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Figure 1: OmniSVG is capable of autoregressively generating high-quality Scalable Vector Graphs (SVG)
across a wide spectrum of complexity, from simple icons to intricate anime characters. OmniSVG demonstrates
remarkable versatility in generating high-quality SVGs adhering to multimodal instructions, covering tasks like
Text-to-SVG, Image-to-SVG, and Character-Reference SVG, making it a powerful and flexible solution for
diverse creative tasks.

Abstract

Scalable Vector Graphics (SVG) is an important image format widely adopted
in graphic design because of their resolution independence and editability. The
development of autonomous SVG generation workflows is continuously drawing
attention from both designers and researchers in the AIGC community. However,
existing methods either produce unstructured outputs at huge computational cost
or are limited to generating monochrome icons of over-simplified structures. To
produce high-quality and complex SVG adhering to multi-modal instructions, we
propose OmniSVG, a unified SVG generation framework that inherits knowledge
from a pre-trained Vision-Language Model (VLM). By parameterizing SVG com-
mands and coordinates into discrete token sequences, the auto-regressive nature
enables us to seaminglessly adapt modern VLMs to the direct SVG generation. To
further advance the development of SVG synthesis, we introduce MMSVG-2M,
a multimodal dataset with two million richly annotated SVG assets, along with a
standardized evaluation protocol for conditional SVG generation tasks. Extensive
experiments show that OmniSVG outperforms existing methods and demonstrates
its potential for integration into professional SVG design workflows.
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1 Introduction

Scalable Vector Graphics (SVG) have become a cornerstone of modern digital design because of their
resolution independence, compact file size, and inherent editability. Widely adopted in professional
workflows from UI/UX design to industrial CAD systems, SVG enables precise manipulation of
geometric primitives (e.g., Bézier curves, polygons) while maintaining high precision and consistent
visual quality across varying resolutions. However, creating high-quality SVG content remains
challenging for non-experts, requiring mastery of specialized tools or intricate XML syntax.

Existing methods adopt either optimization-based methods or auto-regressive approaches to generate
SVG contents. The optimization-based methods [34, 12, 29] iteratively refine the SVG parameters by
minimizing the differences between the input image and the raster image created by differentiable
vector graphics rasterizers. Though these methods are sufficient for reconstructing SVG icons, they
suffer from significant computational overhead when scaling up to more intricate samples and produce
unstructured outputs with redundant anchor points, harming the editability of the reconstructed SVG
samples. In contrast, auto-regressive methods build transformer models or adapt pre-trained Large
Language Models (LLMs) to directly generate XML parameters [59] or codes [56, 42] representing
SVGs. Benefiting from the end-to-end learning pipeline, the auto-regressive method is a more scalable
approach [5] as it can learn directly from a large collection of SVG samples. However, existing
auto-regressive approaches are limited to basic SVG contents [11, 24, 53] because of the limited
context length and the scarcity of complex SVG data.

In this paper, we propose OmniSVG that harnesses native VLMs [1] for various end-to-end mul-
timodal SVG generation tasks. By parameterizing SVG coordinates and commands into discrete
tokens, OmniSVG decouples structural logic from low-level geometry, mitigating the “coordinate
hallucination” problem prevalent in code-based LLMs, and produces vivid and colorful SVG results.
Additionally, the next token prediction training objective enables OmniSVG to complete SVGs with
diverse generation results given some partial observations. Compared to traditional auto-regressive
SVG generation methods, OmniSVG is able to parameterize SVGs exceeding 30k tokens, facilitating
the generation of detailed and complex SVG contents. Building upon pre-trained VLMs, our method
natively integrates the ability to reason upon visual and textual instructions to synthesize editable,
high-fidelity SVGs across diverse domains, from icons to intricate illustrations and anime characters.

To advance the development of SVG synthesis, we introduce MMSVG-2M, a multi-modal SVG
synthesis dataset with two million richly annotated assets, encompassing icons, illustrations, and
anime designs. We also establish a standardized evaluation protocol, MMSVG-Bench, for “Text-to-
SVG” and “Image-to-SVG” generation. Extensive experiments show that OmniSVG can produce
highly detailed and complex SVG contents, surpassing prior art both quantitatively and qualitatively.

To summarize, our key contributions include:

• We introduce OmniSVG, a family of end-to-end multimodal SVG generators that leverage
native VLMs for generating complex and detailed SVGs, from simple icons to intricate
anime characters.

• We present MMSVG-2M, a large-scale dataset comprising two million SVG assets, along
with a standardized evaluation protocol for various multi-modal SVG generation tasks,
providing a comprehensive resource for future research.

• Extensive experiments show that OmniSVG surpasses prior SVG generation methods both
qualitatively and quantitatively, highlighting its potential for integration into professional
SVG design workflows.

2 Related Works

SVG Generation. Early attempts to generating SVGs directly utilize architectures like RNNs [18, 41,
19, 44, 45], VAEs [4, 32, 48, 46, 51], and Transformers [4, 57] to compress SVG commands into latent
representations. Meanwhile, DeepSVG [4] further parameterizes SVGs using a dual transformer
architecture but struggles with geometric consistency. Recently, the advent of large language models
(LLMs) [30, 64, 52, 61, 5, 6, 63, 62, 49] unleashes the potential of generating SVGs via XML code
synthesis [59, 56, 42]. However, the limited context length of existing LLM-based SVG generation
methods [56, 42, 59] poses significant challenges in handling complex SVGs that exceed 10k tokens.
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In this paper, we explore the potential of native Vision-Language Models (VLMs) in multi-modal
SVG generation. By combining pre-trained VLMs with SVG command parameterization, we validate
that OmniSVG is able to follow multi-modal instructions and generate vivid and complex SVGs.

