: How do the time and space efficiencies of UniGAD compare to those of other methods?

4.1 Experimental Setup
Datasets. We consider a total of 14 datasets, including both single-graph datasets and multi-graph
datasets. 7 single-graph datasets are used to evaluate the performance of unifying node-level and edge-
level tasks: Reddit, Weibo, Amazon, Yelp, Tolokers, and Questions, T-finance from the work [49],
which contain node-level anomaly labels. For edge anomaly labels, we generated them according to
a specific anomaly probability following the formula P (i,j)

anom = avg(P i
anom, P

j
anom). And 7 multi-graph

datasets are used to validate the performance of unifying node-level and graph-level tasks, including
BM-MN, BM-MS, BM-MT, MUTAG, MNIST0, MNIST1, and T-Group. The first six datasets are
from [35], containing both node anomaly labels and graph anomaly labels. Moreover, we release a
real-world large-scale social group dataset T-Group, combining the data (graph anomaly labels) in
[26]. For its node anomaly labels, we assume that if a node appears in 3 malicious social groups, we
consider it a malicious node. Statistical data for these datasets can be found in Table 1, including
the percentage of training data, the number of graphs, edges, nodes, feature dimensions, and the
proportions of abnormal nodes, edges, and graphs (Nodesab, Edgesab, and Graphsab).

Table 1: Detailed statistics of the datasets used in our experiments.
Dataset Train% # Graphs # Edges # Nodes # Dims Nodesab Edgesab Graphsab
Reddit 40% 1 168,016 10,984 64 3.33% 2.72% /
Weibo 40% 1 416,368 8,405 400 10.33% 5.71% /

Amazon 70% 1 8,847,096 11,944 25 6.87% 2.49% /
Yelp 70% 1 7,739,912 45,954 32 14.53% 13.89% /

Tolokers 50% 1 530,758 11,758 10 21.82% 33.44% /
Questions 50% 1 202,461 48,921 301 2.98% 7.50% /
T-Finance 40% 1 21,222,543 39,357 10 4.58% 2.77% /

BM-MN 40% 700 40,032 12,911 1 48.91% / 14.29%
BM-MS 40% 700 30,238 9,829 1 31.99% / 14.29%
BM-MT 40% 700 32,042 10,147 1 34.49% / 14.29%
MUTAG 40% 2,951 179,732 88,926 14 4.81% / 34.40%
MNIST0 10% 70,000 41,334,380 4,939,668 5 35.46% / 9.86%
MNIST1 10% 70,000 41,334,380 4,939,668 5 35.46% / 11.25%
T-Group 40% 37,402 93,367,082 11,015,616 10 0.64% / 4.26%

Baselines. To comprehensively compare with traditional single-level tasks, we consider nine repre-
sentative node-level methods: GCN [24], GIN [57], GraphSAGE [16], SGC [56], GAT [52], BernNet
[18], PNA [7], AMNet [5], and BWGNN [50]. Given the limited work on edge anomalies, we
adapt a concatenated strategy [64] from link prediction, resulting in nine corresponding edge-level
methods: GCNE, GINE, GSAGEE, SGCE, GATE, BernE, PNAE, AME, and BWE. For graph-level

7

Table 2: Comparison of unified performance (AUROC) at both node and edge levels with different
single-level methods, multi-task methods, and our proposed method.

Dataset Reddit Weibo Amazon Yelp Tolokers Questions T-Finance
Task-level Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge

Node-Level

GCN 62.60 / 97.97 / 82.37 / 57.62 / 75.21 / 70.15 / 90.70 /
GIN 65.59 / 95.64 / 92.17 / 74.46 / 75.15 / 69.13 / 86.43 /

GraphSAGE 62.25 / 94.45 / 84.53 / 82.12 / 79.74 / 72.47 / 78.16 /
SGC 52.12 / 97.71 / 80.24 / 53.03 / 69.51 / 70.59 / 74.21 /
GAT 65.87 / 94.40 / 96.24 / 77.40 / 78.90 / 71.38 / 90.60 /

BernNet 66.68 / 93.93 / 96.62 / 81.48 / 76.68 / 70.28 / 92.37 /
PNA 65.28 / 97.43 / 81.41 / 71.81 / 75.82 / 71.78 / 68.17 /

AMNet 68.31 / 94.17 / 97.31 / 81.42 / 76.67 / 68.63 / 93.58 /
BWGNN 64.65 / 97.42 / 97.80 / 83.11 / 80.51 / 70.25 / 96.03 /

Edge-level

GCNE / 63.10 / 99.03 / 78.63 / 57.80 / 73.59 / 79.05 / 87.63
GINE / 67.36 / 98.09 / 79.74 / 67.58 / 69.27 / 80.75 / 79.05

GSAGEE / 67.52 / 98.67 / 78.92 / 73.30 / 76.98 / 87.51 / 77.14
SGCE / 53.36 / 98.55 / 76.41 / 52.02 / 70.59 / 74.24 / 69.01
GATE / 67.07 / 97.92 / 90.20 / 72.96 / 71.92 / 81.64 / 83.09
BernE / 65.57 / 97.87 / 89.60 / 73.93 / 73.39 / 84.78 / 87.80
PNAE / 64.15 / 99.10 / 75.71 / 67.98 / 75.09 / 84.05 / 83.91
AME / 66.73 / 97.08 / 89.36 / 73.69 / 71.99 / 84.93 / 86.19
BWE / 67.39 / 98.93 / 91.61 / 75.63 / 75.66 / 85.00 / 92.27

Multi-task GraphPrompt-U 50.03 49.78 55.29 50.71 50.01 50.96 49.83 49.56 51.24 49.66 55.16 50.01 OOT OOT
All-in-One-U 51.35 54.10 48.61 52.63 56.11 54.80 49.77 49.13 50.41 49.29 51.49 64.24 OOT OOT

UniGAD
(Ours)

UniGAD - GCN 71.65 65.46 99.02 99.13 82.92 80.04 63.22 61.74 77.26 72.89 73.92 74.72 95.68 93.75
UniGAD - BWG 64.42 53.60 99.07 99.10 97.84 92.18 86.23 79.05 80.62 74.85 70.97 73.45 96.49 94.32

anomaly detection, we consider six state-of-the-art methods: OCGIN [66], OCGTL [46], GLocalKD
[42], iGAD [63], GmapAD [44], and RQGNN [11]. Additionally, to compare multi-task models,
we include two recent multi-task graph prompt methods: GraphPrompt [37] and All-in-One [48].
While these methods were not originally proposed for joint multi-task training, we adapt their ideas
and develop multi-task versions for our comparison, GraphPrompt-U and All-in-One-U, whose
modifications were limited to the data preprocessing component to accommodate the simultaneous
handling of multiple object types (node/edge or node/graph) within induced graphs.

Implementations. We evaluate three metrics: AUROC (Sec. 4), Macro F1-score and AUPRC
(Appendix E). For each result, we conduct 5 runs and report the mean results. In UniGAD, we choose
two backbone GNN encoders: GCN [24] and BWGNN [50]. We use a shared graph pre-training
method, GraphMAE [21], to obtain a more generalized node representation. For multi-dimensional
feature vectors, we normalize all feature dimensions and then take the norm (1-norm in our case)
to obtain a composite feature for each node, allowing us to identify the most anomalous nodes in
MRQSampler based on this comprehensive feature. To avoid data leakage, for single-graph datasets,
edges between the training set and the testing set are not considered; for multi-graph datasets, the
training set and the testing set consist of different graphs and their nodes. More details on the
implementation can be found in the Appendix C.

4.2 Multi-Level Performance Comparison (RQ1)
To compare the performance of multi-level anomaly detection, we conduct experiments under two
settings. For the single-graph datasets, we compare the performance of unified training on node-level
and edge-level data. For the multi-graph datasets, we compare the performance of unified training on
node-level and graph-level data.

