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Abstract
Large language models are susceptible to mem-
orizing repeated sequences, posing privacy and
copyright concerns. A popular mitigation strat-
egy is to remove memorized information from
specific neurons post-hoc. However, such ap-
proaches have shown limited success so far. In
a controlled setting, we show that the memoriza-
tion of natural sequences (those that resemble
linguistically plausible text) become mechanisti-
cally entangled with general language abilities,
thereby becoming challenging to remove post-
hoc. In this work, we put forward a new paradigm
of MemSinks that promotes isolation of memo-
rization by design. We leverage a sequence iden-
tifier to activate a unique set of memorization
neurons for each sequence across repetitions. By
analyzing the dynamics of learning and forget-
ting, we argue that MemSinks facilitates clean
isolation of memorized content, making it eas-
ier to remove without compromising general lan-
guage capabilities. We implement MemSinks
at the billion-parameter and billion-token scale,
and observe both effective isolation and strong
generalization. To our knowledge, this is the
first proof-of-concept on real data demonstrating
that simultaneous generalization and isolation is
achievable. We open-source our code at http:
//github.com/grghosal/MemSinks.

1. Introduction
Large language models often memorize sequences seen fre-
quently throughout pretraining (Carlini et al., 2023; Nasr
et al., 2023), posing concerns in privacy, copyright, and
membership inference. There is significant research on
the problem of “unlearning” or removing memorized infor-
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mation from models post-hoc, including fine-tuning based
approaches (Maini et al., 2022; Barbulescu & Triantafil-
lou, 2024). However, presently all such methods present a
substantial tradeoff between removing memorization and
preserving general model capability.

We identify a core reason for the tradeoff: standard training
induces mechanistic entanglement, where the same compo-
nents support both generalization and memorization. This
occurs when memorization relies on mechanisms also used
for general language understanding. In a controlled setting,
we show that natural-looking repeated sequences are memo-
rized with strong entanglement, making post-hoc removal
difficult without harming general performance. We further
prove that gradient descent has an implicit bias toward such
entangled solutions, suggesting that mechanistic entangle-
ment is inherent to current training methods.

Can new training approaches better disentangle
memorization and general language capabilities?

We begin with a natural disentanglement attempt (Section 4;
see also (Cloud et al., 2024)): restricting gradient updates
from repeated sequences to designated “memorized com-
ponents”, while the remaining “general components” learn
only from non-repeated data. This approach has two major
flaws. First, it weakens generalization by depriving general
components of all training signal from potentially high-
quality repeated sequences. Second, and more subtly, gen-
eralization further degrades when memorized components
are removed at inference: the memorization components are
active in the forward pass during training, causing the gen-
eral components to implicitly rely on them. Their post-hoc
removal breaks this dependence and harms performance.

Drawing lessons from the failures above, we introduce Mem-
orization Sinks (MemSinks) — inspired by the previous
study of localization in Maini et al. (2023).

Memorization Sinks selectively activate sequence-
specific memorization components alongside shared gen-
eralization components. Dropping memorization com-
ponents erases the memorization of the corresponding
sequence.

Note that this approach addresses the implicit dependence
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Figure 1. Conceptual Intuition of MemSinks. We conceptually partition the learning signal from each example to into “generalization”
and “memorization” components. On the left, we show that standard training can store memorization signal in any neurons. In MemSinks,
we provide a set of memorization sink neurons which are shielded from forgetting induced by other examples. As a result, (a) memorization
accumulates in these neurons and (b) once the sink neurons fit memorization, it is no longer reinforced elsewhere in the model.

issue identified earlier, and also allows the shared compo-
nents to learn from repeated sequences. But what prevents
the shared components from containing memorized informa-
tion? Does it suffer from the same mechanistic entanglement
issue of standard training?

The magic lies in the difference in the training dynamics
of generalizing and memorization signal, which has been
studied in disparate lines of work. Generalizing signal is
consistently amplified across training sequences (Chatterjee,
2020). However, memorization signals of different training
sequences interfere with each other, resulting in a cyclical
learning-forgetting dynamic (Toneva et al., 2018): learning
when the repeated sequence is seen, but forgetting when
training on a different sequence due to interference. In
standard training, there is no separation of model compo-
nents so this learning-forgetting dynamic occurs throughout
the model leading to mechanistic entanglement. However,
in MemSinks, this cycle is broken by allocating separate
components per repeated sequence that are protected from
interference with other sequences. As a result, memo-
rized information is not reinforced in the shared components
across repetitions of sequences.

How well does MemSinks disentangle memorization and
generalization in practice? We train 360M and 1.7B
SmolLM models (Allal et al., 2025) on the SlimPajama
dataset (Shen et al., 2024), with repeated sequences drawn
from TinyStories. Standard training leads to strong mem-
orization where repeated sequences show much lower loss
than held-out ones. With MemSinks, dropping the mem-
orization components closes over 50% of this loss gap,
mitigating memorization. Furthermore, MemSinks (with-
out memorization components) matches the validation loss
of standard training and significantly outperforms a de-
duplication baseline, preserving the benefits of repeated
data for generalization. This provides a proof-of-concept

that MemSinks can disentangle memorization from gener-
alization in realistic settings (Section 5.2).

We perform various ablations on the impact of design
choices for implementing MemSinks on a small-scale
TinyStories pre-training task in Sections 5.1 and 5.3. To as-
sess the practicality of MemSinks, we investigate two key
axes: (1) scalability with respect to model and data size, and
(2) robustness to noise in sequence ID assignment. While
our proof-of-concept assumes access to perfect sequence
IDs, real-world deployments would require tolerance to
imperfect or noisy estimates. We find that MemSinks is
robust to small levels of noise in the sequence IDs (up to
10%) and works across a range of model sizes. Importantly,
the benefits of MemSinks scale with increasing model size,
suggesting promise in larger scales.

In summary, we argue that post-hoc unlearning on standard
trained models is fundamentally limited due to inevitable
mechanistic entanglement between memorization and gener-
alization components. We propose a new training paradigm,
MemSinks, and provide a conceptual explanation for how
it enables clean disentanglement. Empirically, we show
that MemSinks supports post-hoc removal of memorized
content without compromising performance on real-world
data. We also demonstrate its practicality: the approach
scales well, with gains preserved, and even amplified, as we
scale up models and datasets, and it remains robust under
noisy sequence ID metadata. Ultimately, MemSinks of-
fers a concrete path forward for the challenge of removing
memorization without degrading model capabilities.

2. Related Works
Forgetting Memorized Sequences. With the discovery of
memorization of sequences in large language models (Car-
lini et al., 2023; Nasr et al., 2023), there has been interest
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in techniques to remove memorization in LLMs post-hoc.
One class of such methods involves further training of all
language model parameters in order to reduce the likelihood
of a memorized sequence. For example Thudi et al. (2022)
presents the simple technique of simply training to increase
the loss of memorized examples. Liu et al. (2022) further
regularizes this by concurrently minimizing the loss on a
retain set of validation set examples. Other works have
examined using preference-based training to incentivize the
replacement of a memorized sequence with a safe alternative
(Zhang et al., 2024; Maini et al., 2023). However, currently
all such unlearning methods are prone to degrading general
model capabilities, beyond the desired unlearning target
(Maini et al., 2023). Moreover, they require the computa-
tional expense of retraining all weights and in many cases
access to additional data in the form of a retain set.

Localization of Memorization. A promising class of meth-
ods for removing memorization seeks to localize specific
model components, such as neurons, that are responsible
for storing memorized sequences (Maini et al., 2023). Once
such neurons are identified, they can simply be dropped out
to ensure unlearning. These methods have the advantage
of avoiding costly full model training and seek to avoid
model degradation by minimizing the number of parameters
changed. Localization techniques have achieved success
in removing personally identifying information (PII) (Chen
et al., 2024), as well as when there exist distinctive mem-
orization triggers (Stoehr et al., 2024). However, all such
methods present a tradeoff between removing memorization
and preserving model performance (Chang et al., 2024b).