Image Vectorization. Recent advancements in vectorization harness diffusion models paired with
differentiable rasterizers, using techniques like score distillation sampling [37, 22, 7] and specialized
regularizers [29, 34] to convert raster images into SVG paths. While these methods achieve remarkable
results, they face limitations such as over-smoothing, color over-saturation, and lack of editability,
often producing tangled paths that fail to capture hierarchical structures inherent in professional SVG
designs. In this paper, we present an end-to-end approach that follows multi-modal instructions to
generate high-quality SVGs with improved path clarity and editability.

SVG Datasets and Benchmarks. The lack of suitable datasets for complex SVG structures presents
a significant challenge. Existing datasets [11, 24, 53] primarily focus on simplified path-based
SVGs or monochrome icons, overlooking the intricate layered structures and rich color semantics
found in real-world designs. For example, FIGR-8-SVG [11] focuses on monochromatic icons,
while StarVector [42] proposes categorized datasets, including illustrations, icons, emojis, and fonts.
Therefore, existing datasets only present simple SVG samples that do not exceed 8.2k tokens,
failing to capture the complexities of layered structures and rich color semantics. Benchmark
evaluations, such as VGBench [70], further highlight gaps in multi-format testing and the absence of
comprehensive coverage for illustrative SVGs. To this end, we introduce MMSVG-2M, a multimodal
SVG synthesis dataset comprising two million richly annotated assets, including icons, illustrations,
and complex anime designs. We also present a standardized evaluation protocol, MMSVG-Bench, to
evaluate diverse multi-modal SVG generation tasks with varying complexity.

3 OmniSVG Dataset

We present MMSVG-2M, a large-scale SVG dataset with two million SVG samples covering website
icons, illustrations, graphic designs, anime characters, and etc (Sec. 3.1). To promote the downstream
development of SVG generation methods, we also introduce MMSVG-Bench, a standardized
evaluation protocol for a series of multi-modal instruction following tasks for conditional SVG
generation (Sec. 3.2).

3.1 MMSVG-2M

Data Source. With increasing visual complexity, MMSVG-2M consists of three subsets, 1) the icon
subset MMSVG-Icon collected from Iconfont, 2) the illustration subset MMSVG-Illustration sourced
from IconSount, and 3) the complex anime character subset MMSVG-Character both curated from
Freepik and created by our data creation pipeline as shown in Fig. 2. All these websites are online
platforms where users can publish and share SVGs, encompassing a broad variety of categories.
Specifically, our collection of MMSVG-2M contains 1.1 million icons, 0.5 million illustrations, and
0.4 million anime characters as shown in Tab. 6.

Data Curation. We extract SVG samples with a comprehensive deduplication process based on
filenames, SVG code, and metadata. We first fit the collected SVGs within a viewbox of 200× 200.
Then, we employ an off-the-shelf VLM, specifically BLIP-2 [28], to generate captions for the SVGs.
Please find more samples from the MMSVG-2M dataset in Fig. 8, and instruction templates in
Appendix A.2.

SVG Simplification is an essential procedure in SVG data cleansing, since the over-complicated
XML grammars in the crawled SVG data will lead to ambiguities while representing basic shapes.
To standardize training and evaluation, we simplify all SVG commands with atomic commands as
shown in Tab. 1. Inspired by FIGR-8-SVG [11] and IconShop [57], we remove all attributes and
simplify each SVG with five basic commands, including “Move To” (M), “Line To” (L), “Cubic
Bézier” (C), “Elliptical Arc” (A), “ClosePath” (Z). The introduction of atomic commands further
removes the ambiguities, as complex XML grammars can be approximated with the combination of
several atomic commands. To efficiently produce a unified and less complex data structure, we utilize
picosvg to remove grammars like “group” and “transform”, and simplify the complex commands

https://github.com/googlefonts/picosvg
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Table 1: SVG Draw Commands. Draw commands used in this work along with their arguments and a
visualization are listed. The start-position (x1, y1) is implicitly defined as the end-position of the preceding
command.

Command Arguments Description Visualization

<SOP> ∅ ’Start-of-Path’ token.

M
(MoveTo)

x2, y2 Move the cursor to the end-point (x2, y2)
without drawing anything.

L
(LineTo)

x2, y2 Draw a line to the point (x2, y2).

C
(Cubic
Bézier)

qx1, qy1
qx2, qy2
x2, y2

Draw a cubic Bézier curve with control
points (qx1, qy1), (qx2, qy2) and end-point
(x2, y2).

A
(Elliptical

Arc)

rx, ry
φ, fA, fS
x2, y2

Draw an elliptical arc with radii rx and ry
(semi-major and semi-minor axes),
rotated by angle φ to the x-axis,
and end-point (x2, y2). (x2, y2).

Z
(ClosePath) ∅ Close the path by moving the cursor back

to the path’s starting position (x0, y0).

F (Fill) fill Draw the fill attribute of the path. ∅

<EOS> ∅ ’End-of-SVG’ token.

to atomic path commands. It is worth noting that atomic path commands are sufficient to represent
complex SVGs shown in Fig. 1.

