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ABSTRACT

We introduce Consistent Assignment of views over Random Partitions (CARP),
a self-supervised clustering method for representation learning of visual features.
CARP learns prototypes in an end-to-end online fashion using gradient descent
without additional non-differentiable modules to solve the cluster assignment
problem. We present a new pretext task based on random partitions of prototypes
by enforcing consistency between views’ assignments over these random subsets.
We use a fast (student) and a slow (teacher) learners to provide stable targets for
the assignment task. We present an extensive ablation study and show that our pro-
posed random partition pretext task (1) improves the quality of the learned repre-
sentations by devising multiple random classification tasks and (2) improves train-
ing stability and prevents collapsed solutions in joint-embedding training. CARP
achieves top-1 linear accuracy of 71.7 % and k-NN performance of 64.8 % on the
ImageNet-1M, surpassing contemporary work under limited training conditions.
When trained for longer epochs, CARP outperforms state-of-the-art methods in
the k-NN evaluation and performs comparably in other benchmarks.

1 INTRODUCTION

Learning from unlabeled data has been one of the main challenges in computer vision. Recent ap-
proaches based on self-supervised learning (SSL) have significantly reduced the gap between super-
vised and unsupervised pre-trained representations. Nowadays, self-supervised pre-training on vast
quantities of unlabeled data, prior to learning a downstream supervised task of interest, can be more
effective than supervised pre-training for many tasks (Caron et al., 2020; Gidaris et al., 2020; Grill
et al., 2020).

We divide current SSL methods for representation learning into two classes: (1) self-supervised
embedding prediction (Chen et al., 2020a; He et al., 2020; Tian et al., 2020) and (2) clustering
(Asano et al., 2020; Caron et al., 2018; 2019; Li et al., 2021). As the name suggests, the self-
supervised methods based on embedding prediction work directly in the embedding space. They
are trained with either contrastive or non-contrastive loss functions. Instead of reconstructing the
input signal, their loss function operates in the representation space by approximating embeddings
of the same view and optionally pushing representations from different views apart. On the other
hand, clustering methods discretize the representation space by learning a finite set of prototypes.
These prototypes aggregate augmented versions of the same image and cluster representations from
different images that are similar enough to be assigned to the same prototype. Nevertheless, recent
self-supervised methods for representation learning are built on top of the same ideas: (1) synthetic
view generation, (2) joint embedding architecture, and (3) a similarity-based loss function.

The most challenging and significant difference among these methods is how they avoid trivial
solutions when training joint-embedding architectures. One strategy is to incorporate a contrastive
term in the loss function. Contrastive methods not only approximate embeddings from views of
the same image but explicitly push representations of different views apart. Without the contrastive
force, the model trivially optimizes the loss function. Non-contrastive methods employ a “stop-
gradient” operation in one of the branches of the joint-embedding architecture so that gradients
only flow from one branch at a time. This “hack” avoids the mode-collapse of joint-embedding
architectures even if we only approximate representations of the same view without a contrastive
term (Chen & He, 2021).
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Among self-supervised clustering methods, recent work proposed avoiding trivial solutions by us-
ing separate modules to solve the cluster assignment problem. Caron et al. (2020) and Asano
et al. (2020) proposed to use the Sinkhorn-Knopp (Cuturi, 2013) algorithm to solve the cluster
assignment problem and provide suitable targets for self-supervised optimization. Work from Li
et al. (2021) and Van Gansbeke et al. (2020b) avoid trivial solutions by using classic machine learn-
ing methods such as k-Means clustering or k-Nearest Neighbor as intermediate steps in the learning
process.

Consistent assignments (Silva & Ramirez Rivera, 2021) were recently proposed as a way to learn
prototypes to improve the representations. Similarly, our loss function imposes two constraints
(1) consistent assignment of views over learnable prototypes and (2) a uniform distribution for the
average predictions within a batch. However, we show that such a strategy does not scale well to
enormous datasets containing millions of classes. In such situations, we need to model a large num-
ber of prototypes while enforcing consistent assignment between views and uniform distribution
over the average predictions. We show that a naive implementation of this strategy makes the learn-
ing problem challenging from a training stability perspective, where the model quickly settles for a
trivial solution by assigning all views’ embeddings to the same prototype.

To overcome these issues, we propose a novel self-supervised approach based on the consistent
assignment of views over random partition sets (CARP). We train CARP to minimize a consistency
loss which encourages the model to assign different views of the same unlabeled example to the
same prototype. We solve the dimensionality problem by enforcing smaller classification problems
through the introduction of random partitions that enforce consistency and regularize the model.
The energy between the view’s representations and the trainable prototypes (within random par-
titions) allows us to automatically bootstrap predictions and targets to our consistency loss. Our
contributions are three-fold:

1. A novel and entirely online joint-embedding learning strategy based on self-supervised
clustering, see Fig. 1. We propose a divide and conquer pretext task based on randomly
generated partitions of learnable prototypes. Our loss function allows stable training of
joint-embedding architectures in a self-supervised context.

