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ABSTRACT

Graph Neural Networks (GNNs) are increasingly being used for a variety of ML
applications on graph data. As graph data does not follow the independently and
identically distributed (i.i.d) assumption, adversarial manipulations or incorrect
data can propagate to other datapoints through message passing, deteriorating the
model’s performance. To allow model developers to remove the adverse effects
of manipulated entities from a trained GNN, we study the recently formulated
problem of Corrective Unlearning. We find that current graph unlearning methods
fail to unlearn the effect of manipulations even when the whole manipulated set
is known. We introduce a new graph unlearning method, Cognac, which can
unlearn the effect of the manipulation set even when only 5% of it is identified. It
recovers most of the performance of a strong oracle with fully corrected training
data, even beating retraining from scratch without the deletion set while being
8x more efficient. We hope our work guides GNN developers in fixing harmful
effects due to issues in real-world data post-training.

1 INTRODUCTION

Graph Neural Networks (GNNs) are seeing widespread adoption across diverse domains, from rec-
ommender systems to drug discovery (Wu et al., 2022; Zhang et al., 2022), and are being scaled to
large training sets for graph foundation models (Mao et al., 2024). However, in these large-scale set-
tings, it is prohibitively expensive to verify the integrity of every sample in the training data, which
can potentially affect desiderata like fairness (Konstantinov & Lampert, 2022), robustness (Paleka
& Sanyal, 2023; Günnemann, 2022) and accuracy (Sanyal et al., 2021).

Making the training process itself robust to minority populations (Günnemann, 2022; Jin et al., 2020)
is challenging and can adversely affect fairness and accuracy (Sanyal et al., 2022). Consequently,
model developers may want post-hoc ways to remove the adverse impact of manipulated training
data if they observe problematic model behavior on specific distributions of test-time inputs. Such
an approach follows the recent trend of using post-training interventions to ensure models behave in
intended ways (Ouyang et al., 2022). Recently, Goel et al. (2024) formulated Corrective Unlearning
as the challenge of removing adverse effects of manipulated data with access to only a representative
subset for unlearning while being agnostic to the type of manipulations. We study this problem in
the context of GNNs, which face unique challenges due to the graph structure. The traditional as-
sumption of independent and identically distributed (i.i.d.) samples does not hold for GNNs, as they
use a message-passing mechanism that aggregates information from neighbors. This process makes
GNNs vulnerable to adversarial perturbations, where modifying even a few nodes can propagate
changes across large portions of the graph and result in widespread changes in model predictions
(Bojchevski & Günnemann, 2019b; Zügner et al., 2018). As a result, any unlearning approach for
GNNs must remove the influence of manipulated entities on neighbors to be effective.

Corrective Unlearning is the problem of removing the influence of arbitrary training data manipula-
tions on a trained model using only a representative subset of the manipulated data. In this work, we
focus on the use of GNNs in node classification tasks, studying unlearning for targeted binary class
confusion attacks (Lingam et al., 2024) on both edges and nodes. For edge unlearning, we evaluate
the unlearning of spurious edges that change the graph topology in a way that violates the homophily
assumption. For node unlearning, we utilize a label flip attack (Lingam et al., 2024) which is used
as a classical graph adversarial attack, similar to the Interclass Confusion attack (Goel et al., 2022).
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Figure 1: Illustration of our method Cognac. Initially (Left), the model is trained on manipulated
data (Devils), out of which only a subset is identified for deletion (Dark-red-devils). Our method
alternates between two steps. The first step (1) identifies neighbors by the deletion set, which can in-
clude both nodes from the remaining data (Light-red) and unidentified manipulated nodes (Purple),
and pushes their representation away from the deletion set and towards other nodes in the neighbor-
hood. The second step (2) performs ascent on the deletion set labels, and descent on the remaining
data with separate optimizer instances. This cleanly separates the embeddings of the affected classes
(Right), resulting in improved accuracy on the affected distribution, while maintaining it on the re-
maining distribution.

First, we evaluate whether existing GNN unlearning methods are effective in removing the impact of
manipulated entities. Our findings reveal that these methods consistently fail, even when provided
with the complete set of manipulated entities. We then propose our method, Cognac, which unlearns
by alternating between two components, as illustrated in Figure 1. The first component Contrastive
unlearning on Graph Neighborhoods (CoGN), finds affected neighbors of the known deletion set,
updating the GNN weights using a contrastive loss that pushes representations of the affected neigh-
bors away from the deletion entities while staying close to other neighbors. The second component,
AsCent DesCent de coupled (AC DC) applies the classic i.i.d unlearning method of gradient as-
cent on the deletion set and gradient descent on the retain set. We use separate optimizers for these
components as we find it essential for stable dynamics when optimizing the competing objectives.

Our proposed method shows promising results, recovering most of the performance of an oracle
model with access to a clean label version of the full graph, even if only 5% of the manipulated
entities are identified. This is the first corrective unlearning method that succeeds in removing ad-
versarial class confusion with a small fraction of the manipulated set. Finally, we perform a detailed
analysis with ablations, where we identify an interesting tradeoff specific to graph corrective un-
learning. Particularly, using a larger fraction of the manipulation set for deletion while helpful for
unlearning, can remove more structural information from the graph. Keeping the manipulated enti-
ties but removing the effect of their features and labels helps our method match Oracle performance.
Overall, Cognac offers users of GNNs an efficient, highly effective post-training strategy to remove
adverse effects of manipulated data.

2 RELATED WORK

Graph-based attacks, such as Sybil (Douceur, 2002) and link spam farms (Wu & Davison, 2005),
have long affected the integrity of social networks and search engines by exploiting the trust in-
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herent in node identities and edge formations. Recent works reveal that even state-of-the-art GNN
architectures are vulnerable to simple attacks on the trained models which either manipulate exist-
ing edges and nodes or inject new adversarial nodes (Sun et al., 2019; Dai et al., 2018; Zügner &
Günnemann, 2019; Geisler et al., 2024). Parallelly, works have characterized the influence of spe-
cific nodes and edges that can guide such attacks (Chen et al., 2023). One strategy to mitigate the
influence of such attacks is robust pretraining, such as using adversarial training (Yuan et al., 2024;
Zhang et al., 2023). Post-hoc interventions like unlearning act as a complementary layer of defense,
helping model developers when attacks slip through and still adversely affect a trained model.

