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ABSTRACT

Recently, the Gromov-Wasserstein Optimal Transport (GWOT) problem has at-
tracted the special attention of the ML community. In this problem, given two
distributions supported on two (possibly different) spaces, one has to find the most
isometric map between them. In the discrete variant of GWOT, the task is to
learn an assignment between given discrete sets of points. In the more advanced
continuous formulation, one aims at recovering a parametric mapping between
unknown continuous distributions based on i.i.d. samples derived from them. The
clear geometrical intuition behind the GWOT makes it a natural choice for several
practical use cases, giving rise to a number of proposed solvers. Some of them
claim to solve the continuous version of the problem. At the same time, GWOT
is notoriously hard, both theoretically and numerically. Moreover, all existing
continuous GWOT solvers still heavily rely on discrete techniques. Natural ques-
tions arise: to what extent do existing methods unravel the GWOT problem, what
difficulties do they encounter, and under which conditions they are successful? Our
benchmark paper is an attempt to answer these questions. We specifically focus on
the continuous GWOT as the most interesting and debatable setup. We crash-test
existing continuous GWOT approaches on different scenarios, carefully record
and analyze the obtained results, and identify issues. Our findings experimentally
testify that the scientific community is still missing a reliable continuous GWOT
solver, which necessitates further research efforts. As the first step in this direction,
we propose a new continuous GWOT method which does not rely on discrete
techniques and partially solves some of the problems of the competitors.

1 INTRODUCTION

Optimal Transport (OT) is a powerful framework that is widely used in machine learning (Montesuma
et al., 2023). A popular application of OT is the domain adaptation of various modalities, including
images (Courty et al., 2016; Luo et al., 2018; Redko et al., 2019), music transcription (Flamary et al.,
2016), color transfer (Frigo et al., 2015), alignment of embedding spaces (Chen et al., 2020; Aboagye
et al., 2022). Other applications include generative models (Salimans et al., 2018; Arjovsky et al.,
2017), unpaired image-to-image transfer (Korotin et al., 2023b; Rout et al., 2022), etc.

(a) Monge’s OT between distributions P and Q
with inter-domain cost function c(x, y).

(b) Monge’s GW between distributions P and Q
with intra-domain costs cX (x, x′) and cY(y, y

′).

Figure 1: A schematic visualization of the OT problems and GW problems (Monge’s form).

In the conventional OT problem (Figure 1a), one needs to find a map between two data distributions
that minimizes a certain “effort” expressed in the form of an inter-domain transport cost function.
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This cost function shows how hard it is to move a point in the source space to a given point in the
target space. Thus, in order for the resulting map to possess certain useful properties, one has to
incorporate them into the cost function. Unfortunately, this is not always a straightforward task,
especially when the data distributions are supported in different spaces.
A popular way to address the above-mentioned issue is to consider the Gromov-Wasserstein (GW)
modification (Mémoli, 2007; 2011; Peyré et al., 2016) of the OT problem (Figure 1b). Here one
assumes that both the source and target spaces are equipped with a structure, e.g., with a metric, and
one aims to find a transport map that maximally preserves this structure, i.e., the most isometric map.
This clear geometrical intuition behind GW makes it natural in various applications: unsupervised
data alignment (Alvarez-Melis & Jaakkola, 2018; Aboagye et al., 2022), single-cell data processing
(Scetbon et al., 2022; Klein et al., 2023; Sebbouh et al., 2024), 2D and 3D shape analysis (Beier et al.,
2022; Mémoli, 2009), graph data analysis (Xu et al., 2019; Vincent-Cuaz et al., 2022; Chowdhury &
Needham, 2021; Xu et al., 2021; Vincent-Cuaz et al., 2021).
Discrete/continuous GW. The GWOT problem is about learning some specific translation that
operates with source and target distributions. In practice, these distributions are typically given
by empirical datasets. This leads to two possible ways of paving a GWOT map. In the discrete
scenario, the learned translation is just a point(s)-to-point(s) assignment (transport matrix). In turn,
the continuous GW is about learning a parametric mapping between the underlining (continuous)
distributions. In this case, the datasets are treated as i.i.d. samples derived from them.
While existing computational approaches for the GW problem show considerable empirical success,
the problem itself is highly non-trivial from different perspectives.
• Theory. Finding the most isometric map between probability spaces based just on the inner

properties of these spaces may be poorly defined, e.g., the desired transform may be non-unique.
This happens where the source (target) space permits some non-trivial isometries that preserve the
corresponding source (target) distribution. A simple yet expressive example is the Gaussian case
Delon et al. (2022). Intuitively, non-uniqueness may affect the stability of a GWOT solver.

• Computations/algorithms. It is known that the discrete GW yields a non-convex quadratic
optimization problem (Vayer, 2020), which is computationally challenging. To partially alleviate
the difficulty, one typical approach is to consider entropic regularization (Peyré et al., 2016; Alvarez-
Melis & Jaakkola, 2018; Scetbon et al., 2022; Wang & Goldfeld, 2023). Fortunately, the regularized
problem resorts to a sequence of tractable Sinkhorn OT assignments. However, the convergence
of the procedure may not hold, see (Peyré et al., 2016, Remark 3). In addition, discrete GWOT
scales poorly with the number of input (source or target) samples, which makes some problem
setups unmanageable by such kinds of solvers. While there are some techniques to reduce the
computational burden w.r.t data size (Scetbon et al., 2022), they come at the cost of additional
restrictions and assumptions.

• Methodology. The majority of existing continuous GW methods are based on discrete GW
techniques and inherit all the computational challenges of the latter. Moreover, the transition from
the discrete to the continuous setup may be questionable from a statistical point of view (Zhang
et al., 2024).

Having said that, one naturally wonders: how do the current continuous GWOT methods manage to
overcome these problems and show good practical results? What are the “bad cases” under which the
aforementioned difficulties become critical and the solvers struggle? How to fight with these “bad
cases”? In our paper, we shed light on these GWOT methods’ ambiguities, specifically focusing on
the continuous setup. Our contributions are as follows:

• We conduct a deep analysis of existing papers and reveal that one important characteristic that may
greatly affect practical performance is the considered data setup. In fact, the majority of works
primarily consider datasets with some specific correlations between source and target samples.
Formally speaking, such setups disobey the standard i.i.d. assumption on the data and may lead to
spoiled conclusions on the solvers’ capabilities.

• By following the findings from the previous point, we evaluate the performance of existing
continuous GWOT solvers in more statistically fair and practically realistic uncorrelated data
setups. Our simple yet expressive experiments witness that (un)correlatedness indeed highly
influences the quality of the learned GWOT maps. Changing the data setup may greatly deteriorate
the performance of the solvers.

• To alleviate the dependence on the mutual statistical characteristics of the source and target training
data, we propose a novel continuous neural GW solver. On the one hand, our method is not based on
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discrete GW. It may be learned on arbitrarily large datasets and shows reasonably good results even
on the fair uncorrelated data setup. On the other hand, the method is min-max-min adversarial,
which negatively impacts stability and requires plenty of data for training.

Overall, our findings reveal that the empirical success of the existing GWOT solvers seems to be a bit
over-estimated and requires to be treated more critically. Constructing a reliable continuous GWOT
method is a not-yet-solved challenge. We encourage the researchers to further work out on this quite
interesting direction. We hope, that our work is a good amigo in this thorny path.
Notations. Throughout the paper, Rdx and Rdy are the source and target data spaces, respectively.
The set of Borel probability distributions on Rdx is P(Rdx). The dot product of vectors x, x′ ∈ Rdx

is ⟨x, x′⟩dx
. For a measurable map T : Rdx → Rdy , we denote the corresponding push-forward

operator by T♯. For P ∈ P(Rdx) and Q ∈ P(Rdy ), we denote the set of all couplings between them
by Π(P,Q), i.e., distributions π on Rdx × Rdy with the corresponding marginals equal to P and Q.