2. A framework that simplifies self-supervised training and does not require normalization
tecniques (Caron et al., 2020; Chen et al., 2020a) or the necessity of mining negatives for
contrastive training (Chen et al., 2020a; Misra & Maaten, 2020; Oord et al., 2018).

3. A differentiable assigner module that generates soft pseudo-labels by comparing the repre-
sentations of image views to prototypes within random partition subsets. To avoid trivial
solutions, we enforce the average predictions over a batch to be non-informative over the
set of prototypes within a random subset.

2 RELATED WORK

Self-supervised embedding prediction methods operate directly in the embedding space work by
learning a metric such that embeddings from views of the same image are closer to one another
while embeddings from views of different images are far away in the feature space. These methods
can be trained using contrastive or non-contrastive loss functions. Methods that minimize a loss
function with a contrastive term date back to 1990s (Bromley et al., 1993; Chopra et al., 2005; Gold-
berger et al., 2004). They must explicitly find representations from non-correlated images to use as
negatives. Recent contrastive methods include InstDisc (Wu et al., 2018), CPC (Oord et al., 2018),
SimCLR (Chen et al., 2020a) and MoCo (Chen et al., 2020c; He et al., 2020). These methods learn
unsupervised representations by minimizing nearly the same contrastive loss function, i.e., the In-
foNCE (Oord et al., 2018). The InfoNCE loss is used to optimize a pretext task called instance
discrimination, in which the network is challenged to correctly identify the pair of positive embed-
dings among a set of negative pairs. CARP does not operate in the embedding space, nor is it a
contrastive method. Instead of directly optimizing views’ embeddings, we learn a set of general
prototypes using a random partition strategy that stabilizes the learning process and avoids trivial
solutions commonly found when training joint-embedding architectures.

On the other hand, non-contrastive methods work by approximating embeddings of the same view
in the feature space. The main advantage is not requiring explicit opposing representations in the
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Figure 1: CARP’s training architecture. From two synthetic views generated from a given image,
we train an encoder network f(.), followed by an MLP projection head g.) to produce representation
vectors z¥ and w", respective to the parameters 6 and ¢ for each branch, for each view indexed by v.
The representations are fed to an assigner function g(.y that produces normalized distributions of
views w.r.t. the learnable prototypes. Note that 6 are the trainable weights and £ are an exponential
moving average of §. We create random partitions by randomly arranging the prototypes into a
predefined number of blocks. Then, we enforce consistent assignment of views over prototypes
within the blocks. To avoid trivial solutions, we force the average predictions over a batch to be
uniform across each partition block.

loss formulation. To avoid trivial solutions, a common approach is to implement a “stop-gradient”
operation that prevents the gradient signal from flowing to the two branches of the join-embedding
architecture simultaneously. BYOL (Grill et al., 2020), and SimSiam (Chen & He, 2021), are ex-
amples of such methods. These non-contrastive methods optimize a loss function that takes a pair
of representations from views of the same image as input and learns a metric by making these
representations similar, usually using a mean squared error loss. CARP takes advantage of non-
contrastive training since it does not require mining negatives for optimization. Also, different from
Grill et al.’s (2020) work, CARP does not require a momentum encoder, though using it signifi-
cantly improves the learned representations. CARP trains a joint-embedding architecture and uses
the “stop-gradient” operation in conjunction with a regularized pretext task based on random parti-
tions of prototypes to avoid mode collapse.

Self-supervised clustering methods do not work directly on the views’ embeddings. Instead, they
learn a set of prototypes that are used to solve subsequent pretext tasks in different ways. Caron
et al. (2018), for instance, use k-Means clustering at every epoch to cluster the representations from
the entire dataset and produce pseudo-labels for the training images. Then, a classifier head is
trained to predict the pseudo-labels. Following, Caron et al. (2019) proposed a method to combine
the rotation prediction pretext task (Gidaris et al., 2018) with clustering. Li et al. (2021) presented a
method based on expectation-maximization (EM) that merges clustering with the contrastive learn-
ing framework from (He et al., 2020). Recent work by Caron et al. (2020) and Asano et al. (2020)
combines self-supervised learning with clustering. They utilize the non-differentiable Sinkhorn-
Knopp algorithm to solve the cluster assignment problem without falling into collapsed solutions.
More recently, Caron et al. (2021) proposed a teacher-student self-supervised clustering method to
learn unsupervised representations using vision transformers (Vaswani et al., 2017). The system
keeps a moving average of previous predictions, and uses it as a mean subtraction normalizer, to
center the current targets from the teacher network and avoids collapsed solutions.

