
Published as a conference paper at ICLR 2022

COBERL: CONTRASTIVE BERT FOR REINFORCE-
MENT LEARNING

Andrea Banino 1, + Adrià Puidomenech Badia 1, + Jacob Walker 1, +

Tim Scholtes 1, + Jovana Mitrovic 1 Charles Blundell 1

ABSTRACT

Many reinforcement learning (RL) agents require a large amount of experience
to solve tasks. We propose Contrastive BERT for RL (COBERL), an agent that
combines a new contrastive loss and a hybrid LSTM-transformer architecture to
tackle the challenge of improving data efficiency. COBERL enables efficient and
robust learning from pixels across a wide variety of domains. We use bidirectional
masked prediction in combination with a generalization of a recent contrastive
method to learn better representations for RL, without the need of hand engineered
data augmentations. We find that COBERL consistently improves data efficiency
across the full Atari suite, a set of control tasks and a challenging 3D environment,
and often it also increases final score performance.

1 INTRODUCTION

Developing sample efficient reinforcement learning (RL) agents that only rely on raw high dimen-
sional inputs is challenging. Specifically, it is difficult as it often requires us to simultaneously
train several neural networks based on sparse environment feedback and strong correlation between
consecutive observations. This problem is particularly severe when the networks are large and densely
connected, like in the case of the transformer (Vaswani et al., 2017) due to noisy gradients often
found in RL problems. Outside of the RL domain, transformers have proven to be very expressive
(Brown et al., 2020) and, as such, they are of particular interest for complex domains like RL.

In this paper, we propose to tackle this shortcoming by taking inspiration from Bidirectional Encoder
Representations for Transformers (BERT; Devlin et al., 2019), and its successes on difficult sequence
prediction and reasoning tasks. Specifically we propose a novel agent, named Contrastive BERT for
RL (COBERL), that combines a new contrastive representation learning objective with architectural
improvements that effectively combine LSTMs with transformers.

For representation learning we take inspiration from previous work showing that contrastive objectives
improve the performance of agents (Fortunato et al., 2019; Srinivas et al., 2020b; Kostrikov et al.,
2020; Mitrovic et al., 2021). Specifically, we combine the paradigm of masked prediction from BERT
(Devlin et al., 2019) with the contrastive approach of Representation Learning via Invariant Causal
Mechanisms (RELIC; Mitrovic et al., 2021). Extending the BERT masked prediction to RL is not
trivial; unlike in language tasks, there are no discrete targets in RL. To circumvent this issue, we
extend RELIC to the time domain and use it as a proxy supervision signal for the masked prediction.
Such a signal aims to learn self-attention-consistent representations that contain the appropriate
information for the agent to effectively incorporate previously observed knowledge in the transformer
weights. Critically, this objective can be applied to different RL domains as it does not require any
data augmentations and thus circumvents the need for much domain knowledge. This is another
advantage compared to the original RELIC and which require to hand-design augmentations.

In terms of architecture, we base COBERL on Gated Transformer-XL (GTrXL; Parisotto et al.,
2020) and Long-Short Term Memories (LSTMs; Hochreiter & Schmidhuber, 1997). GTrXL is an
adaptation of a transformer architecture specific for RL domains. We combine GTrXL with LSTMs
using a gate trained via an RL loss. This allows the agent to learn to exploit the representations

01 DeepMind London, + Equal Contribution. Corresponding author: abanino@deepmind.com

1

Published as a conference paper at ICLR 2022

ENCODER

TRANSFORMER

GATE

LSTM

V

Yt

Xt

RL Loss

ENCODER

TRANSFORMER

GATE

LSTM

V

ENCODER

TRANSFORMER

GATE

LSTM

V

Y1

X1 X2

Y2

ENCODER

TRANSFORMER

GATE

LSTM

V

XN

YN

...

RL Loss RL Loss RL Loss

CONTRASTIVE
LOSS

CROSS
ENTROPY

CROSS
ENTROPY

A B

C D

Figure 1: COBERL. A) General Architecture. We use a residual network to encode observations into
embeddings Yt. We feed Yt through a causally masked GTrXL transformer, which computes the predicted
masked inputs Xt and passes those together with Yt to a learnt gate. The output of the gate is passed through a
single LSTM layer to produce the values that we use for computing the RL loss. B) Contrastive loss. We also
compute a contrastive loss using predicted masked inputs Xt and Yt as targets. For this, we do not use the causal
mask of the Transfomer. For details about the contrastive loss, please see Section 2.1. C) Computation of qtx and
qty (from Equation 1) with the round brackets denoting the computation of the similarity between the entries D)
Regularization terms from Eq. 3 which explicitly enforce self-attention consistency.

offered by the transformer only when an environment requires it, and avoid the extra complexity
when not needed.

We extensively test our proposed agent across a widely varied set of environments and tasks ranging
from 2D platform games to 3D first-person and third-person view tasks. Specifically, we test it in the
control domain using DeepMind Control Suite (Tassa et al., 2018) and probe its memory abilities
using DMLab-30 (Beattie et al., 2016). We also test our agent on all 57 Atari games (Bellemare et al.,
2013). Our main contributions are:

• A novel contrastive representation learning objective that combines the masked prediction
from BERT with a generalization of RELIC to the time domain; with this we learn self-
attention consistent representations and extend BERT-like training to RL using contrastive
objectives without the need of hand-engineered augmentations.
• An improved architecture that, using a gate, allows us to flexibly integrate knowledge from

both the transformer and the LSTM.
• Improved data efficiency (and in some cases also overall performance) on a varied set of

environments. Also, we show that individually both our contrastive loss and the architecture
improvements play a role in improving performance.

2 METHOD

To tackle the problem of data efficiency in deep reinforcement learning, we propose two modifications
to the status quo. First, we introduce a novel representation learning objective aimed at learning better
representations by enforcing self-attention consistency in the prediction of masked inputs. Second,
we propose an architectural improvement to combine the strength of LSTMs and transformers.

2.1 REPRESENTATION LEARNING IN REINFORCEMENT LEARNING

It has been empirically observed that performing RL directly from high dimensional observations (e.g.
raw pixels) is sample inefficient (Lake et al., 2017); however, there is evidence that learning from
low-dimensional state based features is significantly more efficient (e.g. Tassa et al., 2018). Thus,

2

Published as a conference paper at ICLR 2022

if state information could be effectively extracted from raw observations it may then be possible to
learn from these as fast as from states. However, unlike in the supervised or unsupervised setting,
learning representations in RL is complicated by non-stationarity in the training distribution and
strong correlation between observations at adjacent timesteps. Furthermore, given the often sparse
reward signal coming from the environment, learning representations in RL has to be achieved with
little to no supervision. Approaches to address these issues can be broadly classified into two classes.
The first class uses auxiliary self-supervised losses to accelerate the learning speed in model-free RL
algorithms (Schmidhuber, 1990; Jaderberg et al., 2016; Oord et al., 2018; Srinivas et al., 2020a). The
second class learns a world model and uses this to collect imagined rollouts, which then act as extra
data to train the RL algorithm reducing the samples required from the environment (Sutton, 1990;
Ha & Schmidhuber, 2018; Kaiser et al., 2019; Schrittwieser et al., 2020). COBERL is part of the
first set of methods, as it uses a self-supervised loss to improve data efficiency. In particular, we take
inspiration from the striking progresses made in recent years in both masked language modelling
(BERT, Devlin et al., 2019) and contrastive learning (Oord et al., 2018; Chen et al., 2020).

From BERT we borrow the combination of bidirectional processing in transformers (rather than
left-to-right or right-to-left, as is common with RNN-based models such as LSTMs) with a masked
prediction setup. With this combination the model is forced to focus on the context provided by
the surrounding timesteps to solve its objective (Voita et al., 2019). Thus, when the model is asked
to reconstruct a particular masked frame it does so by attending to all the relevant frames in the
trajectory. This is of particular relevance in RL, where state aliasing is a source of uncertainty in
value estimation, and so we believe that attending to other frames in the sequence could be a way to
provide extra evidence to reduce this uncertainty.

However, unlike in BERT where the input is a discrete vocabulary for language learning and targets
are available, in RL inputs consist of images, rewards and actions that do not form a finite or discrete
set and targets are not available. Thus, we must construct proxy targets and the corresponding
proxy tasks to solve. For this we use contrastive learning, and we derive our contrastive loss from
RELIC (Mitrovic et al., 2021). RELIC creates a series of augmentations from the original data
and then enforces invariant prediction of proxy targets across augmentations through an invariance
regularizer, yielding improved generalization guarantees. Compared to RELIC, COBERL does not
use data augmentations. Instead we rely on the sequential nature of our input data to create the
necessary groupings of similar and dissimilar points needed for contrastive learning. Not having
a need for augmentations is critical for RL as each domain would require handcrafting different
augmentations. Augmentations also make other methods less data efficient. Finally, we do not use an
additional encoder network as in RELIC, thus making COBERL fully end-to-end.

We now set out to explain the details of the auxiliary loss. In a batch of sampled sequences, before
feeding embeddings into the transformer stack, 15% of the embeddings are replaced with a fixed
token denoting masking. Then, let the set T represent indices in the sequence that have been randomly
masked and let t ∈ T . For the i-th training sequence in the batch, for each index t ∈ T , let xit be the
output of the GTrXL and yit the corresponding input to the GTrXL from the encoder (see Fig 1B).
Let φ(·, ·) be the inner product defined on the space of critic embeddings, i.e. φ(x, y) = g(x)T g(y),
where g is a critic function. The critic separates the embeddings used for the contrastive proxy
task and the downstream RL task. Details of the critic function are in App. B. This separation is
needed since the proxy and downstream tasks are related but not identical, and as such the appropriate
representations will likely not be the same. As a side benefit, the critic can be used to reduce the
dimensionality of the dot-product. To learn the embedding xit at mask locations t, we use yit as
a positive example and the sets {ybt}Bb=0,b6=i and {xbt}Bb=0,b 6=i as the negative examples with B the
number of sequences in the minibatch. We model qtx as

qtx =
exp(φ(xit, y

i
t))∑B

b=0 exp(φ(x
i
t, y

b
t)) + exp(φ(xit, x

b
t))

(1)

with qtx denoting qtx
(
xit|{ybt}Bb=0, {xbt}Bb=0,b 6=i

)
; qty is computed analogously (see Fig 1C). In order to

enforce self-attention consistency in the learned representations, we explicitly regularize the similarity
between the pairs of transformer embeddings and inputs through Kullback-Leibler regularization
from RELIC. Specifically, we look at the similarity between appropriate embeddings and inputs, and
within the sets of embeddings and inputs separately. To this end, we define:

3

Published as a conference paper at ICLR 2022

ptx =
exp(φ(xit, y

i
t))∑B

b=0 exp(φ(x
i
t, y

b
t))

; stx =
exp(φ(xit, x

i
t))∑B

b=0 exp(φ(x
i
t, x

b
t))

(2)

with ptx and stx shorthand for ptx(x
i
t|{ybt}Bb=0) and stx(x

i
t|{xbt}Bb=0), respectively; pty(y

i
t|{xbt}Bb=0) and

sty(y
i
t|{ybt}Bb=0) defined analogously (see Fig 1D). All together, the final objective takes the form:

L(X,Y) = −
∑
t∈T

(log qtx + log qty) + α
∑
t∈T

[
KL(stx, sg(sty)) +KL(ptx, sg(pty))+

KL(ptx, sg(sty)) +KL(pty, sg(stx))
]

(3)

with sg(·) indicating a stop-gradient. As in our RL objective, we use the full batch of sequences that
are sampled from the replay buffer to optimize this contrastive objective. Finally, we optimize a
weighted sum of the RL objective and L(X,Y) (see App. C for the details on the weighting).