Removing the impact of manipulated entities begins with their identification (Brodley & Friedl,
1999), for which multiple strategies exist like data attribution (Ilyas et al., 2022), adversarial detec-
tion, and automated or human-in-the-loop anomaly detection (Northcutt et al., 2021). Once iden-
tified, various approaches have been proposed to mitigate specific effects of the manipulated data,
including model debiasing (Fan et al., 2024) and concept erasure (Belrose et al., 2023). While these
approaches have similar goals, that is, post-hoc removing undesirable effects of corrupted training
data, unlearning attempts to do this without precise knowledge of the nature of corruptions and its
effects. This is useful in adversarial settings where effects can be obfuscated, and harm multiple
desiderata simultaneously (Paleka & Sanyal, 2023).

Machine unlearning gained initial interest for privacy applications to serve user data deletion re-
quests (Nguyen et al., 2022). Exact Unlearning procedures remove or retrain parts of the ML sys-
tem that saw the data to be deleted, guaranteeing perfect unlearning by design (Chen et al., 2022b;a;
Bourtoule et al., 2021). However, they can incur exponential costs with sequential deletion requests
(Warnecke et al., 2023). Therefore, we focus on Inexact Unlearning methods, which either provide
approximate guarantees for simple models (Chien et al., 2022; Wu et al., 2023b) or like us, empiri-
cally show unlearning through evaluations for deep neural networks (Wu et al., 2023a; Cheng et al.,
2023; Li et al., 2024b). Due to the non-i.i.d nature of graphs, GNN unlearning methods need to re-
move the effects of deletion set entities on the remaining entities, which distinguishes the subdomain
of Graph Unlearning (Said et al., 2023).

Recently, machine unlearning has received newfound attention beyond privacy applications (Pawel-
czyk et al., 2024; Schoepf et al., 2024; Li et al., 2024a). Goel et al. (2024) demonstrated the distinc-
tion between the Corrective and Privacy-oriented unlearning settings for i.i.d classification tasks,
emphasising challenges when not all manipulated data is identified for unlearning. In this work,
we focus on the intersection of corrective unlearning for graphs, evaluating existing methods and
making significant progress through our proposed method Cognac.

3 CORRECTIVE UNLEARNING FOR GRAPH NEURAL NETWORKS

We now formulate the corrective unlearning problem for graph-structured, non-i.i.d data. We con-
sider a graph G = (V, E), where V and E represents the constituent set of nodes and edges re-
spectively. For each node Vi ∈ V , there is a corresponding feature vector Xi and label Yi, with
V = (X ,Y). Consistent with prior work in unlearning on graphs (Wu et al., 2023a; Li et al.,
2024b), we focus on semi-supervised node classification using GNNs. GNNs use the message-
passing mechanism, where each node aggregates features from its immediate neighbors. The effect
of this aggregation process propagates through multiple successive layers, effectively expanding the
receptive field of each node with network depth. This architecture inherently exploits the principle
of homophily, a common property in many real-world graphs where nodes with similar features or
labels are more likely to be connected than not.

While assuming homophily is extremely useful for learning representations from graph data, annota-
tion mistakes or adversarial manipulations that create dissimilar neighborhoods or connect otherwise
dissimilar nodes can easily harm the learned representations (Zügner & Günnemann, 2019). This
motivates our study of post-hoc correction strategies like unlearning for GNNs. Following Goel
et al. (2024), we adopt an adversarial formulation that subsumes correcting more benign mistakes.

Adversary’s Perspective. The adversary can reduce model accuracy on a target distribution by
manipulating parts of the clean training data G. This can be done in the following ways: (1) adding
spurious edges Ê , resulting in E ′ = E ∪ Ê ; or (2) manipulating node information, V ′ = fm(V),
where fm manipulates a subset of nodes by changing their features or labels. We define Sm as the
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set of manipulated entities, either the manipulated subset of nodes or the added spurious edges Ê .
The final manipulated graph is denoted as G′ = (V ′, E ′).
Unlearner’s Perspective. After training, model developers may observe that desired properties
like fairness and robustness are compromised in the trained model M, which can be modelled as
lower accuracy on some data distributions. The objective, then, is to remove the influence of the
manipulated training data Sm on the affected distribution while maintaining performance on the
remaining entities. By utilizing data monitoring strategies on a subset of the training data or using
incorrect data detection tools like (Northcutt et al., 2021), it may be possible to identify a part of
the manipulated entities Sf ⊆ Sm. For unlearning to be feasible, Sf must be a representative
subset of Sm. We only assume the type of affected entity (edges or nodes) is known to the model
developer but do not assume any knowledge about the nature of manipulation. An unlearning method
U(M, Sf ,G′) is then used to mitigate the adverse effects of Sm, ideally by improving the accuracy
on unseen samples from the affected distribution. An effective unlearning method should remove
the impact of certain training data samples without degrading performance on the rest of the data or
incurring the cost of retraining from scratch. Moreover, Retrain was previously considered a gold
standard in privacy-oriented unlearning and graph unlearning, but Goel et al. (2024) showed that
when the whole manipulated set is not known, retraining on the remaining data can reinforce the
manipulation, implying it’s not a gold standard for corrective unlearning.

Metrics. To evaluate the performance of unlearning methods in this setting, we use the metrics
proposed by Goel et al. (2024):

1. Accaff : It measures the clean-label accuracy of test set samples from the affected distribu-
tion. This metric captures the method’s ability to correct the influence of the manipulated
entities on unseen data through unlearning. As the affected distribution differs for each
manipulation, we specify it when describing each evaluation.

2. Accrem : It is defined as the accuracy of the remaining entities. This metric measures
whether the unlearning maintains model performance on clean entities.

The metrics Accaff and Accrem were termed “Corrected Accuracy” (Acccorr) and “Retain Accuracy”
(Accretain) respectively by Goel et al. (2024). We chose alternative names to explicitly state which
data distribution accuracy is measured on. In Section 5.1 we further specify what “the affected
distribution” and “remaining entities” are for the different evaluation types we study.

Goal. An ideal corrective unlearning method should have high Accaff even when a small fraction of
Sm is identified for deletion (Sf ) while maintaining Accrem and taking less computation time.