Contrast from previous approaches. Instead of solving the cluster assignment problem using a
non-differentiable algorithm such as the Sinkhorn- Knopp, our model is trained end-to-end with
gradient descent. Different from Caron et al.’s (2021) work, our model does not require extra mo-
mentum encoders or data structures to store previous predictions to avoid trivial solutions. CARP
avoids trivial solutions by posing the optimization problem at the level of random partitions of pro-
totypes. We penalize the learning algorithm if the average predictions over a minibatch of views are
not distributed uniformly across prototypes. Unlike Caron et al.’s (2019) work, our method does not
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require clustering the entire dataset every epoch to generate pseudo-labels. Instead, CARP generates
soft pseudo-labels in an online fashion from examples in a single minibatch.

3 CONSISTENT ASSIGNMENT OF VIEWS

From an image x;, we create two views, denoted as #} = T'(z;) and #? = T(z;), using a stochastic
function 7' that applies a set of random image transformations to x; (cf. Appendix B.1). We ex-
tend Silva & Ramirez Rivera’s (2021) work by introducing another pair of streams and contrasting
between a slow and fast learned versions of the embeddings. CARP is a joint-embedding architec-
ture with two modules: a differentiable (student) and a non-differentiable (teacher) branch. Each
module has its own set of weights and the same architectural design. Both contain an encoder f(.
and a projection head g(.y. The differentiable student module receives a view and produces an em-
bedding vector z! = gg(fo(27)), for v € {1,2}. Similarly, the non-differentiable teacher receives
a view and produces a target embedding w{ = g¢(f¢(2Y)). The weights {; are updated at every
training step j, following an exponential moving average (EMA), &1 = né; + (1 — n)60;, where
n = [0, 1] is a decay rate scalar. We omit the training step subscripts, j, for brevity, in this paper.

The assigner function ¢(h, ®) = softmax (h . <I>T) linearly combines the views representation vec-
tors, h, with a set of prototypes, ®. The objective is to learn a set of prototype vectors C' to discretize
the embedding space. Note that these prototypes are not meant to represent the true classes of the
data. Instead, these general prototypes can be viewed as anchors to attract views of a given image
to a commonplace in the embedding space. The function ¢(-, -) receives the views’ representations,
z? and w? € R4, as input and outputs normalized probability vectors relating the views’ embed-
dings with the prototypes such that s? = ¢(z¢,C) and t¥ = q(w?,C), where s¥ and t? € R*K
are the normalized probabilities of a view, #¥, w.r.t. the prototypes C € RE*4 where d is the
dimensionality of the embedding vector and K is the number of prototypes.

To avoid trivial solutions in the joint-embedding training, we need a loss function that avoids the as-
signment of all representation vectors z; to a unique prototype. Related work by Asano et al. (2020)
and Caron et al. (2020) utilize a non-differentiable Sinkhorn-Knopp algorithm to solve the cluster
assignment problem. Others (Li et al., 2021; Van Gansbeke et al., 2020a), use classic machine learn-
ing algorithms such as k-Means clustering and k-Nearest Neighbors. Unlike previous work, we seek
a method that solves the cluster assignment problem in an online fashion using gradient descent.

We propose a loss function composed of two terms: consistency and entropy. The consistency term
learns the relations between embedding vectors and prototypes. In other words, the consistency
loss enforces different views of the same image to be assigned to the same prototype with high
confidence. Given the normalized probability vectors a and b, we define their consistency term as
Lc(a,b) = —log (a,b), where (-, -) is a dot product.

The consistency loss is optimized when the two views &} and 27 get assigned to the same proto-
type with maximal confidence. Thus, optimization is achieved when the probability distributions
of the two views s} and s? resemble equal one-hot vectors. Unlike prior work, we propose to con-
trast probability distributions across views and streams (i.e., between student and teacher) to obtain
comparisons anchored at different solutions in the loss-landscape. See the final loss (2) for the
formalization of the previous statement.

If we only optimize the consistency loss, L., training would collapse to a state where all views are
assigned to the same prototype. To ensure that all the prototypes get roughly the same number of
assignments over a batch of views, let us define the function

L
avg <{(ai> bi)}iL:1) = %Zai +b; (1)
i=1

as the average probability across the representations within a batch of size L. For our distributions,
we define p = avg({(s?,t?)}¥,). If we maximize the entropy of the mean probabilities of a
batch, H(p), we will encourage the average predictions to be closer to a uniform distribution. In
other words, this term prevents the system from collapsing by ensuring that, for a batch of size N,
on average, each prototype roughly receives the same number of assignments. Since we want to

maximize the entropy over assignments averaged within a batch, we can view the entropy term as
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enforcing a uniform distribution relating embeddings to prototypes. Previous work has used this
entropy term in various scenarios, ranging from discriminative unsupervised clustering to semi-
supervised learning (Assran et al., 2021; Joulin & Bach, 2012; Van Gansbeke et al., 2020b). Thus,
the final proposed objective to minimize is

NZE (sh,12) 4+ Lo(s2,t)) — A H (D), )

where \. > 0 trades off consistency at the view level with the average uniform assignment at the
batch level. Note that the contribution of the entropy term decays as training progresses.