3.2 MMSVG-Bench

To compensate for the vacancy of standardized and open evaluation for SVG generation, we introduce
MMSVG-Bench, a comprehensive benchmark for multi-modal SVG generation. We require the
corresponding benchmark to be a sufficient verification whether a model is practically useful in
real-world scenarios, and avoid the excessive similarity between the benchmark input data and
training data as in traditional train/test splits. Therefore, we opt to generate the benchmark inputs with
GPT-4o. Specifically, for Text-to-SVG task, we synthesize 150 textual prompts for each SVG subset
(i.e. Icon and Illustration). For Image-to-SVG task, we synthesize extra 150 textual descriptions, and
prompt GPT-4o to generate vector-style images with transparent backgrounds based on the above
texts as the ground truth visual samples. We focus on both the visual quality and semantics of the
generation results.

Text-to-SVG requires a model to generate SVGs from text instructions. We measure the visual quality
with Frechet Inception Distance (FID) [50], aesthetic appeal with Aesthetic score [43], text-SVG
alignment with CLIP score [38], and Human Preference Scores (HPS) [58].

Image-to-SVG evaluates a model’s ability to convert images into SVGs. To quantify the dis-
tance between the input and output SVG, we calculate the cosine similarity of DinoV2 features
(DinoScore) [35], Structural Similarity Index (SSIM) [54], Learned Perceptual Image Patch Similarity
(LPIPS) [66], and Mean Squared Error (MSE).

Character-Reference SVG Generation evaluates a model’s ability to generate novel SVGs while
keeping the profile of the characters depicted in the input image. Different from image-to-SVG,
the model does not reconstruct, but generates a specific character SVG for the input image (see
Fig. 5). We evaluate the alignment between input character images and generated SVGs by prompting
GPT-4o [21] to generate a score ranging from 1 to 10, the higher the better. [15, 23, 17]
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Figure 2: Overview of OmniSVG. OmniSVG is built on a pre-trained vision-language model Qwen2.5-VL
and incorporates an SVG tokenizer. The model tokenizes both text and image inputs as prefix tokens, while the
SVG tokenizer encodes vector graphics commands into a unified representation space.

4 OmniSVG

To support end-to-end training for multi-modal SVG generation, OmniSVG parameterizes a series of
atomic SVG path commands into a sequence before feeding into a pre-trained VLM with multi-modal
instructions.

SVG Tokenizer. As illustrated in Sec. 3, our MMSVG-2M dataset simplifies an SVG by removing
all attributes and using five basic path commands (see Tab. 1). After the simplification, an SVG script
G is represented as the combination of M paths, G = {Pi}Mi=1. Here, Pi is the i-th path containing
Ni commands, Pi = {Cj

i }
Ni
j=1, where Cj

i is the j-th command in the i-th path. Each command is
represented as Cj

i = (U j
i , V

j
i ), containing both the command type identifier U j

i ∈ {M,L,C,A,Z}
and the corresponding location argument V j

i . To generate colored SVG contents, we assign special
tokens for hex values to control the “Fill” (F) attribute, distinguishing it from the original SVG
commands and coordinates. To this end, we are able to use a total six types of commands U j

i ∈
{M,L,C,A,Z,F} to parameterize a colored SVG parameterization.

Specifically, our SVG tokenizer transforms SVG scripts Xs into an ordered SVG token sequence
within the same representation space as the pre-trained VLM. Following IconShop [57], we flatten the
layered structure of the SVG script by concatenating different paths into a single command sequence,
where each path begins with the drawing commands followed by point coordinates. Therefore, each
SVG sequence could be represented as a flattened sequence. As the generation identifier, we apply
special tokens like <SOP> and <EOS> to the two ends of a SVG sequence, identifying the begining and
ending of a SVG sequence. We assign special tokens for each command type, i.e. {M,L,C,A,Z,F}.
To shorten the length of the SVG sequence, we further merge the 2D point coordinates into one token
with a mapping function: < x, y >→ x × w + y, where w is the width of the image. The SVG
sequence are then lifted into the same embedding space as the pre-trained VLM with a learnable
embedding layer.

Model Architecture. OmniSVG adopts Qwen2.5-VL [1], an open-sourced VLM that excels at
understanding intricate vision-text inputs, as its backbone (Fig. 2) to produce precise and compact
SVG outputs. OmniSVG is trained to predict the SVG suffix tokens (xs) conditioned on the mutli-
modal instruction prefix tokens (xc) with the standard next-token prediction objective.

θ∗ = argmax
θ

L∏
i=1

P (xs,i | xs,<i, xc) (1)
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Table 2: Quantitative Evaluations. Quantitative results between OmniSVG and current state-of-the-art
text-to-SVG and image-to-SVG baseline methods. The bold numbers and underlined numbers represents the best
and second best performance repectively. Our OmniSVG model demonstrates superior performance compared
SOTA SVG generation baselines.