Node-level and edge-level jointly. We first evaluate the performance of unified training on node-level
and edge-level data. We compare UniGAD against three groups of GNN models mentioned above:
node-level models, edge-level models, and multi-task graph learning methods. Table 2 reports the
AUROC of each model on six datasets, with the best result on each dataset highlighted in boldface.
Overall, we find that UniGAD achieves state-of-the-art performance in nearly all scenarios. UniGAD
outperforms single-level specialized models, indicating that unified training with UniGAD leverages
information from other levels to enhance the performance of individual tasks. Multi-task approaches
(GraphPrompt-U and All-in-One-U) tend to negatively impact multi-task performance, potentially
because they are unable to effectively handle different types of anomaly label supervision. Meanwhile,
UniGAD is designed for a multi-task setting, the performance on a single level might be slightly
compromised to ensure the model performs well across all tasks in some datasets.

Node-level and graph-level jointly. We then evaluate the unified training of node-level and graph-
level tasks under similar settings. Table 3 shows the results, and UniGAD achieves state-of-the-art
performance in nearly all scenarios. Our observations are as follows. First, there is a multi-level
synergy in UniGAD, where strong performance in one task benefits the performance of other tasks.

8

Table 3: Comparison of unified performance (AUROC) at both node and graph levels with different
single-level methods, multi-task methods, and our proposed method.

Dataset BM-MN BM-MS BM-MT MUTAG MNIST0 MNIST1 T-Group
Task-level Node Graph Node Graph Node Graph Node Graph Node Graph Node Graph Node Graph

Node-level

GCN 86.31 / 90.17 / 92.30 / 99.38 / 94.10 / 93.84 / 91.81 /
GIN 56.73 / 50.41 / 54.90 / 99.39 / 93.55 / 93.49 / 61.51 /

GraphSAGE 50.00 / 50.00 / 49.95 / 99.26 / 99.99 / 99.99 / 64.15 /
SGC 50.27 / 50.87 / 49.44 / 89.19 / 86.97 / 86.97 / 82.55 /
GAT 58.47 / 62.52 / 65.72 / 99.42 / 99.90 / 99.99 / 78.17 /

BernNet 60.06 / 65.58 / 59.18 / 98.97 / 99.99 / 99.99 / 93.85 /
PNA 72.96 / 55.19 / 75.61 / 98.76 / 99.80 / 99.87 / 55.66 /

BWGNN 93.05 / 87.22 / 88.97 / 99.50 / 99.99 / 99.99 / 94.81 /

Graph-level

OCGIN / 98.46 / 81.97 / 58.05 / 89.50 / 57.24 / 86.15 / 64.53
OCGTL / 98.48 / 83.17 / 59.99 / 92.19 / 59.35 / 93.45 / 46.77

GLocalKD / 92.36 / 77.25 / 53.23 / 72.77 / 66.69 / 57.42 / 78.53
iGAD / 91.68 / 96.68 / 99.14 / 96.28 / 98.93 / 99.50 / 64.44

GmapAD / 50.00 / 50.00 / 50.00 / 75.48 / OOM / OOM / OOM
RQGNN / 98.79 / 97.98 / 99.83 / 96.41 / 96.62 / 95.57 / 73.90

Multi-task GraphPrompt-U 51.59 46.85 50.54 48.67 51.42 49.38 97.08 68.23 81.16 83.88 81.37 6.16 47.40 50.81
All-in-One-U 67.87 3.21 54.70 19.42 69.70 45.89 50.63 48.98 OOT OOT OOT OOT OOT OOT

UniGAD
(Ours)

UniGAD - GCN 99.75 94.29 99.60 99.67 99.63 99.99 99.50 96.33 97.93 98.99 98.11 99.59 95.57 88.73
UniGAD - BWG 92.60 68.74 93.30 68.55 90.76 56.01 99.54 96.73 99.99 99.61 99.99 99.98 96.19 88.78

Table 4: Zero-shot transferability (AUROC) at node and edge levels.
Methods Reddit Weibo Amazon Yelp Tolokers Questions T-Finance

N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N
GraphPrompt-U 54.06 47.43 57.03 42.85 49.76 50.26 49.97 49.94 48.56 51.08 54.26 51.97 OOT OOT

All-in-One-U 49.23 49.93 52.22 54.30 52.61 42.35 49.48 44.50 48.34 50.22 49.83 51.97 OOT OOT

UniGAD - GCN 59.67 59.46 98.31 98.59 76.20 82.38 58.28 60.92 71.45 73.35 69.54 65.37 91.63 90.17
UniGAD - BWG 53.32 57.63 94.71 96.87 82.64 96.41 75.56 84.08 74.04 78.49 71.02 62.72 93.60 95.68

For example, in MNIST-0 and MNIST-1, compared to other graph-level GAD methods, UniGAD
significantly boosts graph-level performance by leveraging strong node-level results. Second, Uni-
GAD performs better on large graphs, likely because graph structure plays a more significant role in
smaller datasets. However, the backbones of UniGAD (GCN, BWGNN) are primarily node-level
models, which may not effectively encode graph-level structural information. This limitation’s impact
diminishes in large-scale graph datasets. Besides, methods like All-in-One-U often run out of time
(OOT) with large datasets because they redundantly learn the same node representations across
different subgraphs, making processing impractically slow, especially for large graph-level datasets
like T-Group. UniGAD addresses this issue by using a shared GNN encoder across tasks, avoiding
redundant learning and enhancing efficiency.

4.3 The Transferability in Zero-Shot Learning (RQ2)
To assess the transfer capability of UniGAD, we explore zero-shot learning scenarios where labels
for a given level have never been exposed during training, as shown in Tables 4 and 5. In these
experiments, UniGAD is trained solely with labels from alternative levels. The notation N→ E
indicates using node labels to infer edge labels, with analogous notations for other label transfers.
Our findings indicate that in zero-shot scenarios, UniGAD outperforms existing multi-task prompt
learning methods. Moreover, the classification performance of UniGAD under zero-shot transfer
learning even surpasses some of the leading baselines in supervised settings on Yelp and BM-MS. It
highlights the superior transfer capability of UniGAD across various GAD tasks.

4.4 Ablation Study (RQ3)

Table 6: Performance of UniGAD and its variants.

BM-MS Reddit

Metrics AUROC Macro F1 AUROC Macro F1
Task-level node graph node graph node edge node edge

w/o GS. 97.13 98.99 80.35 95.79 68.69 66.06 53.83 52.78
w 2hop. 97.49 99.94 67.29 84.20 67.53 63.62 51.77 50.69
w RS. 93.85 84.92 85.88 72.21 65.32 61.85 52.32 51.03

w/o ST. 99.94 95.51 99.47 84.91 67.74 65.92 54.35 52.52

UniGAD 99.60 99.67 99.57 95.86 71.65 65.46 56.70 53.80

To investigate the contribution of each
module in UniGAD, we present the ab-
lation study results in Table 6. For the
sampler module, we compare the re-
sults without subgraph sampling (w/o
GS.), using a simple sampler with all 2-
hop neighbors (w 2hop.), and using ran-
dom sampling (w RS.). For the Graph-
Stitch module, we replace it with a uni-
fied MLP (w/o ST.). The results in-
dicate that both the subgraph sampler
(SG.) and the GraphStitch (ST.) modules enhance the overall performance of UniGAD. Additionally,

9

Table 5: Zero-shot transferability (AUROC) at node and graph levels.

Methods BM-MN BM-MS BM-MT MUTAG MNIST0 T-Group
N→G G→N N→G G→N N→G G→N N→G G→N N→G G→N N→G G→N

GraphPrompt-U 50.60 51.57 51.97 46.95 46.62 48.06 59.62 64.26 83.98 88.06 58.28 58.35
All-in-One-U 94.39 65.69 52.63 40.88 44.86 34.27 61.63 36.13 OOT OOT OOT OOT

UniGAD - GCN 72.82 87.63 81.49 90.83 62.85 79.26 72.79 88.53 85.24 70.57 86.86 75.89
UniGAD - BWG 64.61 57.56 65.33 51.34 55.78 53.41 66.92 87.03 74.23 63.70 86.81 64.81

(a) Comparing the execution time. (b) Comparing the peak memory usage.

Figure 5: The evaluation of time and space efficiency metrics. We highlight the percentage of total
execution time spent by MRQSampler.

inappropriate subgraph sampling may perform worse than no subgraph sampling, likely due to the
loss of anomalous information during the sampling process.