Mixture-of-Expert Models. Sparse mixture-of-experts
models (S-MOE) have been studied in prior works as a
means to expand model capacity without increasing com-
pute costs (Shazeer et al., 2017). Like MemSinks, MOE
models selectively activate fully-connected neurons depend-
ing on the input token. However, the selection of neurons
in SMOE is typically learned subject to load-balancing con-
straints (as opposed to explicitly enforced as in MemSinks).
Consequently, it is unclear what degree of localization is
achieved by SMOE. Zoph et al. (2022) find that experts gen-
erally specialize based off of low-level syntactic structures
rather than semantic features. Dai et al. (2024) find that
there is often redundancy across experts in MOEs, challeng-
ing the idea that they reliably localize information within
experts. Other works (Gururangan et al., 2021; Park et al.,
2025) provide some evidence of localization in MOE mod-
els: however they measure localization relative to coarse
attributes such as language and general topics. In this work
we study the far more fine-grained problem of localizing
memorization of specific documents or sequences.

3. The Pitfalls of Post-Hoc Localization
A substantial body of prior work seeks to remove memo-
rized content from LLMs through post-hoc updates. These
approaches attempt to precisely target the mechanisms re-
sponsible for memorization, while preserving general ca-
pabilities. Their success, however, hinges on the assump-
tion that memorization and generalization are supported
by distinct, non-overlapping mechanisms. In this section,
we conduct controlled experiments to examine when such
mechanistic separation holds. We compare two settings: (1)
highly atypical canary sequences, commonly used in prior
memorization studies, and (2) sequences resembling natural
text from the pretraining corpus. We find that memoriza-
tion of these more natural sequences is significantly harder
to remove post-hoc, suggesting there may be mechanistic
entanglement between memorization and general capabili-
ties. In an analytical setting, we show that gradient descent
actively prefers entangled solutions.

3.1. Experimental Setting

We train models on two controlled settings designed to
induce different types of memorization: repeated natural
text sequences and highly atypical canaries. We then test
whether the memorized sequences can be removed from the
model without inducing model degradation.

Datasets. We conduct our experiments in a controlled
setting using a subset of the TinyStories dataset (Eldan & Li,
2023). In our first setting, we randomly sample 100 stories
from the TinyStories training set and repeat them 128 times
(TS-Repetition). Resultantly, memorized sequences
are composed of natural text (coming from the same distri-
bution as all other sequences). As a comparison, we study a
second canary-based setting where memorized sequences
are atypical (TS-Canary). We concatenate random se-
quences of tokens (Canaries) to 100 stories and repeat them
128 times in training. While TS-Canary more closely
resembles memorization of label noise or atypical examples
in supervised settings, it may be less representative of mem-
orized documents in LLMs. In both cases, we additionally
include 20,000 un-repeated TinyStories sequences (in total
we train for ∼16M tokens).

Evaluation Metrics. We measure sequence forgetting as
the difference in loss on repeated sequences before and after
localization and dropout (higher is better). We measure the
model degradation as the difference between the validation
loss before and after removal (higher is better). This reflects
that we hope to avoid increases in validation loss when
removing memorization.
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3.2. Empirical Observations

We show the results of our analysis in Figure 2. We ob-
serve that both post-hoc methods achieve limited success
and struggle particularly to remove typical memorized se-
quences from TS-Repetition.

Localization Methods Achieve Only Partial Success. In
Figure 2(a) we show the trade-off in sequence forgetting
and model degradation of pruning. We observe in both
settings that dropping out the identified neurons leads to
an increase in the memorized sequence’s loss, suggesting
some success in localization. There are similar trends in
Figure 2(b) for integrated gradients, although we observe
it generally produces less model degradation than pruning.
Additionally, we see that integrated gradients is less effective
in removing memorization in TS-Repetition, while
being highly effective in TS-Canary.

Natural Sequence are Particularly Challenging to Re-
move. Across both methods, we find that applying post
hoc methods to TS-Repetition results in greater model
degradation than TS-Canary. This difference is particu-
larly pronounced for integrated gradients. Recall that the
memorized sequences in TS-Repetition are natural –
similar to the non-repeated training data and the valida-
tion set. Our results suggest the memorization of typical
sequences may not be cleanly isolated from the model mech-
anisms responsible for general capabilities.

No Clear Separation Between Natural Sequence Memo-
rization and Generalization. In Figure 2(c), we plot
the validation and memorization of a model trained on
TS-Repetition. We see that the loss on repeated se-
quences and the validation set descend simultaneously. The
simultaneous learning of memorization and generalization
seen here underscores the tight interplay between natural
sequence memorization and general capabilities, contrast-
ing form settings such as label noise where memorization
occupies a distinct phase of training (Li et al., 2020).

Ultimately, our empirical results highlight that removing
memorized natural text can be especially challenging for
simple post-hoc methods. Next, we provide an explanation
of this phenomena in a theoretical setup.

3.3. Theoretical Analysis of Mechanistic Entanglement

Our empirical results suggest that not all memorized se-
quences are equally easy to remove. While atypical canaries
can be removed with minimal model degradation, remov-
ing natural memorized sequences tends to induce model
degradation. Intuitively, this suggests that the memorization
of natural text sequences is closely entangled with mech-
anisms responsible for general language modeling (thus
being difficult to fully extricate post-hoc). In this section,
we theoretically illustrate that such mechanistically entan-

gled solutions can be preferred by the training process.

We consider a setting where the model features are sepa-
rated into a generalizing subspace Ssem and a memorization
subspace Smem. We assume that memorization can be imple-
mented either with an entangled solution, Went (reusing the
features Smem) or a disentangled solution Wdis, using the
orthogonal space Smem. Our complete setting is described
in Appendix D. Under some assumptions, we prove that
gradient descent is biased towards reusing the features Ssem:

Theorem 3.1 (Informal: Natural Sequence Memorization is
Entangled). Consider training f(x) = WprojWfcx on Dpre

as in the setting of Appendix D. Then gradient flow does not
converge to Wdis.

We defer the full proof to Appendix D, but discuss the
intuition of our result here. Our result follows from past
analyses of the minimum-norm bias of gradient flow. As a
result of this bias, memorization perturbs the generalizing
subspace and any post-hoc unlearning methods must also
perturb Ssem. Had memorization been implemented with
Snoise, unlearning could be accomplished through updates
orthogonal to the general capabilities (reducing the risk of
degrading general capabilities).

Ultimately, our findings in this section challenge the feasibil-
ity of relying on post-hoc approaches to remove memorized
information. We show empirically and theoretically that
memorization can be implemented closely entangled with
general capabilities. In the remainder of the paper, we study
ways to induce models to isolate the memorization of natural
text sequences during training.

4. The Mirage of Forced Localization
In Section 3, we found that standard training techniques
can result in memorization being difficult to decouple from
the model’s general capabilities. This suggests it may be
necessary to specifically pre-train models for the ability to
eliminate memorized information downstream.

Ideally, we would like to train models where sequence-
specific memorization is handled by a distinct set of com-
ponents (the memorization component), while general capa-
bilities are encoded in a separate generalization component.
This would enable removal of memorized information sim-
ply by modifying the memorization component, without
risking any damage to the generalizing mechanisms. The
most straightforward way to enforce this structure is by
constraining the training gradients: updates from repeated,
likely-to-be-memorized sequences can be restricted to the
memorization component, while updates from all other se-
quences update the generalization component.

While the concept of forced localization is intuitively appeal-
ing, we empirically find two major drawbacks. First, it leads
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(a) Pruning (b) Integrated Gradients (c) Learning Curve

Figure 2. Study of Localization (a) We plot the unlearning-model degradation tradeoff of pruning by varying the number of dropped out
neurons and demonstrate the method struggles to unlearn sequences of both kinds. (b) We plot the performance of integrated gradients
and demonstrate that although it mitigates model degradation in both cases, it struggles with removing typical sequences. (c) Loss curve
when training on TS-Repetition. We observe that memorization decreases alongside the validation loss, indicating that the model
gains capability even as it memorizes sequences.

Figure 3. Impact of Gradient-Masked Training on Validation
Performance. We compare the validation loss of gradient-masked
training with (Gradient Mask-Dropout) and without (Gradient
Mask-Keepall) memorization neurons removed to a standard train-
ing run (Standard: With Rep). We observe that (a) gradient-masked
training learns slowly relative to standard training, achieving a sig-
nificantly worse validation loss and (b) dropping out memorization
neurons degrades validation performance as training progresses.

to significantly worse generalization compared to standard
training. This suggests that shared components—those up-
dated by gradients from all data points—are crucial for max-
imally learning general capabilities. Second, we find that
removing memorization components still degrades model
performance, indicating a failure to make memorization
fully independent of the general capabilities.