Training an unsupervised system by minimizing the loss (2) is challenging. The main limitation
is how to avoid trivial solutions in unsupervised training of joint-embedding architectures. For
instance, if the value of ). is too small, the consistency term wins the arms race, and the average
distribution over the batch, H (p) becomes one-hot alike, i.e., all views end up assigned to the same
prototype. If the value of ). is too large, the entropy term gets the upper hand, and collapse is
avoided (Silva & Ramirez Rivera, 2021). However, the process of view assignment is neglected
over the policy of distributing views uniformly, which results in poor performance of the learned
representations.

For a small number of general prototypes, training is more stable, and the model avoids collapse
with a simple tuning of the ). parameter (Silva & Ramirez Rivera, 2021). However, for a larger
number of general prototypes, stability becomes an issue. The main problem lies with the entropy
term. For more interesting cases, when the distribution is larger, i.e., K > N, regular batch sizes,
such as N = 64 or N = 128, become too small to properly model the distribution, i.e., the signal is
too weak for most prototypes. Consequently, to avoid collapse, we need to increase the contribution
of the entropy term or increase the batch size.

To address such limitation, we propose to decouple the loss function (2) into smaller sub-problems.
Instead of enforcing both consistency and uniform assignments over all the general prototypes, we
propose a pretext task over subsets or blocks of a random partition of the general prototype set C'.

4  ASSIGNMENT BASED ON RANDOM PARTITIONS

Given the set of K trainable prototypes C' = {c1, ¢a, ..., ¢k }, we define a partition of C' as P =

{B; C C}l 1. such that ) ¢ P, J, B; = P where B; € P, and B; N B; = () for all B;, B; € P,

and i # j. We refer to B; as a block or subset of the partition. We are interested in a partition set
= {B;} 7 of size Np, i.e., |P| =

Using the concept of a partition of a set, we can define a framework of pretext tasks over partition
blocks that satisfies the learning problem defined in Section 3. If the size of a partition block, B;,
equals the number of prototypes, Ng = K then the partition P is trivial, i.e., P = {B;} = {C}.
If the size of the partition blocks equals Np = 1, then we have K blocks in P, and each block has
a unique prototype. Here, the learning task is equivalent to multiple binary classification problems,
where each output score, if normalized, expresses the likelihood of a data point z; to independently
belong to each prototype.

However, if the block size 1 < Np < K, and Ny divides K, then the partition P will be com-
posed of Np = |K/Np] blocks. We define P by randomly assigning Np prototypes c;, for
j=0,1,...,Np, toeachblock B; = {c;};, where i = 0,1,..., Np.

Instead of mapping a single representation z; as a linear combination of all prototypes in C, we
compare the view’s representations z; and w; against all the prototypes in the j-th block. That is,
sy = q(z, B;) and t} ; = q(w}, B;), for every block in the partition P, to obtain the normalized
probability distribution relating a view from image ¢ with the prototypes of the j-th block of the
random partition, where s ; and ¢} ; € R'*1XNP,

To ensure that views are consistent among the blocks, we optimize the views’ distributions s; ; and
t; ; over the prototypes of a block indexed by j, so that the two distributions are consistent with one
another. Thus, the consistency term of our partition loss is L.(s; gt ]) where for each block Bj,

the loss is minimized when the pair of views, #} and #2, gets assigned to the same prototypes across
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modules. In other words, we look for the agreement between student and teacher assignments’
probabilities across views of a given sample.

Following a similar reasoning, the block-wise entropy term is defined as H(p;), where p; =
avg({(s};,t7 J) ) is the average prediction over each block B; for a batch of size N. Thus,
the final ob]ectwe for consistent assignment of random partition is,

N Np

NNp ZZ[’ 1,50 ZJ )+ Le(s; J’tllj) H(p;). 3)

Note that to fully use the pair of views at each iteration, we symmetrically use the L. consistency
function. The probability vectors ¢; ; come from the momentum encoder and are used as target
distributions.

One of the benefits of using the random partition strategy is that we no longer require the hyper-
parameter A, to avoid trivial solutions. The stochastic nature of the random partition pretext task,
blended with the multiple prediction tasks over small blocks of prototypes, provides a regularization
effect that improves the learned representations and training stability.

Other clustering based methods (Caron et al., 2020; 2021) rely on sharpening the distributions to
improve their self-supervised signals used as targets in a cross-entropy loss. On the contrary, our
formulation does not require the temperature parameter for sharpening the predictions and guide the
learning of the student. We can think of the consistency loss as implicitly learning the temperature
parameter to make the predictions sharper at each iteration. This is an important advantage of our
consistency loss setup in contrast to previous methods.