4.5 Efficiency Analysis (RQ4)

we conduct a comprehensive evaluation of both time and space efficiency on the large-scale, real-world
T-Group dataset. To provide a more straightforward comparison between single-task and multi-task
baselines, we calculate the average, minimum, and maximum for combinations of single-task node-
level and graph-level models, and compare these with multi-task models. The results, as shown in
Fig. 5 (a), indicate that in terms of execution time, our method is slower than the combination of the
fastest single-level models but faster than the average of the combination. Regarding peak memory
usage, Fig. 5 (b) demonstrates that graph-level models consume significantly more memory than
node-level models. Our method maintains memory consumption comparable to node-level models
and substantially lower than both graph-level GAD models and prompt-based methods.

5 Conclusion

This paper presents UniGAD, a unified graph anomaly detection framework that jointly addresses
anomalies at the node, edge, and graph levels. The model integrates two novel components: the
MRQSampler and the GraphStitch network. MRQSampler maximizes spectral energy to ensure
subgraphs capture critical anomaly information, addressing the challenge of unifying different graph
object formats. The GraphStitch Network unifies multi-level training by using identical networks
for nodes, edges, and graphs, facilitated by the GraphStitch Unit for effective information sharing.
Our thorough evaluations across 14 GAD datasets, including two real-world large-scale datasets
(T-Finance and T-Group), and comparisons with 17 graph learning methods show that UniGAD
not only surpasses existing models in various tasks but also exhibits strong zero-shot transferability
capabilities. A limitation of our paper is that the GNN encoder primarily focuses on node-level
embeddings, which may result in lost information about the graph structure. We leave the exploration
of multi-level tasks pre-training in the future works.

10

Acknowledgments and Disclosure of Funding
Y. Lin and H. Zhao were supported by the Beijing Natural Science Foundation under Grant IS24036. J.
Li was supported by NSFC Grant No. 62206067 and Guangzhou-HKUST(GZ) Joint Funding Scheme
2023A03J0673. Y.Yao was in part supported by the HKRGC GRF-16308321 and the NSFC/RGC
Joint Research Scheme Grant N_HKUST635/20. In addition, Y. Lin was also awarded a Tsinghua
Scholarship for Overseas Graduate Studies at the Hong Kong University of Science and Technology.

References
[1] Esma Aïmeur, Sabrine Amri, and Gilles Brassard. Fake news, disinformation and misinforma-

tion in social media: a review. Social Network Analysis and Mining, 13(1):30, 2023.

[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and
description: a survey. Data mining and knowledge discovery, 29(3):626–688, 2015.

[3] Ketan Anand, Jay Kumar, and Kunal Anand. Anomaly detection in online social network: A
survey. In 2017 International Conference on Inventive Communication and Computational
Technologies (ICICCT), pages 456–459. IEEE, 2017.

[4] Alessandro Bondielli and Francesco Marcelloni. A survey on fake news and rumour detection
techniques. Information Sciences, 497:38–55, 2019.

[5] Ziwei Chai, Siqi You, Yang Yang, Shiliang Pu, Jiarong Xu, Haoyang Cai, and Weihao Jiang.
Can abnormality be detected by graph neural networks? In IJCAI, 2022.

[6] Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language
model for graph computational problems. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 353–364, 2024.

[7] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

[8] Kelton AP Da Costa, João P Papa, Celso O Lisboa, Roberto Munoz, and Victor Hugo C
de Albuquerque. Internet of things: A survey on machine learning-based intrusion detection
approaches. Computer Networks, 151:147–157, 2019.

[9] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate
time series. In Proceedings of the AAAI conference on artificial intelligence, pages 4027–4035,
2021.

[10] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed
networks. In Proceedings of the 2019 SIAM International Conference on Data Mining. SIAM,
2019.

[11] Xiangyu Dong, Xingyi Zhang, and Sibo Wang. Rayleigh quotient graph neural networks for
graph-level anomaly detection. arXiv preprint arXiv:2310.02861, 2023.

[12] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In CIKM, pages 315–324,
2020.

[13] Jingcan Duan, Siwei Wang, Pei Zhang, En Zhu, Jingtao Hu, Hu Jin, Yue Liu, and Zhibin Dong.
Graph anomaly detection via multi-scale contrastive learning networks with augmented view.
arXiv preprint arXiv:2212.00535, 2022.

[14] Anuroop Gaddam, Tim Wilkin, Maia Angelova, and Jyotheesh Gaddam. Detecting sensor
faults, anomalies and outliers in the internet of things: A survey on the challenges and solutions.
Electronics, 9(3):511, 2020.

[15] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
Addressing heterophily in graph anomaly detection: A perspective of graph spectrum. In
Proceedings of the ACM Web Conference, 2023.

[16] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

11

[17] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques, 3rd
edition. Morgan Kaufmann, 2011.

[18] Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation. Advances in Neural Information Processing Systems,
34:14239–14251, 2021.

[19] Waleed Hilal, S Andrew Gadsden, and John Yawney. Financial fraud: a review of anomaly
detection techniques and recent advances. Expert systems With applications, 193:116429, 2022.

[20] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[21] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 594–604, 2022.

[22] Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. Advances in Neural Information
Processing Systems, 36, 2024.

[23] Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and Chuxu
Zhang. Multi-task self-supervised graph neural networks enable stronger task generalization.
arXiv preprint arXiv:2210.02016, 2022.

[24] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[25] Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. Spam review detection with graph con-
volutional networks. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pages 2703–2711, 2019.

[26] Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang. Semi-
supervised graph classification: A hierarchical graph perspective. In The World Wide Web
Conference, pages 972–982, 2019.

[27] Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. Radar: Residual analysis for anomaly detection
in attributed networks. In IJCAI, pages 2152–2158, 2017.

[28] Yuening Li, Xiao Huang, Jundong Li, Mengnan Du, and Na Zou. Specae: Spectral autoencoder
for anomaly detection in attributed networks. In CIKM, pages 2233–2236, 2019.

[29] Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A
survey of graph meets large language model: Progress and future directions. arXiv preprint
arXiv:2311.12399, 2023.

[30] Yiqing Lin and H Vicky Zhao. Maximum entropy attack on decision fusion with herding
behaviors. IEEE Signal Processing Letters, 2024.

[31] Fanzhen Liu, Xiaoxiao Ma, Jia Wu, Jian Yang, Shan Xue, Amin Beheshti, Chuan Zhou, Hao
Peng, Quan Z Sheng, and Charu C Aggarwal. Dagad: Data augmentation for graph anomaly
detection. arXiv preprint arXiv:2210.09766, 2022.

[32] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. arXiv preprint
arXiv:2310.00149, 2023.

[33] Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding,
Canyu Chen, Hao Peng, Kai Shu, Lichao Sun, Jundong Li, George H Chen, Zhihao Jia, and
Philip S Yu. Bond: Benchmarking unsupervised outlier node detection on static attributed
graphs. In Advances in Neural Information Processing Systems, volume 35, 2022.

[34] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: A gnn-based imbalanced learning approach for fraud detection. In Proceedings of the
Web Conference 2021, 2021.

[35] Yixin Liu, Kaize Ding, Qinghua Lu, Fuyi Li, Leo Yu Zhang, and Shirui Pan. Towards self-
interpretable graph-level anomaly detection. Advances in Neural Information Processing
Systems, 36, 2024.

12

[36] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly
detection on attributed networks via contrastive self-supervised learning. IEEE transactions on
neural networks and learning systems, 2021.

[37] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying Pre-Training
and Downstream Tasks for Graph Neural Networks. In The Web Conference, pages 417–428,
2023.

[38] Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. Alleviating the inconsis-
tency problem of applying graph neural network to fraud detection. In SIGIR, pages 1569–1572,
2020.

[39] Zhiyuan Liu, Chunjie Cao, and Jingzhang Sun. Mul-gad: a semi-supervised graph anomaly
detection framework via aggregating multi-view information. arXiv preprint arXiv:2212.05478,
2022.

[40] Zhiyuan Liu, Chunjie Cao, Fangjian Tao, and Jingzhang Sun. Revisiting graph contrastive
learning for anomaly detection. arXiv preprint arXiv:2305.02496, 2023.

[41] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 4424–4431, 2019.

[42] Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. Deep graph-level
anomaly detection by glocal knowledge distillation. In Proceedings of the fifteenth ACM
international conference on web search and data mining, pages 704–714, 2022.