4 OUR METHOD: Cognac

Our proposed unlearning method, Cognac, requires access to the underlying graph G′, the known
set of entities to be deleted Sf , and the original modelM. We define Vf as the set of nodes whose
influence is to be removed. For node unlearning, this is the same as the deletion entities Sf ; for
edge unlearning, this is the set of vertices connected to the edge set to be deleted. Manipulated data
has two main adverse effects on the trained GNN: 1) Message passing can propagate the influence
of the manipulated entities Sm on their neighborhood, and 2) The layers learn transformations to fit
potentially wrong labels in Sm. We tackle these two problems using separate components.

4.1 REMOVING ADVERSE EFFECTS ON NEIGHBORING NODES WITH COGN

The first question we address is: How can we remove the influence of manipulated entities on their
neighboring nodes? This requires us first to identify the nodes affected by the manipulations and
then mitigate the influence on their representations. Identifying affected nodes is challenging, as the
impact of message passing from manipulated entities Sm depends on the interference from messages
of other neighboring nodes. Therefore, we use an empirical estimation to identify the affected nodes
from each entity in the deletion set. On these nodes, we then perform contrastive unlearning, simul-
taneously pushing the representations of the affected nodes away from nodes in Vf while keeping
them close to other nodes in their neighborhood. We call this component Contrastive unlearning on
Graph Neighborhoods (CoGN), formalized below.
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Affected Node Identification. To speed up our method, we make use of the fact that not all nodes
in the n-hop neighbourhood of the manipulated nodes may be affected enough by the attack. To
find the most affected nodes, we invert the features of v ∈ Vf and select neighbouring nodes where
final output logits are changed the most. Formally, the inversion is performed by the transformation
1⃗−Xv∀ v ∈ Vf , leading to a new feature matrix χ′, where Xv represents a one-hot-encoding vector.
We then compute the difference in the original output logits M(χ), and those obtained by on the
new feature matrix,M(χ′) given by: ∆χ = |M(χ′) −M(χ)|. The top k% nodes with the most
change ∆χ are selected as the affected set of entities, from which we remove the influence of the
manipulation using CoGN. More details and ablations in Appendix:I.

Contrastive Unlearning. To remove the influence of the deletion set Sf on the affected nodes
identified in the previous step, we can optimize a loss function that updates the weights such that
the final layer logits of Sf and the affected nodes are pushed away. However, this alone will lead to
unrestricted separation and damage the quality of learned representations. To prevent this, we also
counterbalance the loss with another term that penalizes moving away from logits of neighboring
nodes not in the deletion set Sf . For each node v ∈ S, let zv represent its internal embedding,
with p ∈ N (v) and n ∈ Vf serving as the positive and negative samples, respectively. We use the
following unsupervised contrastive loss:

Lc = − log(σ(z⊤v zp))− log(σ(−z⊤v zn)) (1)

The loss is similar to the one used in GraphSAGE (Hamilton et al., 2017), but only updates affected
nodes to make their representations dissimilar from the deletion set while keeping them similar
to the remaining nodes in their neighborhood. We choose an unsupervised loss function to fix
representations even in mislabeling, which is essential when the manipulated set is not fully known
(Sf ⊂ Sm).

4.2 UNLEARNING OLD LABELS WITH AC DC

Next, we ask: Can we undo the effect of the task loss Ltask explicitly learning to fit the node rep-
resentations of Sm to potentially wrong labels? We do this by performing gradient ascent on Sf ,
which non-directionally maximizes the training loss concerning the old labels. Ascent alone aggres-
sively leads to arbitrary forgetting of useful information, so we counterbalance it by alternating with
steps that minimize the task loss on the remaining data. More precisely, we perform gradient ascent
on Vf and gradient descent on Vr, iteratively on the original GNNM.

La = −Ltask(Vf ), Ld = Ltask(Vr) (2)

While variants of ascent on Sf and descent on remaining data have been studied for image classifi-
cation (Kurmanji et al., 2023) and language models (Yao et al., 2023), we find the need for a spe-
cific optimization strategy to achieve corrective unlearning on graphs. The challenge arises when
Sf ⊂ Sm, as the remaining data could still contain manipulated entities, which we aim to avoid
reinforcing. However, in realistic scenarios, the manipulated entities Sm typically constitute a small
fraction of the training data, allowing us to mitigate their impact through ascent on the representative
subset Sf .

This requires a careful balance between ascent and descent, which we can achieve by using two
different optimizers and starting learning rates for these steps. This insight is similar to prior work
in Generative Adversarial Networks (GANs) (Heusel et al., 2017). The starting learning rates for
both ascent and descent are hyperparameters to be tuned, and usually, we find a lower learning rate
for ascent leads to better results. The importance of decoupling optimizers is shown by results in
Table 3. Thus, we call this component Ascent Descent de coupled (AC DC) to emphasize the
distinction from existing variants of ascent on Sf and descent on remaining data.

For our final method Cognac, we alternate steps of CoGN, which fixes representations of affected
neighborhood nodes, and AC DC, which unlearns potentially wrong labels introduced by Sm. The
complete algorithm is formally detailed in the Appendix B.
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5 EXPERIMENTAL SETUP

5.1 EVALUATIONS

Given a fixed budget of samples to manipulate, ideal corrective unlearning evaluations should maxi-
mally deteriorate model performance on the affected distribution so that there is a wide gap between
clean and poisoned model performance to measure unlearning method progress. We thus evaluate
using attacks not constrained on stealthiness. Lingam et al. (2024) show that binary label flip ma-
nipulation attacks, where a fraction of labels are swapped between two chosen classes, are stronger
than multi-class manipulations, theoretically and empirically, on GNNs. Building on this, we use
two targeted attacks to evaluate corrective unlearning on graph data.

