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Abstract

Reasoning LLMs are trained to verbalize their thinking process, yielding strong

gains on math benchmarks. This transparency also opens a promising direction:
multiple reasoners can directly collaborate on each other’s thinking on a shared

trajectory, yielding better inference efficiency and exploration. A key prerequisite,
however, is the ability to assess usefulness and build on another model’s partial

thinking—we call this off-trajectory reasoning. Our paper investigates a critical

question: can standard solo-reasoning training pipelines yield desired off-trajectory

behaviors? We propose twin tests that capture the two extremes of the off-trajectory

spectrum, namely Recoverability, which tests whether LLMs can backtrack from

“distractions” induced by misleading reasoning traces, and Guidability, which tests

their ability to build upon correct reasoning from stronger collaborators. Our study

evaluates 15 open-weight LLMs (1.5B-32B) and reveals a counterintuitive finding—
“stronger”” LLMs on benchmarks are often more fragile under distraction. Moreover,
all models tested fail to effectively leverage guiding steps from collaborators on

problems beyond their inherent capabilities, with solve rates remaining under 9.2%.
This work lays the groundwork for evaluating multi-model collaborations under

shared reasoning, while revealing limitations of off-the-shelf reasoning LLMs.

1 Introduction

LLMs with thinking abilities (e.g., OpenAl’s o-series [21], Solo Collaborative
DeepSeek-R1 [13]) have recently emerged as the frontier mod- ([Question ] ((Question ]
els for math reasoning tasks. These models, trained with re- f_’_‘_‘.____
inforcement learning with verifiable rewards (RLVR) [38] or {co) B ressoning
distillation [18], learn to verbalize their intermediate reasoning 3 (R > iy
in language [11]. This paradigm has promising implications, reasoning T ety
e.g., better efficiency (large LLMs can delegate easy derivations reas;ning resff_‘i_'f o
or arithmetic checking to smaller models) and broader explo- Y o) S N
ration (models with complementary expertise can expand the N =5~ | reasoning
reasoning search by spawning and combining diverse branches) “easi’”i"g o

[l, 5, 7, 34, 33] answer an;wer‘

Most LLMs today are trained and evaluated to reason on their Figure 1: Comparison of solo (left)
own, which we term solo-reasoning. But can they collaborate vs. collaborative reasoning (right).
with other reasoners—models, humans, or programs—in real

time within their trajectories? Ideally, LLMs should integrate useful insights and backtrack from
erroneous steps made by collaborators, even when these traces are not in-distribution. We call this
ability off-trajectory reasoning and ask: can solo-reasoning LLMs collaborate conditioned on
out-of-distribution trajectories?

We decompose off-trajectory reasoning into two parts, recoverability and guidability, and evaluate
both in simulated collaboration scenarios (see Figure 2). The recoverability test evaluates how well
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LLMSs can reject a collaborator’s irrelevant thinking or erroneous steps and return to the original
correct path. At the other end of the spectrum, the guidability test evaluates whether LLMs continue
from another model’s correct partial derivation to solve problems that solo-reasoning fails.

We systematically evaluate 15 open-weight LLMs on a suite of five math benchmarks [30, 31, 17, 27,
14]. Surprisingly, we find that stronger reasoning models are more prone to failure under off-trajectory
distractions. Under the recoverability test, their performance falls by 25.1%. At the same time,
guidability test reveals that LLMs fail to continue from other models’ correct trajectories, even when
correct answers appear in these trajectories. Overall, our results show that LLMs can neither reject
distracting nor build upon useful off-trajectory inputs. Moreover, the practice of benchmark over-
optimization fails to capture broader reasoning capabilities, of which collaborative and off-trajectory
reasoning is an integral part.

2 Twin Tests for Off-Trajectory Math Reasoning

Preliminaries and Notations. Let M be a reasoning model and (¢, a*) be a datapoint. In solo-
reasoning, M generates a trajectory r = [rq, ..., ;] and answer a for a math question g, i.e. (r,a) ~
M(- | q). r; refers to a reasoning unit of any granularity (step, sentence, etc.). In the collaborative
setting, multiple models contribute to parts of the trajectory r. The main model M needs to build upon

a trajectory mixing both in- and out-of-distribution reasoning units r = [r™ ..M LM M ]

bl

In this paper, we study a simplified setup of two-model collaboration for math reasoning.