2 BACKGROUND

In this section, we first explain the conventional OT setup (Villani, 2008; Santambrogio, 2015;
Gozlan et al., 2017; Backhoff-Veraguas et al., 2019) and then introduce the Gromov-Wasserstein OT
formulation (Mémoli, 2011; Peyré et al., 2016). Finally, we clarify our considered practical learning
setup under which these problems are considered.

2.1 OPTIMAL TRANSPORT (OT) PROBLEM

Given two probability distributions P ∈ P(Rdx), Q ∈ P(Rdy ) and a cost function c : Rdx×Rdy → R,
the OT problem is defined as follows:

OTc(P,Q)
def
= inf

T♯P=Q

∫
Rdx

c(x, T (x))dP(x). (1)

This is known as Monge’s formulation of the OT problem. Intuitively, it can be understood as
finding an optimal transport map T ∗ : Rdx → Rdy that transforms P to Q and minimizes the total
transportation expenses w.r.t. cost c, see Figure 1a. There have been developed a lot of methods for
solving OT (1) in its discrete (Cuturi, 2013; Peyré et al., 2019) and continuous (Makkuva et al., 2020;
Daniels et al., 2021; Korotin et al., 2023b; Choi et al., 2023; Fan et al., 2023; Uscidda & Cuturi, 2023;
Gushchin et al., 2024; Mokrov et al., 2024; Asadulaev et al., 2024) variants.

The cost function c in (1) is commonly the squared Euclidean distance. In this case, problem (1)
is exclusively defined for spaces of the same dimensions. Dealing with two incomparable spaces
(dx ̸= dy) may require manually defining some more complex inter-domain cost function c. It is not
a trivial task.

2.2 GROMOV-WASSERSTEIN OT (GWOT) PROBLEM

The GWOT problem is an extension of the optimal transport problem that aims to compare and
transport probability distributions supported on different spaces. This problem is particularly useful
when the underlying spaces do not align directly, but we still want to measure and align their intrinsic
geometric structures. In what follows, we introduce the discrete and continuous variants of GWOT.
Discrete Gromov-Wasserstein formulation. Let Nx and Ny be the number of training samples
in the source and target domains, respectively. Let Cx ∈ RNx×Nx and Cy ∈ RNy×Ny be the
corresponding source and target intra-domain cost matrices. These matrices measure the pairwise
distance or similarity between the samples for a given function, i.e., cosine similarity, Euclidean
distance, inner product, etc. The discrete GWOT problem is defined as:

T∗ def
= argmin

T∈CNx,Ny

∑
i,j,k,l

|Cx
i,k − Cy

j,l|
pTi,jTk,l, (2)

where CNx,Ny

def
= {T ∈ RNx×Ny

+

∣∣TT1Nx = 1
Ny
1Ny ;T1Ny = 1

Nx
1Nx} is the set of coupling

matrices between source and target spaces; 1N = [1, . . . , 1]T ∈ RN . The loss function | · − · |p in
(2) is used to account for the misfit between the similarity matrices, a typical choice for the degree
factor is p = 2 (quadratic loss). Further details can be found in (Peyré et al., 2016; Mémoli, 2011;
Chowdhury & Mémoli, 2019; Titouan et al., 2019b).
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Continuous Gromov-Wasserstein formulation. Let P ∈ P(Rdx), Q ∈ P(Rdy ) be two distributions.
Let cX : Rdx × Rdx → R and cY : Rdy × Rdy → R be two intra-domain cost functions for the
source (Rdx ) and target (Rdy ) domains, respectively. The Monge’s GWOT problem is defined as:

GWOTp
p(P,Q)

def
= inf

T♯P=Q

∫
Rdx

∫
Rdx

|cX (x, x′)− cY(T (x), T (x′))|
p
dP(x)dP(x′). (3)

Theoretical results on the existence and regularity of (3) under certain cases could be found in
(Dumont et al., 2024; Mémoli & Needham, 2024; 2022). An intuitive illustration of problem (3) can
be found in Figure 1b. In this continuous setup, the objective is to find an optimal transport map
T ∗ : Rdx → Rdy that allows to transform (align) the source distribution to the target distribution.
While in (1) we search for a map that sends P to Q minimizing the total transport cost, (3) aims
to find the most isometric map w.r.t. the costs cX and cY , i.e., the map that maximally preserves
the pairwise intra-domain costs. The commonly studied case (Vayer, 2020; Sebbouh et al., 2024) is
p = 2 with the Euclidean distance c(·, ·) = ∥ · − · ∥2 or inner product c(·, ·) = ⟨·, ·⟩ as intra-domain
cost functions. In what follows, we will use innerGW to denote the latter case.

2.3 PRACTICAL LEARNING SETUP

In practical scenarios, the source and target distributions P and Q are typically accessible by empirical
samples (datasets) X = {xi}Nx

i=1 ∼ P and Y = {yi}
Ny

i=1 ∼ Q. Under the discrete GWOT formulation,
these samples are directly used to compute intra-domain cost matrices Cx, Cy. These matrices are
then fed to optimization problem (2). Having been solved, problem (2) yields a coupling matrix T∗

which defines the GWOT correspondence between X and Y . Importantly, discrete GWOT operates
with discrete empirical measures P̂ def

=
∑Nx

i=1
1
Nx

δ(x − xi), Q̂
def
=

∑Ny

i=1
1
Ny

δ(y − yi) rather than
original ones. In turn, under the continuous formulation, the aim is to recover some parametric map
T ∗ : Rdx → Rdy between the original source and target distributions P and Q. In most practical
scenarios, the latter is preferable, as it naturally allows out-of-sample estimation, i.e., provides GWOT
mapping for new (unseen) samples x ∼ P. In our paper, we deal with continuous setup.

3 EXISTING CONTINUOUS GROMOV-WASSERSTEIN SOLVERS

Here we outline the current progress in solving the GWOT problem specifically focusing on the
continuous formulation. Most of the GWOT solvers are only discrete or adapted to emulate a
continuous behaviour by implementing some specific out-of-sample estimation method on top of
the results of some discrete solver. The initial approach to solve the GWOT problem in discrete
case (M2.2) was introduced in (Mémoli, 2011; Peyré et al., 2016). Below we only detail the methods
which specifically aim to solve the continuous formulation and somehow provide the out-of-sample
estimation.
StructuredGW (Sebbouh et al., 2024). In this paper, the authors focus on providing an iterative
algorithm to solve a discrete entropy-regularized version of the inner product case of (3) for p = 2
using the equivalent reformulation by (Vayer, 2020, maxOT). Every iteration, the coupling matrix T
is updated using Sinkhorn iterations and an auxiliary rotation matrix updates using different possible
methods. The authors propose different regularization alternatives for the problem, this directly
impacts the way the auxiliary matrix is updated. To perform the out-of-sample estimation, the authors
extend their method by drawing inspiration from entropic maps in (Pooladian & Niles-Weed, 2024;
Dumont et al., 2024). Their developed StructuredGW method uses one of the dual potentials learned
during the updates of T to perform this entropic mapping.
FlowGW (Klein et al., 2023). The framework proposed in this work consists in fitting a discrete GW
solver inspired by (Peyré et al., 2016) to obtain a coupling matrix T. This coupling matrix helps to
figure out the best way to match available samples from source to target domains. Weighted pairs of
source and target samples are constructed using the distribution described by the coupling matrix.
Then these samples are used to train a Conditional Flow Matching (CFM) model (Lipman et al.,
2023) with the noise outsourcing technique from (Kallenberg, 1997). The inference process is done
by solving the ODE given by the CFM model.