5 RESULTS AND EXPERIMENTS

We evaluate the features learned by CARP using three main protocols: (1) downstream linear eval-
uation (He et al., 2020) on the ImageNet-1M dataset using linear models and k-NN classifiers,
(2) transfer learning on VOCO7 (Everingham et al., 2010) and (3) semi-supervised fine-tuning using
1 % and 10 % of ImageNet labels. See Appendix B.1 for the experimental setup.

5.1 UNSUPERVISED FEATURE EVALUATION

Table | reports linear evaluation performance of various self-supervised methods. See Appendix C.1
for details. CARP achieves top-1 accuracy of 71.7 % on the ImageNet validation set and sur-
passes contemporary methods pre-trained for 200 epochs. When trained for 400 epochs, CARP
also achieves top-1 accuracy and beats the leading methods. In fact, our method trained for 400
epochs outperforms some competitors trained for at least double the number of epochs, highlighting
our online-training strategy’s efficiency. When trained for 800 epochs, CARP outperforms competi-
tors in the k-NN evaluation, reaching 66.8 %. Note that SImCLR, BYOL, and SwAV use a large
batch size of 4096; InfoMin aug. uses RandAugment (Cubuk et al., 2020) to generate synthetic
views, and SWAV uses multi-view augmentation and extra queue containing 3840 embeddings. For
fairness, we also report the performance of SWAV using two views. Table 1 also reports the trans-
fer learning results on the PASCAL VOCO7 dataset. Following Li et al. (2021), we train a support
vector machine (SVM) on top of the frozen representations from the ResNet50 encoder and report
mean average precision (mAP) for object classification. CARP achieves mAP of 85.6 %, surpassing
competitors among methods trained for 200 epochs.

5.2 k-NN EVALUATION

In Table 1, we evaluate CARP’s representations using a weighted k-Nearest Neighbor (k-NN) clas-
sifier on ImageNet-1M. CARP’s outperform current methods in all epoch configurations. It even
surpasses methods trained for 1000 epochs using two and four times larger batch sizes. For more
details on the k-NN evaluation protocol, refer to Appendix C.3.
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Table 1: Evaluation using ResNet50 encoders on ImageNet-1M grouped by training epochs.
“Epochs” and “Batch” columns specify the number of epochs and the respective batch size used
for unsupervised pre-training. We report top-1 and top-5 accuracies using the linear evaluation pro-
tocol, k-NN performance with K,y = 20, and mAP on PASCAL VOCO07. All methods employ
2 x 2242 views. T Results computed by us using the officially released pre-trained models.

ImageNet VOCO07

Method Epochs Batch Top-1 Top-5 k-NN mAP
Supervised 100 256 76.5 - - 87.5
MoCo v2 (He et al., 2020) 200 256 67.7 - 55.6 84.0
PCL v2 (Li et al., 2021) 200 256 67.6 - 58.1 85.4
SimSiam (Chen & He, 2021) 200 256 70.0 - - -
CARL (Silva & Ramirez Rivera, 2021) 200 256 65.3 - - -
CARP (ours) 200 1024 717 901  64.8 85.6
SimCLR (Chen et al., 2020a) 200 4096 61.9 - 60.7 -
InfoMin aug. (Tian et al., 2020) 200 4096 70.1 894 593F  g1.2f
BYOL (Grill et al., 2020) 200 4096 70.6 - - -
SWAV (two-views) (Chen & He, 2021) 200 4096 69.1 - - -
SimSiam (Chen & He, 2021) 400 256 70.8 - - -
CARP (ours) 400 1024 721 903  66.1 85.9
SELA v2 (Caron et al., 2020) 400 4096 67.2 - 58.0f  85.3f
DeepCluster v2 (Caron et al., 2020) 400 4096 70.2 - 624" 86.67
SWAV (two-views) (Caron et al., 2020) 400 4096 70.1 - 613" 86.7
MoCo v2 (He et al., 2020) 800 256 71.1 90.1 60.7 -
SimSiam (Chen & He, 2021) 800 256 71.3 - - -
CARP (ours) 800 1024 733 911  66.8 86.4
InfoMin aug. (Tian et al., 2020) 800 4096 73.0 911 6537 835t
SimCLR v2 (Chen et al., 2020b) 800 4096 71.7 - - -
SwAV (multi-views) (Caron et al., 2020) 800 4096 75.3 - 66.3 88.9
SWAV (two-views) (Chen & He, 2021) 800 4096 71.8 - - -
BarlowTwins (Zbontar et al., 2021) 1000 2048 732 91.0 66.17  86.3f
SimCLR (Chen et al., 2020a) 1000 4096 693  89.0  60.7 80.5
BYOL (Grill et al., 2020) 1000 4096 743 - 66.6 -

5.3 SEMI-SUPERVISED FEATURE EVALUATION

We evaluate CARP’s representations on semi-supervised protocols using 1 % and 10 % of labeled
data using the same split as SImCLR (Chen et al., 2020a), following the protocol proposed by Misra
& Maaten’s (2020). Refer to Appendix C.2 for details. In Table 2, CARP achieves the best overall
top-5 accuracy of 75.4 % and 87.1 % across models pre-trained for 200 epochs for the respective
semi-supervised data regimes.