Two-model Setup We simulate collaboration between the main model M and a collaborator Mteer,
which together form an off-trajectory reasoning [r°¢, r5t¢°T], In practice, we sample r°¢ from M for
the first m tokens and 75°°°" from Mo, for the first n tokens. Then, we prompt M to complete
conditioned on the question and the steered trajectory, i.e., (r°%, a®®) ~ M(. | ¢, [r°8, r*"]). We
can measure the success based on answer correctness i.e. E{(4 o-)py[1[a®T = a*]].

Considerations for designing the steer. Our setup lets us simulate two extremes of how a steer
affects the main model M. A steer can be distracting, misleading M away from its original correct
trajectory, or guiding, offering partial reasoning that helps M solve problems beyond its solo ability.
Based on these desiderata, we design twin tests—(i) Recoverability: can M resist a distractor and
backtrack to its original correct trajectory? (ii) Guidability: can M effectively leverage a guiding
steer from a stronger reasoning model to surpass its solo-reasoning ability? These twin tests differ in
(i) the selection of test questions g and (ii) the construction of steered trajectories [r°8, 75%¢°*]. Given a
dataset D and test model M, our protocol automatically instantiates M -specific off-trajectory dataset
for both tests, i.e. D' = {(q, [r°%, 75°°"], a*)}. (See Figure 2)

Recoverability Test
o [ Original Reasoning ] : [ Original R i ]
Find all values of x that Solo- <think> Alright, so I have this .. Now, square both sides: answer
satisfy the equation X = | .uu... e 1@» —| cquation to solve: \(x =\sqrt{l1 - |= = | \(y"2=3-2y\). Bringall | —»
sqrt{11-2x} + 4. Reasoning 2} +4Y) .. terms to left ...
Reasoner \ )

Distracting Steer O | Continue Reasoning |

Off-Trajectory, __; Wit Let me think. I need to figure out | .m.

[...] Wait. Let me check my N the maximum age

Reasoning " the maximum age of a sample that can caleulation. If the half ife of is 350 years
i be dated using carbon-14 [...] Reasoner carbon-14 is 5,730 years [ ...]
Guidability Test
O | Original Reasoning |
Alarge ground-based | _.._.. Solo- . o b <think> Okay, Ihave the problem | struggle to reason _ _ _ 23
telescope has [...] Reasoning about two astronomical objects. I by itself 28
How far apart will the Reasoner | need to find the distance [..] y
two corresponding e —
images be in the focal
plane, in microns?
— Guiding Steer _| Continue Reasoning |
Q <think> I need to find out how O [..] the separation is £ x 0 /
Off-Trajectory far apart two images will be in 206265, but since 0 s in arc duene
Reasoning ™ § P—"  the focal plane of a telescope if T 1@' — | scconds, s=Fx0/206265, =" 485
the objects are separated [...] but only if § is in arc [...]
Stronger Reasoner Reasoner ~

Figure 2: Tllustration of the twin tests: we perturb a model’s reasoning trajectories with off-trajectory
steers to evaluate its recoverability (under a distracting steer) or guidability (under a guiding steer).
The distracting steer is sampled from the same reasoner but for a different question.



2.1 Recoverability Test

Selecting test datapoints { (g, a*)}. For a given test model M, we select the subset of test questions
which M can correctly answer in solo-reasoning, i.e. a = a*, where (r,a) ~ M (. | q). This selection
can isolate the effects of distracting steers from M’s inherent capabilities.

Constructing steered trajectories. The trajectory consists of two parts: 7°8 and r5'***, We truncate
r, the reasoning trajectory from solo-reasoning, to the first /m tokens to obtain 7°&. In our experiments,
described in § 3.1, we vary m as a fraction of the total number of tokens in r.

We want 75" to be a strong distractor for M. However, it is hard to determine a priori which
collaborator M., and steer 75" will reliably do so. To ensure distraction, we instead sample
rSter from M itself, but conditioned on a different question ¢’. So, if M blindly completes from
rSteer jts reasoning is guaranteed to be wrong. In our experiments, we control the strength of the

distractor by varying n, i.e. |r**®"|, and the insertion point by varying m, i.e. [r°9].

2.2 Guidability Test

Selecting test datapoints {(g, a*)}. The goal is to test whether M can leverage a guiding steer,
i.e., a correct partial reasoning, on questions it fails in solo reasoning. We therefore select questions
where the solo-reasoning solve rate of M is 0 or 1 out of 8 samples, at its capability boundary.