Evaluation Dataset Methods # Tokens Text-to-SVG Image-to-SVG

FID↓ CLIP↑ Aesthetic↑ HPS↑ DINO↑ SSIM↑ LPIPS↓ MSE↓
Vectorfusion [22] 66.2k 250.77 0.240 4.76 0.237 – – – –

SVGDreamer [60] 132.0k 308.94 0.207 4.26 0.221 – – – –

Chat2SVG [56] 0.6k 190.87 0.299 4.41 0.247 – – – –

IconShop [57] 2.0k 213.28 0.288 4.55 0.244 – – – –

LIVE [34] 52.5k – – – – 0.932 0.943 0.106 0.011

DiffVG [29] 322.0k – – – – 0.940 0.954 0.066 0.002

GPT-4o [21] 0.3k – – – – 0.860 0.792 0.403 0.124

StarVector(8B) [42] 2.0k – – – – 0.895 0.881 0.231 0.059

Vtracer 52.4k – – – – 0.993 0.966 0.039 0.002

OmniSVG(4B) 3.8k 137.40 0.275 4.62 0.244 0.993 0.950 0.050 0.006

MMSVG-Icon

OmniSVG-L(8B) 5.7k 130.56 0.276 4.60 0.242 0.922 0.893 0.235 0.040

Vectorfusion [22] 66.1k 253.94 0.185 4.94 0.226 – – – –

SVGDreamer [60] 132.0k 419.70 0.201 4.37 0.221 – – – –

Chat2SVG [56] 1.0k 210.03 0.283 4.45 0.250 – – – –

IconShop [57] 2.6k 107.93 0.233 4.46 0.224 – – – –

LIVE [34] 52.2k – – – – 0.935 0.950 0.111 0.008

DiffVG [29] 322.0k – – – – 0.945 0.955 0.065 0.001

GPT-4o [21] 0.4k – – – – 0.875 0.854 0.373 0.077

StarVector(8B) [42] 2.6k – – – – 0.877 0.900 0.238 0.046

Vtracer 57.6k – – – – 0.994 0.966 0.035 0.002

OmniSVG(4B) 5.8k 154.37 0.226 4.56 0.232 0.899 0.906 0.237 0.034

MMSVG-Illustration

OmniSVG-L(8B) 6.9k 138.42 0.231 4.51 0.232 0.905 0.907 0.231 0.031

5 Experiments

To validate the effectiveness of our method, we first introduce the baselines (Sec. 5.1). Then, we
make quantitative comparisons with prior arts (Secs. 5.2 and 5.3) and conduct ablations (Sec. 5.4) to
study the effectiveness of our design.

5.1 Baselines

For the text-to-SVG task, we compare our method with language-based (LLM-based) methods, includ-
ing VectorFusion [22], SVGDreamer [60], Chat2SVG [56] and IconShop [57]. For image-to-SVG
task, we compare our method with baseline methods across image vectorization and Multimodal Large
Language Modeling approaches, including LIVE [34], DiffVG [29], StarVector [42], Vtracer [12] and
GPT-4o [21] using the official implementations with the hyperparameters proposed by the authors,
and apply their pre- and post-processing code as required.

5.2 Quantitative Comparisons

We compare our OmniSVG with other baseline methods on the “text-to-SVG” and “image-to-SVG”
tasks in our MMSVG-Bench. In addition to the metrics mentioned in Sec. 3, we also report the
average token length (# tokens) of a generated SVG sample utilizing the Qwen2.5-VL [1] tokenizer.

As shown in Tab. 2, OmniSVG demonstrates strong performance compared to state-of-the-art
baselines in text-to-SVG generation, achieving superior FID scores and competitive CLIP score,
aesthetic quality, and HPS. For image-to-SVG, OmniSVG also achieves competitive results with
traditional vectorization methods, i.e. LIVE [34], DiffVG [29], and VTracer [12], but with a
much shorter sequence length. When comparing to auto-regressive methods, i.e. GPT-4o [21] and
StarVector [42], OmniSVG also achieves a superior performance across all metrics. The above
results indicate that OmniSVG effectively balances the generation cost and the visual quality when
generating SVGs according to multi-modal conditions.
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Figure 3: Qualitative Comparison with SOTA Methods on Text-to-SVG Task. We compare the propose
method with SOTA Text-to-SVG methods on our evaluation benchmarks, namely Icon and Illustration.

5.3 Qualitative Evaluations

Text-to-SVG task. We compare our method with baseline approaches using seven distinct text
prompts for the text-to-SVG task, as shown in Fig. 4. Optimization-based methods like SVG-
Dreamer [60] and VectorFusion [22] require significant computation time due to their iterative
optimization processes, which, while effective for refining SVG details, are computationally ex-
pensive. Auto-regressive methods, such as IconShop [57] and Chat2SVG [56], generate SVGs
more quickly by leveraging pre-trained models but have notable limitations. IconShop produces
monochrome SVGs, restricting its applicability, while Chat2SVG, though flexible, generates less
detailed and semantically consistent SVGs in its first stage. Our OmniSVG consistently outperforms
all baselines across various text prompts in generating high-fidelity SVGs with rich color, geometric
accuracy, and the ability to handle complex visual cues.

CRef Ours CRef Ours

Figure 5: Generated SVG with Character-Reference
(CRef) by OmniSVG.

Image-to-SVG Task. We compare our method
with classical image vectorization approaches,
including DiffVG [29], LIVE [34], and VLM-
based methods GPT-4o [21], StarVector [42]
and Vtracer [12] As shown in Fig. 4, our method
outperforms these baselines in both quality and
efficiency. Optimization-based methods like Dif-
fVG and LIVE perform well on simple icons but
struggle with complex images, often generating
visual artifacts. The GPT-4o model, while capa-
ble of generating SVGs for complex images, is
limited to icon-level outputs and cannot handle
detailed illustrations. StarVector excels at sim-
ple icons but fails to produce accurate SVGs for
more intricate images, highlighting its limited
generalization capability. Vtracer is an image
processing algorithm designed to convert raster
images into SVGs. In contrast, OmniSVG effi-
ciently converts a wide range of images, from icons to complex illustrations and character images,
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Figure 4: Qualitative Comparison with SOTA Methods on Image-to-SVG Task. We compare the propose
method with SOTA Image-to-SVG methods on our evaluation benchmarks.

into high-quality, editable SVGs. This superior performance in handling diverse visual cues distin-
guishes OmniSVG from traditional vectorization methods. Additional visual results can be found in
Fig. 12. We provide more detailed discussions with existing methods, particularly the recent works
LLM4SVG [59] and StarVector [42], in the Appendix D.