Spurious Edge Addition. We first describe a graph-specific manipulation where an attacker can
add edges to the graph topology (Bojchevski & Günnemann, 2019a). Such an attack can occur in
real-world settings like social networks, where attackers can create fake accounts and follow tar-
geted accounts, strengthening their connection in the underlying graph. Similarly, attackers could
manipulate knowledge graphs by adding links between unrelated concepts (Xi et al., 2023; Zhang
et al., 2019; Zhao et al., 2024), or manipulate search engine results by adding fake cross-references
(Gyongyi & Garcia-Molina, 2005). Prior GNN unlearning work (Wu et al., 2023a; Li et al., 2024b)
has also evaluated adversarial edge attacks but in an untargeted setting, making the evaluation weak.
In our formulation, the attacker selects two classes, samples random pairs of nodes uniformly, with
one from each class, and adds edges between them. This targets the underlying homophily assump-
tion in message passing, leading to representations of the two classes being entangled when training
the model. Hence, this attack reduces the model’s accuracy on samples from the two classes, which
form the affected distribution. Thus, the unlearning goal is to improve accuracy on the test set sam-
ples of the two targeted classes (Accaff). For Accrem, we measure accuracy on test set samples from
the remaining classes.

Label Manipulation. Next, we study a label-only manipulation that models settings where model
developers source external annotations on their data. We focus on systematic mislabeling, which
can occur in an adversarial context where an attacker wants the model to confuse two classes due
to annotator biases or misinterpretations of potentially ambiguous guidelines. We use the Interclass
Confusion (IC) Test (Goel et al., 2022), where the attacker picks two classes again, swapping the
labels between nodes from the two classes. This attack also entangles the representations of the
two classes, reducing the model’s accuracy on them, which forms the affected distribution. Once
again, the unlearning goal is to improve accuracy on the test set samples of the two targeted classes
(Accaff). For Accrem, we measure accuracy on test set samples from the remaining classes.

5.2 BASELINES

We evaluate four popular graph unlearning methods and adapt one popular i.i.d unlearning method
for graphs. For reference, we also report results for the Original model, Retrain which trains a new
model without Sf , and an Oracle trained on the whole training set without manipulations, indicating
an upper bound on what can be achieved. The Oracle has correct labels for the unlearning entities,
information that the unlearning methods cannot access.

Existing Unlearning Methods. We choose five methods as baselines where unlearning incorrect
data explicitly motivates the method. (1) GNNDelete (Cheng et al., 2023) adds a deletion operator
after each GNN layer and trains them using a loss function to randomize the prediction probabilities
of deleted edges while preserving their local neighborhood representation, keeping the original GNN
weights unchanged. (2) GIF (Wu et al., 2023a) draw from a closed-form solution for linear-GNN to
measure the structural influence of deleted entities on their neighbors. Then, they provide estimated
GNN parameter changes for unlearning using the inverse Hessian of the loss function. (3) MEGU
(Li et al., 2024b) finds the highly influenced neighborhood (HIN) of the unlearning entities and
removes their influence over the HIN while maintaining predictive performance and forgetting the
deletion set using a combination of losses. (4) UtU (Tan et al., 2024) proposes zero-cost edge-
unlearning by removing the edges to be deleted during inference for blocking message propagation
from nodes linked to these edges. Finally, we include a popular unlearning method studied in i.i.d
classification settings. (5) SCRUB (Kurmanji et al., 2023) employs a teacher-student framework
with alternate steps of distillation away from the forget set and towards the retain set. For edge

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

OursReference BaselinesFraction Identified For Deletion

Edge Unlearning Node Unlearning

A
cc  

af
f

Figure 2: Corrective Unlearning Results. We report the accuracy on the affected classes Accaff
across different fractions of the manipulation set known for deletion (Sf/Sm). Prior methods per-
form poorly, except for GNNDelete, which does achieve unlearning in some settings. AC DC, de-
spite not being graph-specific, performs much better. Cognac adds graph awareness to it, improving
results on CS and Cora, unlearning the effect of the manipulation with just 5% of the manipulation
set known.

unlearning, we use SCRUB by taking nodes across spuriously added edges as the forget set and the
rest as the retain set.

5.3 BENCHMARKING DETAILS

We now describe design choices made for benchmarking, first specifying the datasets and architec-
tures, then how to ensure a fair comparison between methods.

Models and Datasets. We report results using Graph Convolutional Networks (GCN) (Kipf &
Welling, 2017) and also show the same trends hold for Graph Attention Transformers (GAT)
(Veličković et al., 2018) in Appendix D. We evaluate the methods on three benchmark datasets:
CoraFull (Cora) (Bojchevski & Günnemann, 2017), Coauthor CS (CS) (Shchur et al., 2019), and
Amazon Photos (Amazon) (McAuley et al., 2015). Data set size details and the corresponding
classes and number of entities manipulated are provided in Table 4 in Appendix A.

Ensuring a fair comparison of unlearning methods can be tricky as there are multiple desiderata: un-
learning, maintaining utility, and computational efficiency, and hyperparameter tuning of the meth-
ods can particularly affect results on GNNs. Next, we describe our efforts towards this.

Unlearning Time. To simplify comparisons to just two axes, Accaff , and Accrem, we fix a maximum
cutoff of time an unlearning method can take, as motivated by Maini et al. (2024). We chose this
cutoff as 25% of the original model training time. We pick the best model checkpoint during training
for each method, which could be achieved earlier than this (Reported in Appendix E. All experiments
were run on a machine with Intel Xeon CPUs and two dedicated RTX 5000 GPUs.

Hyperparameter Tuning. We perform extensive hyperparameter tuning for all unlearning methods
using Optuna (Akiba et al., 2019) with a TPESampler (Tree-structured Parzen Estimator) Algorithm.
We ensure the hyperparameter ranges searched include any values specified in the original papers
that proposed the methods. The optimization target is an average of Accaff and Accrem, computed
on the validation set. We report averaged results across five seeds. Method-specific hyperparameter
ranges and scatter plots across hyperparameters for each method are provided in Appendix C.

7
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Table 1: Accuracy on remaining distribution for datasets and attacks. We average accuracy
on the remaining classes Accrem across the deletion set sizes tested, and report the difference from
Original as ideal methods should be similar or better. We find prior methods, especially GNNDelete
and GIF, lead to large drops in accuracy, which is much milder for our methods.