Constructing steered trajectories. Unlike the recoverability test, we set m = 0 and exclude M’s
own partial reasoning, since r°% might already contain errors that anchor M in a wrong direction,
which could confound the measurement of guidability.

The steer 75" is drawn from a stronger reasoner M., With higher benchmark performance than

M. To test how well M can build on the guiding steer ', we truncate the sampled trajectory
to the first n tokens. We vary n to control the “amount” of guidance provided to M, and we use
multiple guiding models Mqo to generate independent steers for each question ¢, which enables
guidability measurement under different steer distributions and amount of guidance.

3 Off-the-shelf Evaluation & Results

3.1 Experiment Setup

LLMs and Math Benchmarks. We run our experiments on 15 open-weight models, grouped into
four families—(1) DeepSeek-R1 [13]: R1-Qwen-1.5B/7B/32B and R1-L1lama-8B; (2) Qwen3 [42]:
Qwen3-1.7B/8B/30B-A3B and Qwen3-32B; (3) QwQ: Qw(Q-32B and OpenThinker3-1.5B/7B
[12]; (4) Community: DeepScaleR-1.5B [29], DeepMath-1.5B [16], LIMO-32B [43], and
AM-Thinking-32B [23]. We include more detailed model information in Appendix A. We evalu-
ate on a pool of 1,507 math questions sourced from five standard benchmarks, AIME-2024 [30],
AIME-2025 [31], MATH-500 [17], Minerva (math subset) [27], and OlympiadBench [14].

Hyperparameter Settings. All LLMs are evaluated under the same hyperparameter settings: max-
imum of 32K tokens, temperature 0.6, top-p 0.95, and no system prompt. For each question, we
sample 8 completions and report the average Pass@]1.

Recoverability and Guidability Setup. For recoverability test, we sample 200 original trajectories
r°8 and 50 distracting trajectories 75" per LLM. By default, we set n, i.e. |r5**®"| to be 0.2 times
the trajectory length, leaving enough tokens for off-trajectory completion. We vary the length of r°&
as {0,0.2,0.4,0.6,0.8} of the reasoning from the main model. Recoverability is reported on two
subsets: (1) shared—questions all 15 LLMs solve perfectly (8 out of 8), and (2) individual—questions
selected per model as defined in §2.

For the guidability test, we select DeepSeek-R1, Qwen3-235B, and QwQ-32B as Mieer- Since the
top 5 LLMs almost saturate the benchmarks, we evaluate only the other 10 with enough questions with
solve rate < 1/8 (Table 2). Steer length n, i.e., |7"Steer\, is set to {0.2,0.4,0.6, 0.8} of the trajectory.
Guidability is also reported on shared (intersection across models) and individual (per model) subsets.

3.2 Results

Our main results are shown in Table 1. We group models into low, medium, and high tiers based on
their solo-reasoning performance (reported in the Avg. Benchmark column) and report recoverability
and guidability results on both shared and individual subsets.



Model | Family | Benchmark Recoverability Guidability
Avg. Sh. Ind. Sh. Ind.
Low Benchmark Scores
R1 —Qwen— 1.5B DS-R1 47.5 60.6¢+2 38.6¢+2 3'0T+0 28.4¢+5
DeepScaleR-1.5B | Comm. 53.3 824447 529445 4.1441 29.8445
R1-Llama-8B DS-R1 54.1 81.4¢+5 49'6T+3 8'7T+4 35.0¢+7
DeepMath-1.5B | Comm. 54.8 88.0149 61.84146 34 1» 27.1 141
OpenThinker3—l.5B QWQ 59.2 95.2@.9 71.8¢+g 5.7 1-1 32.7 T+4
Qwen3-1.7B | Qwen3 59.9 98.4 1459 74.6 149 6.1 140 29.9 112
Medium Benchmark Scores
R1 —Qwen—7B DS-R1 64.6 73.5¢.1 45.8¢.2 6.0 12 19.7 1-6
LIMO-32B | Comm. 67.3 2937 18.5,7 8.8 140 21.5 5
OpenThinker3—7B QWQ 72.1 85.6¢+1 74'5T5 9.1 40 20.6 17
R1-Qwen-32B | DS-R1 72.3 69.8,6 45.6,.6 9.2 140 22.5 16
High Benchmark Scores
Qwen3-8B | Qwen3 79.1 85.9+40 68.81+1 N/A N/A
QwQ-32B QwQ 80.5 79.7, 5 62.6,-1 N/A N/A
Qwen3-32B | Qwen3 81.0 71.88 56.9, 5 N/A N/A
Qwen3-30B-A3B | Qwen3 81.1 87.8,2 60.0,-5 N/A N/A
AM—Thinking—32B Comm. 82.6 33.4¢.13 25.3¢.13 N/A N/A