Character-Reference SVG generation task. As shown in Fig. 5, by training on MMSVG-Character
with natural character image and SVG pair data, OmniSVG is capable of generating character SVGs
through image references.

5.4 Ablation studies

Effectiveness of SVG Parameterization. We present a comprehensive comparison among different
SVG parameterization strategy with the traditional non-parameterized methods for SVG represen-
tation in large language models. We ablates on the parameterization on both coordinate and color
attributes of the SVG.

The results, shown in Tab. 3 and Fig. 6 demonstrate that parameterizing both coordinate and color
attributes yields a better generation results under all metrics with the shortest token length. It further
validates that the efficient token representation allows our method to generate complex SVGs with
fewer computational resources. Additionally, qualitative results show that our method outperforms
others, particularly as SVG complexity increases. The non-parameterization method fails to generate

Table 3: Quantitative Study on SVG Parameterization. Ablation studies on color parametrization (abbreviated
as color param.) and coordinate paramterization (abbreviated as coord param.) are conducted.

Methods Text-to-SVG Image-to-SVG # TokensFID↓ CLIP↑ Aesthetic↑ HPS↑ DINO↑ SSIM↑ LPIPS↓ MSE ↓
w/o param. 218.76 0.185 3.43 0.138 0.741 0.718 0.315 0.182 18.5k
w/o coordinate param. 193.42 0.216 3.90 0.169 0.826 0.809 0.248 0.119 10.2k
w/o color param. 167.28 0.269 4.31 0.211 0.895 0.879 0.179 0.053 6.3k
OmniSVG(4B) 145.89 0.308 4.59 0.238 0.946 0.928 0.138 0.020 4.8k
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Table 4: Ablation of the Model Size. As the model size grows, the generated samples are of higher quality.

Methods Input Size Text-to-SVG Image-to-SVG
FID↓ CLIP↑ Aesthetic↑ HPS↑ DINO↑ SSIM↑ LPIS↓ MSE↓

FLAN-T5-Base[10] Text 223M 198.48 0.158 3.38 0.085 – – – –
FLAN-T5-Large[10] Text 770M 175.24 0.208 3.92 0.142 – – – –
FLAN-T5-xl[10] Text 3B 160.28 0.258 4.31 0.192 – – – –
blip2-flan-t5-xl[28] Text/Image 3.94B 152.11 0.235 4.48 0.215 0.898 0.891 0.255 0.041
OmniSVG(4B) Text/Image 3.7B 145.89 0.308 4.59 0.238 0.946 0.928 0.138 0.020

SVGs for complex images. These findings underscore the effectiveness of our full parameterization
strategy in balancing performance and resource efficiency for SVG generation tasks.

Ablation studies on model size. To analyze whether training a larger model benefits SVG generation,
we evaluate OmniSVG base models with different sizes on the MMSVG-2M dataset in Tab. 4. We
evaluate OmniSVG with base models of varying sizes on the MMSVG-2M dataset in Tab. 4 by
progressively scaling up the model size. The results show that as the model size grows, we can
generate SVG samples with a better quality.

Table 5: Ablation on VLM architecture.

Vision Model Language Model Text-to-SVG Image-to-SVG
FID↓ CLIP↑ Aesthetic↑ HPS↑ DINO↑ SSIM↑ LPIPS↓ MSE↓

CLIP Qwen2.5 185.31 0.249 4.52 0.215 0.867 0.856 0.267 0.058
VQGAN Qwen2.5 198.74 0.234 4.49 0.203 0.839 0.828 0.295 0.071

Qwen2.5-VL-3B-Instruct 145.89 0.308 4.59 0.238 0.946 0.928 0.138 0.020
Qwen2.5-VL-7B-Instruct 134.45 0.254 4.56 0.237 0.914 0.900 0.233 0.036

Ablation Studies on the VLM Architecture. To evaluate the effectiveness of the VLM architecture,
we conducted an ablation study replacing it with alternative LLM-based architectures incorporating
image encoders such as CLIP ViT-B/32 [39], VQGAN [14], and Qwen2.5-VL [1].

Prompt
w/o param.

w/o color param.

full param.
w/o coord. param.

A yellow duck with 
an orange beak and 
feet holds a green 
umbrella.

A smiling cartoon 
man with his arms 
crossed, wearing a 
white shirt and black 
pants

Figure 6: Qualitative Study on Parametrization.

The results in Tab. 5 show that Qwen2.5-VL
consistently outperformed all alternatives under
all evaluation metrics.

User Study. We extract one-tenth of the sam-
ples from the evaluation dataset and conducted
a user study with 15 participants to evaluate
user preferences, vividness, and the alignment
between text-to-SVG and image-to-SVG. Par-
ticipants are asked to assess SVGs generated by
different models based on 150 text descriptions
and 150 image prompts, comparing the results
generated using our method and baseline mod-
els. The results in Fig. 7 show that OmniSVG
is widely preferred, with higher scores for vivid-
ness and superior semantic alignment with the
input conditions.