2.2 ARCHITECTURE OF COBERL.

While transformers have proven very effective at connecting long-range data dependencies in natural
language processing (Vaswani et al., 2017; Brown et al., 2020; Devlin et al., 2019) and computer
vision (Carion et al., 2020; Dosovitskiy et al., 2021), in the RL setting they are difficult to train and
are prone to overfitting (Parisotto et al., 2020). In contrast, LSTMs have long been demonstrated to
be useful in RL. Although less able to capture long range dependencies due to their sequential nature,
LSTMs capture recent dependencies effectively. We propose a simple but powerful architectural
change: we add an LSTM layer on top of the GTrXL with an extra gated residual connection between
the LSTM and GTrXL, modulated by the input to the GTrXL (see Fig 1A). Finally we also have a
skip connection from the transformer input to the LSTM output.

More concretely, let Yt be the output of the encoder network at time t, then the additional module can
be defined by the following equations (see Fig 1A, Gate(), below, has the same form as other gates
internal to GTrXL):

Xt = GTrXL(Yt); Zt = Gate(Yt, Xt); Outputt = concatenate(LSTM(Zt), Yt) (4)

The architecture of COBERL is based on the idea that LSTMs and Transformer can be complementary.
In particular, the LSTM is known for having a short contextual memory. However, by putting a
transformer before the LSTM, the embeddings provided to the LSTM have already benefited from
the ability of the Transformer to process long contextual dependencies, thus helping the LSTM in
this respect. The second benefit works in a complementary direction. Transformers suffer from a
quadratic computational complexity with respect to the sequence length. Our idea is that by letting an
LSTM process some of this contextual information we can reduce the memory size of the Transformer
up to the point where we see a loss in performance. This hypothesis come from studies showing
that adding recurrent networks in architectures has the ability to closely emulate the behavior of
non-recurrent but deeper models, but it does so with far fewer parameters (Schwarzschild et al., 2021).
Having fewer parameters is an aspect of particular interest in RL, where gradients are noisy and
hence training larger model is more complicated than supervised learning (McCandlish et al., 2018).
Both hypotheses have been empirically confirmed by our ablations in section 4.2.

The learnt gate (eq. 4 and Appendix K), was done to give COBERL the ability to initially skip the
output of the transformer stack until the weights of this are warmed-up. Once the transformer starts
to output useful information the agent will be able to tune the weights in the gate to learn from them.
We hypothesize that this would also help in terms of data efficiency as at the beginning of training the
agent could only use the LSTM to get off the ground and start collecting relevant data to train the
Transformer. Finally, the skip connection on the output of the LSTM was taken from Kapturowski
et al. (2018).

Since the architecture is agnostic to the choice of RL regime we evaluate it in both on-policy and
off-policy settings. For on-policy, we use V-MPO (Song et al., 2019), and for off-policy we use R2D2
(Kapturowski et al., 2018).

4

Published as a conference paper at ICLR 2022

R2D2 Agent Recurrent Replay Distributed DQN (R2D2; Kapturowski et al., 2018) demonstrates
how replay and the RL learning objective can be adapted to work well for agents with recurrent
architectures. Given its competitive performance on Atari-57, we implement our CoBERL architecture
in the context of Recurrent Replay Distributed DQN (Kapturowski et al., 2018). We effectively replace
the LSTM with our gated transformer and LSTM combination and add the contrastive representation
learning loss. With R2D2 we thus leverage the benefits of distributed experience collection, storing
the recurrent agent state in the replay buffer, and "burning in" a portion of the unrolled network with
replayed sequences during training.
V-MPO Agent Given V-MPO’s strong performance on DMLab-30, in particular in conjunction
with the GTrXL architecture (Parisotto et al., 2020) which is a key component of CoBERL, we use
V-MPO and DMLab-30 to demonstrate CoBERL’s use with on-policy algorithms. V-MPO is an
on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018).
To avoid high variance often found in policy gradient methods, V-MPO uses a target distribution
for policy updates, subject to a sample-based KL constraint, and gradients are calculated to partially
move the parameters towards the target, again subject to a KL constraint. Unlike MPO, V-MPO uses
a learned state-value function V (s) instead of a state-action value function.

3 RELATED WORK

Transformers in RL. The transformer architecture (Vaswani et al., 2017) has recently emerged as
one of the best performing approaches in language modelling (Dai et al., 2019; Brown et al., 2020)
and question answering (Dehghani et al., 2018; Yang et al., 2019). More recently it has also been
successfully applied to computer vision (Dosovitskiy et al., 2021). Given the similarities of sequential
data processing in language modelling and reinforcement learning, transformers have also been
successfully applied to the RL domain, where as motivation for GTrXL, Parisotto et al. (2020) noted
that extra gating was helpful to train transformers for RL due to the high variance of the gradients
in RL relative to that of (un)supervised learning problems. In this work, we build upon GTrXL and
demonstrate that, perhaps for RL: attention is not all you need, and by combining GTrXL in the
right way with an LSTM, superior performance is attained. We reason that this demonstrates the
advantage of both forms of memory representation: the all-to-all attention of transformers combined
with the sequential processing of LSTMs. In doing so, we demonstrate that care should be taken
in how LSTMs and transformers are combined and show a simple gating is most effective in our
experiments. Also, unlike GTrXL, we show that using an unsupervised representation learning loss
that enforces self-attention consistency is an effective way to enhance data efficiency when using
transformers in RL.
Contrastive Learning. Recently contrastive learning (Hadsell et al., 2006; Gutmann & Hyvärinen,
2010; Oord et al., 2018) has emerged as a very performant paradigm for unsupervised representation
learning, in some cases even surpassing supervised learning (Chen et al., 2020; Caron et al., 2020;
Mitrovic et al., 2021). These methods have also been leveraged in an RL setting with the hope of
improving performance. Apart from MRA (Fortunato et al., 2019) mentioned above, one of the
early examples of this is CURL (Srinivas et al., 2020a) which combines Q-Learning with a separate
encoder used for representation learning with the InfoNCE loss from CPC (Oord et al., 2018). More
recent examples use contrastive learning for predicting future latent states (Schwarzer et al., 2020;
Mazoure et al., 2020), defining a policy similarity embeddings (Agarwal et al., 2021) and learning
abstract representations of state-action pairs (Liu et al., 2021). The closest work to our is M-CURL
(Zhu et al., 2020). Like our work, it combines mask prediction, transformers, and contrastive learning,
but there are a few key differences. First, unlike M-CURL who use a separate policy network,
COBERL computes Q-values based on the output of the transformer. Second, COBERL combines
the transformer architecture with a learnt gate (eq. 5 in App. K to produce the input for the Q-network,
while M-CURL uses the transformer as an additional embedding network (critic) for the computation
of the contrastive loss. Third, while COBERL uses an extension of RELIC (Mitrovic et al., 2021)
to the time domain and operates on the inputs and outputs of the transformer, M-CURL uses CPC
(Oord et al., 2018) with a momentum encoder as in (Srinivas et al., 2020a) and compares encodings
from the transformer with the separate momentum encoder.

4 EXPERIMENTS

We provide empirical evidence to show that COBERL i) improves data efficiency across a wide
range of environments and tasks, and ii) needs all its components to maximise its performance. In

5

Published as a conference paper at ICLR 2022

our experiments, we demonstrate performance on Atari57 (Bellemare et al., 2013), the DeepMind
Control Suite (Tassa et al., 2018), and the DMLab-30 (Beattie et al., 2016). Recently, Dreamer V2
(Hafner et al., 2020b) has emerged as a strong model-based agent across Atari57 and DeepMind
Control Suite; we therefore include it as a reference point for performance on these domains.

For all experiments, we report scores at the end of training. All results are averaged over five seeds
and reported with standard error. For a more comprehensive description of the evaluation done, as
well as detailed information on the distributed setup used see App. A.1. Ablations are run on 7 Atari
games chosen to match the ones in the original DQN publication (Mnih et al., 2013), and on all the
30 DMLab games. The hyper-parameters of all the baselines are tuned individually to maximise
performance (see App. C.5 for the detailed procedure). We use a ResNet as the encoder for COBERL.
We use Peng’s Q(λ) as our loss (Peng & Williams, 1994). To ensure that this is comparable to R2D2,
we also run an R2D2 baseline with this loss. For thorough description of the architectures for all
environments see App. B.

For DMLab-30 we use V-MPO (Song et al., 2019) to directly compare COBERL with (Parisotto
et al., 2020) and also demonstrate how COBERL may be applied to both on and off-policy learning.
The experiments were run using a Podracer setup (Hessel et al., 2021), details of which may be found
in App. A.2. COBERL is trained for 10 billion steps on all 30 DMLab-30 games at the same time, to
mirror the exact multi-task setup presented in (Parisotto et al., 2020). Compared to (Parisotto et al.,
2020) we have two differences. Firstly, all the networks run without pixel control loss (Jaderberg
et al., 2016) so as not to confound our contrastive loss with the pixel control loss. Secondly all the
models used a fixed set of hyperparameters with 3 random seeds, whereas in (Parisotto et al., 2020)
the results were averaged across hyperparameters.