AlignGW (Alvarez-Melis & Jaakkola, 2018). This work proposes a discrete solver for the alignment
of word embeddings. The authors use Sinkhorn iterations to compute the updates on the coupling
matrix instead of a linear search implemented in the Python Optimal Transport library (Flamary
et al., 2021) that is inspired by (Titouan et al., 2019a; Peyré et al., 2016). This change significantly
improves the stability of the solver. In spite of being a totally discrete method, we consider it due to its
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performance in challenging tasks. In order to allow out-of-sample estimations, we train a Multi-Layer
Perceptron (MLP) model on the barycentric projections derived from the learned coupling matrix T.
RegGW (Uscidda et al., 2024). This work extends the Monge Gap Regularizer (Uscidda & Cuturi,
2023) within the Gromov-Wasserstein (Monge) framework. The method parameterizes the transport
push-forward function T using a neural network. To train this model, a regularized loss function is
utilized, which combines fitting loss and Gromov-Monge gap regularizer. The fitting loss ensures
that the learned model T maps to the target distribution. It is chosen to be Sinkhorn divergence in
practice (Uscidda et al., 2024). In turn, the Gromov-Monge gap is the difference between distortion —
the value of discrete Gromov-Wasserstein functional for learned model T , and the actual solution of
discrete GW problem between source points and points mapped with T . While other research, such
as (Sotiropoulou & Alvarez-Melis, 2024), also incorporates this regularizer, their approach requires
access to an intermediate reference distribution, which is impractical for our experimental setup.
CycleGW (Zhang et al., 2021). The authors of this work propose to minimize the Unbalanced
bidirectional Gromov–Monge divergence (UBGMD) and recover two push-forward Gromov-Monge
mappings: f such that f♯P ≈ Q and g such that g♯Q ≈ P. This problem is similar in nature to the
Unbalanced Gromov-Wasserstein divergence Séjourné et al. (2020), but it utilizes a cross-domain
version of (3) which additionally ensures cycle-consistency. To solve the UBGMD problem they
propose to minimize so-called Generalized Maximum Mean Discrepancy (GMMD), in which they
compute the divergences of the unbalanced problem by using Maximum Mean Discrepancy (MMD)
with Gaussian kernels. In our setup, the function f is equivalent to our mapping function T . We refer
to the original work for further details. A work guided by a similar concept can be found in Hur et al.
(2021) which adds an additional MMD term. Due to the similarities between these two solvers, we
decided to only consider the work by Zhang et al. (2021), they have publicly available code.

3.1 TOY 3D→2D EXPERIMENT

To illustrate the capabilities of the solvers and as a necessary sanity check for the implementations,
we propose a toy experiment. In this setup, the source distribution is a mixture of Gaussians in R3

and the target is also a mixture of Gaussians but in R2, see Figure 2a. By choosing this experiment
on incomparable spaces, we ensure the solvers are actually capable of dealing with a real Gromov-
Wasserstein problem. The obtained results for the baselines can be found in Figure 2d and 2c, Figure
2b shows the result for our method, NeuralGW. As we can see, for all methods a component of
the source distribution is mostly mapped to a component/neighbouring components of the target
distribution, indicating the correct GW alignment.

(a) Source, target distributions. (b) NeuralGW solver (ours) (c) Batched solvers (RegGW and CycleGW)

(d) Baseline solvers (StructuredGW, AlignGW, FlowGW).

Figure 2: Learned GWOT map T by different solvers; Toy (3D→2D) experiment.
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4 LIMITATIONS OF EXISTING METHODS

As it was mentioned before, the majority of existing Gromov-Wasserstein approaches explicitly or
implicitly resort to discrete GWOT formulation, see M2.2. Naturally, the computations required to
solve (2) increase significantly as the numbers of training samples Nx and Ny grow. This dependency
renders some datasets to hardly be manageable by discrete solvers. However, in our paper, we
specifically focus on the other sources of potential failures for GWOT. It stems from the practical data
setups under which the methods actually work. Below, we give a detailed description of this problem.

4.1 PITFALLS OF PRACTICAL DATA SETUP

To begin with, we introduce the notion of (un)correlatedness of data which undergoes Gromov-
Wasserstein alignment. To fit a GWOT solver, a practitioner typically has two training datasets,
X = {xi}Nx

i=1 and Y = {yi}
Ny

i=1. They are sampled from the reference source (P) and target (Q)
distributions, see our training setup, M2.3. In what follows, without loss of generality, we will assume
Nx = Ny

def
= N . The natural statistical assumption on samples X and Y is that they are mutually

independent. We define this data setup as uncorrelated. Simultaneously, we introduce an alternative
setup under which the source and target datasets X and Y turn out to be connected by some specific
statistical relationships. Let us assume that there is a coupling π ∈ Π(P,Q), π ̸= P⊗Q. Practically,
we expect that samples from the coupling are meaningfully dependent, i.e., π is “significantly”
different from the independent coupling P⊗Q. In particular, coupling π may even set a one-to-one
correspondence between the domains. Then, we call the training samples X and Y to be correlated
if they are obtained with the following procedure:

1. First, we jointly sample X and Ỹ = {ỹi}Ni=1 ⊂ Rdy from coupling π, i.e.: X × Ỹ ∼ π.
2. Secondly, we apply an unknown permutation σ of indices to Ỹ yielding Y , i.e.: Y = σ ◦ Ỹ .

We found that the majority of the experimental test cases, on which the existing GWOT solvers are
validated, frequently follow exactly the correlated data setup. For instance, in the problem of learning
cross-lingual word embedding correspondence (Alvarez-Melis & Jaakkola, 2018; Grave et al., 2019),
the underlining coupling π could be understood as the distribution of dictionary pairs. The other
example is the bone marrow dataset (Luecken et al., 2021; Klein et al., 2023). In this case, the source
and target samples are generated using two different methods to profile gene expressions on the same
donors. Interestingly, the correlated data setup suits well the discrete GWOT formulation, because
the optimization problem in this case boils down to the search for the permutation σ that spawned the
target dataset Y . This leads to the natural hypothesis that for uncorrelated training datasets X and
Y the performance of existing GWOT solvers may be poor. To test this hypothesis, we propose the
experimental framework described in the next paragraphs.

(a) Totally correlated setup.

(b) Partially correlated setup.

(c) Uncorrelated setup.

Figure 3: Data splitting and (un)correlatedness.

Modeling (un)correlatedness in practice.
Let X = {x1, . . . , xN} ∼ P and
Y = {y1, . . . , yN} ∼ Q be the source and tar-
get datasets. We assume that X and Y are totally
paired, i.e., every i-th vector in the source set X
is the pair of the i-th vector in the target set, Y .
Also, we suppose that the pairing is reasonable,
i.e., dictated by the nature of the data on hand.
For example, if X and Y are word embeddings,
then xi and yi correspond to the same word.
We propose a way how to create training data
with different levels of correlatedness. Initially,
batches of N paired (source and target) samples
are randomly selected from the datasets, then
split into train and test sets, N = Ntrain+Ntest.
The train samples are then divided into two
halves and a value α, 0 ≤ α ≤ 1 is set, this
value represents the fraction of Ntrain/2 sam-
ples that will be paired.
The resulting training datasets (both source and
target) will totally contain Ntrain/2 samples. They are formed by selecting specific indices from the
original train sets. Indices from 0 to Ntrain/2 are taken from the source while indices from target
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are shifted, we take the ⌈(1 − α)(Ntrain/2)⌉ to ⌈(1 − α/2)Ntrain⌉ indices. As a result, setting a
value of α = 1 will represent a totally correlated setup (Figure 3a), 0 < α < 1 is partially correlated
(Figure 3b) and α = 0 is uncorrelated (Figure 3c).
To conclude the subsection, we want to emphasize that both correlated and uncorrelated setups are
practically important. Some real-world use cases of the former include word embedding assignment
and gene expression profiles matching problems, see the details in the text above. In turn, the
uncorrelated setup naturally appears when aligning single-cell multi-omics data (Demetci et al.,
2022). Here one aims at matching different single-cell assays, which are uncorrelated, because
applying multiple assays on the same single-cell is typically impossible.