Table 1: Results for 15 LLMs from four families. Columns report benchmark averages and
recoverability/guidability scores for shared (Sh.) and individual (Ind.) subsets. Subscripts indicate
rank changes relative to the benchmark ranking (4% rise, —k drop); green (1) denotes improvement,
red (}) decline. “DS-R1” = DeepSeek-R1 family, “Comm.” = Community. N/A = not evaluated.

Finding 1: Stronger solo-reasoners # stronger collaborators. Surprisingly, recoverability and guid-
ability are largely orthogonal to solo-reasoning. In particular, models in the low benchmark tier (e.g.,
OpenThinker3-1.5B and Qwen3-1.7B) show substantially better recoverability than medium and
high tier models like QwQ-32B and Qwen3-32B. The best solo-reasoning model AM-Thinking-32B
reports the second-worst recoverability. Similarly, LIM0-32B—claimed to surpass prior SFT ap-
proaches using only 1% of training data—only recovers less than 30% of the time. Across models,
we observe a mean 25.1% degradation in reasoning performance in the recoverability test. In addition,
all LLMs report exceptionally low guidability scores; none of the evaluated models report> 10% on
the shared subset. Taken together, these findings suggest that models optimized heavily for popular
math benchmarks may have hidden vulnerabilities, particularly in off-trajectory reasoning.

Finding 2: The beginning paragraph of reasoning is critical for recovery. Table 1 visualizes the
recovery rates when distracting steers are inserted at different positions (%) of the original trajectory.
Across models, distraction at the very start (0%) causes the largest degradation. This is surprising
since the opening of reasoning usually only restates the question and rarely includes actual problem
solving. So, we hypothesize that restating the question at the start is critical for anchoring later
reasoning.

To test this, we conduct an ablation that re-instantiates the recoverability while preserving the first
paragraph of the original trajectory. Most LLMs experience noticeable improvements, especially at
0% (See Table 4). With this small tweak, average recoverability exceeds 83.5% for all models except
LIMO-32B and AM-Thinking-32B). This shows that while restatement of the problem does not
add new information, it is critical for LLM off-trajectory reasoning.

Finding 3: LLM:s fail to leverage guidance to surpass their inherent limits. Table 1 shows that all
models, regardless of their solo-reasoning abilities, struggle to build upon guiding trajectories. To our
surprise, their guidability does not improve even when models are paired with their own distillation
teacher (see Table 5 for full set of results). For example, Qwen3-1.7B shows no guidability gains
when guided by Qwen3-235B compared to other models.

Furthermore, we find that already low guidability scores are partly inflated. Since the guiding
steers are truncated at different lengths, on average 18.6% of them already contain the full correct
derivation and answer (See Ans.? column Table 7 and breakdown in Table 6). In such cases, we
expect the guidability test to be trivially easy, yet we find that LLMs can often fail to recognize



such correct reasoning, reject the given answer and pivot to an incorrect path, resulting in the low
guidability scores. This suggests that conditioning models on correct but out-of-distribution traces
does not enable them to successfully leverage them and surpass their inherent capability limits.

4 Related Work

Large Reasoning Models. Recent post-training advances have led to massive improvements on
math and coding benchmarks [20, 13], as exhibited by both closed- and open-source LL.Ms since
the release of OpenAl’s o-1 [21], e.g., [13, 42, 12, 43, 23]. These models are trained to produce
extended reasoning traces using RL algorithms such as Proximal Policy Optimization (PPO) [37],
Grouped Relative Policy Optimization (GRPO), and related variants [38], typically with verifiable
rewards. At smaller scales (under 32B parameters), reasoning models like R1-Qwen-Distill series
[13] and Qwen3 family [42] are primarily trained with distillation [18]. Additionally, the open-source
community has also released artifacts that further train these models with RL. In our study, we analyze
15 representative open-weight LLMs spanning diverse model families and training paradigms.