4.1. Forcing Localization By Masking Gradients

We adopt a similar methodology to Cloud et al. (2024). In
each layer we partition the intermediate neurons in the MLP
into generalization and memorization neurons. During train-
ing, the gradients in the MLP layer from repeated sequences
are masked to only modify weights corresponding to mem-
orization neurons and conversely, non-repeated sequences

have their gradients routed to the generalization neurons.
We provide complete experimental details in Appendix E.

4.2. Empirical Findings

Forced Localization Impairs Generalization. We ob-
serve that the performance of gradient masking is inferior
to a standard model, even before memorization neurons
are removed (Figure 3). This observation renders gradient
masking impractical, as it significantly worsens the model’s
general capabilities. Our findings here highlight that some
“shared” neurons – those that are updated by all sequences –
are essential to maximally aggregate generalizing features.
However, this suggests a potential tradeoff between gener-
alization and disentangling memorization: shared neurons
could entangle memorization with generalization.

Localization Alone is Not Sufficient for Removal. In Fig-
ure 3, we further compare whether the localization induced
by Gradient Masking translates to distortion-free removal
of memorization. Intuitively, if generalization and memo-
rization are truly separated, it should be possible to remove
memorization neurons without harming validation perfor-
mance. In Figure 3 we examine the effect of removing
memorization (seen in the gap between Gradient Mask-
Keep All and Gradient Mask-Dropout). We observe that the
validation loss becomes sensitive to the removal of memo-
rization neurons as training progresses – dropping out the
memorization component exhibits an increasing loss. This
reveals, somewhat surprisingly, that localization alone does
not guarantee degradation-free unlearning. In Section 4.3,
we study this phenomena in an analytical setup.

4.3. Co-Adaptation of Model Components

Previously, we made an unexpected finding: segregating
the memorization to specific neurons does not automatically
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enable straightforward removal. In this section, we theoret-
ically examine why this sensitivity arises by studying the
training dynamics of a simplified gradient masking setup
(described in Appendix F). We show a phenomena of neu-
ron co-adaptation in which separately trained neurons can
nevertheless become sensitive to each other’s removal.
Theorem 4.1 (Informal: Co-Adaptation between Model
Components). Consider training a two layer linear neural
net f with the forced-localization scheme in Appendix F.
Let f̂ denote a two layer linear neural net trained in a
standard manner on Dpre \ (smem, ymem) and fd denote f
with memorization neuron dropped out, Then we have for a
constant c > 0 ∥∥∥f(x)d − f̃(x)

∥∥∥
2
≥ cN

Intuitively, the proof of Theorem 4.1 shows that although
the memorized example is isolated to a memorization neu-
ron, dropping out this neuron is insufficient to recover a
model that was trained without seeing (smem, ymem). Our
proof relies on the fact that the forward pass activation of
the memorization neuron affects the gradient update to the
generalization neurons. Our analysis also predicts that this
co-adaptation increases with additional training, mirroring
the empirical results in Figure 3.

Taken together, our findings reveal that the intuitive idea of
forcing localization of sequences falls short in crucial ways.
Surprisingly, it is both too rigid—disrupting the model’s
ability to learn general features—and too permissive, al-
lowing entanglement between memorization and general
capabilities to persist. Can we overcome these opposing
failure modes? In the next section, we show that a more sub-
tle and targeted intervention in model training dynamics can
unlock finer control over memorization and generalization.

5. Channeling Training Dynamics with
MemSinks

In Section 4, we found that rigidly partitioning gradients
to achieve disentanglement is insufficient. Our result sug-
gest the need to enforce a more precise separation between
memorization and general capability. However, it is chal-
lenging to exactly specify what consitutes memorization
versus generalization during the training process.

To address this, we leverage the difference in training dy-
namics of memorization and generalization. During training,
generalizing signals are reinforced across distinct sequences
and are broadly amplified (Chatterjee, 2020). Sequence-
specific memorization, on the other hand, experiences in-
terference from other examples and is gradually forgotten.
As a result, repeated sequences are cyclically learned and
forgotten throughout the training process, thereby becoming
defused throughout the model.

We propose to allow memorization to build up in pre-
specified memorization sink neurons by shielding them from
interfering updates. Intuitively, by setting aside a known
and stable location for storing memorization, we reduce
the need for it to be reinforced across all model parameters.
After training, removal of memorization can be achieved by
simply deleting the memorization sinks.

Our design requires two properties of the memorization sink
neurons: (a) they must experience less interference from
unrelated sequences and (b) they must avoid co-adaptation
with the rest of the model (as discussed in Section 4).
We propose that both objectives can be achieved through
sequence-dependent dropout. Specifically, a different sub-
set of sink neurons is activated for each input sequence.
This selective activation reduces the frequency of interfer-
ing gradient updates to sink neurons, shielding them from
forgetting. At the same time, their infrequent activation also
regularizes the rest of the model against co-adaptation.

Implementation. We implement MemSinks in the hidden
layer of transformer MLPs, as prior works have found MLPs
play a crucial role in storing memorization (Nanda et al.,
2023; Geva et al., 2021). We set a fraction g of the hidden
layer neurons in each layer as generalization neurons (which
are activated across all sequences), while the remaining
1 − g fraction serve as memorization sink neurons. We
assign each sequence in the pretraining dataset an ID and
mask the memorization sink neurons deterministically as
a function of the sequence ID. During all evaluations, we
remove memorization sink neurons. Further implementation
details are provided in Appendix G.

Experimental Details. We train a GPT Medium model
(same as all previous experiments), where 70% of MLP
neurons are shared and the remaining 30% are allocated
to the pool of memorization neurons. We emphasize that
there are far less memorization neurons than total sequences.
Thus, we do not assume each sequence can be allocated
its own memorization neurons. We set the memorization
neuron dropout ratio p to 0.3, but explore other choices in
Section 5.3. We train on the TS-Repetition dataset
from Section 3.

5.1. Validation of MemSinks in TinyStories

MemSinks Enable Learning Across Sequences. In
Figure 4(a), we compare the validation loss of MemSinks
with standard training with and without repeated documents.
Firstly, note that standard training with repeated sequences
outperforms filtering them out. This indicates that the model
does learn general capabilities from observing documents
repeated multiple times in our setting. Next, we compare the
standard trained models with MemSinks. We observe that
(evaluating without the memorization neurons), MemSinks
achieves comparable validation loss to standard training.
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(a) Validation Loss (b) Loss on Memorized Examples (c) Unlearning-Model Degradation Tradeoff

Figure 4. Performance of MemSinks (a) We find that MemSinks achieves a comparable validation loss to a normally trained model on
TS-Repetition, outperforming a model trained without repeated sequences. (b) We show the loss of MemSinks on the repeated
sequences, showing that it memorizes significantly less than a normally trained model. (c) We compare the sequence forgetting-model
degradation tradeoff of MemSinks, relative to the post-hoc methods tested in Section 3, finding MemSinks outperforms both. We
compute the model degradation for MemSinks and Standard: No Rep as the difference in the validation loss relative to a standard trained
model on TS-Repetition.

Dropping Out MemSinks Removes Memorization. In
Figure 4(b), we show the loss on the repeated TinyStories
documents. A standard trained model memorizes these se-
quences during training, achieving close to 0 loss on them.
We observe that dropping out the memorization neurons
significantly increases the loss on these sequences, increas-
ing the loss to roughly 66% of a standard trained model
that does not memorize. Interestingly, we observe that in
the latter part of training, the loss of sequence-tied dropout
on memorized sequences begins to increase. This suggests
that while shared neurons may initially implement some
memorization, further training reverses this.

5.2. Larger Scale Experiments with MemSinks

In the previous section we studied MemSinks in a small
scale setting. Now, we provide empirical validation of
MemSinks on a larger scale, involving open pretraining
datasets. We concentrate on settings where repeating data
is beneficial for generalization (i.e. by upsampling a rare
domain) but we also wish to avoid exactly memorizing the
specific repeated documents.