6 ABLATIONS

In this section, we answer whether a consistent assignment of views over random partitions bene-
fits the learned representations and training stability. We ablate CARP’s main hyperparameters to
establish a good baseline for running experiments on the ImageNet-1M dataset. Due to a limited
execution budget, the ablations and the main experiments differ slightly in some hyperparameters.
Here, we describe the configurations used for the ablations—for the main experiments, see Ap-
pendix B.1. For ablations, we trained CARP using the full ImageNet-1M dataset for 50 epochs. The
projection head learns a latent representation of 128-dim. The batch size is set to 256 observations,
and the projection head hidden layers contain 2048 neurons. We set the number of learnable pro-
totypes K = 65536, and the number of random partition blocks Np = 128. Hence, each block
contains Np = 512 prototypes.
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Table 2: Top-5 accuracy on ImageNet validation set of self-supervised models that are fine-tuned on
1 % and 10 % of labeled data. We report the literature’s accuracy from the corresponding papers.

Top-5 accuracy

Method Arch. Epochs 1% 10 %
Supervised (Zhai et al., 2019) RN50 100 48.4 80.4
SimCLR (Chen et al., 2020a) RN50 200 56.5 82.7
MoCo v2 (He et al., 2020) RN50 200 66.3 84.4
PCL v2 (Liet al., 2021) RN50 200 73.9 85.0
CARP (ours) RN50 200 75.4 87.1
CARP (ours) RN50 400 76.4 87.5
CARP (ours) RN50 800 77.5 87.9
PIRL (Misra & Maaten, 2020) RN50 800 57.2 83.8
SwWAV (multi-view) (Caron et al., 2020) RN50 800 78.5 89.9
SimCLR (Chen et al., 2020a) RN50 1000 75.5 87.8
BYOL (Grill et al., 2020) RN50 1000 78.4 89.0
Barlow Twins (Zbontar et al., 2021) RN50 1000 79.2 89.3

Table 3: CARP benefits from over-clustering. Setting  Taple 4: CARP learns better represen-
a small number of prototypes may hurt the learned  (ations when larger batch sizes are em-

representations. ployed.
K 1024 2048 4096 16384 65536 262144 bs 128 26 512 1024
kNN 4881 4998 5069 5081 512 5131 k-NN 4656 5132 5423  56.63

6.1 DOES THE NUMBER OF LEARNABLE PROTOTYPES AFFECT THE LEARNED
REPRESENTATIONS?

Table 3 examines the effect of training CARP with different configurations of prototypes K. Similar
to other clustering-based self-supervised learning methods (Caron et al., 2020; 2021; Li et al., 2021),
we notice that CARP also benefits from over-clustering. As the number of trainable prototypes K
grows, the k-NN performance of the learned representations increases. In addition, note that if
the number of prototypes K is smaller than the number of actual classes in the dataset, the k-NN
performance of the learned representations degrades. Based on these experiments, we set the default
number of prototypes K = 65536 for the ImageNet-1M dataset.

6.2 TRAINING CARP WITH DIFFERENT BATCH SIZES

Most self-supervised methods (Caron et al., 2020; 2021; Grill et al., 2020; Zbontar et al., 2021)
report their best results when using substantially large batch sizes. In Table 4, we observe a similar
pattern when training CARP. Using our default configuration of 1024 observations yields a k-NN
top-1 performance 10% higher than a batch size of 128. Table 4 confirms that training with large
batch sizes benefits the learned representations. However, training with smaller batch sizes requires
further tuning of other hyperparameters, such as the block size Ng. Specifically, we observed that
reducing the block size Np improves the learned representations when training with small batch
sizes, which makes CARP robust to low resource training.

6.3 DOES THE NUMBER OF PARTITION BLOCKS MATTER?

To better understand the effect of the hyperparameters Np and Np on the learned representations
and in the training stability, the first row of Table 5 demonstrates the performance of CARP using
different configurations for the number of partition blocks N and their sizes Np. For completeness,
we analyze the effect of removing the momentum encoder in Appedix A.1. We also present an
ablation on the effect of the momentum update in Table 6.



Under review as a conference paper at ICLR 2023

Table 5: CARP with and without a momentum encoder. Without the random partition strategy (last
column), training collapses regardless of using a momentum encoder or a pure siamese architecture.

Np 32 64 128 256 512 1024 2048 4096 16384 65536

w/ mom. enc. 49.56 50.75 51.19 5120 5132 51.06 5131 51.08 49.67 0.11
w/omom. enc. 4895 4928 48.81 4737 46.16 44.68 4429 4439 47.25 0.11

Table 7: In ‘constant,” partition blocks are
created once, sequentially, and kept fixed
during training. In ‘random,” blocks are
recreated at every training step.