4.1 TESTING COBERL ACROSS SEVERAL ENVIRONMENTS

To test the generality of our approach, we analyze the performance of our model on a wide range
of environments. We show results on the Arcade Learning Environment (Bellemare et al., 2013),
DeepMind Lab (Beattie et al., 2016), as well as the DeepMind Control Suite (Tassa et al., 2018). To
help with comparisons, in Atari-57 and DeepMind Control we introduce an additional baseline, which
we name R2D2-GTrXL. In this variant of R2D2 the LSTM is replaced by GTrXL. R2D2-GTrXL has
no unsupervised learning. This way we are able to observe how GTrXL is affected by the change to
an off-policy agent (R2D2), from its original V-MPO implementation in Parisotto et al. (2020). We
also perform an additional ablation analysis by removing the contrastive loss from COBERL (see
Sec. 4.2.1). This baseline demonstrates the importance of contrastive learning in these domains, and
we show that the combination of an LSTM and transformer is superior to either alone.

> h. Mean Median 25th Pct 5th Pct
COBERL 49 1368.37%± 34.10% 296.22% 150.56% 13.65%

R2D2-GTrXL 48 1088.90% ± 53.45% 273.83% 141.66% 5.94%
R2D2 47 1017.18% ± 33.85% 269.26% 118.96% 4.18%

Rainbow 43 874.0% 231.0% 101.7% 4.9%
Dreamer V2* 37 631.1% 162.0% 76.6% 2.5%

Table 1: The human normalized scores on Atari-57. > h indicates the number
of tasks for which performance above average human was achieved. ∗ indicates
that it was run on 55 games with sticky actions; Pct refers to percentile.

Coberl gTrXL

A
re

a
U

nd
er

 th
e

Cu
rv

e
(A

U
C)

1e4

Figure 2: Area under the
curve (AUC) for Atari on all
57 levels (higher is better).

Atari As commonly done in literature (Mnih et al., 2015; Hessel et al., 2018; Machado et al., 2018;
Hafner et al., 2020b), we measure performance on all 57 Atari games after running for 200 million
frames. As detailed in App. C, we use the standard Atari frame pre-processing to obtain the 84x84
gray-scaled frames that are used as input to our agent. We do not use frame stacking.

Table 1 shows the results of all the agents where published results are available. COBERL shows the
most games above average human performance and significantly higher overall mean performance.
Interestingly, the performance of R2D2-GTrXL shows that the addition of GTrXL is not sufficient to
obtain the improvement in performance that COBERL exhibits (in 4.2 we will demonstrate that both
the contrastive loss and LSTM contribute to this improvement). R2D2-GTrXL also exhibits slightly

6

Published as a conference paper at ICLR 2022

better median than COBERL, showing that R2D2-GTrXL is indeed a powerful variant on Atari.
Additionally, we observe that the difference in performance in COBERL is higher when examining
the lower percentiles. This suggests that COBERL causes an improvement in data efficiency. To
confirm this tendency we calculated the area under the curve (AUC) for the learning curves presented
in Appendix F and we perform a t-test analysis on it (please see App.I for details on how AUC was
calculated). Figure 2 present this analysis, and it confirms a significant difference with respect to
the model used, t(114)=3.438, p=.008, with COBERL(M=7380.23, SD=942.29) being better than
GTrXL (M=5192.76, SD=942.01), thus showing that COBERL is more data efficient.

Control Suite We also perform experiments on the DeepMind Control Suite (Tassa et al., 2018).
While the action space in this domain is typically treated as continuous, we discretize the action space
in our experiments to apply the same architecture as in Atari and DMLab-30. For more details on
the number of actions for each task see App. C.4. We do not use pre-processing on the environment
frames. Finally, COBERL is trained only from pixels without state information.

DM Suite COBERL R2D2-GTrXL R2D2 D4PG-Pixels
acrobot swingup 355.25 ± 3.82 265.90 ± 113.27 327.16 ± 5.35 81.7 ± 4.4

fish swim 597.66 ± 60.09 82.30 ± 265.07 345.63 ± 227.44 72.2 ± 3.0
fish upright 952.60 ± 5.16 844.13 ± 21.70 936.09 ± 11.58 405.7 ± 19.6

pendulum swingup 835.06 ± 9.38 775.72 ± 50.06 831.86 ± 61.54 680.9 ± 41.9
swimmer swimmer6 419.26 ± 48.37 206.95 ± 58.37 329.61 ± 26.77 194.7 ± 15.9

finger spin 985.96 ± 1.69 983.74 ± 10.23 980.85 ± 0.67 985.7 ± 0.6
reacher easy 984.00 ± 2.76 982.60 ± 2.24 982.28 ± 9.30 967.4 ± 4.1
cheetah run 523.36 ± 41.38 105.23 ± 144.82 365.45 ± 50.40 523.8 ± 6.8
walker walk 781.16 ± 26.16 584.50 ± 70.28 687.18 ± 18.15 968.3 ± 1.8

ball in cup catch 979.10 ± 6.12 975.26 ± 1.63 980.54 ± 1.94 980.5 ± 0.5
cartpole swingup 812.01 ± 7.61 836.01 ± 4.37 816.23 ± 2.93 862.0 ± 1.1

cartpole swingup sparse 714.80 ± 16.18 743.71 ± 9.27 762.57 ± 6.71 482.0 ± 56.6

Table 2: Results on tasks in the DeepMind Control Suite. CoBERL,
R2D2-GTrXL, R2D2, and D4PG-Pixels are trained on 100M frames. In
the appendix (Table 17), we show three other approaches as reference
and not as a directly comparable baseline.)

Coberl R2D2-gTrXL

A
re

a
U

nd
er

 th
e

Cu
rv

e
(A

U
C)

Figure 3: Area under the curve
(AUC) for DmControl (higher is
better).

We include six tasks popular in current literature: ball_in_cup catch, cartpole swingup,
cheetah run, finger spin, reacher easy, and walker walk. Most previous work on
these specific tasks has emphasized data efficiency as most are trivial to solve even with the baseline—
D4PG-Pixels—in the original dataset paper (Tassa et al., 2018). We thus include 6 other tasks
that are difficult to solve with D4PG-Pixels and are relatively less explored: acrobot swingup,
cartpole swingup_sparse, fish swim, fish upright, pendulum swingup, and
swimmer swimmer6. In Table 2 we show results on COBERL, R2D2-gTRXL, R2D2,
CURL (Srinivas et al., 2020a), Dreamer (Hafner et al., 2020a), Soft Actor Critic (Haarnoja et al.,
2018) on pixels as demonstrated in (Srinivas et al., 2020a), and D4PG-Pixels (Tassa et al., 2018).
CURL, DREAMER, and Pixel SAC are for reference only as they represent the state the art for
low-data experiments (500K environment steps). These three are not perfectly comparable baselines;
however, D4PG-Pixels is run on a comparable scale with 100 million environment steps. Because
COBERL relies on large scale distributed experience, we have a much larger number of available
environment steps per gradient update. We run for 100M environment steps as with D4PG-Pixels, and
we compute performance for our approaches by taking the evaluation performance of the final 10%
of steps. Across the majority of tasks, COBERL outperforms D4PG-Pixels. The increase in perfor-
mance is especially apparent for the more difficult tasks. For most of the easier tasks, the performance
difference between the COBERL, R2D2-GTrXL, and R2D2 is negligible. For ball_in_cup
catch, cartpole swingup, finger spin and reacher easy, even the original R2D2
agent performs on par with the D4PG-Pixels baseline. On more difficult tasks such as fish swim,
and swimmer swimmer6, there is a very large, appreciable difference between COBERL, R2D2,
and R2D2-GTrXL. The combination of the LSTM and transformer specifically makes a large differ-
ence here especially compared to D4PG-Pixels. Interestingly, this architecture is also very important
for situations where the R2D2-based approaches underperform. For cheetah run and walker
walk, COBERL dramatically narrows the performance gap between R2D2 and state of the art (in
App. F we report learning curves for each game). Figure 3 shows that also in this domain, we see a
significant AUC improvement for COBERL when compared to R2D2-gTrXL, t(24)=1.609, p=.03.

DMLab-30. To test COBERL in a challenging 3 dimensional environment we run it in DmLab-
30 (Beattie et al., 2016). The agent was trained at the same time on all the 30 tasks, following

7

Published as a conference paper at ICLR 2022

A BA B

H
um

an
 N

or
m

al
is

ed
 S

co
re

Coberl gTrXL Coberl gTrXLCoberl gTrXL

A
re

a
U

nd
er

 th
e

Cu
rv

e
(A

U
C)

Figure 4: DMLab-30 experiments. a) Human normalised returns in DMLab-30 across all the 30 levels (higher
is better). b) Area under the curve for all the 30 DMLab levels. Results are over 5 seeds and the final 5% of
training.(lower) c) Area under the curve (AUC) for DMLab-30 across all the 30 levels. (higher is better)

the setup of GTrXl (Parisotto et al., 2020), which we use as our baseline. In Figure 4A we show
the final results on the DMLab-30 domain. If we look at all the 30 games, COBERL reaches a
substantially higher score than GTrXL (COBERL=115.47% ± 4.21%, GTrXL=101.54% ± 0.50%,
t(60)=4.37, p=1.14e-5, Figure 4A). In Figure 4B we analysed data efficiency by computing the AUC
and associated average statistics. In DMLab the difference between models is even more significant
than Atari, t(60)=6.097, p=9.39e-09, with COBERL (M=1193.28, SD=383.29) having better average
AUC than GTrXL (M=764.09, SD=224.51), hence showing that our methods scales well to more
complex domains. (see Appendix F for learning curves)

4.2 ABLATIONS

In Sec. 2, we explained contributions that are essential to COBERL. We now disentangle the added
benefit of these two separate contributions. Moreover, we run a set of ablations to understand the
role of model size on the results. Ablations are run on 7 Atari games chosen to match the ones in the
original DQN publication (Mnih et al., 2013), and on all the 30 DMLab games.

4.2.1 IMPACT OF AUXILIARY LOSSES

In Table 3 we show that our contrastive loss contributes to a significant gain in performance, both in
Atari and DMLab-30, when compared to COBERL without it. Also, in challenging environments
like DmLab-30, COBERL without extra loss is still superior to the relative baseline. The only case
where we do not see and advantage of using the auxiliary loss is if we consider the median score on
the reduced ablation set of Atari games. However in the case of the DmLab-30, where we consider a
larger set of levels (7 vs. 30), there is a clear benefit of the auxiliary loss.