[43] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and
Leman Akoglu. A comprehensive survey on graph anomaly detection with deep learning. IEEE
Transactions on Knowledge and Data Engineering, 2021.

[44] Xiaoxiao Ma, Jia Wu, Jian Yang, and Quan Z Sheng. Towards graph-level anomaly detection
via deep evolutionary mapping. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 1631–1642, 2023.

[45] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks
for multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3994–4003, 2016.

[46] Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Raising the bar in graph-level
anomaly detection. arXiv preprint arXiv:2205.13845, 2022.

[47] Amit Roy, Juan Shu, Jia Li, Carl Yang, Olivier Elshocht, Jeroen Smeets, and Pan Li. Gad-nr:
Graph anomaly detection via neighborhood reconstruction. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining, pages 576–585, 2024.

[48] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 2120–2131, 2023.

[49] Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. Gadbench: Revisiting and
benchmarking supervised graph anomaly detection. Advances in Neural Information Processing
Systems, 36, 2024.

[50] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In International Conference on Machine Learning, 2022.

[51] Jianheng Tang, Qifan Zhang, Yuhan Li, and Jia Li. Grapharena: Benchmarking large language
models on graph computational problems. arXiv preprint arXiv:2407.00379, 2024.

[52] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2017.

[53] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun
Zhou, Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial
fraud detection. In ICDM, pages 598–607. IEEE, 2019.

13

[54] Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming Gao, and Julian McAuley. Instructgraph:
Boosting large language models via graph-centric instruction tuning and preference alignment.
arXiv preprint arXiv:2402.08785, 2024.

[55] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom
Robinson, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with
graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591, 2019.

[56] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In ICML, pages 6861–6871, 2019.

[57] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ICLR, 2019.

[58] Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed
network anomaly detection with data augmentation. In Proceedings of the PAKDD, 2022.

[59] Kuo Yang, Zhengyang Zhou, Xu Wang, Pengkun Wang, Limin Li, and Yang Wang. Raye-sub:
Countering subgraph degradation via perfect reconstruction.

[60] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

[61] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Multigprompt for multi-task
pre-training and prompting on graphs. arXiv preprint arXiv:2312.03731, 2023.

[62] Ge Zhang, Jia Wu, Jian Yang, Amin Beheshti, Shan Xue, Chuan Zhou, and Quan Z Sheng.
Fraudre: Fraud detection dual-resistant to graph inconsistency and imbalance. In 2021 IEEE
International Conference on Data Mining (ICDM), pages 867–876. IEEE, 2021.

[63] Ge Zhang, Zhenyu Yang, Jia Wu, Jian Yang, Shan Xue, Hao Peng, Jianlin Su, Chuan Zhou,
Quan Z Sheng, Leman Akoglu, et al. Dual-discriminative graph neural network for imbalanced
graph-level anomaly detection. Advances in Neural Information Processing Systems, 35:24144–
24157, 2022.

[64] Muhan Zhang. Graph neural networks: link prediction. Graph Neural Networks: Foundations,
Frontiers, and Applications, pages 195–223, 2022.

[65] Haihong Zhao, Bo Yang, Jiaxu Cui, Qianli Xing, Jiaxing Shen, Fujin Zhu, and Jiannong Cao.
Effective fault scenario identification for communication networks via knowledge-enhanced
graph neural networks. IEEE Transactions on Mobile Computing, 23(4):3243–3258, 2023.

[66] Lingxiao Zhao and Leman Akoglu. On using classification datasets to evaluate graph outlier
detection: Peculiar observations and new insights. Big Data, 11(3):151–180, 2023.

[67] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. Addgraph: Anomaly detection in
dynamic graph using attention-based temporal gcn. In IJCAI, pages 4419–4425, 2019.

[68] Yun Zhu, Jianhao Guo, and Siliang Tang. Sgl-pt: A strong graph learner with graph prompt
tuning. arXiv preprint arXiv:2302.12449, 2023.

[69] Chenyi Zi, Haihong Zhao, Xiangguo Sun, Yiqing Lin, Hong Cheng, and Jia Li. Prog: A graph
prompt learning benchmark. arXiv preprint arXiv:2406.05346, 2024.

14

A Proofs
A.1 The proof of Theorem 1
Proof. For a new node vnew, let S ′ be the subgraph after the addition of vnew. Based on the fact

that the definition of Rayleigh quotient RQ(S) =
∑

(p,q)∈ES
(xp−xq)

2∑
p∈S x2

p
, it need to satisfy the following

condition in order to increase the Rayleigh quotient RQ(S ′) > RQ(S):∑
(p,q)∈E(xp − xq)

2 +
∑

vr∈S(xnew − xr)
2∑

vr∈S x2
r + x2

new

>

∑
(p,q)∈E(xp − xq)

2∑
vr∈S x2

r

, (A.1)

where
∑

vr∈S(xnew − xr)
2 represents the sum of the feature difference between the new node vnew

and the connecting edge of the node v in the subgraph S. It is worth noting that these edges are
present in the original graph G. Since both the numerator and denominator are positive numbers, the
Eq. (A.1) can be transformed into: ∑

(p,q)∈E

(xp − xq)
2 +

∑
p∈S

(xnew − xp)
2

 ∑
vr∈S

x2
r >

∑
(p,q)∈E

(xp − xq)
2(
∑
vr∈S

x2
r + x2

new), (A.2)

which can be obviously simplified to:∑
vr∈S

(xnew − xr)
2
∑
vr∈S

x2
r > x2

new

∑
(p,q)∈E

(xp − xq)
2, (A.3)

We move the term with the new node to the same side of the equation and rearrange the Eq. (A.3),
and we obtain: ∑

vr∈S(xnew − xr)
2

x2
new

>

∑
(p,q)∈ES

(xp − xq)
2∑

p∈S x2
p

. (A.4)

Note that RQ(S) =
∑

(p,q)∈ES
(xp−xq)

2∑
p∈S x2

p
, we denote ∆(vnew) =

∑
vr∈S(xnew−xr)

2

x2
new

and we then
obtain the Theorem 1 in Section 3.1.2.

A.2 The proof of Corollary 1
Proof. Similar to the proof of Theorem 1, for a new nodeset vnewi ∈ Vnew, let S ′ be the subgraph
after the addition of Vnew and it also needs to satisfy RQ(S ′) > RQ(S), which is expanded as:∑
(p,q)∈E(xp − xq)

2 +
∑

vnewi
∈Vnewi

∑
vr∈S(xnewi

− xr)
2 +

∑
(i,j)∈Enew

(xnewi
− xnewj

)2∑
vr∈S x2

r +
∑

vnewi
∈Vnew

x2
newi

>

∑
(p,q)∈E(xp − xq)

2∑
vr∈S x2

r

,

(A.5)

where
∑

vnewi
∈Vnewi

∑
vr∈S(xnewi

− xr)
2 represents the sum of the feature difference between

the newly added nodeset Vnew and the connecting edge of the subgraph S.
∑

vnewi
∈Vnew

x2
newi

represents the internal sum of the newly added nodeset Vnew. Similar to the proof of Theorem 1, this
formula can be transformed into: ∑

vnewi
∈Vnewi

∑
vr∈S

(xnewi − xr)
2 +

∑
(i,j)∈Enew

(xnewi − xnewj)
2

 ∑
vr∈S

x2
r >

∑
(p,q)∈E

(xp−xq)
2
∑

vnewi
∈Vnew

x2
newi

,

(A.6)
Rearranging the Eq. (A.6), we get:∑

vnew∈Vnew

∑
vr∈S(xnew − xr)

2 +
∑

(i,j)∈EVnew
(xnewi

− xnewj
)2∑

vnew∈Vnew
x2
new

>

∑
(p,q)∈E(xp − xq)

2∑
vr∈S x2

r

.

(A.7)
which is the same as Corollary 1 in Section 3.1.2.

15

A.3 The proof of Theorem 2
Proof. We define the nodeset V∗

new has the highest ∆max(Vnew) and ∆max(Vnew) > RQ(S). To
prove that the V∗

new is contained in the optimal subgraph S∗, we give the proof by contradiction.
Assume that the negation of the statement is true, so there does not exist V∗

new in S∗. We will discuss
the issues based on two scenarios.