Table 6: The effect of the hyperparameter 7 on the mo-
mentum encoder updates. In the last column, 7 starts
as n = 0.99 and it is annealed to n = 1.0 following a
cosine schedule.

n 0 05 09 09 099 09910 Epochs » >0 s 100
Constant  45.15 49.89 52.81 53.32
F-NN-SLO 5020503 SLL 501 S13 Random 48.68 5398 5593 56.38

We observe that using the divide and conquer approach of devising random partitions from the
learnable prototypes avoids collapsed solutions. Specifically, as the partition sizes grow and the
number of partition blocks Np decreases, the quality of the learned representations tends to decline
and eventually collapse.

For the case where we set the block size Ng = 64, CARP reaches a k-NN accuracy of 50.75%
in 50 epochs. On the other hand, if we set a single partition Np = 65536, the training collapses,
and the learned representations are useless. Note that as smaller the block size Np, more stable
the algorithm will be. However, the quality of the learned representation might decrease since the
prediction task becomes easier with fewer prototypes to ensure consistency between views. On the
other hand, a larger block size Np poses a more challenging consistency task at the expense of
contributing to mode collapse.

For most cases, however, for block sizes ranging from Ng = 128 to Ng = 4096, CARP learns
useful representations and shows robustness to this hyperparameter. By default we set the partition
block size Np = 512.

6.4 EXPLORING DIFFERENT STRATEGIES TO BUILD PARTITIONS

Table 7 explores different ways of creating random partition blocks from the learnable prototypes.
CARP default strategy recreates the random partitions at every training step. In other words, at every
training iteration, we assign Np randomly chosen prototypes to the Np partition blocks. Table 7
contrasts CARP’s default strategy with one in which the partition blocks are created only once, in
a sequential manner, and kept fixed throughout training. We observe that training CARP with fixed
partition blocks does yield useful representations. However, as measured by k-NN performance,
randomly recreating the partition blocks at each iteration further benefits the learned representa-
tions. Since the partition blocks are randomly recreated at every iteration of gradient descent, the
classification subproblems are always different. In practice, this variance allows for many unique
pretext tasks at each iteration, which provides a positive regularization effect on CARP.

7 CONCLUSIONS

We presented consistent assignment of views over random partitions (CARP), a self-supervised clus-
tering method for representation learning of unlabeled images. CARP learns prototypes in an online
fashion end-to-end using gradient descent by minimizing a cost function that optimizes consistency
between views’ assignments and uniform distribution across prototypes within a random partition.
Our experiments demonstrate that posing the optimization problem at the level of random partitions
of learnable prototypes not only stabilizes training by avoiding trivial solutions in joint-embeddings
architectures but also increases the performance of the learned representation. Moreover, by con-
trasting the probability assignments of the teacher and the student streams, we can create more stable
contrast pairs.
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Figure A.1: During training, the representations extracted from the teacher outperform the represen-
tations from the student network.

A ADDITIONAL EXPERIMENTS

A.1 THE IMPORTANCE OF THE MOMENTUM ENCODER

Table 5 contrasts CARP’s joint-embedding architectures with and without a momentum encoder.
This is equivalent to setting 7 = 0 in the momentum encoder update equation. Different from
other self-supervised methods (Caron et al., 2021; Grill et al., 2020), CARP works with both setups.
However, we observe that using a momentum encoder significantly boosts the performance of the
learned representations. Table 5 shows that regardless of block sizes, representations learned using
a momentum encoder-based architecture consistently outperform the siamese counterpart.

A.2 WHO PROVIDES THE BEST FEATURES FOR DOWNSTREAM EVALUATION?

One way to understand CARP’s joint-embedding architecture with a momentum encoder is through
the teacher-student framework, where the momentum encoder is the teacher that guides the student
throughout the learning process. The addition of the momentum encoder raises the question of which
module produces the best representations. To answer this question, Fig. A.1 explores the k-NN
performance when extracting features from the momentum encoder (teacher) versus the student. We
observe that teachers’ representations constantly outperform the students’ during training. However,
by the end of the training, the student catches up with the teacher.

B IMPLEMENTATION DETAILS

B.1 EXPERIMENTAL SETUP

To ensure fair comparison to existing self-supervised methods, we follow the same protocols of He
et al. (2020) for training and evaluating CARP. We train CARP on the ImageNet-1M unlabeled
dataset using a ResNet50 (He et al., 2016) encoder. We take the output representation of the last
global average pooling layer of the ResNet50 encoder (a 2048-dim vector) and projects it to a 256-
dim vector. Following Caron et al.’s (2021) work, our MLP projection head contains 3 dense layers
with batch normalization and the GeLU activation functions. The 256-dim representation vector is
fed to an assigner MLP that outputs unnormalized probabilities w.r.t. the learnable prototypes. By
default, the assigner function is implemented as a linear layer and trains &K = 65 536 prototypes. To
generate the random partitions, we set the number of partitions Np = 128, which creates subsets
containing Np = 512 randomly chosen prototypes. We use the same data augmentations proposed
by Grill et al. (2020) to generate synthetic views. CARP is trained with SGD, end to end, with
weight decay of 0.000001, using the LARS (You et al., 2017) optimizer with learning starting from
0.6 and decaying to 0.06 with a cosine scheduling (Loshchilov & Hutter, 2016) without warmups.
We train the system with a global batch size of 1024 observations evenly split across 4 NVIDIA
RTX A6000.