Moreover, Table 4 reports a comparison between our loss, SimCLR (Chen et al., 2020) and CURL
(Srinivas et al., 2020a). Although simpler than both SimCLR - which in its original implementation
requires handcrafted augmentations - and CURL - which requires an additional network - our
contrastive method shows improved performance. These experiments where run only on Atari to
reduce computational costs while still being sufficient for the analysis. We also ran one extra ablation
study where we did not use masking of the input to make our setup as close as possible to (Mitrovic
et al., 2021). As seen on Table 4, the column CoBERL w/o masking shows that removing the masking
technique derived from the language literature makes the results substantially worse.

COBERL COBERL w/o aux
loss

GTrXL baseline*

DMLab-30 Mean 115.47%± 4.21% 105.29%± 2.02% 101.54%± 0.50%
Median 110.86% 104.84% 101.35%

Atari Mean 726.34%± 44.06% 490.61%± 22.48% 605.62%± 47.46%
Median 270.03% 357.96% 394.53%

Table 3: Impact of contrastive loss. Human normalized scores on Atari-57 ablation tasks and DMLab-30 tasks.
* for DMLab the baseline is GTrXL trained with VMPO, for Atari the baseline is GTrXL trained with R2D2.

COBERL COBERL with
CURL

COBERL with Sim-
CLR

COBERL w/o mask-
ing

Atari Mean 726.34%± 44.06% 608.53%± 62.93% 347.83%± 46.74% 331.05%± 59.05%
Median 270.03% 272.34% 265.00% 233.63%

Table 4: Comparison with alternative auxiliary losses.

8

Published as a conference paper at ICLR 2022

4.2.2 IMPACT OF ARCHITECTURAL CHANGES

Table 5 shows the effects of removing the LSTM from COBERL (column “w/o LSTM”), as well as
removing the gate and its associated skip connection (column “w/o Gate”). In both cases COBERL
performs substantially worse showing that both components are needed. Finally, we also experimented
with substituting the learned gate with either a sum or a concatenation. The results, presented
in Appendix D, show that in most occasions these alternatives decrease performance, but not as
substantially as removing the LSTM, gate or skip connections. Our hypothesis is that the learned
gate gives more flexibility in complex environments, we leave it open for future work to explore this.

COBERL w/o LSTM w/o Gate

DMLab-30 Mean 115.47%± 4.21% 96.29%± 3.39 86.42%± 7.25%
Median 110.86% 99.83% 95.21%

Atari Mean 726.34%± 44.06 504.42%± 48.51% 528.61%± 73.21%
Median 270.03% 249.62% 283.16%

Table 5: Impact of Architectural changes. Human normalized scores on Atari ablation tasks and DMLab-30.

4.2.3 IMPACT OF NUMBER OF PARAMETERS

Table 6 compares the models in terms of the number of parameters. For Atari, the number of
parameters added by COBERL over the R2D2(GTrXL) baseline is very limited; however, COBERL
still produces a significant gain in performance. We also tried to move the LSTM before the
transformer module (column “COBERL with LSTM before”). In this case the representations for the
contrastive loss were taken from before the LSTM. Interestingly, this setting performs worse, despite
having the same number of parameters as COBERL. This goes in the direction of our hypothesis that
having the LSTM after the Transformer could allow the former to exploit the extra context provided
by the latter. For DMLab-30, it is worth noting that COBERL has a memory size of 256, whereas
GTrXL has a memory of size 512 resulting in substantially fewer parameters. Nevertheless, the
discrepancies between models are even more pronounced, even though the number of parameters
is either exactly the same (“COBERL with LSTM before”) or higher (GTrXL). This ablation is of
particular interest as it shows that the results are driven by the particular architectural choice rather
than the added parameters. Also it helps supporting our idea that the LSTM, by processing a certain
amount of contextual information, allow for a reduced memory size on the Transformer, without a
loss in performance and with a reduce computation complexity (given fewer parameters).

COBERL GTrXL* COBERL with
LSTM before

R2D2 LSTM

DMLab-30
Mean 115.47%± 4.21% 101.54%± 0.50% 101.29%± 1.80% N/A

Median 110.86% 103.82% 100.03% N/A
Num. Params. 47M 66M 47M N/A

Atari
Mean 726.34%± 44.06 605.62%±47.46% 604.36%±78.60% 362.38%±20.28%

Median 270.03% 394.53% 296.72% 202.71%
Num. Params. 46M 42M 46M 18M

Table 6: Effect of number of parameters. Human normalized scores on Atari-57 ablation tasks and DMLab-30
tasks. *for DMLab-30 the baseline is GTrXL trained with VMPO with a memory size of 512, for Atari the
baseline is GTrXL trained with R2D2 with a memory size of 64.

5 CONCLUSIONS

We proposed a novel RL agent, Contrastive BERT for RL (COBERL), which introduces a new
contrastive representation learning loss that enables the agent to efficiently learn consistent represen-
tations. This, paired with an improved architecture, resulted in better data efficiency on a varied set
of environments and tasks. Moreover, through an extensive set of ablation experiments we confirmed
that all COBERL components are necessary to achieve the performance of the final agent. Critically,
COBERL is fully end-to-end as it does not require an extra encoder network (vs CURL or RELIC), or
data augmentations (vs SIMCLR and RELIC) and it has fewer parameters then gTrXL. To conclude,
we have shown that our auxiliary loss and architecture provide an effective and general means to
efficiently train large attentional models in RL. (For extra conclusions and limitations see App.J)

9

Published as a conference paper at ICLR 2022

6 OPTIONAL REPRODUCIBILITY STATEMENT

To help with reproducibility we have included extensive details for

• Setup details in Appendix A
• Architecture description in Appendix B
• Hyper-parameters chosen in Appendix C

We also report the pseudo-code for the algorithm and the auxiliary loss in Appendix H

10

Published as a conference paper at ICLR 2022

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Jonas Degrave, Steven Bohez, Yuval Tassa, Dan
Belov, Nicolas Heess, and Martin Riedmiller. Relative entropy regularized policy iteration. arXiv
preprint arXiv:1812.02256, 2018.

Rishabh Agarwal, Marlos C. Machado, P. S. Castro, and Marc G. Bellemare. Contrastive behavioral
similarity embeddings for generalization in reinforcement learning. ArXiv, abs/2101.05265, 2021.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

M. Caron, I. Misra, J. Mairal, Priya Goyal, P. Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. ArXiv, abs/2006.09882, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, pp. 1597–1607, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adrià Puigdomènech Badia, Gavin
Buttimore, Charlie Deck, Joel Z Leibo, and Charles Blundell. Generalization of reinforcement
learners with working and episodic memory. NeurIPS, 2019.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297–304, 2010.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

11

Published as a conference paper at ICLR 2022

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2020a.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020b.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio Viola,
and Hado van Hasselt. Podracer architectures for scalable reinforcement learning, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40, 2017.

Guoqing Liu, Chuheng Zhang, Li Zhao, Tao Qin, Jinhua Zhu, Li Jian, Nenghai Yu, and Tie-Yan
Liu. Return-based contrastive representation learning for reinforcement learning. In ICLR 2021,
January 2021.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for
general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Bogdan Mazoure, R’emi Tachet des Combes, Thang Doan, Philip Bachman, and R. Devon Hjelm.
Deep reinforcement and infomax learning. ArXiv, abs/2006.07217, 2020.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Jovana Mitrovic, Brian McWilliams, Jacob Walker, Lars Buesing, and Charles Blundell. Repre-
sentation learning via invariant causal mechanisms. In International conference on learning
representations, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

12

Published as a conference paper at ICLR 2022

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International Conference on Machine Learning, pp. 7487–7498.
PMLR, 2020.

Jing Peng and Ronald J Williams. Incremental multi-step q-learning. In Machine Learning Proceed-
ings 1994, pp. 226–232. Elsevier, 1994.

Jiirgen Schmidhuber. Making the world differentiable: On using self-supervised fully recurrent n
eu al networks for dynamic reinforcement learning and planning in non-stationary environm nts.
1990.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Max Schwarzer, Ankesh Anand, R. Goel, R. Devon Hjelm, Aaron C. Courville, and Philip Bach-
man. Data-efficient reinforcement learning with momentum predictive representations. ArXiv,
abs/2007.05929, 2020.

Avi Schwarzschild, Arjun Gupta, Amin Ghiasi, Micah Goldblum, and Tom Goldstein. The uncanny
similarity of recurrence and depth. arXiv preprint arXiv:2102.11011, 2021.

H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W
Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy maximum a
posteriori policy optimization for discrete and continuous control. arXiv preprint arXiv:1909.12238,
2019.

A. Srinivas, M. Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations for reinforce-
ment learning. In ICML, 2020a.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020b.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Machine learning proceedings 1990, pp. 216–224. Elsevier, 1990.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Hado van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning values
across many orders of magnitude. arXiv preprint arXiv:1602.07714, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
transformer: A study with machine translation and language modeling objectives. arXiv preprint
arXiv:1909.01380, 2019.

13

Published as a conference paper at ICLR 2022

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Jinhua Zhu, Yingce Xia, Lijun Wu, Jiajun Deng, W. Zhou, Tao Qin, and H. Li. Masked contrastive
representation learning for reinforcement learning. ArXiv, abs/2010.07470, 2020.

14

Published as a conference paper at ICLR 2022

A SETUP DETAILS

A.1 R2D2 DISTRIBUTED SYSTEM SETUP

Following R2D2, the distributed system consists of several parts: actors, a replay buffer, a learner,
and an evaluator. Additionally, we introduce a centralized batched inference process to make more
efficient use of actor resources.

Actors: We use 512 processes to interact with independent copies of the environment, called actors.
They send the following information to a central batch inference process:

• xt: the observation at time t.

• rt−1: the reward at the previous time, initialized with r−1 = 0.

• at−1: the action at the previous time, a−1 is initialized to 0.

• ht−1: recurrent state at the previous time, is initialized with h−1 = 0.

They block until they receive Q(xt, a; θ). The l-th actor picks at using an εl-greedy policy. As R2D2,
the value of εl is computed following:

εl = ε1+α
l

L−1

where ε = 0.4 and α = 7. After that is computed, the actors send the experienced transition
information to the replay buffer.

Batch inference process: This central batch inference process receives the inputs mentioned above
from all actors. This process has the same architecture as the learner with weights that are fetched
from the learner every 0.5 seconds. The process blocks until a sufficient amount of actors have sent
inputs, forming a batch. We use a batch size of 64 in our experiments. After a batch is formed, the
neural network of the agent is run to compute Q(xt, a, θ) for the whole batch, and these values are
sent to their corresponding actors.

