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Zero-Shot Medical Phrase Grounding with
Off-the-shelf Diffusion Models

Konstantinos Vilouras ©, Pedro Sanchez

Abstract—Localizing the exact pathological regions in
a given medical scan is an important imaging problem
that traditionally requires a large amount of bounding box
ground truth annotations to be accurately solved. However,
there exist alternative, potentially weaker, forms of super-
vision, such as accompanying free-text reports, which are
readily available. The task of performing localization with
textual guidance is commonly referred to as phrase ground-
ing. In this work, we use a publicly available Foundation
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Model, namely the Latent Diffusion Model, to perform this
challenging task. This choice is supported by the fact that
the Latent Diffusion Model, despite being generative in
nature, contains cross-attention mechanisms that implicitly
align visual and textual features, thus leading to intermedi-
ate representations that are suitable for the task at hand. In
addition, we aim to perform this task in a zero-shot manner,
i.e., without any training on the target task, meaning that
the model’s weights remain frozen. To this end, we devise
strategies to select features and also refine them via post-
processing without extra learnable parameters. We com-
pare our proposed method with state-of-the-art approaches
which explicitly enforce image-text alignment in a joint
embedding space via contrastive learning. Results on a
popular chest X-ray benchmark indicate that our method is
competitive with SOTA on different types of pathology, and
even outperforms them on average in terms of two metrics
(mean loU and AUC-ROC). Source code will be released
upon acceptance at https://github.com/vios-s.

Index Terms— Deep Learning, Diffusion Models, Medical
Imaging, Phrase Grounding, Zero-shot learning

[. INTRODUCTION

HE rapid success of deep learning over the last few
years has led to powerful data-driven models being de-
ployed in real-world scenarios. Recently, by taking advantage
of the scaling properties of popular deep learning methods
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Fig. 1: High-level description of the zero-shot phrase ground-
ing task. Given input pairs of an image (chest X-ray) and its
accompanying text prompt, we leverage cross-modal feature
alignment mechanisms within a frozen Latent Diffusion Model
(LDM) to extract heatmaps, which indicate the regions where
image and text are maximally aligned. Then, we evaluate the
generated heatmaps based on ground truth bounding boxes
(shown in green) for pathology detection. Our method, thus,
is an illustration of using pre-trained LDMs for downstream
applications in a zero-shot setting.

both in terms of learnable parameters and training data, we
witness the era of Foundation Models (FMs) [1], i.e., large-
scale neural networks that were trained on massive amounts
of data. FMs have unprecedented capabilities: they can be
readily applied to a wide variety of tasks as off-the-shelf
solutions, or they can serve as a robust basis for training
models for specific, potentially unseen, tasks and, plausibly,
modalities (e.g., transferring knowledge from natural images
to the medical domain). Among their many benefits, FMs
provide machine learning practitioners and researchers with a
universal tool that enables the widespread application of data-
driven solutions to multiple scientific fields, as well as the
development of a sound theoretical framework around well-
known deep learning methodologies.

In this work, we investigate a specific type of FM: the Latent
Diffusion Model (LDM) [2]. The LDM belongs to the class
of probabilistic models and is considered one of the most
groundbreaking methods for image synthesis. The versatile
design of the LDM has significantly contributed towards
its success, as external sources of information (e.g., text,
segmentation masks, or any other type of a representation) can
be easily incorporated into the model without any architectural
changes. Here, we draw inspiration from research studies
showing that diffusion models can solve downstream tasks
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such as classification [3], [4] and segmentation [5] with little
to no additional fine-tuning on target data. We attempt to
validate this finding i.e., the re-usability of diffusion models
for downstream tasks, in the medical imaging domain, using
a model pretrained on medical images (i.e. chest X-rays) with
readily available associated text (i.e. radiology reports) as
conditioning.

In order to leverage a model trained with text as condi-
tioning, we reframe the objection detection task as one of
phrase grounding. In the context of diffusion models, instead
of training a model that predicts bounding box coordinates
[6], we propose to leverage cross-modal feature fusion mech-
anisms within an off-the-shelf LDM to directly perform phrase
grounding, relying on the model having learned accurate fine-
grained image-text alignment. Moreover, we consider the case
of zero-shot task transfer [7] in our work, since the LDM’s
pre-training task (text-guided image generation) differs from
the target task (phrase grounding). However, in contrast to
[7] which requires further training using supervision across
multiple tasks, we use an off-the-shelf model (LDM) with
frozen weights to solve the task at hand.

Prior works have defined the phrase grounding task in mul-
tiple ways. Along with input image-text pairs, most methods
further require either ground truth bounding boxes [8] or
object detection models [9] during training, allowing test-time
selection of the region proposal that most closely matches
the input text. On the contrary, we recognise that manual
ground truth bounding box annotations and external pathology
detection models are typically difficult to acquire. Instead, we
opt for an end-to-end system that extracts relevant information
from natural language (e.g., location and severity modifiers
of the underlying pathology) and, in turn, associates clinical
findings with visual features corresponding to specific image
regions. A high-level overview of our method for the phrase
grounding task is shown in Fig. 1.