12
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B.2 PSEUDOCODE OF CARP IN A PYTORCH-LIKE STYLE

# NB: number of random prototypes within a block
# K: number of prototypes
# NP: number of blocks in the partition, i.e. K // NB
# N: batch size
for x1, x2 in loader:
# student branches
z1l = enc(xl) # [N, K]
z2 = enc (x2)
# teacher branches
wl = mom_enc (x1l) # [N, K]

w2 = mom_enc (x2)
s_logits = [zl, z2]
t_logits = [wl, w2]

# sample cluster indices with no replacement
rand_cluster_indices = multinomial (ones (K), K, False)

split_cluster_ids = stack(split (rand_cluster_indices, NB))

preds_list = []
targets_list = []

for s_log, t_log in zip(s_logits, t_logits):
preds_group = get_logits_group(s_log, split_cluster_ids)
targets_group = get_logits_group(t_log, split_cluster_ids)

preds_list.append(preds_group)
targets_list.append(targets_group)

loss = loss_fn(preds_list, targets_list)
# perform gradient descent steps

def loss_fn(s_1list, t_list):
consistency = consistency_loss(s_1list[0], t_list[1]
consistency += consistency_loss(s_list[1], t_list[O0]

s = cat(s_list, dim=1)
t = cat(t_list, dim=1)
probs = cat([s, t], dim=1).transpose(0, 1) # [4#N, NP, NB]

entropy = kl_div (mean (probs, dim=0))
return consistency + entropy

def consistency_loss(s, t):
loss = einsum("knc, knc->kn", [s, t])
return -log(loss) .mean ()

def kl_div (p):
return mean(log(K) + sum(p * log(p), dim=-1))

def get_logits_group(logits, split_cluster_ids):
logits_group = logits([:, split_cluster_ids.flatten()]
logits_group = logits_group.split (NB, dim=1)
logits_group = stack(logits_group, dim=0)
return softmax(logits_group, dim=-1) # [NP, N, NB]

13
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C EVALUATION PROTOCOLS

C.1 LINEAR EVALUATION

For ImageNet evaluation, we trained a linear classifier on top of the frozen representations ex-
tracted from the last average pooling layer of the ResNet50 encoder, for 100 epochs, following
He et al.’s (2020) protocol. We minimize the cross-entropy loss with the SGD optimizer, a learning
rate of 0.3, and a batch size of 256 observations. For each input image, we take a random crop fol-
lowed by a resize to 224 x 224, and an optional horizontal flipping. For testing, images are resized
to 256 x 256 and center-cropped to a size of 224 x 224.

C.2 SEMI-SUPERVISED EVALUATION

We append a classification layer on top of the pre-trained CARP ResNet50 encoder. The pre-trained
encoder is finetuned using a learning rate of 0.002, and the classification layer uses a learning rate
of 0.5. The learning rate is multiplied by a factor of 0.2 after the 12th and 16th epochs. We use
gradient descent (SGD) optimizer for 20 epochs and a batch size of 256 observations.

C.3 k-NN EVALUATION

To perform the k-NN evaluation, we keep the weights of the pre-trained ResNet50 encoder fixed
to compute and store the representations from the ImageNet-1M training data. Following Caron
etal.’s (2021) setup, the representation vector for a test image is compared against all representations
from the training data, and a prediction is made via weighted voting. If one of the closest neighbors
has the same class as the test image, it contributes to the final voting as o; = exp (%) where
M is a memory bank containing representations from the training data, z is the representation from
the test data, and 7 is the temperature hyper-parameter. For all experiments, we run k-NN with
configurations of Kpe,r € {10,20, 100,200} and discover that Ky, = 20 is consistently the best
setup across all methods.

14



	Introduction
	Related Work
	Consistent Assignment of Views
	Assignment based on Random Partitions
	Results and Experiments
	Unsupervised Feature Evaluation
	k-NN Evaluation
	Semi-Supervised Feature Evaluation

	Ablations
	Does the number of learnable prototypes affect the learned representations?
	Training CARP with different batch sizes
	Does the number of partition blocks matter?
	Exploring different strategies to build partitions

	Conclusions
	Additional Experiments
	The importance of the momentum encoder
	Who provides the best features for downstream evaluation?

	Implementation Details
	Experimental Setup
	Pseudocode of CARP in a PyTorch-like Style

	Evaluation Protocols
	Linear evaluation
	Semi-supervised evaluation
	k-NN evaluation