4.2 BENCHMARKING GWOT SOLVERS ON (UN)CORRELATED DATA: GLOVE AND BPEMB
EXPERIMENTS

In order to check how existing continuous GW solvers perform under uncorrelated, partially and
totally correlated setups, we utilize two different text corpora: Twitter and MUSE (Multilingual
Unsupervised and Supervised Embeddings) (Conneau et al., 2017) bilingual vocabularies. We then
embed them using either the GloVe (Global Vectors for Word Representation) algorithm (Pennington
et al., 2014) or BPEmb (Byte-Pair) (Heinzerling & Strube, 2018) embeddings. The Twitter corpus used
was obtained from the GloVe dictionary1. In the case of MUSE we took the bilingual vocabularies
from their official GitHub repository2

The GloVe embeddings of words are generated using the GloVe algorithm (Pennington et al., 2014).
Its main advantage is that the embedded vectors capture semantic relationships and exhibit linear
substructures in the vector space. This allows meaningful computation of distances and alignments,
which is central to the GWOT framework. The authors provide access to the GloVe embeddings
of four datasets: Wikipedia, Gigaword, Common Crawl, and Twitter. For the experiments in this
section, we focus solely on the GloVe embeddings for the Twitter corpus. From this point onward,
we will refer to this combination as the "Twitter-GloVe dataset", this notation will also be used in
the future to denote other corpus and type of embedding combinations. Alternatively, we explore
the use of Byte-Pair embeddings (BPEmb), which is a subword tokenization method that breaks
words into smaller units. It works by iteratively merging the most common pairs of adjacent symbols
(like characters or character groups) in a corpus until a set vocabulary size is reached. We refer to
Appendix B.2 for additional insights and experiments for BPEmb on Twitter and the MUSE corpus.

The paired samples of the Twitter-GloVe dataset are constructed by picking the first 400K word
embeddings from a total of around 1.2 million, we refer to it as our “whole” data space. The
following blends of dimensionalities are considered: 100→50, 50→100, 50→25 and 25→50. We
test three baseline solvers introduced in M3: StructuredGW, AlignGW, FlowGW. We fit every solver
for different values of α (different levels of correlatedness). The values of α range from 0.0 to 1.0 in
increments of 0.1. For each value of α, we perform ten fitting repetitions with different random seeds
following the process described in M4.1. We use Ntrain = 6K, i.e., every experiment run exploits
source and target datasets containing Ntrain/2 = 3K training samples; Ntest = 2048. Note that the
only reason why we choose such a relatively small size for the training datasets is the computational
complexity of the three solvers under consideration. The discrete optimization procedures run at the
backend of baseline solvers hardly could be adopted to reasonably larger values of Ntrain.

Regarding RegGW and GycleGW baselines from §3, their training fails for the small number of
training samples, e.g., 3K. These methods are left to §5.2, where much larger datasets are considered.

For evaluation, we measure Top k-accuracy ↑, cosine similarity ↑ and FOSCTTM ↓, the details are
given in Appendix B.1. The metrics are computed on (unseen) test data with the reference points
given by the combination of train and test datasets, N = Ntrain +Ntest = 8048. The results of the
experiments for the combinations 100→50 and 50→25 are shown in the plots below, Figure 4. For
additional experimental results on other dimension pairs, see Appendix B.
Conclusions. The results indicate that all the baseline solvers perform well in totally correlated
scenarios, even when evaluated on unseen data. This demonstrates their ability to learn and capture
the inner structures when the data is highly correlated. However, their performance drops significantly
as the value of α decreases. We conjecture that the observed behaviour is mainly due to the small
sizes of training sets dictated by the discrete nature of the solvers. Indeed, relatively small samples

1https://radimrehurek.com/gensim/downloader.html
2https://github.com/facebookresearch/MUSE
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(a) Source: 100 → Target:50

(b) Source: 50 → Target:25

Figure 4: Performance of the baseline GWOT solvers for the Twitter-GloVe embeddings at different levels of
correlatedness α in all high-to-low setups. The solvers were trained with Ntrain/2 = 3000 samples from a
whole space of 400K, this plot shows results for a testing subset of 2048 samples, the metrics were computed
considering the Ntrain +Ntest = 8048 samples reference space.

hardly could fully express the intrinsic geometry of the data, which complicates the faithful GW
alignment of the domains. The broader discussion on the issue of discrete methods under low
correlatedness scenario is in Appendix D.1. Therefore, one possible way to increase the performance
is to consider GW solvers adapted to large amount of data. In subsequent section (§5), we check
different possibilities. In particular, we propose a new continuous solver (§5.1) which does not rely
on discrete techniques. Therefore, it can better capture the inner geometry and structure of the data
without the strict need of training on correlated data as well as allowing training on large datasets.

5 GWOT SOLVERS AT LARGE SCALE

In this section, we start by introducing NeuralGW, a novel scalable method to solve the continuous
GWOT problem (M5.1). Then we proceed to the practical performance of NeuralGW and the baselines
in large-scale GloVe benchmark (M5.2).

5.1 NEURAL GROMOV-WASSERSTEIN SOLVER

In this subsection, we conduct the theoretical and algorithmic derivation of our proposed approach.
In what follows, we restrict to the case dx ≥ dy; source (P) and target (Q) distributions are absolutely
continuous and supported on some compact subsets X ⊂ Rdx , Y ⊂ Rdy respectively. Our method is
developed for innerGW, i.e., problem (3) with cX =⟨·, ·⟩dx

, cY =⟨·, ·⟩dy
, p = 2:

innerGW2
2(P,Q)

def
= min

T♯P=Q

∫
Rdx

∫
Rdx

∣∣∣⟨x, x′⟩dx
− ⟨T (x), T (x′)⟩dy

∣∣∣2dP(x)dP(x′). (4)

Note that the existence of minimizer for (4) is due to (Dumont et al., 2024, Theorem 3.2). We base
our method on the theoretical insights about GW from (Vayer, 2020). According to (Vayer, 2020,
Theorem 4.2.1), when

∫
∥x∥42dP(x) < +∞,

∫
∥y∥42dQ(y) < +∞, problem (4) is equivalent to

innerGW2
2(P,Q) = Const(P,Q)− max

π∈Π(P,Q)
max

P∈Fdx,dy

∫
⟨Px, y⟩dydπ(x, y), (5)

where Fdx,dy

def
= {P ∈ Rdx×dy | ∥P∥F =min(

√
dx,

√
dy)} are the matrices of fixed Frobenius norm.

Note that (5) admits a solution π∗ ∈ Π(P,Q), P ∗ ∈ Fdx,dy
(Vayer, 2020, Lemmas 6.2.7; 4.2.2).

Our following lemma reformulates the innerGW problem as a minimax optimization problem. This
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reformulation is inspired by well-celebrated dual OT solvers such as (Korotin et al., 2021a; Fan et al.,
2023; Korotin et al., 2023b).

Lemma 5.1 (InnerGW as a minimax optimization) It holds that (5) is equivalent to

innerGW2
2(P,Q) = Const (P,Q) + min

P∈Fdx,dy

max
f :Rdy→R

min
T:Rdx→Rdy

L(P, f, T ), (6)

where
L(P, f, T ) =

∫
Rdy

f(y)dQ(y)−
∫
Rdx

[
⟨Px, T (x)⟩dy

+ f(T (x))
]
dP(x).