Replay buffer: it stores fixed-length sequences of transitions T = (ωs)
t+L−1
s=t along with

their priorities pT , where L is the trace length we use. A transition is of the form ωs =
(rs−1, as−1, hs−1, xs, as, hs, rs, xs+1). Concretely, this consists of the following elements:

• rs−1: reward at the previous time.

• as−1: action done by the agent at the previous time.

• hs−1: recurrent state (in our case hidden state of the LSTM) at the previous time.

• xs: observation provided by the environment at the current time.

• as: action done by the agent at the current time.

• hs: recurrent state (in our case hidden state of the LSTM) at the current time.

• rs: reward at the current time.

• xs+1: observation provided by the environment at the next time.

The sequences never cross episode boundaries and they are stored into the buffer in an overlapping
fashion, by an amount which we call the replay period. Finally, concerning the priorities, we followed
the same prioritization scheme proposed by Kapturowski et al. (2018) using a mixture of max and
mean of the TD-errors in the sequence with priority exponent η = 0.9.

Evaluator: the evaluator shares the same network architecture as the learner, with weights that are
fetched from the learner every episode. Unlike the actors, the experience produced by the evaluator
is not sent to the replay buffer. The evaluator acts in the same way as the actors, except that all
the computation is done within the single CPU process instead of delegating inference to the batch
inference process. At the end of 5 episodes the results of those 5 episodes are average and reported.
In this paper we report the average performance provided by such reports over the last 5% frames (for
example, on Atari this is the average of all the performance reports obtained when the total frames
consumed by actors is between 190M and 200M frames).

15

Published as a conference paper at ICLR 2022

Learner: The learner contains two identical networks called the online and target networks with
different weights θ and θ′ respectively (Mnih et al., 2015). The target network’s weights θ′ are
updated to θ every 400 optimization steps. θ is updated by executing the following sequence of
instructions:

• First, the learner samples a batch of size 64 (batch size) of fixed-length sequences of
transitions from the replay buffer, with each transition being of length L: Ti = (ωis)

t+L−1
s=t .

• Then, a forward pass is done on the online network and the target with
inputs (xis, r

i
s−1, a

i
s−1, h

i
s−1)

t+H
s=t in order to obtain the state-action values

{(Q(xis, a; θ), Q(xis, a; θ
′)}.

• With {(Q(xis, a; θ), Q(xis, a; θ
′)}, the Q(λ) loss is computed.

• The online network is used again to compute the auxiliary contrastive loss.
• Both losses are summed (with by weighting the auxiliary loss by 0.1 as described in C), and

optimized with an Adam optimizer.
• Finally, the priorities are computed for the sampled sequence of transitions and updated in

the replay buffer.

A.2 V-MPO DISTRIBUTED SETUP

For on-policy training, we used a Podracer setup similar to (Hessel et al., 2021) for fast usage of
experience from actors by learners.

TPU learning and acting: As in the Sebulba setup of (Hessel et al., 2021), acting and learning
network computations were co-located on a set of TPU chips, split into a ratio of 3 cores used for
learning for every 1 core used for inference. This ratio then scales with the total number of chips
used.

Environment execution: Due to the size of the recurrent states used by COBERL and stored on the
host CPU, it was not possible to execute the environments locally. To proceed we used 64 remote
environment servers which serve only to step multiple copies of the environment. 1024 concurrent
episodes were processed to balance frames per second, latency between acting and learning, and
memory usage of the agent states on the host CPUs.

A.3 COMPUTATION USED

R2D2 We train the agent with a single TPU v2-based learner, performing approximately 5 network
updates per second (each update on a mini-batch of 64 sequences of length 80 for Atari and 120
for Control). We use 512 actors, using 4 actors per CPU core, with each one performing ∼ 64
environment steps per second on Atari. Finally for the batch inference process a TPU v2, which
allows all actors to achieve the speed we have described. In particular, we used 8 TPU cores for
learning and 2 for inference.

V-MPO We train the agent with 4 hosts each with 8 TPU v2 cores. Each of the 8 cores per host
was split into 6 for learning and 2 for inference. We separately used 64 remote CPU environment
servers to step 1024 concurrent environment episodes using the actions returned from inference. The
learner updates were made up of a mini-batch of 120 sequences, each of length 95 frames. This setup
enabled 4.6 network updates per second, or 53.4k frames per second.

A.4 COMPLEXITY ANALYSIS

As stated, the agent consists of layers of convolutions, transformer layers, and linear layers. Therefore
the complexity ismax{O(n2 ·d), O(k ·n ·d2)}, where k is the kernel size in the case of convolutions,
n is the size of trajectories, and d is the size of hidden layers.

16

Published as a conference paper at ICLR 2022

B ARCHITECTURE DESCRIPTION

B.1 ENCODER

As shown in Fig. 1, observations Oi are encoded using an encoder. In this work, the encoder we
have used is a ResNet-47 encoder. Those 47 layers are divided in 4 groups which have the following
characteristics:

• An initial stride-2 convolution with filter size 3x3 (1 · 4 layers).

• Number of residual bottleneck blocks (in order): (2, 4, 6, 2). Each block has 3 convolutional
layers with ReLU activations, with filter sizes 1x1, 3x3, and 1x1 respectively ((2+4+6+2)·3
layers).

• Number of channels for the last convolution in each block: (64, 128, 256, 512).

• Number of channels for the non-last convolutions in each block: (16, 32, 64, 128).

• Group norm is applied after each group, with a group size of 8.

After this observation encoding step, a final 2-layer MLP with ReLU activations of sizes (512, 448)
is applied. The previous reward and one-hot encoded action are concatenated and projected with
a linear layer into a 64-dimensional vector. This 64-dimensional vector is concatenated with the
448-dimensional encoded input to have a final 512-dimensional output.

B.2 TRANSFORMER

As described in Section 2, the output of the encoder is fed to a Gated Transformer XL. For Atari and
Control, the transformer has the following characteristics:

• Number of layers: 8.

• Memory size: 64.

• Hidden dimensions: 512.

• Number of heads: 8.

• Attention size: 64.

• Output size: 512.

• Activation function: GeLU.

For DmLab the transformer has the following characteristics:

• Number of layers: 12.

• Memory size: 256 for COBERL and 512 for gTrXL.

• Hidden dimensions: 128.

• Number of heads: 4.

• Attention size: 64.

• Output size: 512.

• Activation function: ReLU.

the GTrXL baseline is identical, but with a Memory size of 512.

B.3 LSTM AND VALUE HEAD

For both R2D2 and V-MPO the outputs of the transformer and encoder are passed through a GRU
transform to obtain a 512-dimensional vector. After that, an LSTM with 512 hidden units is applied.
The the value function is estimated differently depending on the RL algorithm used.

17

Published as a conference paper at ICLR 2022

R2D2 Following the LSTM, a Linear layer of size 512 is used, followed by a ReLU activation.
Finally, to compute the Q values from that 512 vector a dueling head is used, as in Kapturowski et al.
(2018), a dueling head is is used, which requires a linear projection to the number of actions of the
task, and another projection to a unidimensional vector.

V-MPO Following the LSTM, a 2 layer MLP with size 512 and 30 (i.e. the number of levels in
DMLab) is used. In the MLP we use ReLU activation. As we are interested in the multi-task setting
where a single agent learns a large number of tasks with differing reward scales, we used PopArt (van
Hasselt et al., 2016) for the value function estimation (see Table. 13 for details).

B.4 CRITIC FUNCTION

For DmLab-30 (V-MPO), we used a 2 layer MLP with hidden sizes 512 and 128. For Atari and
Control Suite (R2D2) we used a single layer of size 512.

18

Published as a conference paper at ICLR 2022

C HYPERPARAMETERS

For the experiments in Atari57 and the DeepMind Control suite, COBERL uses the R2D2 distributed
setup. We use 512 actors for all our experiments. We do not constrain the amount of replay done
for each experience trajectory that actors deposit in the buffer. However, we have found empirical
replay frequency per data point to be close among all our experiments (with an expected value of 1.5
samples per data point). We use a separate evaluator process that shares weights with our learner
in order to measure the performance of our agents. We report scores at the end of training. The
hyperparameters and architecture we choose for these two domains are the same with two exceptions:
i) we use a shorter trace length for Atari (80 instead of 120) as the environment does not require a
long context to inform decisions, and ii) we use a squashing function on Atari and the Control Suite
to transform our Q values (as done in (Kapturowski et al., 2018)) since reward structures vary highly
in magnitude between tasks.

C.1 ATARI AND DMLAB PRE-PROCESSING

We use the commonly used input pre-processing on Atari and DMLab frames, shown on Tab. 8. One
difference with the original work of Mnih et al. (2015), is that we do not use frame stacking, as
we rely on our memory systems to be able to integrate information from the past, as done in Kap-
turowski et al. (2018). ALE is publicly available at https://github.com/mgbellemare/
Arcade-Learning-Environment.

Hyperparameter Value
Max episode length 30min
Num. action repeats 4
Num. stacked frames 1
Zero discount on life loss false
Random noops range 30
Sticky actions false
Frames max pooled 3 and 4
Grayscaled/RGB Grayscaled
Action set Full

Table 7: Atari pre-processing hyperparameters.

C.2 CONTROL SUITE PRE-PROCESSING

As mentioned in 4, we use no pre-processing on the frames received from the control environment.

C.3 DMLAB PRE-PROCESSING

Hyperparameter Value
Num. action repeats 4
Num. stacked frames 1
Grayscaled/RGB RGB
Image width 96
Image height 72
Action set as in Parisotto et al. (2020)

Table 8: DmLab pre-processing hyperparameters.

C.4 CONTROL ENVIRONMENT DISCRETIZATION

As mentioned, we discretize the space assigning two possibilities (1 and -1) to each dimension
and taking the Cartesian product of all dimensions, which results in 2n possible actions. For the
cartpole tasks, we take a diagonal approach, utilizing each unit vector in the action space and

19

https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment

Published as a conference paper at ICLR 2022

then dividing each unit vector into 5 possibilities with the non-zero coordinate ranging from -1 to 1.
The amount of actions this results in is outlined on Tab. 9.

Task Action space size Total amount of actions
Acrobot 1 2
Cartpole 1 5
Cup 2 4
Cheetah 6 64
Finger 2 4
Fish 5 32
Pendulum 1 2
Reacher 2 4
Swimmer 5 32
Walker 6 64

Table 9: Control discretization action spaces.

C.5 HYPERPARAMETERS USED

We list all hyperparameters used here for completeness.