LLM Reasoning Intervention and Collaboration. Recent studies intervene on the LLM reasoning
process to understand and control their behaviors, including perturbing intermediate steps to examine
their faithfulness [2, 3], improve instruction following and alignment behaviors [41], or interpret
[26, 32] and stress-test cognitive behaviors [11]. [40] examines the impact of thinking patterns on
outcome correctness, while [15, 26] systematically categorize different types of reasoning strategies
and errors. In addition, our work fits within prior work on teacher—student framework for augmenting
model reasoning [19, 1, 4]. In a closely related work, [15] investigates LLMs’ ability to recover from
unhelpful thoughts. Our twin tests also intervene on reasoning but differ in their goal of simulating
extreme scenarios of multi-model collaboration.

Our work is also closely related to hybrid parallel and serialized scaling approaches [33], including
offloading challenging reasoning parts to larger models [1] and orchestrating different models for
high-level planning and downstream execution [25]. Our work evaluates how solo-reasoning LLMs
can fail when routed onto a shared reasoning trajectory.

5 Limitations & Future Work

Our study conducts an initial systematic investigation into the fragility of LLM off-trajectory rea-
soning. In this work, we report the results of the Recoverability and Guidability twin tests on
math reasoning benchmarks, reflecting that most open-weight LLMs are primarily post-trained on
math datasets. Our framework, however, can be straightforwardly extended to other domains. We
encourage future work to extend our framework to other domains, such as coding [22, 24, 6], science
[39, 36, 10], and logical reasoning tasks [9, 28, 8].

For better control, our experiments use a two-model, single-turn simulation setting. However, real-
world multi-agent, multi-turn interactions can be more complex; we view this work as laying the
foundation for studying richer collaborative dynamics. Additionally, we make certain design decisions
in our twin tests that can be studied further. For instance, in Recoverability, distractors are sampled
from the same model on a different question to model the “distracting effects” of erroneous traces.
This choice may make distractors stylistically and syntactically similar to the original reasoning,
potentially overstating the brittleness of LLMs relative to distractors from other models.

6 Conclusion

In this work, we study off-trajectory reasoning in LLMs—their ability to recover from or build on
reasoning steered by other models. We propose twin tests: Recoverability, which measures whether
models can backtrack from distracting steers, and Guidability, which measures how well they can
take advantage of guiding steers. Across 15 open-weight LLMs, our evaluation reveals consistently
poor performance on both, underscoring the limitations of solo-reasoning LLMs in collaborative
settings and pointing to directions for future work to advance multi-model math reasoning systems.
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A LLM Selection Details

Below are the list of LLMs we evaluate in this study with their detailed information. Table 2 reports
the number of unique problems and guiding trajectories used per guiding model (sub-column) for
each LLM (row).

* DeepSeek-R1 [13]: R1-Qwen-1.5B/7B/32B and R1-Llama-8B are distilled from DeepSeek-R1
using supervised fine-tuning (SFT).

e Qwen3 [42]: Qwen3-32B is trained using RL for reasoning without distillation, while
Qwen3-1.7B/8B/30B-A3B are distilled from Qwen3-235B and Qwen3-32B.

e QwQ: QwQ-32B [35] is trained from Qwen2.5-32B-Base model with RL.
OpenThinker3-1.5B/7B [12] are based on Qwen2.5-Instruct and distilled from QwQ-32B on
1.2M curated math and coding examples.

¢ Community: DeepScaleR-1.5B [29] and DeepMath-1.5B [16] are trained using RL on
R1-Qwen-1.5B using DeepScaleR and DeepMath datasets respectively. LIMO-32B [43] is SFT
from Qwen2.5-32B-Instruct on the LIMO dataset of 8§17 examples. Finally, AM-Thinking-32B
[23] is a Qwen2.5-32B-Base model first distilled on 2.84M examples and RL on 54K math and
coding questions.

# of Problems # of Trajectories
DeepSeek-R1  Qwen-3 QwQ-32B | DeepSeek-R1  Qwen-3 QwQ-32B
DeepMath-1.5B 152 198 302 231 268 302
DeepScaleR-1.5B 154 196 311 234 269 311
LIMO-Qwen-32B 100 137 185 142 172 185
OpenThinker3-1.5B 151 199 270 236 278 270
OpenThinker3-7B 101 146 163 146 186 163
Qwen3-1.7B 130 175 245 192 233 245
R1-Distill-Llama-8B 151 196 266 229 269 266
R1-Distill-Qwen-1.5B 168 213 363 261 290 363
R1-Distill-Qwen-7B 107 156 190 151 195 190
R1-Distill-Qwen-32B 94 145 162 134 182 162

Table 2: Guidability statistics: unique number of problems and trajectories per guiding model
(column) for different student models (row) for Guidability (individual) test.