Setting. We focus on pretraining SmolLM 360 and 1.7
billion models on 1 billion and 2 billion tokens, respectively.
The majority of the pretraining dataset consists of a sub-
set of the SlimPajama dataset, with a small amount being
sampled from TinyStories. Our goal is to simulataneously
improve performance on validation TinyStories data while
also avoiding memorization of the repeated TinyStories
training sequences. Full details are given in Appendix I.

MemSinks Preserve Benefits of Repeated Data. In
the settings we study, validation performance on TinySto-
ries benefits from repetition (by upweighting this relatively
under-represented distribution). This can be seen in Figure

6(a) in the validation loss gap between the deduplication
baseline (where the TinyStories are seen only once) and
the full repetition baseline. We observe that the validation
loss attained by MemSinks outperforms the deduplication
baseline (achieving validation loss comparable to the re-
peated baseline). This provides evidence that MemSinks
can leverage the generalization benefits of repeated data.

MemSinks Mitigates Memorization. Although repeat-
ing data has benefits for generalization, it also results in
memorization – as evidenced by the gap between the vali-
dation loss and the loss on training examples. However, as
shown in Figure 4(b) we find that training with MemSinks
achieves a significantly higher loss on the training data, sub-
stantially closing the gap between validation and training
loss (by at least 50%). In a setting with more extensive
repetition (20x), we additionally find that the mitigation of
memorization by MemSinks is more pronounced.

Collectively, our findings in this section provide promising
proof-of-concept evidence that MemSinks can effectively
separate memorization and generalization in the presence of
heterogeneous and noisy data that constitute the real-world
LLM pretraining corpora.

5.3. Practicality of MemSinks

In this section, we examine the robustness of MemSinks
to various hyperparameters and variation in the training pro-
cess. We focus on the loss on memorization examples as
a measure of MemSinks’s success in isolating memoriza-
tion. We perform the experiments here in the small-scale
TinyStories setting from Section 5.1.

Impact of MemSinks Activation Ratio. A key hyper-
parameter for MemSinks is the fraction of memorization
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(a) Impact of Activation Ratio (b) Impact of Model Size (c) Robustness to Sequence ID Noise

Figure 5. Practicality of MemSinks (a) We study the impact of the fraction of memorization neurons activated (p) on any given sequence.
We find that the model is generally robust to this choice, but activating too many can interfere in the isolation of memorization. (b) We
plot the tradeoff between removing memorization and model degradation across model sizes, finding that larger models achieve a better
tradeoff. (c) We study the impact sequence ID noise d, where a fraction of repeated documents have an inconsistent ID. We find that
MemSinks withstands small amounts of noise (up to 10%).

(a) 360M Parameters (b) 1.7B Parameters

Figure 6. Larger Scale Experiments on MemSinks We plot the validation and memorization losses of (a) 360M and (b) 1.7B SmolLM-
style models on a mixture of SlimPajama and TinyStories data. We compare with standard training with and without repeated Tiny Stories
data. Our results demonstrate that across both settings, MemSinks is able to mitigate memorization (relative to standard training) without
harming validation loss (outperforming or comparable to deduplicated training).

neurons activated on any given sequence (p). This con-
trols across how many documents a particular memorization
neuron is activated, as well as how much memorization
capacity is allocated to a given sequence. We see that
MemSinks is generally robust to this parameter, with a
relatively small value p = 0.3 performing best. The per-
formance of MemSinks does breaks down at higher levels
(i.e. p = 0.7). We hypothesize this breakdown arises as a
result of insufficient shielding of memorization sinks from
forgetting and further investigate this in Section 5.4.

Impact of Model Size. Another concern is that
MemSinks could necessitate using significantly larger
models. In Figure 5(b), we test the performance of
MemSinks on a range of model sizes and find that it is
capable of isolating memorization across model scales—

as indicated by the comparably high losses on repeated
sequences (relative to a normally trained model which at-
tains nearly 0 loss). On the other hand, we find that model
degradation (the increase in validation loss compared to
a standard trained model of the same size) does grow as
the model architecture becomes smaller. However, even on
smaller models MemSinks outperforms post-hoc methods
as shown in Figure 4(c). Thus, while model size plays a
role in the success of MemSinks, the method has benefits
in small models as well.

Robustness to Masking Noise. Implementing MemSinks
requires that repetitions of the same sequence be presented
with a consistent mask over the memorization sink neu-
rons. Now, we investigate the robustness of MemSinks
when this masking occurs inconsistently. Whenever a re-
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Figure 7. Learning and Forgetting Dynamics of Standard
Training and MemSinks. We track the training loss on a single
memorized example across the training trajectory for both standard
training and MemSinks. We find that MemSinks experiences
lower amplitude learning-forgetting cycles than standard training.

peated sequence is encountered, we randomly perturb its
ID with probability d. Our results in Figure 5(c) show that
MemSinks is robust to relatively small values of d, up to
10%. This suggests that having some amount of noise in
the sequence IDs is permissible. On the other hand, when
sequence IDs are highly inconsistent across repetitions (50%
noise), MemSinks fails to isolate memorization as effec-
tively. This verifies that consistency of sequence IDs across
repetitions is an important factor behind its success.

5.4. Exploring the Mechanism of MemSinks

Recall that the motivation for MemSinks: to redirect
sequence-specific memorization towards sink neurons. Ear-
lier, we made an intuitive hypothesis that this could be
accomplished by ensuring that these memorization sink neu-
rons are activated less frequently. Here, we formalize this
argument via empirical and theoretical investigations.

Dynamics of Memorization Sink Neurons. We first study
the learning dynamics of the memorization sinks. We rerun
our TinyStories pretraining setup with a single repeated
sequence that is observed every 40 gradient steps. We track
the training loss of this sequence over the course of training
for both standard training and MemSinks. Recall that in
MemSinks, the training loss on a sequence uses a forward
pass with the shared neurons and the sequence’s assigned
memorization neurons activated. We track this training loss
as it determines the size of the update experienced by the
model from observing the sequence. We see that later in
training, standard training continues to experience high-
amplitude learning/forgetting cycles. MemSinks, on the
other hand experiences less such fluctuations, maintaining
a lower train loss on the repeated sequence. Our findings
suggest that memorization sink neurons fit memorization
and experience protection from forgetting.

How Memorization Accumulates. Previously, we saw

that sequence-specific memorization accumulates quickly
in memorization sinks (relative to standard training). In
Theorem H.2, we formally demonstrate that the amount of
forgetting experienced on a given example depends on the
number of steps taken on other examples, as well as the sim-
ilarity of the other examples with the memorized example
(measured in the cosine similarity). Based on this result, we
show that the amount of memorization in the shared neurons
can be upper bounded by a quantity dependent on the mask-
ing ratio, while it can be lower bounded in the memorization
neurons. Our results theoretically mirror the trends seen in
Figure 5(a).

6. Discussion
In this work, we have studied a crucial challenge in the
responsible deployment of large-language models: remov-
ing memorized information without harming general model
capabilities. Although extensive prior work has focused on
post-hoc removal strategies, we highlight an important short-
coming of this approach: memorization can often leverage
general capabilities – making degradation-free post-hoc re-
moval impractical. Our findings argue for the need to more
explicitly structure models to allow post-hoc unlearning to
be performed reliably. Towards this paradigm, our work
sheds light on important considerations for promoting this
structure – highlighting why naive but intuitive approaches
can be impractical. On the other hand, we uncover a frame-
work for leveraging training dynamics to isolate memoriza-
tion without tradeoffs in validation performance.

Limitations. As the focus of this paper has primarily
been conceptual, much of the experiments are performed in
small-scale and controlled settings. As such, further inves-
tigation is necessary to examine the impact of MemSinks
on model capabilities that arise at larger scales. In addition,
the current implementation of MemSinks crucially relies
on meta-data which groups duplicated examples (so they
can be given appropriate dropout masks). Although we pro-
vide evidence that MemSinks is robust to some level of
inconsistency in these annotations, it is important to further
investigate efficient techniques to generate this meta-data
and how robust MemSinks remains in larger-scale settings.
Finally, an important avenue for future work is verifying that
MemSinks is robust to adversarial extraction techniques.