We started by optimizing the hyperparameters of GTrXL highlighted in bold in Tab 10 by doing a
sweep over 10 Atari games: Seaquest, Qbert, Frostbite, Ms Pacman, Space Invaders, Gravitar, Solaris,
Hero, Venture, Montezuma Revenge. Following this, the hyperparameters were kept fixed throughout
all the experiments.

Table 10 reports all the hyperparameters of the R2D2 experiments, both the fixed ones and the
ones with the ranges over which we did the sweep. The fixed hyper-parameters were taken from
Kapturowski et al. (2018). We then choose a set of hyper-paramters (both for the architecture and
the algorithm) to sweep over to maximise the performance of gTrXL in this off-policy setting, given
that there was not prior literature on this. The hyper-paramters over which we did the sweep for the
algorithm were chose in accordance to Kapturowski et al. (2018) and the related sweep. And for
the architecture hyper-parameters we based our choice on Parisotto et al. (2020). We believe that
in this way we ensure to have a properly tuned baseline that enforces a fair comparison. Table 11
reports the chosen hyperparameters that we found to optimize the performance of GTrXL on the 10
Atari games. We then moved to CoBERL. CoBERL, in comparison to the baseline GTrXL has two
extra hyperparamters: ‘Contrastive loss weight’ and ‘Contrastive loss mask rate’. The former was
tuned, whereas the latter we kept equal to 0.15 as done in [11]. Consequently, we re-ran the same
procedure as before, but we fixed all the previous hyperparameters optimized for GTrXL (see Tab. 11
and we perform a grid search over the same 10 Atari games to find the value of ‘Contrastive loss
weight’ that maximized performance. The values over which we did the search are 0.01, 0.1 and 1.
We ended-up picking 1, although the difference between 0.1 and 1 was minimal. Table 12 reports the
2 extra parameters used for COBERL.

For DmLAB we optimized the hyperparameters of GTrXL on all the 30 games. Table 13 reports
both the fixed ones and the ones with the ranges over which. The fixed hyper-parameters were taken
directly from Parisotto et al. (2020) and we sweep over ‘’Epsilon Alpha”, “Target Update Period”
and ’Memory size’ to make sure we maximised performance of this baseline. Table 14 reports the
chosen hyperparameters that we found to optimize the performance of GTrXL on DmLAB. We then
moved to CoBERL. Again, by keeping fixed all the previous hyperparameters optimized for GTrXL
we perform a grid search over all the 30 games to find the value of ‘Contrastive loss weight’ that
maximized performance. The values over which we did the search were 0.1 and 1. We did not
find any significant difference between the two values, so we left it equal to 1 such that the two
losses would have the same effect. Table 15 reports the 2 extra parameters used for CoBERL and
the reduced memory size, in accordance with our hypothesis that the LSTM on top of Transformer
would help reducing the size of the memory especially in last.

20

Published as a conference paper at ICLR 2022

Hyperparameter Value
Optimizer Adam
Learning rate {0.0001, 0.0003}
Q’s λ {0.8, 0.9}
Adam epsilon 10−7

Adam beta1 0.9
Adam beta2 0.999
Adam clip norm 40

Q-value transform (non-DMLab) h(x) = sign(x)(
√
|x|+ 1− 1) + εx

Q-value transform (DMLab) h(x) = x
Discount factor 0.997
Batch size 32
Trace length (Atari) 80
Trace length (non-Atari) 120
Replay period (Atari) 40
Replay period (non-Atari) 60
Replay capacity 80000 sequences
Replay priority exponent 0.9
Importance sampling exponent 0.6
Minimum sequences to start replay 5000
Target Q-network update period 400
Evaluation ε 0.01
Target ε 0.01
Number of layers {6,8,12}
Memory size {64,128}
Number of heads {4,8}
Attention size {64,128}

Table 10: GTrXL Hyperparameters used in all the R2D2 experiments with range
of sweep.

Hyperparameter Value
Optimizer Adam
Learning rate 0.0003
Q’s λ 0.8
Adam epsilon 10−7

Adam beta1 0.9
Adam beta2 0.999
Adam clip norm 40

Q-value transform (non-DMLab) h(x) = sign(x)(
√
|x|+ 1− 1) + εx

Q-value transform (DMLab) h(x) = x
Discount factor 0.997
Batch size 32
Trace length (Atari) 80
Trace length (non-Atari) 120
Replay period (Atari) 40
Replay period (non-Atari) 60
Replay capacity 80000 sequences
Replay priority exponent 0.9
Importance sampling exponent 0.6
Minimum sequences to start replay 5000
Target Q-network update period 400
Evaluation ε 0.01
Target ε 0.01
Number of layers 8
Memory size 64
Number of heads 8
Attention size 64
Table 11: GTrXL Hyperparameters choosen for all the R2D2 experiments.

21

Published as a conference paper at ICLR 2022

Hyperparameter Value
Contrastive loss weight 1.0
Contrastive loss mask rate 0.15

Table 12: Extra hyperparameters for CoBERL for the R2D2 experiments

22

Published as a conference paper at ICLR 2022

Hyperparameter Value
Batch Size 120
Unroll Length 95
Discount 0.99
Target Update Period {10, 20, 50}
Action Repeat 4
Initial η 1.0
Initial α 5.0
εη 0.1
εα {0.001, 0.002}
Popart Step Size 0.001
Memory size {256,512}

Table 13: GTrXL Hyperparameters used in all the VMPO experiments
with range of sweep.

Hyperparameter Value
Batch Size 120
Unroll Length 95
Discount 0.99
Target Update Period 50
Action Repeat 4
Initial η 1.0
Initial α 5.0
εη 0.1
εα 0.002
Popart Step Size 0.001
Memory size 512

Table 14: GTrXL Hyperparameters choosen for all the VMPO experi-
ments.

Hyperparameter Value
Contrastive loss weight 1.0
Contrastive loss mask rate 0.15
Memory size 256

Table 15: Extra hyperparameters for CoBERL for the VMPO experiments

23

Published as a conference paper at ICLR 2022

D ADDITIONAL ABLATIONS

Table 16 shows the results of several gating mechanisms that we have investigated. As we can observe
the GRU gate is a clear improvement especially on DMLab, only being harmful in median on the
reduced ablation set of Atari games.

COBERL ’Sum’ gate ’Concat’ gate w/o Gate

DMLab Mean 115.47%± 4.21% 108.92%± 4.56% 105.93%± 4.82% 86.42%± 7.25%
Median 110.86% 108.12% 107.82% 95.21%

Atari Mean 726.34%± 44.06% 548.66%±11.16% 653.20%±59.13% 591.33%±91.25%
Median 270.03% 437.85% 325.96% 320.09%

Table 16: Gate ablations. Human normalized scores on Atari-57 ablation tasks and DMLab tasks.
For the mean we include standard error over seeds.

DM Suite COBERL R2D2-GTrXL R2D2 D4PG-Pixels CURL Dreamer Pixel SAC
acrobot swingup 355.25 ± 3.82 265.90 ± 113.27 327.16 ± 5.35 81.7 ± 4.4 - - -

fish swim 597.66 ± 60.09 82.30 ± 265.07 345.63 ± 227.44 72.2 ± 3.0 - - -
fish upright 952.60 ± 5.16 844.13 ± 21.70 936.09 ± 11.58 405.7 ± 19.6 - - -

pendulum swingup 835.06 ± 9.38 775.72 ± 50.06 831.86 ± 61.54 680.9 ± 41.9 - - -
swimmer swimmer6 419.26 ± 48.37 206.95 ± 58.37 329.61 ± 26.77 194.7 ± 15.9 - - -

finger spin 985.96 ± 1.69 983.74 ± 10.2 980.85 ± 0.67 985.7 ± 0.6 926 ± 45 796 ± 183 179 ± 166
reacher easy 984.00 ± 2.76 982.60 ± 2.24 982.28 ± 9.30 967.4 ± 4.1 929 ± 44 793 ± 164 145 ± 30
cheetah run 523.36 ± 41.38 105.23 ± 144.82 365.45 ± 50.40 523.8 ± 6.8 518 ± 28 570 ± 253 197 ± 15
walker walk 781.16 ± 26.16 584.50 ± 70.28 687.18 ± 18.15 968.3 ± 1.8 902 ± 43 897 ± 49 42 ± 12

ball in cup catch 979.10 ± 6.12 975.26 ± 1.63 980.54 ± 1.94 980.5 ± 0.5 959 ± 27 879 ± 87 312 ± 63
cartpole swingup 812.01 ± 7.61 836.01 ± 4.37 816.23 ± 2.93 862.0 ± 1.1 841 ± 45 762 ± 27 419 ± 40

cartpole swingup sparse 714.80 ± 16.18 743.71 ± 9.27 762.57 ± 6.71 482.0 ± 56.6 - - -

Table 17: Results on tasks in the DeepMind Control Suite. CoBERL, R2D2-GTrXL, R2D2, and D4PG-Pixels
are trained on 100M frames, while CURL, Dreamer, and Pixel SAC are trained on 500k frames. We show these
three other approaches as reference and not as a directly comparable baseline.