6 Conclusions

Conclusions. We introduce OmniSVG, a uni-
fied framework for multimodal SVG genera-
tion that leverages pre-trained Vision-Language
Models (VLMs). By parameterizing SVG com-
mands and coordinates as discrete tokens, OmniSVG efficiently decouples structural logic from
geometry, addressing issues like "coordinate hallucination" while maintaining design expressiveness.
Our method outperforms existing approaches in both quality and efficiency, offering high-quality,
editable SVG across various design domains. Additionally, we proposed MMSVG-2M, a large-scale
multimodal dataset with two million annotated SVG assets and a standardized evaluation protocol.
Extensive experiments show that OmniSVG surpasses prior SVG generation methods in various
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conditional generation tasks, highlighting its potential for integration into professional SVG design
workflows.

Figure 7: User Study of OmniSVG and baselines.

Method Preference ↑ Vividity↑ Alignment↑
Vectorfusion [22] 35 58 76
SVGDreamer [60] 41 65 79
Chat2SVG [56] 55 61 86
IconShop [57] 79 57 75
GPT-4o [21] 38 54 80
StarVector(8B) [42] 37 81 68
DiffVG [29] 88 76 96
LIVE [34] 86 70 95
OmniSVG 96 88 98

Limitations and Future Work. During inference,
OmniSVG generates tens of thousands of tokens
for complex samples, which inevitably leads to a
considerable generation time. OmniSVG is only
bounded by vector style image prompt and fails on
natural images. As for future work, recent endeav-
ors on multi-token prediction [15, 2] and KV-cache
compression [68, 3] provide a promising way to
save the generation cost. Additionally, the auto-
regressive nature of OmniSVG also unlocks future
opportunities for in-context learning [67, 69, 47], chain-of-thought reasoning [55, 16], and multi-turn
interleaved generation [20, 31], thereby providing a more precise user control.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations are discussed.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the experiment section, we give detailed information about the experimental
setup, evaluated models and evaluation metrics.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide access to the data and evaluation code for reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings are indicated in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments compute resources are indicated in the supplementart material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts is discussed in the abstract and introduction. We aim to
provide valuable tools to the community for developing more powerful video understanding
models.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all papers. The license and copyright information related to data
from existing datasets and benchmarks are discussed in the Supplementary Materials.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce the details of the dataset, and more details are discussed in the
Supplementary materials.

Guidelines: Details of the dataset and code, including the license and limitations, are
discussed in the Supplementary Materials.

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The labeling process is discussed in Section 3. The annotation guidelines are
provided in the Supplementary Materials.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no potential risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Additional Details of MMSVG-2M dataset

A.1 Samples of MMSVG-2M Dataset

We visualize samples of our MMSVG-2M dataset in Fig. 8. In our MMSVG-2M dataset, 55% of the
SVG samples belongs to the MMSVG-Icon, 25% belongs to the MMSVG-Illustration, and the rest
20% belongs to the MMSVG-Character. Among the SVG samples within the MMSVG-Character
category, half of them comes from Freepik, while another half is generated by our data creation
pipeline. We also collect image-SVG pairs for the character-reference SVG generation tasks during
the generation process.

Table 6: Data Statistics for MMSVG-2M. Our MMSVG-2M consists of 1.1 million SVG icons, 0.5 million
SVG illustrations, and 0.4 million SVG anime characters.

Dataset Train Val Total Source Token Length
MMSVG-Icon 990k 110k 1,100k Iconfont 2.2k ± 0.9k
MMSVG-Illustration 450k 50k 500k IconScout 8.1k ± 3.3k
MMSVG-Character 350k 50k 400k Freepik & generated 28k ± 7.3k

A.2 SVG-Image-Text Pairs Construction

Our MMSVG-2M dataset comprises two million SVG samples with the corresponding rasterized
images. We generate captions on the rasterized images with BLIP-2 [28], thereby providing textual
descriptions that enable us to fine-tune our model to follow these instructions. We use CairoSVG [25]
for rasterization and remove samples that produced completely white images.

Annotation. We employ an off-the-shelf VLM, specifically BLIP-2 [28], to generate SVG captions
with the prompt below. To reduce hallucinations, we drop the samples with CLIP scores less than 30.
We also visualize the distribution annotated keywords of MMSVG-2M dataset in Fig. 10 with word
cloud format. And the instruction template for annotation is shown in Tab. 7.

Instruction templates. MMSVGBench provides three tasks, including text-to-SVG task, image-
to-SVG task and character-reference SVG generation task. Each task needs different instruction
templates. For the text and image conditioning SVG generation, we provide the input text or image
with VLM architecture. For character-reference SVG generation, we provide the natural charecter

Instructions for Different Tasks

- Employed BLIP2 for SVG Captioning: You are a helpful assistant. Your task is to
describe this image in a single sentence, including the object, its color, and its overall
arrangement. For example: “Yellow cheers with glasses of alcohol drinks." / “Heart emojis
represent love on Valentine’s Day."

- Text-to-SVG: You are a helpful SVG Generation assistant, designed to generate SVG. We
provide the text description as input, generate SVG based on the text.

- Image-to-SVG: You are a helpful SVG Generation assistant, designed to generate SVG. We
provide an image as input, generate SVG for this image.