Future Directions & Beyond Memorization. Our work
has primarily focused on verbatim memorization. However,
changing the annotations used by MemSinks could allow
for localization at various levels of granularity. For example,
using domain or topic annotations could enable unlearn-
ing different data sources or topics. Future research can
also examine the benefits of localization beyond unlearning.
For example, better localization of facts could enable more
reliable editing of knowledge.

9
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Impact Statement
This work aims to advance the field of Machine Learning
by proposing a method to localize and manage memorized
sequences in language models. Our approach, MemSinks,
directly tackles a critical privacy concern: once a sequence
is memorized by a model, unlearning it is difficult without
extensive fine-tuning. By systematically isolating memo-
rized information, our method enables safer, more targeted
removal of private or sensitive text.

From an ethical perspective, the ability to better control and
remove specific memorized sequences has potential societal
benefits, particularly regarding user privacy and data protec-
tion. On the other hand, any mechanism that manipulates
model internals could be misused for censorship or selective
information removal if deployed irresponsibly. Mitigating
such risks requires robust governance and transparent poli-
cies on what content may be unlearned.

Our proposal also contributes to the broader conversation
about data governance in large-scale AI systems. As lan-
guage models continue to grow in size and capability, bal-
ancing powerful generalization with privacy safeguards will
become increasingly essential. We believe this work offers a
practical step forward, but emphasize the need for interdisci-
plinary collaboration—spanning technical, ethical, and legal
domains—to ensure that memory localization technologies
support socially responsible AI systems.
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A. Extended Related Works
Memorization in Classification Settings. A large body of work has focused on unlearning or forgetting memorized
information from neural models, especially in the classification domain. This includes methods such as SISA (Bourtoule
et al., 2021) that exactly unlearn information by maintaining multiple model copies, and a recent influx of approximate
unlearning approaches (Triantafillou et al., 2023) that aim to perform post-hoc procedures on a model in order to remove
information in question. The study of memorization in classification settings is connected to label noise and atypical
examples (Harutyunyan et al., 2020; Feldman & Zhang, 2020). On the other hand, in this work, we concentrate on more
natural or typical memorized points which often arise in the large language model setting.

B. Implementation Details of TinyStories Training
Implementation and Architecture. We use the nanoGPT library to perform standard pretraining of the models. We train a
GPT-2-Medium like architecture with embedding dimension 1024 and a 4 times expansion in the MLP layer. We used 24
layers, the resulting model had approximately 344 M parameters.

Table 1. Hyperparameter Tuning for Standard Training

Parameter Values

Max Learning Rate {6e-5,6e-4,6e-3}
Weight Decay {1e-5,1e-3,1e-1}
Min Learning Rate Max Learning Rate

10
LR Decay Steps Total Training Steps

Hyperparameter Tuning. We set the hyperparameters for our training as shown in Table 1. For parameters denoted in sets,
we tuned over choices of these parameters relative to the validation loss. We also performed early stopping on the validation
loss, but generally found that overfitting did not occur.

C. Implementation Details of Post-hoc Localization Techniques
We generally follow the methodology used in (Chang et al., 2024b) and directly used their code as released online. We
restrict our attention to their Hard-Concrete and Integrated Gradients methods presented in the papers.

Hyperparameters: Hard Concrete. We tuned λ, the ℓ1 loss coefficient used in training the pruning mask M over the
values {100, 500, 1000} on a tuning set of 5 sequences. Additionally, we tuned the number of pruning iterations in the range
{1000, 2000, 4000}. The remainder of hyperparameters were set to the optimal values reported by (Chang et al., 2024a).
We tuned relative to the lowest validation loss achieved after dropping out the identified neurons.

Hyperparameters: Integrated Gradients. For Integrated Gradients, the only hyperparameter was the number of IG steps.
As a result, we set this to the value reported in the paper, 16.

Dropout Procedure. Following the computation of mask scores by either Hard Concrete or attribution scores by Integrated
Gradients, we sorted the neurons in each layer by these scores. Given a dropout parameter r, we dropped out an r proportion
of the neurons in each layer, as was performed in (Chang et al., 2024a).

D. Disentanglement in Standard Training
Setup. We will consider a dataset with n examples seen once Donce = {(si, yi)}Ni=1 and a memorization sequence
(smem, ymem) that is repeated k times. Thus, explicitly, our training dataset consists of Dpre = Donce ∪ (∪k(s

mem, ymem)).
For the purposes of this theory, we will assume that the Rdemb can be partitioned into a semantic subspace Ssemantic

and a memorization subspace Snoise; explicitly we will write that ϕ(si) =
[
ϕ(s)

(i)
mem ϕ(s)

(i)
mem

]⊤
. We will make the

assumption that ∀i ∈ [1, N ] (ϕ(s)
(i)
mem)

⊤ϕ(s)
(mem)
mem = 0. This can be interpreted as enabling us to uniquely identify a

particular example in the noise subspace which would facilitate disentanglement of memorization. For convenience, we
will consider the matrix implemented by W = WprojWfc and we will denote W∗ = argminL(W,Donce)=0 ∥W∥F (i.e. the
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minimum norm solution when W∗ when the memorization example is not seen). We will assume that rank(W∗) > 2.
We will assume that we can achieve 0 loss using only the subspace Ssemantic. In particular, denoting the singular value
decomposition of W∗ = U∗Σ(V∗)⊤, this translates to the condition that span(V∗) ⊆ Ssemantic. We will denote the term
∆mem = ymem − f(ϕ(smem)) (the change in prediction necessary to memorize smem) and assume ||∆mem|| > 1. We will
assume that all the singular values of σi(W

∗) < 1
2k ∀i ∈ [1, rank(W∗)] (i.e. the generalizing solution has low norm) and

that the memorization activations are unit norm ||(ϕ(s)mem
mem|| = 1). Finally, we will assume that the ∆mem ⊥ col(W∗).

Desiderata of an Unlearnable Model Inutitively, the problem of unlearning is of efficiently finding a model which behaves
as though it never saw the repeated example (i.e. recover a model such that W = W∗). However, we also wish to accomplish
in ways that are efficient computationally and do not require significant access to Dpre (as the pretraining dataset can often be
inaccessible in downstream updates). This precludes simply retraining the model on the set Dpre \ (smem, ymem). Intuitively,
this is straightforward if the memorization of (smem, ymem) makes use of the noise features in order to implement the
memorization. Concretely, consider the solution W = W∗ +∆mem(ϕ(s)

mem
mem)

⊤. This solution implements memorization in
a disentangled way by isolating it in a direction (in input-space) that is completely orthogonal to the semantically meaningful,
generalizing subspace. As a result, (smem, ymem) can be unlearned using updates that have no effect on the predictions of any
other sequence. This is becase we assume that ∀i ∈ [1, N ] (ϕ(s)

(i)
mem)

⊤ϕ(s)
(mem)
mem = 0 and thus for any unlearning update

uv⊤ where v ∈ Smem, we have that ∀i (W + uv⊤)ϕ(s(i)) = Wϕ(s(i)).

D.1. Analysis of Natural Sequence Memorization

We will begin by describing the two possible solutions for memorizing

Definition D.1 (Disentangled Memorizing Solution). A learned parameter Ŵdis implements the Disentangled Memorizing
Solution if Ŵdis can be written as W∗ + cuv⊤ where v ∈ Ssem and Ŵdis achieves 0 training loss on Dpre

This definition follows along from our previous discussion of the desiderata of an unlearnable model. In particular, we
constrain memorization to be stored using the orthogonal memorization component. This implies that the memorized
sequence can be unlearned simply by taking gradient steps which do not impact the predictions on unrelated sequence.
Hence, we are guaranteed not to distort the mechanisms responsible for the model’s general capabilities.

Finally, we will discuss entangled memorizing solutions–those that require modifying the general capability subspace of the
model and hence run the risk of incurring model degradation in subsequent unlearning.

Definition D.2 (Entangled Memorizing Solution). A learned parameter Ŵent implements the entangled memorizing solution

if Ŵent achieves 0 training loss on Dpre and Ŵent can be written as
k∑

i=1

σ
(∆)
i ũivi

⊤ + σ∆
k+1ũk+1vk+1 where the v1, ...vi

are the original right singular vectors of W∗ and ũi are a potentially shifted set of singular vectors and ũi+1, ṽi+1 are a
new set of vectors and ∀i ∈ [1, k] we have that σ∆

i ≤ σ(W∗)i +
∥∆mem∥
k+1 and σ∆

k+1 ≤ ||∆mem||
k+1 where k = rank(W∗)

Intuitively, entangled memorizing solution reuses and shifts vectors that are used by the generalizing solution. We impose
the condition on the singular values to model that the implementation of memorization is “diffused” across multiple of the
generalizing semantically meaningful features.