In the first scenario, we assume that the current subgraph S is already the optimal solution. Accord-
ing to Corollary 1, we find that adding V∗

new can increase RQ(S) since it satisfies the condition
∆max(Vnew) > RQ(S). Therefore, it is obvious that the current set S is not the optimal solution.

In the other scenario, we assume that there is another nodeset V ′
new (V ′

new ∩S∗ = ∅), which together
with the current subgraph S + V ′

new forms the optimal solution. According to the corollary 1, we
have

∆max(V∗
new) =

∑
V∗

new

∑
S(x

∗
new − xr)

2 +
∑

EV∗
new

(x∗
newi

− x∗
newj

)2∑
V∗

new
x∗
new

2 , (A.8)

and it satisfies:
∆max(V∗

new) >
∑

(p,q)∈E(xp−xq)
2∑

vr∈S x2
r

,

∆max(V∗
new) >

∑
V′
new

∑
S(x′

new−xr)
2+

∑
EV′

new

(xnew′
i
−xnew′

j
)2∑

V′
new

x′
new

2 ,∀V′
new⊆G−S .

(A.9)

To continue with the proof, we present a useful inequality first.

Lemma 3 (Dan’s Favorite Inequality). Let a1, ..., an and b1, ..., bn be positive numbers. Then

min
i

ai
bi
≤
∑

i ai∑
i bi
≤ max

i

ai
bi
. (A.10)

Proof. Here we give a classical proof, we have∑
i

ai =
∑
i

bi

(
ai
bi

)
≤
∑
i

bi

(
max

j

aj
bj

)
=

(
max

j

aj
bj

)∑
i

bi, (A.11)

So, ∑
ai∑
bi
≤ max

j

aj
bj

, (A.12)

One can similarly prove ∑
ai∑
bi
≥ min

j

aj
bj

. (A.13)

Combining Lemma 3 and Eq. (A.9), we obtain the following inequality.

∆max(V∗
new) >∑

(p,q)∈E(xp − xq)
2 +

∑
V′

new

∑
S(x

′
new − xr)

2 +
∑

EV′
new

(x′
newi

− x′
newj

)2∑
vr∈S x2

r +
∑

V′
new

x′
new

2 ,∀V′
new⊆G−S .

(A.14)
Analyzing the above equation reveals that the right side of the formula is RQ(V ′

new +S). That is, for
any V ′

new, adding V∗
new still makes RQ(V ′

new + S) increasing according to the Corollary 1, which
contradicts the assumption that RQ(V ′

new + S) is the optimal solution.

∆max(Vnew) = max
Vnew⊆G−S

∆(Vnew), and ∆max(Vnew) > RQ(S). (A.15)

However, identifying the maximum ∆max(Vnew) from the Vnew ⊆ G −S is still a NP-hard problem.
We consider relaxing any nodesets V ′

new to any connected nodesets Vc
new. Any nodesets can be

decomposed into several disconnected smaller nodesets, that is, V ′
new = Vc1

new ∪ Vc2
new ∪ Since

there are no edges connecting these nodesets, the following decomposition formula can be derived.

16

∑

V′
new

∑
S(x

′
new − xr)

2 =
∑

Vc1
new

∑
S(x

c1
new − xr)

2 +
∑

Vc2
new

∑
S(x

c2
new − xr)

2 + . . . ,∑
EV′

new

(x′
newi

− x′
newj

)2 =
∑

EVc1
new

(xc1
newi

− xc1
newj

)2 +
∑

EVc2
new

(xc2
newi

− xc2
newj

)2 + . . . ,∑
V′

new
x′
new

2
=
∑

Vc1
new

xc1
new

2
+
∑

Vc2
new

xc2
new

2
+

(A.16)
Considering the condition that maximizes the Rayleigh quotient of any connected Vci

new,

∆max(V∗
new) > ∆max(Vci

new) =

∑
Vci

new

∑
S(x

ci
new − xr)

2 +
∑

EVci
new

(xci
newi

− xci
newj

)2∑
Vci

new
xci
new

2 . (A.17)

According to Lemma 3, Eq. (A.14) is still satisfied. Therefore, we derive that V∗
new is contained in

the optimal solution.

B The Pseudocode of MRQSampler Algorithm

We give the pseudocode of MRQSampler in Algorithm 1, which illustrates the algorithm for finding
the subgraph with the target node that maximizes the Rayleigh Quotient. In section 3.1.2, we give a
diagram of the sampling range of 2-hop and 1-hop cases. For the completeness of the theory, we give
the complete algorithm for arbitrary k-hop cases in the pseudocode form.

For node r, we focus on the k-hop spanning tree T with r as the root node. And for any node v in T
except for the root r, ∆max[v] is defined as:

∆max[v] := max
S⊆Tv

(xi − xp)
2
+
∑

(i,j)⊆ES
(xi − xj)

2∑
i⊆S x2

i

. (A.18)

where S ⊆ Tv are the connected subgraphs of the subtree Tv with v as the root node, and p is the
parent node of the node v. As described in the Section 3.1.2, we break the computation into two
steps:

• Stage 1: Compute and store the maximum ∆max[v] for subtrees rooted with each node v
except for the root r, which is performed by recursively calling the function GetMaxDeltas
in Algorithm 1.

• Stage 2: Use these memorized results to compute the optimal Rayleigh Quotient RQ and
its corresponding subgraph, which is performed by the function MRQSampler.

In Stage 1, the first thing we need to know is how we get ∆max[v]. Similar to the analysis of the
Theorem 2, we can also obtain the condition that the nodeset is in the final optimal subgraph with
largest ∆max[v]:

∆max[vnew] = max
{ṽnew}

∆(Ṽnew), and ∆max[vnew] > ∆[v]. (A.19)

This process is similar to finding the maximum RQ. In other words, we keep retrieving the un-
selected descendants with maximum ∆max[vnew], and then check whether its ∆max[vnew] exceeds
the current ∆[v]. If it does, the inclusion of the optimal subgraph with it can increase the current
∆[v], otherwise, it can no longer be increased by adding any descendants and the maximum ∆max[v]
is reached.

17

algorithm 1 MRQSampler

Globals: r : the original root of the tree; i : an arbitrary node; x[i] : the node i’s feature; Tr[i] : an
array that stores the child nodes of node i in the tree; δ[i]← {∆max[i], ai, bi, N, I}: an array of
structures that stores the maximum ∆max[i] achievable by any connected subgraph V containing
the node i within the subtree rooted at i and ai, bi stores the numerator and denominator of
∆max[i]. N is the optimal selected nodes, I is the inferior candidates,

1: # The function for computing ∆max[i] in STAGE I
2: Input: v ← root of the current subtree; p← parent of v
3: Output: δ[i]← structure array with ∆max[i] and correlated variables
4: function GetMaxDeltas(v, p)
5: N, I, U ← {} ▷ Optimal selected nodes, Inferior candidates, Un-selected children of v
6: Q← SortedSet() ▷ Candidates queue
7: av ← (x[v]− x[p])2 ▷ Initialize the numerator of the maximum ∆max[v]
8: bv ← x[v]2 ▷ Initialize the denominator of the maximum ∆max[v]
9: ∆max[v]← av/bv ▷ Initialize the maximum ∆max[v] for current sub-tree

10: for c in T [v] do
11: δ[c]← GetMaxDeltas(c, v) ▷ Result of the subtree rooted with child c
12: Q.insert([c, δ[c]])
13: U .insert(c)
14: while Q.size() ̸= 0 do
15: c, δ[c]← Q.pop_largest() ▷ Retrieve the candidate c with ∆max[c] and structure δ[c]
16: if ∆max[v] > (av + δ[c].ac)/(bv + δ[c].bc) then ▷ Optimization criterion of ∆max[v]
17: Break
18: U .remove_if_exist(c)
19: av ← av + δ[c].ac ▷ Update the maximum ∆max[v]
20: bv ← bv + δ[c].bc
21: ∆max[v]← av/bv
22: Q.insert(δ[c].I) ▷ Activate the inferior candidates
23: N .insert(δ[c].N)
24: I ← Q ▷ The remaining candidates are the inferior ones
25: I .insert(U) ▷ Add the un-selected children to the inferior set
26: δ[v]← {∆max[v], av, bv, N, I} ▷ Memorise the results
27: return δ[v]