24

Published as a conference paper at ICLR 2022

E GAME SCORES

Atari (ablation games) COBERL R2D2-gTrXL R2D2 COBERL-auxiliary loss
beam rider 29601.17 ± 11973.77 65709.85 ± 29911.83 33938.58 ± 11340.33 43029.32 ± 47122.88

enduro 2323.66 ± 31.42 2247.76 ± 139.16 2338.98 ± 13.23 2250.01 ± 69.20
breakout 409.87 ± 11.33 379.23 ± 32.37 363.43 ± 98.32 420.72 ± 9.86

pong 21.00 ± 0.00 20.95 ± 0.09 21.00 ± 0.00 21.00 ± 0.00
qbert 34000.79 ± 6074.45 22444.14 ± 4270.57 25375.24 ± 7451.33 47741.30 ± 5288.90

seaquest 164587.95 ± 122633.80 310745.77 ± 67781.42 83490.38 ± 121434.46 174867.68 ± 123876.30
space invaders 37497.11 ± 9973.19 19113.28 ± 8512.98 4704.35 ± 2763.78 8783.28 ± 6450.09

Atari (ablation games) COBERL COBERL with LSTM before COBERL w/o LSTM
beam rider 29601.17 ± 11973.77 35188.16 ± 23357.60 62234.03 ± 12764.95

enduro 2323.66 ± 31.42 2321.02 ± 43.05 2286.74 ± 112.37
breakout 409.87 ± 11.33 418.13 ± 6.77 411.68 ± 13.62

pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00
qbert 34000.79 ± 6074.45 30055.59 ± 9892.69 31198.54 ± 5557.65

seaquest 164587.95 ± 122633.80 172136.83 ± 119874.67 192161.44 ± 94730.21
space invaders 37497.11 ± 9973.19 23746.32 ± 18961.05 10169.22 ± 12746.13

Atari (ablation games) COBERL No Skip Conn. Sum gate Concat
beam rider 29601.17 ± 11973.77 52498.32 ± 2934.21 72882.42 ± 21239.63 51371.38 ± 12560.94

enduro 2323.66 ± 31.42 2168.37 ± 362.99 2247.23 ± 82.22 2288.13 ± 58.59
breakout 409.87 ± 11.33 308.68 ± 141.28 403.36 ± 53.69 357.52 ± 72.63

pong 21.00 ± 0.00 20.88 ± 0.18 21.00 ± 0.00 21.00 ± 0.00
qbert 34000.79 ± 6074.45 27660.71 ± 6830.06 33807.00 ± 4294.93 43487.35 ± 14518.46

seaquest 164587.95 ± 122633.80 118960.81 ± 112462.18 294976.55 ± 41827.55 399817.75 ± 36729.78
space invaders 37497.11 ± 9973.19 22347.29 ± 15281.67 10387.59 ± 2858.63 20933.98 ± 13072.95

25

Published as a conference paper at ICLR 2022

Atari (ablation games) COBERL with CURL COBERL with SimCLR
beam rider 25605.45 ± 12772.65 36364.92 ± 27431.91

enduro 2280.38 ± 152.75 2343.53 ± 5.10
breakout 337.39 ± 53.97 397.40 ± 40.07

pong 19.99 ± 2.02 20.94 ± 0.11
qbert 15935.73 ± 580.68 24491.28 ± 14491.24

seaquest 163715.19 ± 80515.52 273070.09 ± 124529.37
space invaders 14038.27 ± 16158.41 22120.53 ± 17354.48

26

Published as a conference paper at ICLR 2022

Atari-57 COBERL R2D2-gTrXL R2D2
alien 10728.64 ± 6771.87 9593.30 ± 3226.26 8960.97 ± 4233.52

amidar 3089.76 ± 1028.80 2888.93 ± 1324.27 1980.60 ± 181.03
assault 10055.81 ± 7856.45 7569.86 ± 4705.86 18601.87 ± 6948.52
asterix 732004.08 ± 342695.21 535334.42 ± 400048.35 777461.28 ± 251661.19

asteroids 138026.82 ± 63177.27 108693.26 ± 22302.14 56238.62 ± 44595.74
atlantis 1062735.42 ± 47026.77 1005098.28 ± 36831.12 994240.79 ± 42158.91

bank heist 1126.69 ± 620.85 1131.62 ± 272.21 1110.12 ± 442.89
battle zone 92092.43 ± 39167.40 77051.40 ± 45255.27 94903.82 ± 20522.95
beam rider 29601.17 ± 11973.77 65709.85 ± 29911.83 33938.58 ± 11340.33

berzerk 1288.99 ± 615.45 594.60 ± 117.78 1314.18 ± 444.67
bowling 160.94 ± 53.41 49.23 ± 47.13 86.34 ± 27.65
boxing 69.40 ± 51.78 100.00 ± 0.00 99.28 ± 0.79

breakout 409.87 ± 11.33 379.23 ± 32.37 363.43 ± 98.32
centipede 62816.39 ± 13516.24 98575.88 ± 43443.70 75733.83 ± 19166.94

chopper command 614750.54 ± 283486.50 53852.34 ± 53906.17 26147.63 ± 14180.38
crazy climber 136884.73 ± 50591.49 117777.36 ± 18382.23 134610.46 ± 35360.45

defender 347347.03 ± 90741.03 304551.03 ± 75288.86 383931.18 ± 151219.51
demon attack 135904.86 ± 12721.85 115010.85 ± 26125.20 96371.00 ± 51049.84
double dunk 24.00 ± 0.00 21.25 ± 2.76 23.77 ± 0.33

enduro 2323.66 ± 31.42 2247.76 ± 139.16 2338.98 ± 13.23
fishing derby 45.74 ± 9.05 39.83 ± 4.85 47.47 ± 8.12

freeway 34.00 ± 0.00 34.00 ± 0.00 33.67 ± 0.42
frostbite 7877.53 ± 1919.45 6758.04 ± 2227.07 5850.66 ± 1443.76
gopher 98169.07 ± 12126.03 84697.17 ± 26263.93 106325.84 ± 17858.36
gravitar 6219.65 ± 484.85 5181.25 ± 1615.50 5186.02 ± 808.22

hero 20487.23 ± 288.81 16544.03 ± 3106.35 16764.65 ± 2575.03
ice hockey 24.64 ± 19.00 9.94 ± 12.69 21.38 ± 15.82
jamesbond 5589.27 ± 4360.99 7149.04 ± 3244.40 5872.92 ± 3432.57
kangaroo 11703.01 ± 2892.01 11760.61 ± 3657.70 13223.97 ± 2123.85

krull 27738.24 ± 19282.30 42886.34 ± 35329.57 19821.18 ± 17250.91
kung fu master 128429.78 ± 12649.00 64979.95 ± 25384.52 99741.61 ± 14185.70

montezuma revenge 502.27 ± 998.87 0.00 ± 0.00 240.00 ± 195.96
ms pacman 10567.67 ± 3692.12 9905.93 ± 884.03 9576.99 ± 2286.69

name this game 26311.25 ± 6607.53 26669.02 ± 3614.10 23889.30 ± 2608.30
phoenix 424708.26 ± 173336.21 283179.23 ± 94106.97 138558.03 ± 154881.71
pitfall 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
pong 21.00 ± 0.00 20.95 ± 0.09 21.00 ± 0.00

private eye 12034.62 ± 5963.85 12690.27 ± 4372.38 3065.63 ± 5867.30
qbert 34000.79 ± 6074.45 22444.14 ± 4270.57 25375.24 ± 7451.33

riverraid 22623.35 ± 3512.77 23692.95 ± 2100.11 28147.78 ± 678.51
road runner 212345.12 ± 192339.01 542775.42 ± 58830.61 0.00 ± 0.00

robotank 80.69 ± 7.32 50.75 ± 31.02 63.82 ± 20.55
seaquest 164587.95 ± 122633.80 310745.77 ± 67781.42 83490.38 ± 121434.46
skiing -29958.20 ± 4.99 -21898.19 ± 9898.02 -28243.31 ± 3453.55
solaris 6037.15 ± 3103.57 3675.08 ± 5575.93 2512.84 ± 1288.33

space invaders 37497.11 ± 9973.19 19113.28 ± 8512.98 4704.35 ± 2763.78
star gunner 103870.95 ± 23124.17 78559.08 ± 42110.81 88169.92 ± 13783.74
surround 9.37 ± 0.45 9.40 ± 0.51 8.60 ± 1.00

tennis 14.08 ± 11.58 9.20 ± 11.29 -0.04 ± 0.08
time pilot 36085.82 ± 6934.00 14250.32 ± 1651.02 21051.93 ± 4156.28
tutankham 33.93 ± 28.18 21.66 ± 13.11 79.51 ± 40.10
up n down 407873.64 ± 96615.12 237945.96 ± 101020.61 438679.20 ± 38137.36

venture 1754.74 ± 229.65 1632.54 ± 247.91 1624.82 ± 100.65
video pinball 248629.59 ± 231446.28 48305.17 ± 42432.44 339391.16 ± 194812.76
wizard of wor 19454.60 ± 7061.60 14127.73 ± 9153.21 18270.16 ± 12166.04
yars revenge 385904.98 ± 264624.16 217128.25 ± 28248.52 248086.47 ± 162482.95

zaxxon 20411.27 ± 12535.64 25063.44 ± 10385.30 31679.84 ± 10447.57

27

Published as a conference paper at ICLR 2022

DmLab Levels coberl gtrxl
rooms collect good objects test 9.74± 0.14 9.69± 0.23

rooms exploit deferred effects test 56.57± 3.99 54.87± 0.84
rooms select nonmatching object 64.11± 10.32 58.48± 4.34

rooms watermaze 56.61± 1.49 51.72± 3.41
rooms keys doors puzzle 33.99± 5.44 35.53± 8.33

language select described object 611.02± 1.02 605.59± 14.29
language select located object 606.05± 3.73 584.23± 3.22
language execute random task 232.67± 28.07 198.45± 15.96

language answer quantitative question 327.26± 4.26 297.57± 9.61
lasertag one opponent large 15.47± 3.03 11.65± 3.29

lasertag three opponents large 22.99± 3.79 28.46± 4.59
lasertag one opponent small 32.64± 3.50 28.62± 3.76

lasertag three opponents small 42.96± 3.10 34.54± 0.47
natlab fixed large map 46.03± 8.85 43.46± 14.38

natlab varying map regrowth 31.07± 6.74 27.62± 9.09
natlab varying map randomized 48.97± 8.98 32.79± 11.30

platforms hard 58.10± 7.97 35.67± 23.15
platforms random 85.15± 1.54 69.01± 1.04

psychlab continuous recognition 58.91± 2.17 54.96± 3.87
psychlab arbitrary visuomotor mapping 51.56± 0.44 59.96± 0.33

psychlab sequential comparison 33.56± 0.84 35.89± 0.64
psychlab visual search 77.96± 1.33 76.92± 0.82

explore object locations small 83.07± 5.65 71.85± 6.23
explore object locations large 62.57± 5.86 60.61± 2.72
explore obstructed goals small 2.85± 5.35 245.40± 10.15
explore obstructed goals large 109.61± 1.20 79.48± 6.72
explore goal locations small 369.20± 3.54 340.19± 2.61
explore goal locations large 139.74± 9.84 123.20± 14.65
explore object rewards few 71.47± 14.95 69.02± 0.95

explore object rewards many 104.62± 2.63 94.97± 1.8

28

Published as a conference paper at ICLR 2022

F LEARNING CURVES

F.1 ATARI LEARNING CURVES

Environment steps

H
um

an
 N

or
m

al
is

ed
 S

co
re

Figure 5: Learning Curves for Atari. The x-axis represents number of environment steps in millions. The y-axis
represent the Human Normalised score. The error represents the 95% confidence interval. Red is COBERL,
BLUE is GTrXL