Theorem D.3 (Memorization of Natural Sequences is Entangled). . Consider training a two layer linear network
f(x) = WprojWfcx on Dpre with the squared loss. Suppose that (smem, ymem) is natural. Let W∗

mem be the final function
learned by gradient flow and U∗

memΣmem(V
∗
mem])

⊤ be its singular value decomposition. Then, W∗
mem ̸= Wdis.

We will first provide some intuition for this statement. Intuitively, f could either memorize (smem, ymem) by (a) making use
of the noise component of ϕ(smem) – thereby isolating the change in the model induced by memorization orthogonal to the
generalizing features or (b) by implementing the memorization by shifting the generalizing features. We will consider the
setting in which it is possible to implement memorization in both ways. However, unlearning memorization implemented
with the generalizing features carries the risk of distorting general capabilities whereas memorization isolated to the
orthogonal space can be easily and robustly removed.

As a result, the primary intuition behind Theorem D.3 is to demonstrate that the training dynamics will prefer more harder
to unlearn solutions when memorizing natural sequences.

Before providing the proof of Theorem D.3, we will restate an important result on the implicit bias of gradient flow in
two-layer neural networks from Varre et al. (2023). We will first specify a set initializations for which the result holds.
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Table 2. Hyperparameter Tuning for Sequence-Tied Dropout

Parameter Values

Max Learning Rate {6e-5,6e-4,6e-3}
Weight Decay {1e-5,1e-3,1e-1}
Min Learning Rate Max Learning Rate

10
LR Decay Steps Total Training Steps
g {0.7,0.9,0.95}

Definition D.4 (Orthogonal Feature Initialization). A two layer linear network WprojWfc has orthogonal feature initialization
if Wfc =

√
2γP where P ∈ {Rd×l|PP⊤ = I} for some γ > 0 and Wproj = 0

Theorem D.5. Consider training a two layer neural network parameterized by (Wproj,Wfc) with gradient flow and
orthogonal feature initialization. Let β = WprojWfc. We will denote the set of optimal parameters for a given pretraining
dataset Dpre as I(Dpre)

1. The parameters converge to a global optima (i.e. limt→∞(Wproj(t),Wfc(t)) ∈ I(Dpre))

2. The effective linear predictor converges to a min-norm solution, formally limt→∞ β(t) = β∗ where β∗ =
argminβ∈I(Dpre)

||β||F

Using the result from Theorem D.5, the proof of Theorem D.3 is straightforward and simply requires comparing the Frobenius
norms of the disentangled and entangled memorizing solutions. In particular, because ||ϕ(s(i)⊤)||2 = 1, we must have that
||Wdis||2F = ||W∗||2F +|| ∥∆mem∥22 (the remaining singular value comes from the orthogonal rank-1 term uv⊤). On the other

hand, consider the entangled memorizing solution. We have that ||Went||2F ≤ ||W∗||2F +2
k∑

i=1

σ(W∗)i
||∆mem||
k+1 + ||∆mem||2

k+1 ≤

||W∗||2F + 2
||∆mem||22

k ≤ ||W∗||2F + ||∆mem||22
Hence Wdis cannot be the minimum norm solution and gradient flow will not converge to it.

E. Implementation of Gradient Masking
We generally follow the implementation outlined in (Cloud et al., 2024). We partition each MLP layer into memorization
and generalization neurons. We tune this delineation of memorization and generalization neurons by the proportion of
generalization neurons g. We additionally partition our dataset into examples seen once and the repeated examples. During
training, we mask the gradients in each MLP layer such that the gradients from the repeated examples update only a the
memorization block, whereas gradients of all other examples are routed to the generalization block.

Hyperparameter Tuning. We show the hyperparameters tuned for this method in Table 2. Hyperparameter denoted in sets
are tuned relative to the validation loss before dropping out memorization neurons.

F. Analysis of Gradient Masking
Data Distribution. Like the previous analysis, we will consider a dataset of N (si, yi) pairs which are only seen
once, and a special (smem, ymem) that is repeated in training and we wish to isolate. Thus, the total training set Dpre =
{(si, yi)}Ni=1 ∪ (smem, ymem).

Model Structure. We will use the same two layer neural network structure f(x) = WprojWfcx. However, for simplicity ,
we will consider only training the second layer (i.e. Wproj. Further more, to implement gradient masking, we will partition
the hidden space of the MLP into two components – a memorization component Wmem and a generalizing component
Wgen. In particular, we will assume the structure Wproj =

[
Wgen Wmem

]
. Thus the prediction f(x) could be written

as Wgen(Wfcx)gen +Wmem(Wfcx)mem. Here, we use the shorthand (Wfcx)gen to denote the entries of the hidden layer
activations that are input to the generalization neurons, while (Wfcx)mem denotes those that are input to the memorization
neurons. We will denote the dropped out model fd as the model with the generalization neurons dropped (zero-ed) out.
Concretely fd =

[
Wgen 0

]
Wfcx.
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Training Procedure. We introduce the following simplified version of the gradient masking scheme we examine empirically.
Concretely, we prescribe the following SGD-like update rules for Wgen and Wmem, given a learning rate γ. To keep track of
the parameter values at different time-steps, we will use a superscript.

WT+1
gen =

{
WT

gen + γ∇Wgen
TL(fθ(x), y), if x ̸= smem

Wgen
T , otherwise

Similarly, we will consider the following for Wmem:

WT+1
mem =

{
WT

mem + γ∇Wmem
TL(fθ(x), y), if x = smem

Wmem
T , otherwise

In both cases, consider L to be the squared loss function. Intuitively, Wmem receives gradient only from the smem and no
other examples whereas Wgen receives gradient from all but smem. Thus, by training construction, we could say that the
mapping (smem, ymem) is stored only in Wmem as its gradient cannot change any of the other parameters.

Ground-Truth Unlearned Model. When performing unlearning, we wish to obtain a model that behaves as if it had never
observed (smem, ymem). We denote such a model (trained under standard training with parameters γ as f̂ ).

Initialization. We assume that Wgen
(0) = 0 and that Wmem

(0) = 0. We consider Wfc is initialized at a non-zero value and
does not change throughout training.

Order of Observations. We will assume that both f and f̂ observe the data points in the same order (i.e.
(s1, y1), ..., (sNtotal , ytotal). We will assume that f observes (smem, ymem) once at timestep T . With the setup in place,
we will now introduce a lower bound in the difference between the predictions of a dropped out model fd and the
ground-truth unlearned model f̂ . Concretely, we show:
Theorem F.1 (Removing Memorization After Gradient Routing). Suppose that we train f on DLM ∪ (smem, ymem). Suppose
that there have been N gradient steps taken since the last time Wmem was updated. Additionally, assume that f̂ is trained
using the same hyperparameters but without observing (smem, ymem).∥∥∥fd(x)− f̂(x)

∥∥∥
2
≥ (N)γ(1− γ)Nc2 ∥x∥2

where c = mini,j s
⊤
i sj > 0.

We now proceed with the proof:

Proof We will use the notation Wmem,Wgen to denote the parameters of f and W̃mem,W̃gen to denote the parameters of f̃
(which does not observe the (smem, ymem) but sees all other points in the same order.

Observe that, in the case of f , Wmem remains constant throughout the training process as does W̃mem = 0 by Equation F.
Next, recall that by Equation F, we have that WT

gen = W̃T−1
gen . We then have the following.