28:
29: # The main function of MRQSampler in STAGE II
30: Input: r ← the original root of the tree (target sampling node)
31: Output: RQmax ← maximum RQ; N ← optimal sampling nodeset
32: function MRQSampler(r)
33: aRQ ← 0 ▷ Initialize the numerator of the RQmax

34: bRQ ← x[r]2 ▷ Initialize the denominator of the RQmax

35: RQmax← aRQ/bRQ

36: Q← SortedSet()
37: for c in T [r] do
38: δ[c]← GetMaxDeltas(c, r) ▷ Recursively calculate the ∆max in Stage 1
39: Q.insert([c, δ[c]])
40: while Q.size() ̸= 0 do
41: c, δ[c]← Q.pop_largest()
42: if RQmax > (aRQ + δ[c].ac)/(bRQ + δ[c].bc) then ▷ Optimization criterion of the RQ
43: Break
44: aRQ ← aRQ + δ[c].ac ▷ Update the result
45: bRQ ← bRQ + δ[c].bc
46: RQmax← aRQ/bRQ

47: Q.insert(δ[c].I) ▷ Activate the inferior candidates
48: N .insert(δ[c].N) ▷ Update the selected nodeset
49: return {RQmax, N}

18

For ease of computation, we store the optimal ∆max[v] by its numerator av and denominator bv (line
7-9). Next, we recursively calculate the result for each subtree rooted by every child c of the current
root v (line 11). To simplify complexity in the following steps, we store these results in a sorted
container (e.g. binary search tree) Q (line 12). Next, we keep retrieving the subgraph with the highest
∆max[c] from Q and compute whether the ∆max[c] increases after adding it to the current solution
(line 15-17). According to Eq. (A.19), we obtain the optimal ∆max[v] for the current subtree with
root v when the candidate cannot make ∆max[v] larger. Moreover, sets from subtrees that are not
optimal for v may still be selected at higher levels. Therefore, we also need to keep track of those
inferior subtrees and re-consider them when other subtrees that connect to them are merged into the
solution (line 24-25). Note that subtrees in I are only considered as candidates when the optimal
subgraph with root v is selected at a higher layer (the “activation” in line 22).

In Stage 2, the overall routine for obtaining RQmax is very similar to the one in GetMaxDeltas,
except that the initial value is set to RQmax = 0

x[r]2 since the root r has no parent node. In other
words, the algorithmic logic of the two functions in Stage 1 and Stage 2 is similar. Stage 2 can
be regarded as a special case of Stage 1 without a parent node, utilizing the implementation of
memoization from Stage 1.

Assuming that the k-hop spanning tree T has K nodes, the time complexity of AlgorithmO(KlogK),
since we will at worst examine each edge and sort them. Notice that the computation is irrelevant
between different nodes, it can be further accelerated by simultaneously processing multiple nodes.
In practice, we observe that the optimal choice of k-hop is typically <= 2, and thus the recursive
computation can be unrolled thus further improving the efficiency.

C Implementation Details
Node-level Baselines. GCN (Graph Convolutional Network [24]) leverages convolution operations
to propagate information from nodes to their neighbors. SGC (Simple Graph Convolution [56]) further
simplifies GCN by removing non-linearities and collapsing weight matrices between consecutive
layers to improve efficiency. GIN (Graph Isomorphism Network [57]) captures graph structures by
generating identical embeddings for structurally identical graphs, ensuring invariance to node label
permutations. GraphSAGE (Graph Sample and AggregatE [16]) generates node embeddings through
sampling and aggregating features from local neighborhoods, supporting inductive learning. GAT
(Graph Attention Networks [52]) incorporates an attention mechanism to assign varying importance
levels to different nodes during neighborhood aggregation, focusing on the most informative parts.
PNA (Principle Neighbor Aggregation [7]) combines multiple aggregators with degree-scalers for
effective neighborhood aggregation. AMNet (Adaptive Multi-frequency Graph Neural Network
[5]) captures both low and high-frequency signals by stacking multiple BernNets [18], adaptively
combining signals of different frequencies. BWGNN (Beta Wavelet Graph Neural Network [50])
employs the Beta kernel to tackle higher frequency anomalies with flexible band-pass filters.

Graph-level Baselines. OCGIN [66] is a one-class graph-level anomaly detector based on a
graph isomorphism network that addresses performance fluctuations in general graph classification
methods. OCGTL [46] combines deep one-class classification with graph transformation learning.
GlocalKD learns rich global and local normal pattern information by joint distillation of graph
and node representations. iGAD [63] employs an attribute-aware GNN and a substructure-aware
deep random walk kernel to achieve dual-discriminative capability for anomalous attributes and
substructures. GmapAD [44] proposes an explainable graph mapping approach that projects graphs
into a latent space for effective anomaly detection. RQGNN [11] identifies differences in the spectral
energy distributions between anomalous and normal graphs.

Multi-task Baselines. GraphPrompt [37] learns different task-specific prompt vectors for each
task, which are added to the graph-level representations by element-wise multiplication. All-in-One
[48] treats an extra subgraph as a prompt and merges it with the original graph by cross links.

Hardware Specifications. Our experiments were mainly carried out on a Linux server equipped
with dual AMD EPYC 7763 64-core CPU processor, 256GB RAM, and an NVIDIA RTX 4090
GPU with 24GB memory. Some of the extremely large datasets, such as T-Finance, and certain
memory-intensive baselines were implemented on the NVIDIA 8*A800 GPUs. We mark the results
as OOT (Out of Time) if the model training exceeds 2 days. For some large datasets, methods with
GPU memory requirements exceeding 80GB were marked as OOM (Out of Memory), such as iGAD

19

and GmapAD, and were attempted to be run on the CPU. iGAD was successfully completed, but
GmapAD still encountered a timeout issue.

Metrics. We utilize three widely used metrics to evaluate the performance of all methods: F1-
macro, AUROC and AUPRC. F1-macro is the unweighted mean of the F1-scores for the two
classes, disregarding the imbalance ratio between normal and anomaly labels. AUROC represents
the area under the Receiver Operating Characteristic Curve. AUPRC represents the area under the
Precision-Recall Curve, emphasizing model performance on imbalanced datasets by focusing on the
trade-off between precision and recall.

Hyperparameter Tuning. As described in Section 3.2, we first use an unsupervised model based
on GraphMAE [21] to learn the general representation of the input features. The hyperparameters for
this step are set to the default values from the official GraphMAE implementation, with 50 training
epochs. Table 7 lists all the hyperparameters used in our model along with their corresponding search
spaces. During training, we conduct a grid search to identify the model that achieves the highest
AUROC score on the validation set. Finally, we evaluate the selected model on the test sets and report
the performance metrics.

Table 7: Hyperparameters search space for UniGAD.
Hyperparameter Distribution

learning rate Range(5−4, 10−2)
activation [ReLU, LeakyReLU, Tanh]
hidden dimension [16,32,64]
MRQSampler tree depth [1,2]
GraphStitch Network layer [1,2,3]×2
epochs [100, 200, 300, 400, 500]

D Limitations and Impacts
Since the GNN encoder we employ mainly focuses on node-level features, the learned representations
may not be perfectly suited for edge and graph level tasks. Therefore, we leave the exploration of how
to integrate multiple tasks in the pre-training phase to future work. As a generalized graph anomaly
detection model, our work will be helpful in detecting classical graph anomaly applications, such as
financial fraud, cybercrime, etc. On the other hand, an error in the recognition result may put normal
groups or behaviors into anomalies, causing disturbance for the normal users in the graph network.

E Additional Experimental Results
We also provide the results of all experiments under the F1-macro and AUPRC evaluation metrics.
Similar to the arrangement in the main text, for F1-macro, we show the results of multi-level
performance comparison under F1-macro metric in Table 8 and Table 9. The results of Zero-Shot
Comparison under F1-macro metric are in Table 10 and Table 11. For AUPRC, we show the results
of multi-level performance comparison under AUPRC metric in Table 12 and Table 13. The results of
Zero-Shot Comparison under AUPRC metric are in Table 14 and Table 15. It can be observed from
these tables that similar conclusions can be drawn as with the AUROC results in Section 4. UniGAD
demonstrates superior performance across most datasets, regardless of whether unified or zero-shot
performance is evaluated.