The following theorem provides a theoretical foundation that validates the minimax optimization
framework for solving the GW problem. It shows that under certain conditions, the solution T ∗ of
the minimax problem (4) brings an optimal GW mapping.

Theorem 5.2 (Optimal maps solve the minimax problem) Assume that there exists at least one
GW map T ∗. For any matrix P∗ and any potential f∗ that solve (6), i.e.,

P∗ ∈ argmin
P∈Fdx,dy

max
f

min
T : Rdx→Rdy

L(P, f, T ) and f∗ ∈ argmax
f

min
T : Rdx→Rdy

L(P∗, f, T ),

and for any GW map T ∗, we have:

T ∗ ∈ argmin
T : Rdx→Rdy

L(P∗, f∗, T ). (7)

To optimize 6 we follow the best practices from the field of continuous OT (Korotin et al., 2021b;
Fan et al., 2023; Korotin et al., 2023a;b; Asadulaev et al., 2024; Choi et al., 2023; Gushchin et al.,
2024) and simply parameterize f and T with neural networks. In turn, P is a learnable matrix of
fixed Frobenius norm. We use the alternating stochastic gradient ascent/descent/ascent method to
train their parameters. The learning algorithm is detailed in the Appendix C. We call the method
NeuralGW. As the sanity check, we run our proposed approach on toy setup from §3.1, see Figure
2b. Note that in comparison to other continuous GWOT approaches, our method does not rely on
discrete OT in any form. In particular, the training process assumes access to just random samples
from P,Q; it does not use/need any pairing between them.

5.2 PRACTICAL PERFORMANCE OF NEURALGW AND BASELINES AT LARGE SCALE

We start by introducing our large-scale Twitter-GloVe setup. We consider the same data preparation
process as in M4.2, but take Ntrain = 360K samples instead of the 6K used in M4.2 for the baseline
solvers; Ntest = 2048 is left the same. Therefore, each repetition consists in training the models
with the same data (180K samples) but using different initialization parameters for, e.g., the neural
networks. As the reference dataset for metrics computation, we used the whole dataset of Twitter-
GloVe embeddings (400K samples).
The competitive methods for the comparison under large-scale Twitter-GloVe setups are: NeuralGW
(§5.1); RegGW (§3); CycleGW (§3) and FlowGW (§3). The latter is trained in a minibatch manner,
i.e., it fits flow matching on top of discrete GW solutions for minibatches. For completeness, we
additionally report the performance of the baselines from §4.2 (in gray, labelled as “Other methods”,
Figure 5). Note that they are trained on a small subset (Ntrain = 6K), but the metrics are computed
with respect to the whole Twitter-GloVe reference, similar to NeuralGW, RegGW, CycleGW and
FlowGW. The colored charts (baselines, whole Twitter-GloVe reference) are available in Figure 7 in
Appendix B.1. While the comparison of the methods trained on 3K samples (baselines in gray) and
180K samples (our approach) might seem a bit unfair, we stress that the sizes of datasets are selected
based on the computational capabilities of the solvers.

Our results are presented in Figure 5. As we can see, NeuralGW is the only method which may deal
with large datasets for all correlatedness levels, because it is based on conventional stochastic learning
with batches. Even the advanced baselines (RegGW and FlowGW) failed to achieve reasonable
performance for α < 1 (partially correlated setup). Probably, this is due to inherent reliance on
discrete GW techniques. At the same time, our NeuralGW also can demonstrate unsatisfactory
quality, see 50 → 25 case in Figure 5 and Figure 8 in the Appendix. Overall, our experiments testify
that dimensionality reduction setups are more challenging, which presents an interesting prospective
for future research. For the sake of completeness, we additionally provide the GloVe experimental
performance for our method trained on 3K in Appendix B.1. The results are bad, which is expected
because NeuralGW is based on complex adversarial procedure while the dataset is small.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Source: 100 → Target:50

(b) Source: 50 → Target:25

Figure 5: Performance of the batched GWOT solvers for the Twitter-GloVe embeddings at different levels of
correlatedness α in all high-to-low setups. The solvers were trained with Ntrain/2 = 180K samples from a
whole space of 400K; testing subset consists of Ntest = 2048 samples, the metrics were computed considering
the whole 400K samples reference space.

Conclusions. Our proposed method (NeuralGW) is one of the first solver for the GWOT problem
that does not rely on discrete approximations and hence can handle realistic setups with uncorrelated
data. Specifically, we attract the readers’ attention to metrics’ values at α = 0 which are highlighted
with the star ⋆ symbol. In all the cases (Figure 5), our method outscores competitors by a large barrier.
Our NeuralGW supports gradient ascent-descent batch training on large datasets. This capability
enables the solver to learn intricate substructures even when trained on uncorrelated data. The initial
results for our method suggest the potential to develop a general GWOT solver that is independent of
data correlation, a significant advantage given that real-world datasets often lack such correlation.
Despite achieving the best performance on uncorrelated data, the results are inconsistent with
respect to the initialization parameters, as evidenced by a high standard deviation among repetitions.
This inconsistency may be due to the minimax nature of the optimization problem. Additionally,
adversarial methods like our NeuralGW are known to require large amounts of data for training,
which can lead to issues when working with small datasets. We explore more general problems for
baseline and NeuralGW solvers in Appendix B.

6 DISCUSSION

The general scope of our paper is conducting in-depth analyses of machine learning challenges that
yield important new insights. In particular, we analyze the sphere of Gromov-Wasserstein Optimal
Transport solvers, identify the problems and propose some solutions. Our work clearly shows that
while existing Gromov-Wasserstein Optimal Transport methods exhibit considerable success when
solving downstream tasks, their performance may severely depend on the intrinsic properties of the
training data. We partially address the issue by introducing our novel NeuralGW method. However,
it has its own disadvantages. In particular, it is based on adversarial training which may be unstable
and is not guaranteed to converge to an optimal solution of the GW problem. Thereby, our work
witnesses that GWOT challenge in ML still awaits its hero who will manage to propose a reliable
general-purpose method for tackling the problem.

Reproducibility. We provide the experimental details in Appendix C and the code to reproduce the
results of the conducted experiments in the supplementary material (see readme.md).

Broader impact. The goal of our paper is to advance the field of ML. There are potential societal
consequences of our work, none of which we feel must be specifically highlighted here.
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A PROOFS OF THEOREMS AND LEMMAS.

Proof of Lemma 5.1. First, we recall the dual formulation of (1), see, e.g., (Fan et al., 2023):

OT(P,Q)
def
= max

f

[
min
T

∫ (
c(x, T (x))− f(T (x))

)
dP(x) +

∫
f(y)dQ(y)

]
, (8)

respectively. Note that the existence of a solution (f∗, T ∗) of 8 is due to (Fan et al., 2023, Theorem
2). Our proof starts with (5). For each P, we rewrite the inner optimization over P using (8) for the
cost c(x, y) = −⟨Px, y⟩:

Const (P,Q)− innerGW2
2(P,Q) = max

P∈Fdx,dy

max
π∈Π(P,Q)

∫
Rdx×Rdy

⟨Px, y⟩ndπ(x, y) =

− min
P∈Fm,n

 min
π∈Π(P,Q)

∫
Rdx×Rdy

−⟨Px, y⟩dy
dπ(x, y)

 =

− min
P∈Fdx,dy

max
f

∫
Rdx

f(y)dQ(y) + min
T : Rdx→Rdy

∫
Rdx

−⟨Px, T (x)⟩dy − f(T (x))dP(x)

 =

− min
P∈Fdx,dy

max
f

min
T

L(P, f, T ).

Proof of Theorem 5.2. We expand L(P∗, f∗, T ∗) and use the fact that T ∗ is the OT map.