Wgen
(T+N−1) = Wgen

(T )
N−1∏
j=1

(I− γsjs
⊤
j ) + γ

N−1∑
k=1

yks
⊤
k

N−1∏
j=k+1

(I− γsjs
⊤
j )

− γ

N−1∑
k=1

(Wmemsks
⊤
k )

N−1∏
j=k+1

(I− γyjy
⊤
j )

and

W̃(T+N−2)
gen = W̃(T−1)

gen

N−1∏
j=1

(I− γsjs
⊤
j ) + γ

N−1∑
k=1

yks
⊤
k

N−1∏
j=k+1

(I− γsjs
⊤
j )

Note that since WT
all = W̃T−1

all and the order of observing data points is the same the parameter-space difference between
Wall and W̃all is calculated as

Wgen − W̃gen = −γ

N−1∑
k=1

(Wmemsks
⊤
k )

N−1∏
j=k+1

(I− γsjs
⊤
j )
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Next observe that

f
(T+n−1)
d (x)− f̃ (T+n−2)(x) = (W(T+n−1)

gen + 0 ∗W(T+n−1)
mem )x

− (W̃(T+n−2)
gen + W̃(T+n−2)

mem )x

= (W(T+n−1)
gen −W(T+n−2)

gen )x

= (−γ

N−1∑
k=1

(Wmemsks
⊤
k )

N−1∏
j=k+1

(I− γsjs
⊤
j ))x

Thus, we wish to lower bound ∥∥∥∥∥∥(−γ

N−1∑
k=1

(Wmemsks
⊤
k )

N−1∏
j=k+1

(I− γsjs
⊤
j ))x

∥∥∥∥∥∥
2

First we note that
∏N−1

j=k+1(I− γsjs
⊤
j ))x ∈ span({sj}N−1

j=1 ) and by the repeated application of variational characterization

of eigenvalues
∥∥∥∏N−1

j=k+1(I− γsjs
⊤
j ))x

∥∥∥
2
≥ (1− γ)N−1 ∥x∥2. Now, we will recall that Wmem = αymemsTmem. We will

use this to rewrite the above term as:

|γ| ∥sk∥2 |
N−1∑
k=1

(s⊤Nsks
⊤
k

N−1∏
j=k+1

(I− γsjs
⊤
j )x)|

Upon repeated application of the prior result and Lemma 2, we then have that

|
N−1∑
k=1

(s⊤Nsks
⊤
k

N−1∏
j=k+1

(I− γsjs
⊤
j )x)| ≥ |

N−1∑
k=1

(1− γ)N−1 ∥x∥2 c
2|

≥
N−1∑
k=1

(1− γ)N−1 ∥x∥2 c
2

≥ (N − 1)(1− γ)N−1 ∥x∥2 c
2

by positivity of the summands we can eliminate the absolute value symbol in step 2 and we have used that for all i ≤ N − 1,
(1− γ)i ≥ (1− γ)N−1 which follows from γ < 1. This yields the desired lower bound.

Lemma F.2 (Lower Bound of Outer Product in span({k1, ...,kn})). Suppose mini,j k
⊤
i kj ≥ c > 0, x ∈

span({k1, ...,kn}), and consider i, j ∈ [1, n]. Then

∥∥kik
⊤
j x

∥∥
2
≥ c ∥x∥2

Proof k⊤
j x is a scalar so we have that

∥∥kik
⊤
j x

∥∥
2
= ∥ki∥ |k⊤

j x|. Since x is in the span of {ki}, we have that |k⊤
j x| ≥ c ∥x∥2

G. Implementation of MemSinks
Model Architecture and Implementation. We used the same model architecture as reported in Appendix B. We set the
first g fraction of neurons in each MLP as the “shared neurons” and left the remaining 1− g fraction as the memorization
neuron pool. We applied the dropout layer after the GeLU activation function, prior to the downprojection layer.

Assignment of Sequence IDs. We sequentially numbered the sequences in the TinyStories training set and use these
indices as the sequence IDs.

Hyperparameter Tuning. In Table 3, we show the hyperparameter ranges tuned over for MemSinks. Hyperparameters
denoted in sets were tuned over using the validation loss when the memorization is dropped out.
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Table 3. Hyperparameter Tuning for Sequence-Tied Dropout

Parameter Values

Max Learning Rate {6e-5,6e-4,6e-3}
Weight Decay {1e-5,1e-3,1e-1}
Min Learning Rate Max Learning Rate

10
LR Decay Steps Total Training Steps
g {0.1,0.3,0.5,0.7}
p {0.1,0.3,0.5,0.7}

H. Analysis of MemSinks
H.1. Formalization of Training Process

Architecture. For simplicity, we study the training dynamics of an MLP layer f(x) = WprojWfcx, where Wproj ∈
Rdh×demb , Wfc ∈ Rdemb×dh . Here, demb refers to the embedding size of the model and dh refers to the number of hidden
neurons in the MLP. Given a sequence s, we consider that f takes in the final position embedding of s, which we denote
ϕ(s) and directly outputs the logits of the next token (i.e. softmax(f(ϕ(s))) is a probability distribution over the next token
in sequence s.

For convenience, we will denote the hidden activations of sequence s as z(s). In our analysis, we will assume that the
activation space of z(s) can be split into two subspaces z(s) =

[
z(s)shared z(s)mem

]
. These components will correspond

to our choice of shared and memorization neurons. We will additionally consider Wfc frozen throughout training and
mainly study the training dynamics of Wproj. Thus for convenience, we will also decompose Wfc into two column-blocks
(corresponding to the shared and memorization neurons, respectively): Wproj =

[
Wshared

proj Wmem
proj

]
Data Setup. We will treat our data as (embedding, next token) pairs. We consider we have a repeated sequence smem with
corresponding next token emem. Next, we will assume we have a large dataset of sequences seen only once during training
Donce = {(s(1), e(1)), ..., (s(N), e(N)})}. For simplicity, we will consider the case where ∀i e(i) ̸= emem. Since we treat Wproj
as frozen, we will also define ϵshared = min z(smem)⊤sharedz(s

(i))shared and likewise that ϵmem = mini z(s
mem)⊤memz(s

(i))mem.
Intuitively, these quantities lower bound how similar the activations in the shared and memorization neurons are between
the repeated example and any other example. For simplicity we will assume that the ||z(i)||2 = 1 for all z(i) and that the
parameter ||Wproj||2 <

Cproj

2 remains bounded throughout training. Finally we assume that the ouput embeddings e are
mutually orthogonal.

Training Process. In standard training, we study the training trajectory (with learning rate γ) of minimizing the cross
entropy loss with respect to the parameter Wproj. We consider training with batch size 1.

H.2. Forgetting Under Normal Training Dynamics

To begin, we introduce a result on the softmax with bounded inputs

Theorem H.1 (Softmax on ℓ∞ bounded vectors). Consider x ∈ Rd and suppose ∥x∥∞ ≤ C. Then maxi(σ(x))i ≤ e2k

d−1

and mini(σ(x))i ≥ e−2k

d

Proof. σ(x)i = exp(xi)∑
j∈d

exp(xj)
≤ exp(C)

exp(C)+(d−1) exp(−C) = exp(2C)
exp(2C)+(d−1) ≤ exp(2C)

d−1 . Likewise σ(x)i ≥

exp(−C)
exp(−C)+(d−1) exp(C) =

exp(−2C)
exp(−2C)+(d−1) ≥

exp(−2C)
d .

Given our assumption that ||z(i)||2 = 1 and the bounded parameter norm assumption ||Wproj||2 <
Cproj

2 , it follows that
||Wprojz

(i)||∞ ≤ CV

2 . By Theorem H.1, we have that the entries of exp(−Cproj)
demb

≤ σ(f(z(i)) ≤ exp(Cproj)
demb−1 , element wise. In

the remainder of the theory, we denote cmin =
exp(−Cproj)

demb
and cmax =

exp(Cproj)
demb−1

.

We will first show that the memorization of the repeated sequence smem is forgotten when we take intervening steps on
non-repeated sequences xs(i), ..., s(i+n). Formally, we have the following proposition. Formally, suppose that at after step i,
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we have just seen s(mem). Then we will show that the logit e(mem) decreases during subsequent training steps i through
i+ n. For this analysis, we will focus on the dynamics the shared neurons.

Theorem H.2 (Forgetting in Standard Training). Suppose we take a gradient step on s(mem) at gradient step i and
subsequently make gradient updates on non-repeated sequences s(i), ..., s(i+m). After the m gradient steps, we have that
(emem)⊤f (i+m)(zmem) ≤ (emem)⊤f (i)(zmem)− γmϵcmin.