20

Table 8: Comparison of unified performance (F1-macro) at both node and edge levels with different
single-level methods, multi-task methods, and our proposed method.

Dataset Reddit Weibo Amazon Yelp Tolokers Questions T-Finance
Task-level Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge

Node-level

GCN 38.81 / 92.90 / 62.45 / 42.84 / 58.64 / 48.74 / 70.61 /
GIN 27.22 / 92.01 / 72.21 / 58.78 / 59.40 / 49.95 / 76.81 /

GraphSAGE 28.30 / 85.05 / 64.05 / 64.20 / 63.71 / 51.07 / 62.63 /
SGC 12.42 / 90.49 / 57.43 / 47.26 / 54.48 / 48.59 / 56.69 /
GAT 31.28 / 92.46 / 87.96 / 57.56 / 62.68 / 47.28 / 69.11 /

BernNet 46.27 / 89.59 / 89.16 / 61.42 / 58.73 / 47.59 / 70.52 /
PNA 14.08 / 88.93 / 61.84 / 52.52 / 58.49 / 46.38 / 27.69 /

AMNet 45.14 / 89.04 / 89.67 / 58.75 / 58.47 / 49.90 / 74.31 /
BWGNN 42.25 / 86.94 / 90.49 / 64.89 / 63.43 / 52.09 / 80.57 /

Edge-level

GCNE / 42.97 / 92.32 / 47.99 / 42.32 / 63.15 / 58.40 / 79.07
GINE / 36.89 / 91.54 / 47.82 / 53.14 / 60.54 / 56.96 / 73.40

SAGEE / 11.94 / 89.59 / 57.79 / 57.87 / 65.95 / 74.15 / 67.12
SGCE / 41.08 / 86.70 / 55.97 / 45.13 / 56.50 / 52.07 / 64.51
GATE / 40.65 / 90.53 / 64.69 / 49.99 / 61.43 / 62.80 / 68.75
BernE / 39.85 / 92.15 / 69.12 / 59.76 / 61.53 / 67.32 / 63.16
PNAE / 23.03 / 92.30 / 49.27 / 52.94 / 64.98 / 65.39 / 65.74
AME / 41.11 / 87.04 / 66.27 / 57.09 / 61.42 / 66.74 / 57.45
BWE / 45.36 / 91.72 / 67.56 / 59.30 / 65.09 / 66.28 / 70.88

Multi-task GraphPrompt-U 31.23 38.54 50.64 46.53 40.93 35.95 40.90 42.94 48.26 48.34 39.43 44.61 OOT OOT
All-in-One-U 49.12 2.41 51.23 48.65 48.67 2.45 14.43 46.29 50.17 47.90 48.81 33.29 OOT OOT

UniGAD
(Ours)

UniGAD - GCN 56.70 53.80 95.75 94.29 69.39 59.12 58.23 56.76 65.20 64.55 58.06 57.77 84.92 84.08
UniGAD - BWG 54.08 51.44 95.35 94.22 91.33 73.59 70.16 63.57 68.15 66.20 59.45 57.54 89.75 84.90

Table 9: Comparison of unified performance (F1-macro) at both node and graph levels with different
single-level methods, multi-task methods, and our proposed method.

Dataset BM-MN BM-MS BM-MT MUTAG MNIST0 MNIST1 T-Group
Task-level Node Graph Node Graph Node Graph Node Graph Node Graph Node Graph Node Graph

Node-level

GCN 68.25 / 77.77 / 69.72 / 90.41 / 92.03 / 91.95 / 49.50 /
GIN 32.96 / 24.25 / 25.69 / 92.33 / 88.88 / 88.04 / 49.24 /

GraphSAGE 32.96 / 24.25 / 25.69 / 88.87 / 99.99 / 99.99 / 50.77 /
SGC 32.96 / 24.33 / 25.72 / 54.95 / 49.04 / 82.70 / 49.04 /
GAT 32.96 / 24.25 / 25.69 / 92.07 / 99.94 / 99.96 / 50.29 /

BernNet 35.04 / 51.71 / 30.26 / 86.76 / 99.99 / 99.99 / 52.84 /
PNA 32.96 / 24.25 / 25.69 / 87.49 / 98.83 / 99.27 / 49.88 /

BWGNN 82.48 / 75.22 / 76.19 / 92.75 / 99.99 / 99.99 / 51.81 /

Graph-level

OCGIN / 46.15 / 46.15 / 46.11 / 39.78 / 47.79 / 49.74 / 48.91
OCGTL / 46.15 / 46.15 / 46.15 / 39.62 / 47.41 / 47.02 / 48.91

GLocalKD / 12.50 / 12.50 / 12.50 / 25.59 / 8.98 / 10.11 / 4.09
iGAD / 68.29 / 81.59 / 89.89 / 89.78 / 87.73 / 95.04 / 46.51

GmapAD / 46.15 / 46.15 / 46.15 / 75.48 / OOM / OOM / OOM
RQGNN / 95.46 / 93.02 / 97.56 / 89.39 / 93.42 / 96.99 / 48.91

Multi-task GraphPrompt-U 36.95 45.55 37.46 12.86 47.92 46.01 83.08 45.70 80.66 52.39 80.49 28.25 50.77 49.78
All-in-One-U 34.98 12.86 21.24 20.38 41.36 12.86 38.71 25.71 OOT OOT OOT OOT OOT OOT

UniGAD
(Ours)

UniGAD - GCN 99.20 83.62 99.57 95.86 96.18 70.50 93.33 90.00 92.17 93.38 92.49 97.23 64.98 77.04
UniGAD - BWG 87.91 55.89 83.79 61.67 82.53 51.36 93.07 89.19 99.99 95.54 99.99 97.60 68.69 78.09

Table 10: Zero-shot transferability (F1-macro) at node and edge levels.
Methods Reddit Weibo Amazon Yelp Tolokers Questions T-Finance

N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N
GraphPrompt-U 29.87 41.00 50.48 47.06 42.19 33.22 44.77 41.44 47.77 43.72 47.63 39.00 OOT OOT

All-in-One-U 2.38 49.17 36.82 51.58 12.84 23.6 12.22 46.04 33.39 49.83 33.08 49.54 OOT OOT

UniGAD - GCN 50.61 50.58 94.44 94.29 56.70 61.88 51.29 53.36 61.14 57.14 52.01 52.26 80.85 69.21
UniGAD - BWG 49.79 50.04 92.11 93.62 68.47 85.07 63.69 71.10 65.46 65.57 55.81 53.44 83.35 87.61

Table 11: Zero-shot transferability (F1-macro) at node and graph levels.

Methods BM-MN BM-MS BM-MT MUTAG MNIST0 T-Group
N→G G→N N→G G→N N→G G→N N→G G→N N→G G→N N→G G→N

GraphPrompt-U 12.86 34.98 20.59 42.78 46.01 43.85 42.15 27.73 26.16 26.75 48.47 43.64
All-in-One-U 12.86 34.98 46.01 41.25 12.86 22.74 39.53 48.80 OOT OOT OOT OOT

UniGAD - GCN 53.43 83.88 57.84 74.63 52.78 54.87 39.89 77.47 65.78 63.75 66.47 49.22
UniGAD - BWG 46.15 59.27 46.15 52.27 46.22 39.54 45.58 66.32 44.56 60.84 63.92 48.24

21

Table 12: Comparison of unified performance (AUPRC) at both node and edge levels with different
single-level methods, multi-task methods, and our proposed method.