Method Amazon CS Cora

Node Edge Node Edge Node Edge

Original 94.0±0.0 94.9±0.0 90.4±0.0 89.9±0.0 56.0±0.0 55.4±0.0

Cognac −0.7±0.5 −3.9±0.0 −0.8±0.4 −1.3±0.1 0.0±0.4 −1.1±1.3

CoGN −0.7±0.6 −2.7±0.0 −2.2±1.7 −0.5±0.2 0.8±0.3 −1.0±1.2

AC DC −0.5±0.3 −2.7±0.0 −1.1±0.3 −0.9±0.0 1.5±0.0 −1.4±0.0

GNNDelete −24.7±6.1 −2.7±0.5 −5.3±1.1 −5.0±1.1 −6.1±1.4 −11.5±0.1

GIF −18.5±0.1 −3.3±0.1 −18.5±0.5 −3.7±1.7 −1.0±0.4 −8.8±0.7

MEGU −8.5±11.5 −1.1±1.2 −1.7±0.2 −1.5±2.5 −6.5±1.0 −1.0±0.8

UtU 0.5±0.1 0.0±0.0 0.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0

SCRUB −9.4±3.7 −0.8±0.0 0.0±0.2 −0.6±0.0 −0.7±0.2 0.3±0.0

6 RESULTS & DISCUSSION

We now report our results, first showing comparisons of our method to existing methods across the
manipulation types and datasets, followed by ablations of our method and analysis of what can be
achieved in this setting.

Figure 3: Pre-final layer embeddings for test nodes of the CS Dataset for the node unlearning
of class confusion. Cognac can resolve the class confusion: The affected distribution embeddings
(highlighted by red and blue) are fully entangled in the original trained model while after unlearning
with Cognac the embeddings are well separated and clustered. SCRUB manages to do it to a certain
extent, and GNNDelete cannot recover from it.

6.1 MAIN RESULTS

Figure 2 contain unlearning measurements upon varying the fraction of the manipulation set known
for unlearning (Sf/Sm). Table 1 accompanies this with utility measurements averaged across the
deletion fractions for each method. We make three main observations:

1. Existing unlearning methods perform poorly even when |Sf | = |Sm|. First, observing the
rightmost points in Figure 2, we can see that existing methods fail to unlearn across manipulation
types even when the whole manipulation set is known. The only exception is GNNDelete on the
edge unlearning task, but with up to 24.7% drops in Accrem as seen in Table 1, which has also been
observed before as Overforgetting in Tan et al. (2024). UtU fails to unlearn the effects of either of
the attacks as simply unlinking on the forward pass does not sufficiently counteract the influence
on neighbors and weights. Both SCRUB and MEGU use a KL Loss to keep predictions on the
remaining data close to the original model, which could be detrimental when done on unidentified
manipulation set entities and other affected neighbors.
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2. AC DC shows strong results but improves with CoGN. AC DC, a method with no graph-
specific aspects, performs quite strongly, beating all the methods we compare to without losing
utility on the remaining classes. MEGU and GIF were evaluated on removing adversarial edges,
and GNNDelete also mentions incorrect data as one of its key applications. Yet, despite extensive
hyperparameter search, they are beaten by a method with no special graph components. This high-
lights the importance of strong evaluations for graph unlearning, a bar our evaluations cross as they
at least demonstrate the failure of existing methods. These findings raise the question: are graph-
specific unlearning methods even needed? We find yes. Cognac, which adds the graph-aware CoGN
step to AC DC dominates AC DC on CS and Cora, the more complex datasets, while performing
similarly on Amazon.

3. Cognac performs strongly even at 5% of Sm known. We observe that Cognac performs
the best across all the datasets and manipulation types, recovering most of the accuracy on the
affected distribution even when 5% of the manipulated set is known. We even outperform Retrain
in the realistic settings when Sm is not fully known, as we utilize negative information, i.e., push
influenced neighbors away from the identified deletion set in CoGN and perform gradient ascent on
old labels in AC DC.

Overall, these results demonstrate the efficacy of Cognac in removing different types of manipula-
tions at a tiny fraction (5%) of the manipulation set Sm known, which shows significant progress on
the challenge of Corrective Unlearning in th graph setting. We also visualize each method’s inter-
mediate GNN layer embeddings after unlearning in Figure 3 where we can clearly notice Cognac
can remove the class confusion effect, fixing the model’s internal representations.

6.2 WHY Accaff SOMETIMES REDUCES AS IDENTIFIED MANIPULATED ENTITIES INCREASE?

We find an interesting trend that sometimes, as more of the manipulation set (Sm) is known and
used as the deletion set (Sf ) (going left to right in Figure 2), Accaff reduces. This can seem counter-
intuitive, as one would expect the accuracy of affected classes to improve as more samples are used
for unlearning. We hypothesize unlearning a larger fraction of the manipulation set reduces Accaff
due to two factors that adversely affect the neighborhoods of the nodes removed, which typically
have other nodes of the affected classes due to homophily. First, in the case of label manipulation,
when we model it as node unlearning for consistency with prior work, we lose correct information
about the graph structure. Second, when modifying the graph structure, i.e., removing some edges or
nodes changes the feature distribution of their neighboring nodes after the message passes, making
it out of distribution for the learned GNN layers. The same rationale is why the test nodes are kept
in the graph structure (without optimizing the task loss for them) during training (Kipf & Welling,
2017). We investigate this by adding an ablation where in the unlearning of the label manipulation,
instead of unlearning the whole node, we keep the structure, i.e., the node and connected edges, but
unlearn the features and labels.

Table 2: Ablating unlearning performance on label manipulation with and without unlinking.
We report the accuracy on the affected classes Accaff for unlearning the label manipulation on Cora
both when the full and a subset (25%) of the manipulated set is used for deletion. We find not
removing the structural information leads to a significant improvement in Accaff , especially when
more entities are deleted. This also demonstrates that the unlearner can obtain better models if
specific information about what is manipulated is available.