Proof. Only the parameter Wproj changes throughout training, so we can restrict our attention to its dynamics. We have that
the gradient of Wproj on the sequence-next token pair (z, e)

∂L

∂Wproj
= (e− σ(f(z))z⊤

Now let Wproj
(i) denote the parameter value of Wproj after the i-th observation. We have that

Wproj
(i+m) = Wproj

(i) + γ

m∑
j=1

(e(j) − σ(f (j+i)(z(i))z(i)
⊤

(1)

where we will denote f (j+i) as the model with parameter Wproj. Then, we have that the logit on the correct next token for
memorized example zmem is

(emem)⊤f (i+m)(zmem) = (emem)⊤f (i)(zmem) + (emem)⊤γ

m∑
j=1

(e(j) − (zmem)σ(f (j+i)(z(i))z(i)
⊤
(zmem)

Now, since we have that the token embeddings are orthogonal, we can rewrite this as

(emem)⊤f (i+m)(zmem) = (emem)⊤f (i)(zmem)− (emem)⊤γ

m∑
j=1

σ(f (j+i)(z(i))z(i)
⊤
(zmem)

Note that by the assumption of bounded norm for Wproj. we have that (emem)⊤σ(f (j+i)(z(i)) ≥ cmin (defined earlier).

Note also the assumption that z(i)
⊤
(zmem) ≥ ϵ ∀i. This implies that

(emem)⊤f (i+m)(zmem) ≤ (emem)⊤f (i)(zmem)− γ

m∑
j=1

ϵcmin (2)

This immediately yields our desired claim.

Next, we will show that the seqTD accumulates memorization in the memorization neurons, as formalized in the following
theorem. This theorem also crystalizes some key quantities relating to gradient interference. First of all, we see that the
forgetting depends on the number of further gradient steps taken after seeing smem. Secondly, we observe that the impact of
forgetting dynamics is influcned by how similar the activation of neurons are amongst different examples: controlled by ϵ.
The first observation immediately suggests that if some neurons were activated less often, then those neurons would be
effectively “store” more memorization.

H.3. Analysis of MemSinks

Theorem H.3 (MemSinks Accumulates Memorization in Memorization Neurons). Consider training MemSinks, where
the memorization neurons are activated on a p fraction of non-repeated examples. We will assume that the model is trained
from 0 initialization. Denote the MLP fmem-dropped as the model with memorization neurons dropped out and fgen-dropped as
the model with the generalization neurons dropped out. Suppose that the model is trained for N total steps and the repeated
sequence smem is observed k times. Then we have at the end of training
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1. (emem)⊤f
(n)
gen-only(ϕ(s

mem)) ≤ γk(1− cmin)− γ(N − k)ϵsharedcmin

2. (emem)⊤f
(n)
mem-only(ϕ(s

mem)) ≥ γk(1− cmax)− γ(N − k)ρϵmemcmax

where cmin and cmax are constants depending on an upper bound of the parameter norm of Wproj.

Proof. Our argument resembles the proof of Theorem H.2, and we will rely on the intuition therein. For reference, we will
write the gradients for the components of Wproj below.

∂L

∂Wshared
proj

= (e− σ(f(z))z⊤shared

and likewise
∂L

∂Wmem
proj

= (e− σ(f(z))z⊤mem

We will first examine (emem)⊤f
(n)
gen−only(z

mem). At any point in training, recall that we can upper and lower bound the
value cmin ≤ (e(i))⊤σ(f(zmem)) ≤ cmax. As such, observe that (e(i))⊤σ(f(zmem)) received k updates upper bounded by
γ(1 − cmin) (from the k obervations of zmem and (N − k) updates upper bounded by γϵsharedcmin (from the remaining
(N − k) observations of the z(i). This yields the desired claim for (1).

Now, for claim (2) observe that the component (emem)⊤f
(n)
mem−only(z

mem) receives k updates lower bounded by (1− cmax)
(again, from the k observations of zmem, but only p(N − k) updates from other observations, which can likewise be lower
bounded by γϵmemcmax This immediately implies the desired claim in (2)

This theorem formalizes the notion that memorization “accumulates” in the memorization neurons when they are shielded
from the interference of other sequences sufficiently. In our theory, the extent to which this occurs is dependent on
two quantities (1) the fraction of non-repeated sequences for which the memorization neurons are active and (2) the
similarity of activations of the repeated example and non-repeated example in the memorization neurons. Relative to
algorithm design, however, we will generally only have control over ρ and so we will consider ϵshared = ϵmem out of
convenience. Our analysis demonstrates that when ρ is set appropriately low. Some calculation demonstrates that when
ρ < cmin

cmax
− k

(N−k) (cmax − cmin), then we will have a seperation in the logits of smem where the memorization neurons
primarily contain the memorized example.

I. Large Scale Implementation Details
Here, we report all experimental and implementation details for the large-scale experiments conducted in this paper

Pretraining Data Mixture. We consider pretraining datasets of 1 and 2 billion parameters (respectively for the 360M
model and 1.7B model). The majority of pretraining tokens are sourced from a subset of the SlimPajama dataset (Shen
et al., 2024). However, we consider a setting in which we have an under-sampled domain of 5000 TinyStories examples.
We ensure that these 5000 TinyStories (Eldan & Li, 2023) documents are included in the pretraining data before filling the
remaining tokens from SlimPajamas.

Table 4. Hyperparameters for Standard Training (360M)

Parameter Values

Weight Decay 0.1
Max Learning Rate 5e-4
Min Learning Rate Max Learning Rate

10
LR Decay Steps Total Training Steps
Batch Size 1024
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Table 5. Hyperparameters for Standard Training (1.7B)

Parameter Values

Weight Decay 0.1
Max Learning Rate 5e-5
Min Learning Rate Max Learning Rate

10
LR Decay Steps Total Training Steps
Batch Size 1024

Model Architectures. We pretrain using SmolLM family models of size 360M and 1.7B. For standard training runs, we do
not modify the architecture in any way. We describe the modifications necessary for MemSinks below.

Training Hyperparameters. We report the hyperparameters used for training the models (at size 360M and 1.7B,
respectively) in Tables 4 and 5. For fairness, we use the same hyperparameters to train MemSinks.

I.1. Implementation of MemSinks

We will release a full implementation of MemSinks at http://github.com/grghosal/MemSinks. Our imple-
mentation builds off of the LitGPT library (AI, 2023).

Assignment of Sequence IDs. We assign each document (example) in the pretraining corpus with a sequence ID that is a
hash of the tokens within that document. We implemented a tensorized hash function in pytorch which will be released with
our code.

Tokenization and Packing. When implementing MemSinks, it is necessary to input the sequence identification meta-data
into the forward pass of the transformer model. In order to accomplish this while still leveraging the optimized streaming
data loaders typically used in pretraining, we interleaved the sequence IDs into the stream of tokens saved during the
tokenization step. That is, the pretraining data stream contained tokens at every even position and the previous tokens ID
code at every odd position. This enables seamless loading of the sequence ID data alongside the tokens during training.
During training, the sequence ID data and tokens are separated using a simple indexing operation. As opposed to the
smaller-scale TinyStories setting, we pass a sequence ID with each token to enable training across document boundaries and
prevent the necessity of padding tokens.

Online Computation of MemSinks Masks. Another crucial challenge faced when scaling MemSinks is the need to
deterministically generate a neuron mask for each token in the sequence. While we used the standard Pytorch seeded random
number generator during our smaller-scale experiments, this becomes impractical when different tokens in a batch can have
separate masks. As Pytorch does not support batched-seeding in its random number generator, we implemented a tensorized
linear congruential random number generator to generate neuron masks online during training. This enabled us to avoid
needing to precompute masks across a 1 billion token training set.

Placement of MemSinks. We implemented MemSinks at every hidden MLP layer by partitioning the neurons into
generalizing and memorization sink groups. We then apply the mask over the memorization neurons. For efficiency,
we used the same masking across all MLP layers. As the SmolLM (Allal et al., 2025) family models uses a GatedMLP
implementation, we apply MemSinks in the output-space after the gating.

MemSinks Hyperparameters. For MemSinks, for both model sizes, we tune across hyperparameter choices given in

Table 6. Hyperparameters for MemSinks (both sizes)

Parameter Values

1− g {0.05, 0.1, 0.3, 0.5}
p {0.1,0.3,0.5}

Table 6.
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