Dataset Reddit Weibo Amazon Yelp Tolokers Questions T-Finance
Task-level Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge

Node-level

GCN 5.84 / 94.55 / 36.21 / 20.58 / 43.68 / 12.20 / 70.81 /
GIN 5.89 / 91.28 / 75.74 / 33.09 / 39.71 / 12.79 / 61.79 /

GraphSAGE 5.44 / 84.97 / 55.38 / 45.27 / 48.90 / 16.72 / 19.62 /
SGC 4.27 / 90.70 / 33.48 / 16.13 / 36.90 / 9.90 / 30.35 /
GAT 6.15 / 90.18 / 85.61 / 37.51 / 46.01 / 15.82 / 54.70 /

BernNet 7.34 / 88.39 / 87.08 / 46.22 / 43.04 / 15.11 / 67.65 /
PNA 5.71 / 93.13 / 37.28 / 27.34 / 42.98 / 11.57 / 23.07 /

AMNet 7.52 / 88.59 / 87.26 / 46.18 / 43.22 / 14.39 / 74.73 /
BWGNN 6.41 / 92.81 / 88.57 / 50.32 / 49.44 / 16.21 / 84.94 /

Edge-level

GCNE / 4.68 / 94.56 / 16.59 / 22.68 / 55.15 / 27.83 / 62.12
GINE / 5.01 / 91.84 / 25.08 / 28.28 / 46.03 / 27.34 / 52.01

SAGEE / 5.31 / 91.07 / 20.28 / 34.22 / 60.44 / 50.49 / 18.79
SGCE / 3.00 / 89.04 / 14.54 / 17.37 / 51.41 / 17.84 / 30.22
GATE / 5.32 / 86.61 / 40.30 / 31.96 / 51.03 / 32.70 / 33.47
BernE / 4.89 / 91.34 / 39.83 / 32.70 / 55.19 / 41.52 / 45.01
PNAE / 4.51 / 95.24 / 16.03 / 28.28 / 57.46 / 37.61 / 54.13
AME / 5.00 / 87.03 / 39.07 / 32.46 / 53.53 / 40.88 / 43.70
BWE / 5.26 / 93.08 / 38.83 / 35.33 / 58.42 / 42.72 / 68.13

Multi-task GraphPrompt-U 3.60 2.92 17.22 7.31 6.62 2.64 12.41 13.63 22.19 33.52 3.25 5.22 OOT OOT
All-in-One-U 4.07 2.93 6.41 5.18 1.02 3.13 46.10 13.49 21.64 32.16 2.57 4.09 OOT OOT

UniGAD
(Ours)

UniGAD - GCN 9.73 5.82 96.79 95.65 38.06 15.53 61.00 40.90 46.38 54.05 15.58 15.96 75.30 69.90
UniGAD - BWG 5.19 3.29 96.54 93.66 87.28 42.01 27.42 24.65 50.80 56.89 17.35 19.34 85.34 74.37

Table 13: Comparison of unified performance (AUPRC) at both node and graph levels with different
single-level methods, multi-task methods, and our proposed method.

Dataset BM-MN BM-MS BM-MT MUTAG MNIST0 MNIST1 T-Group
Task-level Node Graph Node Graph Node Graph Node Graph Node Graph Node Graph Node Graph

Node-level

GCN 84.82 / 78.23 / 83.12 / 82.17 / 91.24 / 91.29 / 8.78 /
GIN 52.80 / 32.44 / 36.98 / 81.91 / 87.62 / 87.33 / 1.65 /

GraphSAGE 49.17 / 32.01 / 34.55 / 80.20 / 99.93 / 99.94 / 5.79 /
SGC 51.73 / 31.24 / 36.42 / 34.32 / 82.69 / 82.66 / 3.93 /
GAT 54.33 / 40.83 / 44.23 / 82.44 / 99.40 / 99.90 / 6.56 /

BernNet 58.11 / 38.34 / 42.79 / 72.17 / 99.99 / 99.99 / 13.51 /
PNA 72.16 / 38.32 / 58.97 / 70.16 / 98.48 / 98.50 / 1.03 /

BWGNN 91.85 / 70.10 / 78.53 / 84.33 / 99.99 / 99.99 / 16.30 /

Graph-level

OCGIN / 89.40 / 48.80 / 41.14 / 31.02 / 12.99 / 18.09 / 4.46
OCGTL / 76.72 / 46.13 / 41.38 / 33.87 / 9.94 / 11.27 / 4.30

GLocalKD / 7.71 / 9.05 / 17.39 / 23.01 / 6.96 / 13.49 / 2.51
iGAD / 68.36 / 74.57 / 84.66 / 91.07 / 94.79 / 97.98 / 5.92

GmapAD / 14.29 / 14.29 / 14.29 / 60.96 / OOM / OOM / OOM
RQGNN / 99.32 / 97.60 / 99.36 / 91.27 / 97.62 / 98.39 / 7.98

Multi-task GraphPrompt-U 43.87 15.15 26.15 14.76 27.78 14.83 70.41 60.70 82.89 36.25 83.30 5.97 1.06 4.25
All-in-One-U 57.75 8.58 35.75 9.16 25.13 20.23 5.86 33.09 OOT OOT OOT OOT OOT OOT

UniGAD
(Ours)

UniGAD - GCN 99.63 73.54 99.91 98.39 99.73 99.99 86.60 91.66 95.94 94.86 96.38 98.36 21.53 44.95
UniGAD - BWG 91.19 23.83 85.81 30.89 84.93 14.74 87.15 92.00 99.99 97.92 99.99 98.60 31.31 55.64

Table 14: Zero-shot transferability (AUPRC) at node and edge levels.
Methods Reddit Weibo Amazon Yelp Tolokers Questions T-Finance

N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N N→E E→N
GraphPrompt-U 2.80 3.00 7.33 16.50 2.37 9.83 13.69 13.26 34.14 21.59 5.49 3.57 OOT OOT

All-in-One-U 2.99 4.15 5.37 6.53 10.20 3.13 14.43 13.49 31.77 21.79 4.11 3.04 OOT OOT

UniGAD - GCN 3.89 5.44 93.35 95.57 10.86 29.44 22.00 24.98 51.50 40.51 12.44 6.76 69.67 69.74
UniGAD - BWG 3.11 4.09 86.47 93.21 28.07 78.56 35.99 55.04 54.26 46.36 13.89 5.80 70.61 81.02

Table 15: Zero-shot transferability (AUPRC) at node and graph levels.

Methods BM-MN BM-MS BM-MT MUTAG MNIST1 T-Group
N→G G→N N→G G→N N→G G→N N→G G→N N→G G→N N→G G→N

GraphPrompt-U 13.87 48.25 14.51 26.88 13.17 26.90 63.44 46.84 5.95 22.23 5.04 1.15
All-in-One-U 78.62 73.54 9.24 32.03 11.94 24.38 28.38 9.60 OOT OOT OOT OOT

UniGAD - GCN 34.05 86.00 42.41 81.74 24.26 60.50 40.63 52.67 9.22 25.59 35.02 6.97
UniGAD - BWG 21.25 54.09 26.62 31.35 16.86 38.62 38.64 27.56 7.84 32.94 27.15 4.30

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We confirm that the main claims made in the abstract and introduction accu-
rately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Appendix D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

23

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a complete proof of our theoretical results (Theorem 1, Corollary
1, Theorem 2) in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a link to the code in the abstract and include detailed implementa-
tion information in Appendix C to enhance reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

24

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We make the code of our model and newly released T-Group dataset open-
sourced at https://anonymous.4open.science/r/UniGAD-A087/. Other datasets are
used only publicly available datasets as stated in Section 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Appendix C for the experiment implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

25

https://anonymous.4open.science/r/UniGAD-A087/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All of our experimental results come from the mean of 5 randomized trials.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix C for the computation resources.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

26

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: We confirmed the research conducted in the paper conform with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix D for the relative discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring

27

that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all referenced baseline works and datasets in Section 4 and
Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the code via the anonymous link in the abstract, which will be
open-sourced under the MIT license. Comprehensive documentation is included with the
assets to ensure ease of use and understanding.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

28

paperswithcode.com/datasets

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	1 Introduction
	2 Related Work and Preliminaries
	3 Methodology
	3.1 Spectral Subgraph Sampler for Unifying Multi-level Formats
	3.1.1 Analysis of the Subgraph Sampling
	3.1.2 Maximum Rayleigh Quotient Subgraph Sampler (MRQSampler)

	3.2 GraphStitch Network for Unifying Multi-level Training

	4 Experiments
	4.1 Experimental Setup
	4.2 Multi-Level Performance Comparison (RQ1)
	4.3 The Transferability in Zero-Shot Learning (RQ2)
	4.4 Ablation Study (RQ3)
	4.5 Efficiency Analysis (RQ4)

	5 Conclusion
	A Proofs
	A.1 The proof of Theorem 1
	A.2 The proof of Corollary 1
	A.3 The proof of Theorem 2

	B The Pseudocode of MRQSampler Algorithm
	C Implementation Details
	D Limitations and Impacts
	E Additional Experimental Results