B Details for Finding 2 & 3

Table 4 reports the results of ablation study explained in §3.2, where the first paragraph of model
reasoning is preserved. The subscripts in Table 4 equals the difference between the major numbers in
Table minus the corresponding numbers in Table 3 to show the changes in recoverability induced by
the small tweak in trajectory. Table 5 groups guidability (individual) scores by the guiding models
(column) for each LLM (row). Table 6 reports guidability (individual) results for different length of
the guiding steers measured by % of the trajectories.



Model 0% 20% 40% 60% 80% Avg. | Benchmark Avg.

R1-Distill-Qwen-1.5B  44.0 660 64.0 670 62.0 60.6 47.5
R1-Llama-8B 655 815 845 825 93.0 814 54.1
DeepMath-1.5B 715 940 900 940 905 88.0 54.8
DeepScaleR-1.5B 61.5 880 895 850 88.0 824 533
OpenThinker3-1.5B 89.0 955 965 98.0 97.0 952 59.2
Qwen3-1.7B 97.0 995 990 985 98.0 984 59.9
R1-Distill-Qwen-7B 485 770 790 825 805 735 64.6
LIMO-32B 180 290 360 325 31.0 293 67.3
OpenThinker3-7B 815 87.0 89.0 845 86.0 85.6 72.1
R1-Distill-Qwen-32B 21.0 705 785 905 88.5 69.8 72.3
Qwen3-8B 71.0 885 8.0 915 895 859 79.1
QwQ-32B 53.0 795 865 885 91.0 797 80.5
Qwen3-32B 325 745 885 81.0 825 718 81.0
Qwen3-30B-A3B 68.0 905 935 915 955 878 81.1
AM-Thinking-32B 165 290 365 410 440 334 82.6

Table 3: Recoverability (shared) results (on 200 questions fully solved by all 15 LLMs eight out
of eight). 0%, 20%, 40%, 60%, 80% are the positions of original reasoning where distraction is
introduced. “Avg.” column averages across all the positions.

Model 0% 20% 40% 60 % 80% Avg. \ Benchmark Avg.
Rl-QWCn—l.SB 89.0 +45.0 94.0 +28.0 91.0 +27.0 89.5 +22.5 84.0 +22.0 89.5 +28.9 47.5
R1-Llama-8B 95.5 +30.0 96.5 +15.0 97.0 +12.5 91.5 +9.0 87.0 -6.0 93.5 +12.1 54.1
DeepMath—l.SB 99.0 +27.5 98.5 +4.5 98.5 +8.5 98.0 +4.0 95.0 +4.5 97.8 +9.8 54.8
DeepScaleR—l.SB 97.0 +35.5 97.5 +9.5 97.5 +8.0 98.0 +13.0 86.0 2.0 95.2 +12.8 53.3
OpenThinker3 1.5B  96.5 475 98.0 425 97.0405 100040 960,40 97523 59.2
Qwen3-1.7B 100.0 4309 100.0 405 100.0 410 100045 82.0.160 96.4 29 59.9
Rl—QWCl’l-7B 91.5 +43.0 95.5 +18.5 91.0 +12.0 89.5 +7.0 85.0 +45 90.5 +17.0 64.6
LIMO-32B 58.0 1400 575485 5454185 6054080 53.5ims5 56.8 1275 67.3
OpenThinker3—7B 93.0 +11.5 94.5 +7.5 96.0 +7.0 96.5 +12.0 85.0 -1.0 93.0 +7.4 72.1
R]-QWCH-32B 74.5 +53.5 80.5 +10.0 90.0 +11.5 93.5 +3.0 85.0 35 84.7 +14.9 72.3
QWCH3-8B 95.5 1245 97.0 +85 97.5 +8.5 97.0 +5.5 80.0 95 934 +75 79.1
QwQ-32B 64.5 1115 73.0 65 81.0 55 90.0 415 86.5 45 79.0 o7 80.5
QWCH3—32B 75.0 +42.5 87.0 +12.5 95.5 +7.0 92.5 +11.5 67.5 -15.0 83.5 +11.7 81.0
Qwen3—30B—A3B 83.5 +15.5 88.0 =25 91.0 25 94.0 +2.5 66.0 295 84.5 33 81.1
AM—Thil’lking—32B 55.0 +38.5 53.0 +24.0 60.0 +23.5 75.0 +34.0 42.5 -1.5 57.1 +23.7 82.6

Table 4: Ablation Study: Recoverability (shared) results with original beginning (on 200 questions
fully solved by all 15 LLMs eight out of eight). 0%, 20%, 40%, 60%, 80% are the positions of
original reasoning where distraction is introduced. “Avg.” averages across all the positions.