L(P∗, f∗, T ∗) =

∫
Rdy

f∗(y)dQ(y)−
∫

Rdx

⟨P∗x, T ∗(x)⟩dy
+ f∗(T ∗(x)

)
dP(x). (9)

Since T ∗ is an OT map, we have T ∗
♯ P = Q, and by the change of variables formula we get:∫

Rdx

f∗(T ∗(x)
)
dP(x) =

∫
Rdy

f∗(y)dQ(y).

Plugging this into (9), we get:

L(P∗, f∗, T ∗) = −
∫

Rdx

⟨P∗x, T ∗(x)⟩dydP(x).

Here, we once again use the fact that T ∗ is the optimal transport map. Now, since P ∗ and f∗ solve
(4), we get the following:

innerGW2
2(P,Q) = Const(P,Q) + min

T♯P=Q
L(P∗, f∗, T )

Finally, from the fact that π∗ = [idRdx , T ∗]♯P is optimal and (9), we have:

−L(P∗, f∗, T ∗) =

∫
Rdx×Rdy

⟨P∗x, y⟩dydπ
∗(x, y) = max

π∈Π(P,Q)

∫
Rdx×Rdy

⟨P∗x, y⟩dydπ(x, y) =

− min
T♯P=Q

L(P∗, f∗, T ∗),

which completes the proof.
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B EXTENDED EXPERIMENTS

Overview of the conducted experiments. To help the reader navigating over all our considered
experiments, We provide Table 1 summarizing the full list of experiments in our paper (in the main
part of the manuscript and in the appendix).

Dataset
name

Type
of embedding

Size
of the dataset Train/test size

Source
→

Target
Evaluated on

Twitter GloVe 400K Baseline solvers
6000/2048

100→50

8048 samples
Figure 4a

400K samples
Figure 7a

50→25

8048 samples
Figure 4b

400K samples
Figure 7b

50→100

8048 samples
Figure 6a

400K samples
Figure 7c

25→50

8048 samples
Figure 6b

400K samples
Figure 7d

Twitter GloVe 400K Continuous solvers
360K/2048

100→50 400K samples
Figure 5a

50→25 400K samples
Figure 5b

50→100 400K samples
Figure 8a

25→50 400K samples
Figure 8b

Twitter Byte-Pair 90K

Baseline solvers
6000/2048 100→50 90K samples

Figure 10Continuous solvers
88K/2048 100→50

MUSE Byte-Pair 90K

Baseline solvers
6000/2048

100(English)
→

50(English) 90K samples
Figure 9

Continuous solvers
88K/2048

100(English)
→

50(English)

MUSE Byte-Pair 60K

Baseline solvers
6000/2048

100(English)
→

100(Spanish) 60K samples
Table 3

Continuous solvers
58K/2048

100(English)
→

100(Spanish)

Table 1: Summary of experiments present in the paper.

Metrics. We consider three metrics to report: Top k-accuracy, FOSCTTM and cosine similarity. In
all cases, we require to know the true pairs of the source vectors in the target domain. These true
pairs are assumed to be given in some pre-specified reference pool of samples, e.g., the full 400K
Twitter-GloVe dataset. Under this assumption, the metrics can be defined as follows:
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• Top k-accuracy (↑). Considering the set of Ntest = m vectors from the source distribution and
their predictions. For each predicted vector we compute the k-closest (in terms of L2 distance)
samples in the reference pool of samples and get a sorted set of k indices {c1, c2, . . . , ck}. As
we know the indices of the optimal pairs for the reference, we can take the label of the expected
optimal pair for any vector in the test source data, this label will be denoted as li. Therefore, we
can define the top k-accuracy as follows:

Top k
def
=

1

m

m∑
j=1

1{lj ∈ {c1, c2, . . . , ck}}

• Fraction of Samples Closed Than the True Match (FOSCTTM). (↓) We calculate the Euclidean
distances from a designated transported point (y = T (x)) to every data point from the reference
set in the target domain. Using these distances, we then compute the proportion of samples that
are nearer to the true pair (this information is known). Finally, we take the average of these
proportions for all samples. The perfect alignment would mean that every sample is closest to
its true counterpart, producing an average FOSCTTM of zero. We note that this metric is rather
insensitive to the reference, i.e., considering the whole/random subset of Twitter-GloVe dataset
does not affect it much.

• Cosine similarity (↑). It is computed between the predicted vector and the reference (optimal pair)
vector in the target space.

B.1 GLOVE

Here we provide additional results for different experimental setups that we considered relevant.

Low-to-high dimension experiments for baselines. We consider the combinations 50→100 and
25→50 that were not included in the main text, the metrics were computed as explained in Section
M4.2, see Figure 6.

(a) Source: 50 → Target:100

(b) Source: 25 → Target:50

Figure 6: Performance of the baseline GWOT solvers for the Twitter-GloVe embeddings at different levels
of correlatedness α in low-to-high setups. The solvers were trained with Ntrain/2 = 3000 samples from a
whole space of 400K, this plot shows results for a testing subset of 2048 samples, the metrics were computed
considering the Ntrain +Ntest = 8048 samples reference space.

Trained on small dataset, evaluated w.r.t. large reference. The accuracy evaluation involves
identifying the k-nearest neighbours for a given vector within a target vector space. As discussed in
Section M4.2, this space was limited to a small subset of Ntrain +Ntest samples. This is justified
since the methods were trained on a similar number of samples. However, evaluating accuracy across
the entire data space could offer deeper insights into the models’ ability to capture the intrinsic
structures of the probability distributions. These results are presented in Figure 7.
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(a) Source: 100 → Target:50

(b) Source: 50 → Target:25

(c) Source: 50 → Target:100

(d) Source: 25 → Target:50

Figure 7: Performance of the baseline GWOT solvers for the Twitter-GloVe embeddings at different levels of
correlatedness α in all setups. The solvers were trained with Ntrain/2 = 3000 samples from a whole space of
400K, this plot shows results for a testing subset of 2048 samples, the metrics were computed considering the
whole 400K samples reference space.

Low-to-high experiments for batched solvers. We consider the combinations 50→100 and 25→50
for the FlowGW (mini-batch training), RegGw and NeuralGW solvers. One important remark is that
for these experiments, only three values of correlatedness were used (α = 0.2, 0.9, 1.0) for FlowGW
and NeuralGW, the plot can be seen in Figure 8.

Additional experiments for NeuralGW for high-to-low dimension in small dataset (Ntrain = 6K).
Here we consider the same setup used for the baseline methods in M4.2 to show how a neural approach
performs when it is trained using a limited amount of samples, Ntrain = 6K, see Table 2.

Conclusion. For low-to-high experiments, baseline models performance is similar to the high-to-low
case showed in M4.2 of the main work. When the trained models are evaluated w.r.t. to the whole
data space reference, the accuracy drops significantly, from this we can conclude that learning on a
small batch does not ensure the inner geometric structure of the space is accurately learned.
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(a) Source: 50 → Target:100

(b) Source: 25 → Target:50

Figure 8: Performance of the batched GWOT solvers for the Twitter-GloVe embeddings at different levels of
correlatedness α in all high-to-low setups. The solvers were trained with Ntrain/2 = 180K samples from a
whole space of 400K, this plot shows results for a testing subset of 2048 samples, the metrics were computed
considering the whole 400K samples reference space.