29

Published as a conference paper at ICLR 2022

F.2 DMCONTROL LEARNING CURVES

Environment steps

Ep
is

od
e

Re
tu

rn

Figure 6: Learning Curves for DMControl. The x-axis represents number of environment steps in millions. The
y-axis represent the Episode return. The error represents the 95% confidence interval. Red is COBERL, BLUE
is GTrXL

30

Published as a conference paper at ICLR 2022

F.3 DMLAB LEARNING CURVES

0

0.25

0.50

0.75

1
hu

m
an

_n
or

m
al

ize
d_

sc
or

e
concept_task_01_train

modelcoberl
gtrxl

0.1

0.2

0.3

0.4

0.5

concept_task_03_train

0

0.4

0.8

1.2
emstm_non_match

0

0.5

1

1.5
emstm_watermaze

0

0.2

0.4

0.6

keys_doors_random

0

0.5

1

1.5

lang_easy_shapes

0

0.5

1

1.5

2

lang_in_room_task

0

0.2

0.4

0.6

0.8 lang_multi_task

0

0.5

1

1.5

lang_quantification_task

0

0.4

0.8

1.2
lt_procedural_large_1_bot

0

0.5

1

1.5
lt_procedural_large_3_bots

0

0.5

1

1.5

lt_procedural_small_1_bot

0

0.5

1

lt_procedural_small_3_bots

0.25

0.50

0.75

1

natlab_forage_ltm

0.25

0.50

0.75

1

natlab_forage_stm

0.25

0.50

0.75

1
natlab_forage_variable

0

0.1

0.2

0.3

0.4

0.5
platforms_hard

0

0.2

0.4

0.6

platforms_random

0

0.25

0.50

0.75

psychlab_arbitrary_visuomotor_mapping

0

0.2

0.4

0.6

0.8
psychlab_continuous_recognition

0

0.2

0.4

0.6

0.8
psychlab_sequential_comparison

0

0.25

0.50

0.75

1
psychlab_visual_search

0.3

0.6

0.9

rat_exploration

0.25

0.50

0.75

1
rat_exploration_large

0 G 2 G 5 G 8 G 10 G
0

0.25

0.50

0.75

1

1.25
rat_goal_doors

0 G 2 G 5 G 8 G 10 G
0

0.2

0.4

0.6

0.8

rat_goal_doors_large

0 G 2 G 5 G 8 G 10 G
0

0.25

0.50

0.75

1

1.25
rat_goal_driven

0 G 2 G 5 G 8 G 10 G
0

0.25

0.50

0.75

rat_goal_driven_large

0 G 2 G 5 G 8 G 10 G
0

0.5

1

1.5
rat_object_eat

0 G 2 G 5 G 8 G 10 G
num_frames

0

0.25

0.50

0.75

rat_object_eat_hard

Figure 7: Learning Curves for DMLab. The x-axis represents number of environment steps in billions. The y-
axis represent the Human Normalised score. The error represents the 95% confidence interval. Red is COBERL,
BLUE is GTrXL

31

Published as a conference paper at ICLR 2022

G LICENSES

The The Arcade Learning Environment Bellemare et al. (2013) is released as free, open-source
software under the terms of the GNU General Public License. The latest version of the source code is
publicly available at: http://arcadelearningenvironment.org

DeepMind Control Suite Tassa et al. (2018) is released as free, open-source software un-
der the terms of Apache-2.0 License. The latest version of the source code is pub-
licly available at: https://github.com/deepmind/dm_control/blob/master/dm_
control/suite/README.md

DmLab Beattie et al. (2016) is released as free, open-source software under the terms of Apache-2.0
License. The latest version of the source code is publicly available at: https://github.com/
deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

H PSEUDO-CODE

Algorithm 1 Pseudo-code for CoBERL
training_iterations← 0
initialise_weights(VisualEncoder, TransformerStack, Gate, ValueNetwork)
while training_iterations ≤ max_training_iterations do

sampled_batch← sample_experience()
encoded_images← VisualEncoder(sampled_batch)
encoded_actions← OneHotActionEncoder(sampled_batch)
combined_inputs← concat(encoded_images, previous_rewards, encoded_actions)
transformer_inputs, transformer_targets, mask← create_masks_targets(combined_inputs)
output_transformer_contrastive← TransformerStack(transformer_inputs, causal_mask=False)
contrastive_loss← compute_aux_loss(output_transformer_contrastive, transformer_targets,

mask)
output_transformer_RL← TransformerStack(transformer_inputs, causal_mask=True)
gated_output← Gate(combined_inputs, output_transformer_RL)
lstm_output← LSTM(gated_output)
combined_inputs_for_value_net← concat(lstm_output, combined_inputs)
value_estimation← ValueNetwork(combined_inputs_for_value_net)
rl_loss← compute_rl_loss(value_estimation, extra_args)
total_loss← rl_loss + contrastive_loss

end while

32

https://github.com/deepmind/dm_control/blob/master/dm_control/suite/README.md
https://github.com/deepmind/dm_control/blob/master/dm_control/suite/README.md
https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30
https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

Published as a conference paper at ICLR 2022

Pseudo-code for the auxiliary loss calculation
1 def compute_aux_loss(input1, input2, mask_ext):
2

3 batch_size, seq_dim, feat_dim = input1.shape
4 input1 = reshape(input1, [-1, feat_dim])
5 input2 = reshape(input2, [-1, feat_dim])
6

7 input1 = l2_normalize(input1, axis=-1)
8 input2 = l2_normalize(input2, axis=-1)
9

10 # Compute labels index
11 labels_idx = arange(input1.shape[0])
12 labels_idx = labels_idx.astype(jnp.int32)
13 # Compute pseudo-labels for contrastive loss.
14 labels = one_hot(labels_idx, input1.shape[0] * 2)
15 # Mask out the same image pair.
16 mask = one_hot(labels_idx, input1.shape[0])
17 # Compute logits.
18 logits_11 = matmul(input1, jnp.transpose(input1))
19 logits_22 = matmul(input2, jnp.transpose(input2))
20 logits_12 = matmul(input1, jnp.transpose(input2))
21 logits_21 = matmul(input2, jnp.transpose(input1))
22 # Calculate invariance penalty.
23 inv_penalty = kl_with_logits(# [B * T]
24 stop_gradient(logits_11), logits_22, axis=-1)
25 inv_penalty += kl_with_logits(
26 stop_gradient(logits_12), logits_22, axis=-1)
27 inv_penalty += kl_with_logits(
28 stop_gradient(logits_21), logits_11, axis=-1)
29 inv_penalty += kl_with_logits(
30 stop_gradient(logits_12), logits_21, axis=-1)
31 inv_penalty = inv_penalty / 4. # [B * T]
32

33 logits_11 = logits_11 - mask * 1e9
34 logits_22 = logits_22 - mask * 1e9
35

36 logits_1211 = concatenate([logits_12, logits_11], axis=-1)
37 logits_2122 = concatenate([logits_21, logits_22], axis=-1)
38

39 loss_12 = -sum(labels * log_softmax(logits_1211), axis=-1)
40 loss_21 = -sum(labels * log_softmax(logits_2122), axis=-1)
41

42 loss = reshape(loss_12 + loss_21, [batch_size, seq_dim]) * mask_ext
43 inv_penalty = reshape(inv_penalty, [batch_size, seq_dim]) * mask_ext
44

45 loss = mean(loss + inv_penalty)
46

47 return loss

I AREA UNDER THE CURVE

For all the levels we calculated the AUC by integrating composite Simpson’s rule with a delta(x) of 5
steps. We use the intergate package from scipy (Virtanen et al., 2020).

J LIMITATIONS AND FUTURE WORK

A limitation of our method is that it relies on single time step information to compute its auxiliary
objective. Such objective could naturally be adapted to operate on temporally-extended patches,
and/or action-conditioned inputs. Also, as done in the original BERT (Devlin et al., 2019), it could be
possible to add a CLS token at the beginning of each sequence sent to the Transformer and then train
the CLS token with RL gradients. In this way it would be possible to directly use the embeddings

33

Published as a conference paper at ICLR 2022

of the CLS token as a sequence summary and hence provide more context to the policy estimation
network. We regard those ideas as promising future research avenues.

K EXTRA INFORMATION ABOUT THE GATE EMPLOYED IN EQUATION 4

The gate we use in equation 4 is derived directly from the one used in GTrXL (Parisotto et al., 2020).
We report here the details for better clarity.

The gate is the defined in the following way:

g(y, x) = (1− z)� y + z � ĥ (5)

where:

z = σ(Wzx+ Uzy − bg) (6)

ĥ = tanh(Wgx+ Ug(r � y)) (7)

and:

r = σ(Wrx+ Ury) (8)

Wz, Uz,Wg, Ug,WrandUr are set of linear weights and bg is a bias.

In our case x is the output of the transformer network and y is the output of the encoder network.

34

Published as a conference paper at ICLR 2022

L EXTRA ANALYSIS

Figure 8: Human normalised score as a function of the masking percentage on the input sequence.
coberl_masking_015 relates to 15% masking of the input sequence, coberl_masking_03 relates to 30%
masking of the input sequence and coberl_masking_05 relates to 50% masking of the input sequence.

We also attempted higher masking rate, but as shown in figure L they seem to perform worse, probably
because high level of masking are reducing to much the number of frame present in the sequence,
hence removing the information need to successfully perform the auxiliary task.

Figure 9: AUC calculated at 100% human score.

Even when calulcate at 100% human score, the AUC shows a significant advantage of COBERL over
gTrXL t(60)=2.616, p=0.0011. COBERL M=545.18, SD=282.58; gTrXL M=374.49, SD=282.58.

35

	Introduction
	Method
	Representation Learning in reinforcement learning
	Architecture of CoBERL.

	Related Work
	Experiments
	Testing CoBERL across several environments
	Ablations
	Impact of auxiliary losses
	Impact of architectural changes
	Impact of number of parameters

	Conclusions
	Optional reproducibility statement
	Setup details
	R2D2 Distributed system setup
	V-MPO distributed setup
	Computation used
	Complexity analysis

	Architecture description
	Encoder
	Transformer
	LSTM and Value head
	Critic Function

	Hyperparameters
	Atari and DMLab pre-processing
	Control Suite pre-processing
	DmLab pre-processing
	Control environment discretization
	Hyperparameters Used

	Additional ablations
	Game scores
	Learning Curves
	Atari Learning curves
	DMControl Learning curves
	DMLab Learning curves

	Licenses
	Pseudo-code
	Area under the curve
	Limitations and Future Work
	Extra information about the gate employed in equation 4
	Extra analysis