Model DeepSeek-R1  QwQ-32B  Qwen3-235B-A22B | Benchmark Avg.
R1-Distill-Qwen-1.5B 28.2 30.4 26.2 47.5
DeepMath-1.5B 29.0 26.2 26.3 54.8
DeepScaleR-1.5B 30.9 31.1 27.3 53.3
R1-Distill-Llama-8B 37.8 34.4 33.2 54.1
Qwen3-1.7B 334 31.1 25.6 59.9
OpenThinker3-1.5B 35.7 30.6 323 59.2
R1-Distill-Qwen-7B 22.0 19.6 18.7 64.6
LIMO-32B 24.5 24.6 15.7 67.3
R1-Distill-Qwen-32B 23.5 23.0 21.9 72.3
OpenThinker3-7B 229 21.4 18.0 77.8

Table 5: Guidability (individual) results (teacher model comparison). Each teacher model averages
across Guidability (individual) scores for all proportions, 20%, 40%, 60%, 80%, in Table 6
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Model 20% 40% 60% 80% Avg | Benchmark Avg.

Rl-DiStiH-QWCn- 1.5B 14.67'7 23.1 17.2 3323 13 43.04(,.2 28.425‘6 47.5
R1-Distill-Llama-8B 20.85_4 29.615.7 40'027.6 49-73448 35.021'3 54.1
DeepMath-l.SB 13.67'2 21~116.2 31.227,5 42-340.6 27.122.9 54.8
DeepScaleR—l.SB 15.77_5 23.215.7 34.628_1 45.641‘8 29.823,3 53.3
OpenThinker3—1.5B 18.1110 30.62144 36.1323 46.042.3 32.726_9 59.2
QWCH3—1.7B 18.25,3 23.711.3 34.820_6 42.833_8 29.913,0 59.9
RI-DiStiH-QWCH-7B 10.83_5 16.26‘3 22.013_1 29.925‘4 19.712'1 64.6
LIMO-32B 12.606 18.845 24416 30.0s5 21502 67.3
OpenThinker3—7B 1 ].]6_5 20.01().1 22.615_4 28.723_4 20.613,3 72.1
R1-Distill-Qwen-32B 14255 1971 249154 31226 22.5112 72.3

Table 6: Guidability (individual) results (on all questions with solve rate < % for each individual
model). 20%, 40%, 60%, 80% are proportion of teacher reasoning revealed to the student model in
its thinking window. The subscript value is the percentage of cases where teachers have derived the
solution. “Avg” is the average across different proportions.

o becpmunas 0 e e mibeouen1se Model Teach. (%) Ans.? (%) A
b4 ;l:fg%:;{ :1 L ngéizgzma * ziﬁﬁi;"'ﬂ%S:"jB R1-Qwen-1.5B 28.4 25.6 2.8
penher e o DeepScaleR-1.5B 29.8 23.3 6.5
5 100 R1-Llama-8B 35.0 21.8 13.2
o DeepMath-1.5B 27.1 22.9 4.2
S 80 OpenThinker3-1.5B 32.7 26.9 5.8
2 Qwen3-1.7B 29.9 18.0 11.9
2 60 R1-Qwen-7B 19.7 12.1 7.6
3 LIMO-32B 21.5 10.2 11.3
© 40 OpenThinker3-7B 20.6 13.8 6.8
% 50 R1-Qwen-32B 22.5 11.2 11.3
o - Avg. 26.7 18.6 8.1
0 0% 20% 40% 60% 80%  Table 7: Analysis of guidability results. Teach. =
Inserted Position (% in Trajectory) guidability score (individual); Ans.? = fraction

Figure 3: Recoverability (shared) across posi- of steers already containing the correct answer;
tions (%) of the original trajectory for 15 LLMs A = Teach. — Ans. (pp).
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