Dimensions Correlatedness Top 1 Top 5 Top 10 Cosine similarity FOSCTTM

100→50
α = 0.2 0.000 0.000 0.003 0.100 0.462
α = 0.5 0.000 0.001 0.004 0.107 0.470
α = 1.0 0.000 0.003 0.005 0.117 0.447

50→25
α = 0.2 0.000 0.001 0.003 0.165 0.441
α = 0.5 0.001 0.004 0.007 0.176 0.423
α = 1.0 0.000 0.000 0.004 0.174 0.435

50→100
α = 0.2 0.000 0.002 0.003 0.086 0.455
α = 0.5 0.000 0.003 0.005 0.084 0.459
α = 1.0 0.000 0.002 0.003 0.089 0.450

25→50
α = 0.2 0.000 0.002 0.005 0.113 0.440
α = 0.5 0.000 0.000 0.001 0.095 0.464
α = 1.0 0.001 0.003 0.005 0.124 0.436

Table 2: Performance of the NeuralGW solver for the Twitter-GloVe embeddings at different levels of
correlatedness α in all setups. The solver was trained with Ntrain/2 = 3000 samples from a whole space of
400K, this plot shows results for a testing subset of 2048 samples, the metrics were computed considering the
whole 400K samples reference space.

NeuralGW cannot properly keep the isometry of the probability space when these are learned from a
lower dimension. RegGW and FlowGW (mini-batch) succeed in low-to-high experiments when the
source and target spaces are fully correlated.

Finally, NeuralGW is unable to model the inner structures when the number of training samples is
small (6K). In general, adversarial algorithms like those used to train NeuralGW require plenty of
data to obtain meaningful results.

B.2 BPEMB

In this section, we explore the motivation behind using Byte-Pair Embeddings, followed by an
explanation of how we constructed our new dataset utilizing the MUSE bilingual dictionaries.
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The MUSE embeddings were originally obtained using fastText (Joulin et al., 2016); however, most
of the methods explored in this paper are unable to align these embeddings effectively. In the work
we reference as the AlignGW solver (Alvarez-Melis & Jaakkola, 2018), the authors report positive
alignment results on this dataset. However, it is important to note that these results may not fully
reflect the true alignment capability of the method, as they incorporate cross-domain similarity local
scaling (CSLS) (Conneau et al., 2017). While CSLS is commonly used in alignment tasks to enhance
inference performance in multilingual translation, it introduces a corrective bias that may inflate the
method’s apparent success. This reliance on CSLS may thus lead to results that do not accurately
represent the method’s intrinsic alignment efficacy. In light of these considerations, we determined
that a different approach was necessary for embedding the words from the MUSE vocabularies.

We generated the new dataset using the bpemb library3, which provides pre-trained subword embed-
dings. For a thorough explanation of how these embeddings are derived, we recommend reviewing
the original paper. To increase the chances that a word from the MUSE dictionaries appear in the
BPEmbd vocabularies, we selected the largest available vocabulary size (200K) when loading the
pre-trained embeddings. However, if a word still doesn’t match, we chose to exclude them. Other
reason to consider BPEmb is the possibility to compute the embeddings in different dimensions. For
our experiments we only considered English and Spanish as bilingual dictionaries are provided for
them. We excluded words with several translations and words with no translations. By doing this we
ensure the obtained dataset of source and target embeddings fits our definition of correlatedness in
Section M4.1.

With these considerations in mind, we constructed source and target datasets of BP embeddings for
MUSE (English and Spanish) and Twitter corpora. Although the number of samples was reduced, the
datasets remain viable for continuous methods. We then proceeded with the following experiments:

MUSE-BPEmb, source: English (100) → target: English (50) In this experiment we considered
the English language for source and target datasets, but the dimension of embedding is different. The
total number of samples was N = 90K, Ntrain = 6K for baseline solvers and Ntrain = 87K for
NeuralGW, Ntest = 2048 for both cases. The metrics were computed using the whole reference
space, similarly as in the second experiment in Appendix B.1. See Figure 9 for the results.

(a) Results for baseline solvers.

(b) Result for NeuralGW.

Figure 9: Performance of the baseline and batched GWOT solvers for the MUSE-Byte-Pair embeddings for
English language at different levels of correlatedness α in the 100 → 50 setup. (a) Baseline solvers trained
with Ntrain/2 = 3000 samples from a whole space of 90K. (b) Batched solvers trained with Ntrain/2 = 43K
samples. In both cases the plot shows results for a testing subset of 2048 samples, the metrics were computed
considering the whole 90K samples reference space.

3https://github.com/bheinzerling/bpemb/tree/master
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MUSE-BPemb, source: English (100) → target: Spanish (100) We considered two different
languages for source and target, the dimension of embedding was equal. The total number of samples
was N = 60K, Ntrain = 6K for baseline solvers and Ntrain = 57K for NeuralGW, Ntest = 2048
for both cases. The metrics were computed using the whole reference space. See Table 3 for the
results.

Baseline Solvers
FlowGW AlignGW StructuredGW

α Top 10 FOSCTTM Top 10 FOSCTTM Top 10 FOSCTTM
0.0 0.0013 0.4222 0.0012 0.4056 0.0000 0.5037
0.5 0.0029 0.3983 0.0022 0.3768 0.0006 0.4541
1.0 0.0267 0.3321 0.0146 0.3085 0.0009 0.4443

Continuous solvers
RegGW FlowGW (mb) NeuralGW (ours)

α Top 10 FOSCTTM Top 10 FOSCTTM Top 10
mean (std)

FOSCTTM
mean (std)

0.0 0.0001 0.4521 0.0006 0.4767 0.0518 (0.0633) 0.3811 (0.1286)
0.5 0.0009 0.4411 0.0007 0.4770 0.0284 (0.0564) 0.4379 (0.1067)
1.0 0.0013 0.4384 0.0008 0.4772 0.0748 (0.0751) 0.3514 (0.1321)

Table 3: Results for MUSE dataset for English and Spanish as source and target languages, respec-
tively, both are 100-dimensional BP embeddings.

Twitter dataset with different dimension of embeddings: For this case we considered the same
dataset as for the GloVe experiments, but we changed the type of embedding to BPEmb, only the
experiment for source: 100 → target: 50 was performed. The total number of samples was N = 90K,
Ntrain = 6K for baseline solvers and Ntrain = 87K for NeuralGW, Ntest = 2048 for both cases.
The metrics were computed as in the previous experiment. See Figure 10 for the results.

(a) Results for baseline solvers.

(b) Result for NeuralGW.

Figure 10: Performance of the baseline and batched GWOT solvers for the Twitter-Byte-Pair embeddings at
different levels of correlatedness α in the 100 → 50 setup. (a) Baseline solvers trained with Ntrain/2 = 3000
samples from a whole space of 90K. (b) Batched solvers trained with Ntrain/2 = 43K samples. In both cases
the plot shows results for a testing subset of 2048 samples, the metrics were computed considering the whole
90K samples reference space.
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For the sake of clarity, we only computed the metrics in the whole target space as in the second
additional experiment in Appendix B.1. The number of training samples was kept Ntrain = 6K for
baseline solvers and Ntrain = 87K for NeuralGW, Ntest = 2048 for both cases.

Conclusions. The obtained results with BPEmb embeddings clearly demonstrate the same trends as
for GloVe embeddings (Sections 4.2 and 5.2 of the main text). For both MUSE and Twitter datasets,
our NeuralGW turns out to be the only method capable to leverage uncorrelated (α = 0) setup when
learning the map between embeddings of the same language but with different dimensions. At the
same time, dealing with more complex iter-language setup turns out to be more difficult and none of
the solvers have reached satisfactory quality on this setting. This underlines the inherent complexity
of the GW problem.

B.3 BIOLOGICAL DATASET

As seen in the previous experiments, the baselines and NeuralGW solvers have their own limitations
and drawbacks heavily linked to their nature. However, in spite of their independent performance,
they could partially recover the inner geometry of the domains. In this section, we propose a stress
test scenario in which the solvers of the conventional GWOT problem yield poor results.

We explore the performance of the baselines solvers and NeuralGW in a biological dataset called
bone marrow (Luecken et al., 2021) which is considered in the FlowGW paper (Klein et al., 2023).
This dataset consists of 6224 samples of two different RNA profiling methods (ATAC+GEX and
ADT+GEX), the samples in each domain belong to the same donors, therefore, the real pairs are
known. The dimensionality for source and target domains are 38 and 50, respectively. Results can be
found in Table 4. All the solvers are tested using 5000 samples for training and the rest for testing.