Method 0.25 1

Linked Unlinked Linked Unlinked

Oracle 73.0±0.0 73.0±0.0 73.0±0.0 73.0±0.0

Original 42.0±0.0 42.0±0.0 42.0±0.0 42.0±0.0

Cognac 64.8±0.9 67.8±3.2 77.2±1.0 69.3±1.3

CoGN 64.6±0.0 63.9±2.2 69.3±0.0 62.3±1.1

GNNDelete 35.2±2.5 50.2±1.9 21.9±4.5 30.2±5.3

MEGU 40.8±1.6 33.4±0.4 41.2±1.5 32.1±1.3

SCRUB 45.7±0.0 60.7±0.0 41.1±0.0 29.0±0.0

AC DC 61.7±0.0 58.8±0.0 63.7±0.0 54.3±0.0
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As observed in Table 2, retaining the node structure leads to large improvements in Accaff when
the deletion set is larger (the full set of manipulated entities), while not benefiting much when the
deletion set is smaller. In the full manipulation set deletion setting, Cognac even slightly outperforms
OracleṪhis highlights how unlike traditional node unlearning in graphs, removing the nodes is not
always the best way to unlearn manipulations. They can simply be moved from the train set to the
test set to still partake in message passing, so the task loss is not optimized over wrong labels.

6.3 IMPORTANCE OF DECOUPLED OPTIMIZERS FOR ASCENT AND DESCENT

While ascent-descent has been studied in prior unlearning work, it often performs poorly due to
unstable loss dynamics. We find this can be fixed with a simple trick: using two learning rates
and different instances of Adam instead of coupling the optimization of both steps. Adding another
hyperparameter for the ascent learning rate is necessary as the ascent is not always needed when the
original training data labels are correct. For example, we do find that the ascent learning rate is set
to nearly zero during automatic hyperparameter selection for our edge unlearning evaluation, where
labels are not manipulated. This leaves the question of how much two different instances of the same
optimizer help. We thus test two ablations: Using a single optimizer with two learning rates and also
using a combined loss function for ascent and descent instead of alternating steps. In Table 3 we
report results on 25% and 100% of the manipulated nodes identified for Cora. We find AC DC
leads to almost 20% better Accaff than using a single optimizer with alternating ascent descent,
and 5 − 10% better Accaff than using a combined loss function. This justifies our contribution of
decoupling optimizers in AC DC.

Table 3: Ablations of AC DC at (Sf/Sm) = 0.25 and 1.00 on Cora node unlearning. We ablate
the AC DC part of our method, even when the losses are combined in a single loss term.

Method 0.25 1.00

Accaff Accrem Accaff Accrem

Single Optimizer 1 LR Alternating Ascent Descent 38.3 56.0 29.0 56.2
Single Optimizer 2 LRs Combined Loss 47.5 56.7 49.6 55.1
AC DC 58.8 57.4 54.3 56.1

7 LIMITATIONS AND CONCLUSION

In this work, we study the corrective unlearning problem for GNNs, where model developers try to
remove the adverse effects of manipulated training data from a trained GNN, with realistically only
a fraction of it identified for deletion. Our work relies on the homophily assumption, not catering
to heterophilic graphs (Wang et al., 2024). Our evaluations could have been stronger, and may
not match real-world complexities, where multiple manipulations can occur simultaneously, and
attackers have constraints such as avoiding detection. Successful unlearning on our evaluations does
not guarantee arbitrary real-world unlearning, especially against adaptive attacks.

Still, our evaluations are sufficient to show that existing unlearning methods perform poorly at re-
moving adverse effects of manipulations from GNNs, even in the unrealistic setting of the full ma-
nipulation set being known. We propose a new method Cognac that achieves two crucial effects
necessary for corrective unlearning. First, Cognac identifies and fixes representations of neighbor-
hood nodes affected by the deletion set using contrastive finetuning. Second, Cognac moves away
from potentially wrong deletion set labels using gradient ascent, stabilized by continuing optimiza-
tion of the task loss on the remaining data with a decoupled optimizer. While our method does
not provide any theoretical guarantees, to the best of our knowledge, Cognac is the first method to
unlearn class confusion manipulations with access to as little as 5% of the manipulated data, re-
covering most of the accuracy on the affected distribution. With additional information, it nearly
matches a strong oracle with full correct training data. We hope this sparks interesting future work
on developing stronger evaluations and theoretical understanding for graph corrective unlearning in
the GNN Robustness and Machine Unlearning community.
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8 REPRODUCIBILITY STATEMENT

We provide our entire codebase in the supplementary materials to ensure reproducibility, along with
the optimal hyperparameters for each configuration. All artefacts will be publicly released, complete
with comprehensive instructions for their use, including scripts and code for generating plots.
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A DATASET DETAILS

In Table 4, we discuss the number of nodes, edges, and classes in the Cora, Amazon, and CS datasets.
We have used Cora Full, which is significantly larger and has higher class diversity than the Cora
dataset commonly referenced in GNN literature (which has 2708 nodes, 5429 edges, and 7 classes).
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Table 4: Dataset and manipulation statistics. The number of nodes and edges reported here is for
the whole dataset. From this, we use a 60/20/20 split for train/validation/test. The last two columns
show the percentage of training data manipulated in the node unlearning and edge unlearning eval-
uation, respectively. The percentage of nodes and edges added are relative to the existing number of
training nodes and the number of edges in the graph, respectively.

Dataset # Classes # Nodes # Edges Nodes Manipulated (%) Edges Added (%)

Cora 70 18,800 125,370 1.50 0.60
CS 15 18,333 163,788 2.00 2.00
Amazon 8 7,487 238,086 12.00 4.20

B FORMAL DESCRIPTION OF Cognac

In this section, we outline the formal procedure of our proposed unlearning method, Cognac de-
signed to effectively remove the influence of manipulated data from GNNs. First, the algorithm
identifies the nodes affected by the manipulation and then applies a contrastive learning-based ap-
proach to unlearn their influence. The key steps include identifying the influenced nodes, performing
contrastive learning to re-optimize the embeddings, and minimizing classification loss on the unaf-
fected nodes while maximizing it on the manipulated set. The complete algorithm is detailed in
Algorithm 1.