- Character-Reference SVG Generation: You are a helpful SVG Generation assistant,
designed to generate SVG. We provide a natural image as input, please generate the simplified
character SVG based on the reference input image.

Table 7: Instructions for Different Tasks. Instructions including annotation, text-to-SVG, image-to-SVG and
character-reference SVG generation.
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Figure 8: Samples from MMSVG-2M Dataset. The proposed MMSVG-2M dataset can be separated into three
subset, namely Icon, Illustration and Character. Samples from Icon, Illustration and part of Character subsets are
downloaded from Internet. Another part of Character subset is generated by our data creation pipeline, which
can provide image and SVG pairs for image prompting task.

reference image and the original image with the VLM architecture. The list of instruction templates
for different tasks are shown in Tab. 7.

A.3 Character-SVG Pairs Construction

As illustrated in the Fig. 6, part of our proposed MMSVG-2M-Character subset is constructed using
a generative pipeline. As shown in the pipeline diagram in Fig. 2, we employ a FLUX [26]-based
generative model enhanced with a vector-style LoRA to enable the generation of SVG-style data. For
image-based conditioning, we adopt FLUX-Redux [27], which injects image features via a SigLIP
encoder and projects them into image embeddings. These embeddings are then concatenated with
the text tokens as conditioning inputs for FLUX [26]. However, in practice, the original Redux [27]
conditioning proves to be overly strong. To address this, we adopt a community-implemented variant
of Redux that downsamples the image embeddings in 2D space. As observed in our experiments
shown in Fig. 9, a downsampling factor between 2× and 3× yields the most reasonable SVG-style
character references. Finally, we employ VTracer [12] to perform near-instant vectorization of the
generated images. To construct the MMSVG-2M-Character subset, we first filter 103k character
instances from the Danbooru [13] dataset and apply the aforementioned pipeline with motion and
expression keywords like previous works [8, 9, 36, 65]. We compare the raw FLUX [26] outputs
and their vectorized counterparts, retaining only those samples with PSNR and SSIM scores above a
certain threshold as valid data.

B Additional Details

B.1 Scaling Up

To study the effectiveness of scaling up multimodal SVG generation, we scale up OmniSVG from
4B to 8B parameters. We present training perplexity in Fig. 11, where both models are trained from
scratch on 250 billion tokens. We show that, as the size of the model grows, the model achieves a
lower validation perplexity, indicating a higher probability of producing the validation data.

B.2 Implementation Details
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Figure 10: Word Cloud Visualization of Label Distri-
bution in the MMSVG-2M Dataset. The size of each
label corresponds to its frequency of occurrence. The
larger the label, the more frequently it appears in the
dataset.

We train our models in bfloat16 with the ZeRO-
2 strategy [40] for memory-efficient training.
We also adopt the AdamW [33] optimizer with a
learning rate decaying from 3×10−4 to 3×10−6

and a weight decay of 0.1 to train our model. In
practice, we load the pre-trained weights from
the Qwen2.5-VL [1] model and initialize the
SVG embeddings from scratch. Without further
specification, we generate SVGs with the top-k
and top-p sampling strategy with k = 50 and
p = 0.95 for diversity.

C Additional Results

As list in full comparisons in Tab. 2, includ-
ing all the baselines mentioned in Sec. 5. For
the text-to-SVG task, we compare our method
with language-based (LLM-based) methods, in-
cluding VectorFusion [22], SVGDreamer [60],
Chat2SVG [56] and IconShop [57]. For image-
to-SVG task, we compare our method with
baseline methods across image vectorization
and Multimodal Large Language Modeling ap-
proaches, including LIVE [34], DiffVG [29], StarVector [42] and GPT-4o [21] using the official
implementations with the hyperparameters proposed by the authors, and apply their pre- and post-
processing code as required. Specifically, for the text-to-SVG task, the optimization-based method
SVGDreamer excels in enhancing editability by employing a semantic-driven image vectorization
process that effectively separates foreground objects from the background, while failing to handle
complex scenes. Another optimization-based work, VectorFusion, stands out for generating SVG-
exportable vector graphics without relying on large captioned datasets. However, Vectorfusion is
also unable to handle complex scenarios and diverse styles. The significant problem with these
optimization-based works is that the optimization time is too long. Generating an SVG usually takes
more than ten minutes, which is too expensive. For the LLM-based method, Chat2SVG integrates
Large Language Models (LLMs) with image diffusion models to create semantically rich SVG
templates. However, Chat2SVG still needs to optimize the output SVG script from LLM, which
introduces increased computational complexity and poses challenges during model training. In
comparison, IconShop utilizes a transformer-based architecture to autoregressively model SVG path
sequences, demonstrating exceptional performance in simplified icon SVGs, which offers effective
solutions for text-to-SVG generation. It can only generate black simple Icon SVGs.

Reference Scale = 2 Scale = 3Scale = 1

#Tokens: 31k
#Paths: 351

#Tokens: 14k
#Paths: 121

#Tokens: 8k
#Paths: 72

#Tokens: 28k
#Paths: 297

#Tokens: 12k
#Paths: 114

#Tokens: 8k
#Paths: 61

#Tokens: 2k
#Paths: 23

#Tokens: 2k
#Paths: 21

Scale = 4

Figure 9: Image Prompting Dataset Creation of MMSVG-2M Character. By utilizing FLUX-Redux and
SVG vectorization tools, image prompting data pairs can be generated. We adpot FLUX-Redux downsampling
scale with 2, 3 in practice by trading-off the character similarity and complexity of generated SVG.
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(b) Validation PPL for our models.