FlowGW AlignGW StructuredGW NeuralGW
α Top 10 FOSCTTM Top 10 FOSCTTM Top 10 FOSCTTM Top 10 FOSCTTM
0.2 0.004 0.486 0.004 0.488 0.001 0.489 0.003 0.479
0.5 0.004 0.489 0.004 0.483 0.004 0.487 0.003 0.514
1.0 0.004 0.49 0.004 0.484 0.004 0.49 0.003 0.459

Table 4: Results for bone marrow dataset.

Conclusions. In all the cases, the solvers could not properly replicate the inner geometry of the
distributions even for totally correlated setups, this leaded to get metrics corresponding to random
guessing, i.e. accuracies close to 0 and FOSCTTM close to 0.5. There is one case of success for
a solver trained on this dataset which corresponds to FlowGW (Klein et al., 2023), however, the
reported results in their paper were obtained using a fused-GW solver instead of a conventional GW.

Finally, we can state that there is no general solver for the GWOT problem, all the currently available
methods struggle when dealing with real world scenarios, i.e. uncorrelated data, or with real world
datasets, i.e. not consistent inner structures.

C SOLVERS’ IMPLEMENTATION DETAILS

All the experiments were done without any normalization for the source and target vectors and for
all the studied methods (baselines and NeuralGW). A total of ten repetitions were performed. It is
important to clarify that the parameters listed below are the ones we used to align the embeddings,
they may require some tweaks to make them work in the toy setup.

StructuredGW.(Sebbouh et al., 2024) We used the code from the official repository:

https://github.com/othmanesebbouh/prox_rot_aistats

As specified in Section M3, the algorithm uses an iterative solver that updates the cost matrix T
by implementing several methods depending on the type of regularization, we only use the exact
computation without any regularization. The plan π is also updated every iteration by performing
Sinkhorn iterations, we set this number of iterations to 1000. The entropy is set to ε = 1e-4. The
total number of iterations is set to 200 or until convergence.

In this implementation, the authors use the Optimal Transport Tools (OTT) library (Cuturi et al.,
2022). The computation time per repetition until convergence was 30 minutes in average on a CPU.
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AlignGW.(Alvarez-Melis & Jaakkola, 2018) We use the official implementation of the method
taken from the repository:

https://github.com/dmelis/otalign

We set the entropy term to ε =1e-4 and use the cosine similarity to compute the source and target
intra-cost matrices Cx and Cy . We later normalize them by dividing them by their respective means
as proposed in the original implementation. The model was trained on a CPU and the average
training time was 30 minutes per repetition. The implementation uses the POT library. We train a
scikit-learn’s MLPRegressor on top of it as an inference method for test data, the parameters
are: hidden_layer_sizes=256, random_state=1, max_iter=500.

FlowGW. (Klein et al., 2023) We used the implementation provided in the OTT library for the
GENOT with slight modifications to adapt it to our pipeline. The hyperparameters for the vector field
were as follows: Number of frequencies: 128, layers per block: 8, hidden dimension: 1024, activation
function: SiLu, optimizer: AdamW (lr=1e-4). The Gromov-Wasserstein solver was set to work with
entropy ε = 1e− 3 and using cosine similarity distance to compute the intra-domain matrices.

RegGW. (Uscidda et al., 2024) For the sake of fairness, our implementation of this solver is based
on the publicly available implementation for the Monge gap regularizer from the OTT library (Cuturi
et al., 2022). To compute the Gromov-Wasserstein distance we used the GW solver from the library
and took the entropy regularized cost. The following parameters were used for training: εfit = 0.01,
εreg = 0.001, λ = 1. The transport model was parametrized as an MLP with [512, 256, 256]
dimensions for the hidden layers, the optimizer learning rate was 1e-4 and a batch size of 256.

CycleGW (Zhang et al., 2021). For the implementation of this solver, we used the code provided by
the authors in their repository:

https://github.com/ZhengxinZh/GMMD

As in the original implementation, we used fully connected neural networks (FCNN) to parametrize
f and g, in both cases the network consisted on a single layer with 512 neurons, and trained using the
Adam optimizer with a learning rate of 1e-3 (as suggested in the original paper). Both regularization
parameters, λx and λy in the original paper, were set to 0.1. The multiplier of the distortion term was
set to 5e-4. In spite of following the original implementation, it was not possible to make the solver
work for our setups beyond the toy experiment.

C.1 NEURALGW.

The innerGW problem in (4) can be optimized using our Algorithm 1.

Algorithm 1: Training algorithm for Neural Gromov-Wasserstein OT
1 Input:Distributions P and Q obtained from samples.
2 Output:Optimal rotation matrix Pω , critic fθ and transport map Tγ .
3 for i = 1, 2, 3, . . . , nepochs do
4 Sample batch from source and target distributions X ∼ P, Y ∼ Q.
5 for i = 1, 2, 3, . . . , kP do
6 Compute P loss LP = − 1

N

∑N
n=1⟨Pωx, Tγ(x)⟩

7 Gradient step over ω using ∂LP

∂ω
8 for j = 1, 2, 3, . . . , kf do
9 for k = 1, 2, 3, . . . , kT do

10 Compute mover loss LT = − 1
N

∑N
n=1⟨Pωx, Tγ(x)⟩ − 1

N

∑N
n=1 fθ(T (x))

11 Gradient step over γ using ∂LT

∂γ

12 Compute critic loss Lf = − 1
N

∑N
n=1 fθ(Tγ(x))− 1

N

∑N
n=1 fθ(y)

13 Gradient step over θ using ∂Lc

∂θ

Every experiment runs for 200 epochs. Each epoch iterates over the whole dataset (400K or 6K
samples). f and T are parametrized using multi-layer perceptrons with nl with width h, P is
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taken from the matrix of weights of a linear layer, these models are trained for kf , kT and kp
iterations, respectively. The implementation details can be seen in Table 5. The batch size is 512
for the experiments with 400K samples and 64 for the experiments with 6K. Our code is written in
PyTorch.

Table 5: Parameters for NeuralGW.

Model k nl h lr
100→50
50→25
25→50

f kf =1
4 512 1e-4T kT =10

P kP =1

50→25
f kf =1

4 256 1e-4T kT =10
P kP =1

Every epoch takes around to 3 minutes running on a GPU NVIDIA Tesla V100.

D BROADER DISCUSSIONS

D.1 DISCRETE GW SOLVERS UNDER LOW CORRELATEDNESS DATA SCENARIO

Figure 11: Discrete GW maps fitted under high (left) and low
(right) correlatedness level.

Our experimental results (Section 4.2
of the main text) testify that the dis-
crete baseline solvers perform unsatis-
factory when the data correlatedness
level α tends to zero. We hypothesis
that the main reason behind this behav-
ior is as follows. Small amount of data
used for discrete solvers hardly could
“catch” the intrinsic geometry of the
underlining distribution. When we ap-
ply discrete GW solver, the Gromov-
Wasserstein mapping is learned be-
tween the geometries induced by sample distributions, not original distributions, see Figure 11
for illustration. These “induced” geometries may be different from the original ones, they may have
other symmetries and other properties. Matching them may result in Gromov-Wasserstein map which
is quite different from the real GW map.

On the other hand, when correlatedness level is high (α = 1), the GW problem is reduced to finding
the proper permutation of the data, see Figure 11, left part. The true solution of discrete GW in this
case coincides with the true underlining GW map. If the learned map properly generalizes to new
(unseen) samples, then the resulting performance is expected to be satisfactory. It is the behaviour we
observe in our experiments, Section 4.2.
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