Algorithm 1 COGNAC

Require: GNN M , Graph G = (V,E,X), Deletion set Sf , Hyperparameters Θ
Ensure: Unlearned GNN M∗

1: S ← IDENTIFYAFFECTEDNODES(M,X,Sf , E,Θ)
2: P ← SAMPLEPOSITIVES(S,E, Sf )
3: N ← SAMPLENEGATIVES(S, Sf )

// Overall unlearning process
4: for step = 1 to Θ.num steps do

// contrastive unlearning phase
5: for epoch = 1 to Θ.contrast epochs do
6: Z ←M(X)
7: Lc ←

∑
v∈S

(
− log(σ(Z⊤

v ZPv ))− log(σ(−Z⊤
v ZNv ))

)
8: M ← OPTIMIZE(M,Lc)
9: end for

// gradient ascent on Sf , and gradient descent on V \ Sf

10: for epoch = 1 to Θ.ascent descent epochs do
11: La ← −CROSSENTROPY(M(X)Sf

, YSf
)

12: M ← OPTIMIZE(M,La)
13: Ld ← CROSSENTROPY(M(X)V \Sf

, YV \Sf
)

14: M ← OPTIMIZE(M,Ld)
15: end for
16: end for
17: return M

18: function IDENTIFYAFFECTEDNODES(M,X,Sf , E,Θ)
19: X ′ ← INVERTFEATURES(X,Sf , E)
20: ∆← |M(X ′)−M(X)|
21: return TOPK(∆,Θ.k)
22: end function
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Figure 4: Hyperparameter runs for Sf = 1.0 on Amazon. Scores of various hyperparameter trial
runs. The best hyperparameters are selected according to the run achieving the best value for the
average of Accrem and Accaff .

Figure 5: Hyperparameter runs for Sf = 1.0 on CS. Scores of various hyperparameter trial runs.
The best hyperparameters are selected according to the run achieving the best value for the average
of Accrem and Accaff .

C HYPERPARAMETER TUNING

We perform hyperparameter tuning for each combination for attack, dataset, unlearning method,
and identified fraction of deletion set (Sf ). The optimization target is an average of Accaff and
Accrem, computed on the validation set. For each setting, we run 100 trials with hyperparameters
selected using the TPESampler (Tree-structured Parzen Estimator) algorithm. In Figure 6, we re-
port Accaff and Accrem scores for each hyperparameter tuning trial. Across hyperparameter runs,
existing graph-based unlearning methods, barring MEGU, vary drastically across different sets of
hyperparameters. On the other hand, our proposed method Cognac and its ablations show con-
sistently high scores across hyperparameters, showcasing Cognac’s robustness to hyperparameter
tuning.
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Figure 6: Hyperparameter runs for Sf = 1.0 on Cora. Scores of various hyperparameter trial
runs. The best hyperparameters are selected according to the run achieving the best value for the
average of Accrem and Accaff .

D RESULTS ON ANOTHER ARCHITECTURE: GRAPH ATTENTION NETWORKS

To provide a comprehensive comparison between Cognac and other methods, we provide results on
commonly used GNN backbone architectures - GCN and GAT.

Graph Convolutional Network (GCN) is a method for semi-supervised classification of graph-
structured data. It employs an efficient layer-wise propagation rule derived from a first-order ap-
proximation of spectral convolutions on graphs.

Graph Attention Network (GAT) employs computationally efficient masked self-attention layers
that assign varying importance to neighborhood nodes without needing the complete graph structure
upfront, thereby overcoming many theoretical limitations of earlier spectral-based methods.

Table 5: Comparison of Accaff for Node Unlearning on GAT backbone. The GAT model trained
on Cora for different values of (Sf/Sm)

Method 0.05 0.25 0.50 0.75 1.00

Oracle 69.2±0.0 69.2±0.0 69.2±0.0 69.2±0.0 69.2±0.0

Retrain 44.7±4.6 47.3±6.4 52.4±5.6 47.0±4.1 51.1±4.3

Original 39.3±0.0 39.3±0.0 39.3±0.0 39.3±0.0 39.3±0.0

Cognac 39.1±1.1 49.8±3.7 51.5±2.6 47.1±1.7 53.9±3.3

AC DC 39.3±0.0 46.0±2.6 44.2±3.0 46.4±1.8 50.2±3.1

GNNDelete 37.4±0.6 42.1±4.6 30.0±4.4 17.3±7.4 41.5±0.0

GIF 38.3±0.0 37.6±0.7 35.9±0.5 33.7±0.0 32.8±0.0

MEGU 30.1±2.3 29.9±2.1 31.2±0.7 30.9±2.2 31.2±2.4

UtU 38.3±0.0 33.6±0.0 35.5±0.0 31.8±0.0 32.8±0.0

SCRUB 39.3±0.0 34.6±0.0 36.5±0.0 33.7±0.0 33.7±0.0

Cognac also performs competitively with a GAT backbone. When 5% of Sm is known, Cognac
beats SCRUB within the standard deviation. For higher fractions, we achieve greater Accaff than
the benchmark graph unlearning methods with large margins, often beating the performance of
retraining the GNN from scratch. These results indicate that benchmark graph unlearning methods
used for comparison cannot recover from the impact of the label flip poison. In contrast, our method
is much closer to Oracle’s performance. Cognac also maintains Accrem across (Sf/Sm) fractions.
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Table 6: Comparison of Accrem for Node Unlearning on GAT backbone. The GAT model trained
on Cora for different values of (Sf/Sm)

Method 0.05 0.25 0.50 0.75 1.00

Oracle 52.7±0.0 52.7±0.0 52.7±0.0 52.7±0.0 52.7±0.0

Retrain 51.8±2.8 53.5±2.3 54.1±1.4 54.7±1.4 54.8±2.5

Original 52.5±0.0 52.5±0.0 52.5±0.0 52.5±0.0 52.5±0.0

Cognac 52.8±0.0 50.9±2.0 50.8±2.1 52.6±0.5 52.7±0.6

AC DC 52.1±0.0 51.5±1.6 52.6±0.3 52.0±1.1 53.1±0.9

GNNDelete 49.6±0.4 45.9±1.7 47.7±1.3 44.5±0.2 34.0±0.0

GIF 52.4±0.0 50.1±0.4 51.7±0.1 50.3±0.1 51.6±0.1

MEGU 41.9±1.2 42.2±0.9 42.5±0.4 42.6±0.5 42.7±0.4

UtU 52.4±0.0 52.4±0.0 52.2±0.0 52.2±0.0 52.2±0.0

SCRUB 52.1±0.0 52.4±0.0 52.4±0.0 52.3±0.0 52.5±0.0

E UNLEARNING TIMES

We show the time taken to unlearn by each of the methods in Figures 7, 8, 9. Cognac achieves
speed-ups up to 12.5% in some datasets, and the time taken by is competitive with, or often lesser
than most baselines.