Figure 11: Training and Validation Perplexity (PPL) for OmniSVG Models. We train all the models from
scratch on 250 billion tokens. We observe that the performance grows with model sizes.

For the image-to-SVG task, we compare our method with the image vectorization methods. LIVE
allows progressive and efficient generation of SVGs, optimizing closed vector paths under raster
image supervision with shape complexity control. However, LIVE needs to optimize for a long time
when generating complex SVGs. DiffVG enables end-to-end differentiability in vector graphics
rasterization, improving optimization through anti-aliasing and gradient-based methods while also
is computationally expensive due to the complexity of the forward-backward rasterization process.
Recently, the Multimodal Large Language Model (MLLM) based method StarVector leverages the
visual understanding to apply accurate SVG primitive to the LLM architecture, which also can
generate SVGs from both text and image inputs. However, it still fails to generate complex SVGs.
Since Starvector [42] has not yet opened up its text-to-SVG model weights, our MMSVGBench
does not evaluate Starvector’s text-to-SVG capabilities. MMSVG-Bench also evaluates our methods
with VLM methods, GPT-4o, to conduct a comprehensive assessment. We compare our method
with these baselines on our MMSVG-2M dataset, from simple MMSVG-Icon datset, a bit complex
MMSVG-illustration dataset, to the very complex MMSVG-Character dataset.

D More details of the baselines

D.1 Text-to-SVG Task

SVGDreamer [60] uses a semantic-driven image vectorization (SIVE) process to separate foreground
objects and background, improving editability. The SIVE process utilizes attention-based primitive
control and an attention-mask loss function to manipulate individual elements effectively. To address
issues in existing text-to-SVG generation methods, the proposed Vectorized Particle-based Score
Distillation (VPSD) approach models SVGs as distributions of control points and colors, improving
shape, color diversity, and convergence speed.

VectorFusion [22] leverages a text-conditioned diffusion model trained on pixel representations
to generate SVG exportable vector graphics without needing large captioned SVG datasets. By
optimizing a differentiable vector graphics rasterizer, it distills semantic knowledge from a pretrained
diffusion model and uses Score Distillation Sampling to generate an SVG consistent with a caption.
Experiments show that VectorFusion improves both quality and fidelity, offering a variety of styles
such as pixel art and sketches.

Chat2SVG [56] proposes a hybrid framework that combines the strengths of Large Language Models
(LLMs) and image diffusion models for text-to-SVG generation. The approach first uses an LLM
to create semantically meaningful SVG templates from basic geometric primitives. A dual-stage
optimization pipeline, guided by image diffusion models, refines paths in latent space and adjusts
point coordinates to enhance geometric complexity.

IconShop [57] uses a transformer-based architecture to encode path commands and learn to model
SVG path sequences autoregressively. It has shown excellent results in simplified icon scenarios
and provides a good solution to Text-to-SVG generation by extending the FIGR-8-SVG dataset with
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Figure 12: Illustration of the SVG Generation Capabilities of OmniSVG.
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captions. We have access to their dataset and original splits and have trained our model on that data
using a pre-trained checkpoint (trained on OmniVG dataset). We have extracted the results from
IconShop and included them here to compare our method.

LLM4SVG [59] is a framework that leverages Large Language Models (LLMs) to understand and
generate Scalable Vector Graphics (SVGs). It employs a structured SVG encoding approach, utilizing
learnable semantic tokens to accurately represent SVG components and their properties. This design
enables LLMs to produce SVGs that are both semantically aligned with textual descriptions and
visually coherent. However, LLM4SVG also has a maximum token length of 2048, limiting its ability
to generate highly complex SVGs that require longer sequences.

D.2 Image-to-SVG Task

LIVE (Layer-wise Image Vectorization) [34] is a method for progressively generating SVGs that
closely fit a given raster image by recursively adding and optimizing closed vector paths. Using a
differentiable renderer (based on DiffVG [29]), LIVE enables direct optimization of paths under raster
image supervision while controlling shape complexity by adjusting the number of path segments. It
introduces component-wise path initialization, identifying key visual components to ensure efficient
topology extraction and minimize redundant shapes.

DiffVG [29] is a landmark in vector graphics research, pioneering deep learning-based methods with
the first differentiable vector graphics rasterization pipeline. By leveraging a combination of anti-
aliasing techniques and gradient-based optimization, DiffVG ensures differentiability. Unlike methods
relying on non-differentiable curve-to-mesh conversions, DiffVG employs a forward-backward
rasterization process, where the forward pass generates antialiased images and the backward pass
computes gradients with respect to vector graphic parameters.

StarVector [42] works directly in the SVG code space, leveraging visual understanding to apply
accurate SVG primitives. StarVector employs a transformer-based architecture that integrates an
image encoder with a language model, enabling it to process visual inputs and produce precise
SVG code. StarVector effectively handles diverse SVG types, including icons, logos, and complex
diagrams, demonstrating robust generalization across various vectorization tasks. However, with a
16k token context window, StarVector may struggle to process highly complex SVGs that require
longer sequences.

Vtracer [12] is an image processing algorithm designed to convert raster images into SVGs. The
algorithm follows a three-step pipeline, which involves the hierarchical clustering of images for
vectorization. Initially, the pixels are transformed into paths, which are subsequently simplified into
polygons. In the final step, these polygons are smoothed and approximated using a Bezier curve fitter.
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