Figure 7: Time taken for un-
learning by different methods
on the Amazon dataset

Figure 8: Time taken for un-
learning by different methods
on the CS dataset

Figure 9: Time taken for un-
learning by different methods
on the Cora dataset

F PERFORMANCE ON LARGE Sf

To stress-test Cognac’s performance - as methods could potentially degrade as the size of Sf grows
- we conduct an experiment where we choose a significant fraction of the training nodes of the
Amazon, DBLP and Physics datasets, to be attacked (by the binary label flip attack) and marked for
deletion. The method performs competitively even at this large deletion size. Table 7 demonstrates
these results.
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Table 7: Results on Node Unlearning for a large Sf value. Cognac performs well across datasets,
even when a significant fraction of the dataset is manipulated and is part of Sf . The Sf values listed
in parenthesis are relative to the size of the entire training set.

Method Amazon (25%) DBLP (29.4%) Physics (14.8%)

Accrem Accaff Accrem Accaff Accrem Accaff

Oracle 92.9 95.6 72.9 86.0 95.2 95.1
Original 92.5 49.0 74.9 57.9 58.9 95.4

Cognac 92.4 83.7 82.3 81.7 90.7 95.0
GNNDelete 27.7 49.7 45.0 49.6 1.4 37.3
SCRUB 92.3 72.6 77.5 82.1 77.9 94.9

G PERFORMANCE ON ADDITIONAL DATASETS

We have additionally tested Cognac and the best-performing baselines on DBLP (Tang et al., 2008),
Physics (Shchur et al., 2019), Computers (Shchur et al., 2019), and the OGB-arXiv (Wang et al.,
2020) datasets using the binary label flip attack (more details about the datasets in Table 8). Similar
to the standard GCN performance for OGB-arXiv reported by Kipf & Welling (2017), the Ora-
cle achieves a micro accuracy of 71.15% on the overall test set. As in the rest of the paper, the
reported values in Table 9 are macro-accuracies. As shown in Table 9 and Figure 10, Cognac is
still consistently the top performer on maintaining Accaff on all the new datasets and even matches
the performance of the Oracle model on DBLP and Computers while maintaining Accrem across
datasets and deletion sizes.

Table 8: Additional Dataset Details
Dataset # Classes # Nodes # Edges
DBLP 4 17, 716 105, 734
Physics 5 34, 493 495, 924
Computers 10 13, 381 245, 778
OGB-arXiv 40 169, 343 1, 166, 243

Table 9: Results on the OGB-arXiv dataset for Sf/Sm= 0.25,1.00. We observe that the Cognac
method outperforms all baseline approaches, including Retrain, in both correcting the Accaff metric
and maintaining the Accrem metric.

Method 0.25 1.00
Accaff Accrem Accaff Accrem

Oracle 66.8±0.0 49.2±0.0 66.8±0.0 49.2±0.0

Original 40.5±0.0 48.6±0.0 40.5±0.0 48.6±0.0

Retrain 54.9±5.0 46.3±1.0 59.1±3.9 44.4±2.0

Cognac 58.0±0.5 49.6±0.1 59.2±0.7 49.7±0.1

SCRUB 54.5±1.1 49.2±0.1 49.2±0.2 48.9±0.1

UtU 38.4±0.0 48.7±0.0 30.4±0.0 48.9±0.0

GNNDelete 44.3±4.8 6.0±4.2 27.4±4.1 32.0±2.6

H CONVERGENCE

We now discuss the convergence properties of Cognac. Plots in Figure 11 describe the losses of each
of the components of our method (contrastive, ascent, descent) after the last epoch of every step, the
meaning of which should be clear from Algorithm 1: Line 4 (where it’s called ‘num steps’). The loss
plots are constructed over the best hyperparameters, and we would likely not see such convergence
trends with sub-optimal hyperparameters, which may provide insights to improve performance when
it’s used in other settings as well.
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Figure 10: Evaluation on Node Unlearning for Computers, DBLP, Physics (left to right)
datasets. Cognac still outperforms the baselines across the percentages of the deletion set iden-
tified and matches Oracle’s performance on the new datasets.

Figure 11: Convergence of the losses across unlearning steps. The ascent loss on Sm continually
increases as expected, the descent loss on S \ Sm converges, and the contrastive loss exhibits a low
plateau after an initial overshoot, implying it may have learnt discriminative features.

I ANALYSIS OF METHOD USED TO FIND AFFECTED NEIGHBOURS

Our strategy to find affected neighbours is likely not the perfect for finding the most affected nodes
and more sophisticated influence functions such as the one presented in Chen et al. (2023) could be
used to potentially improve performance. Still, we note that it achieves a 5% higher Accaff than
while choosing random k% nodes in the n-hop neighbourhood (where n is the number of layers
of message passing) while being cheap to compute: we only require a single forward pass over the
model with the inverted features. Interestingly, Figure 12 also shows that even if the GNN is not
well-trained, if we choose the top k% affected nodes, the unlearning performance does not change
much, while still being noticeably better than when we use a random k% of the neighbours.

Figure 13 (left) shows that there are no noticeable changes in taking a smaller or larger k%. How-
ever, removing this step entirely (k = 0%) results in worse performance, suggesting performing
contrastive unlearning on even a small k% is significant. Additionally, by keeping this percent-
age small, we ensure computational efficiency without diminishing performance (Figure 13 (right)),
which is essential for unlearning methods.
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Figure 12: Effect of how well-trained the GNN is on top-k% affected neighbour identification.
Here k = 4. The x-axis represents the epoch at which we used GNN representations to identify
the most affected neighbours for Cognac. The y-axis reports the unlearning performance after con-
trastive unlearning on these identified nodes using the final model. The red line contains performance
after picking a random subset from the n-hop neighbourhood. Affected neighbourhood identifica-
tion using top-k% logit change is more effective even with an extremely undertrained GNN.

Figure 13: Effect of k on unlearning (Accaff ), utility (Accrem) and efficiency when identifying
top-k% affected nodes for contrastive unlearning. (Left) Cognac effectiveness sharply improves
beyond k = 0%, suggesting that performing contrastive unlearning on even a small percentage of
nodes (k) significantly enhances the algorithm’s effectiveness. However, using higher values of k
yields similar performance with the added downside of increasing computational time (Right).
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