There are emergent properties of the LDM that are useful
for the given task. First, the core of the LDM is a U-Net
architecture [10] which, in turn, is equipped with inductive bi-
ases (e.g., multi-scale hierarchical feature learning) suitable for
localisation tasks such as phrase grounding. This differentiates
our method from other baselines that use image classification
models such as ResNets [11], [12]. In addition, the LDM
offers a sophisticated feature fusion mechanism: fusion layers
(cross-attention) are incorporated at multiple levels of the
architecture, and visual features evolve over time via the
diffusion process. Therefore, this mechanism is expected to
yield more refined representations compared to late fusion
alone [11].

We perform extensive experiments on an established phrase
grounding benchmark dataset, i.e., MS-CXR [11]. The results
suggest that, despite being inherently a generative model,
the LDM has learned high quality features for the task at
hand. Our proposed approach, which tackles the extreme case
where no additional fine-tuning is performed (we refer to it
as a zero-shot scenario), yields, perhaps surprisingly, a highly
competitive method that proves to be state-of-the-art in terms
of two metrics (mean IoU and AUC-ROC) on average across
8 pathology labels.

Overall, our contributions can be summarised as follows:

o Building on the Latent Diffusion Model architecture,
we gather semantically meaningful visual features both
from multiple timesteps of the diffusion process and
from various cross-attention layers. We target those layers
since they inherently align information from the visual
and textual stream, thus being suitable for the phrase
grounding task.

o In contrast to conventional sampling methods for Latent
Diffusion Models that utilise classifier-free guidance,
our approach involves sampling from the unconditional
model, while the conditional model (conditioned on a text
input) is used merely to extract cross-attention maps.

¢ We perform extensive experiments on a medical dataset
that provides ground truth bounding boxes for evaluation
and test our method against several strong baselines.
Results indicate that our method shows competitive per-
formance against, and even exceeds in two metrics, state-
of-the-art methods without any fine-tuning strategies.

¢ We perform an ablation study to justify the hyperparam-
eter choices in our system.

o We further qualitatively analyze our proposed method, as
well as the strongest available baselines, to provide useful
insights for those approaches.

[1. RELATED WORK

We now summarise the most relevant research. We start
by mentioning prior influential works showing that diffusion
models can be effectively applied to multiple downstream tasks
in a zero- or few-shot setting. Next, due to their similarity
to our approach, we also present methods tailored for image
editing tasks that utilise Latent Diffusion Models. Then, we
briefly discuss some of the most popular methods for phrase
grounding in natural RGB images. Finally, we shift our focus
to approaches related to the medical imaging domain, against
which we compare our proposed method.

A. Downstream Application of Diffusion Models

Diffusion models have been successfully applied to a wide
range of tasks. For instance, in the context of medical imaging,
there exist works that train diffusion models from scratch
to perform lesion localisation [13], [14], anomaly detection
[15], and counterfactual generation [16], [17]. Recent studies
have also revealed the ability of diffusion models to perform
fairly well on downstream tasks with minimal supervision.
For example, for classification tasks it has been shown that
the posterior p(c|x) for all candidate classes ¢ can be es-
timated from a diffusion model’s residual errors at a given
timestep without any requirement for further hyperparameters
or training [3], [4]. Similarly, for segmentation, Baranchuk et
al. [5] use intermediate visual representations extracted from a
diffusion model. In this case, a few additional labelled images
are required to train a shallow network that outputs pixel-wise
predictions. In another work, Zhao et al. [18] experiment with
the text feature extraction pipeline, as well as the choice of
intermediate visual features, and train lightweight task-specific
models for segmentation and depth estimation, respectively.
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B. Manipulating Attention in Latent Diffusion Models

Closely related to our approach, yet developed for the task
of image editing, recent studies use attention maps extracted
from a Latent Diffusion Model to control the generated im-
ages. For example, Hertz et al. [19] showed that it is possible
to apply global and local edits to an image by processing the
cross-attention maps generated via source and target prompts,
respectively. Patashnik et al. [20] aim to vary the shape of a
target object in a generated image, and they use both cross- and
self-attention maps to better preserve the shape and appearance
for the rest of the image. Conversely, Tumanyan er al. [21]
argue that only convolutional and self-attention features are
useful for editing, since localised visual information is not
described in text prompts.

C. Visual Phrase Grounding

Phrase grounding is a cross-modal reasoning task referring
to the spatial localisation of objects present in an image given
a relevant text description. Due to the widespread availability
of image-text data sources, there already exist large-scale end-
to-end models for the natural image domain.

In a discriminative learning scenario, VILBERT [22] intro-
duces the concept of co-attention, i.e., exchanging information
between modalities within the transformer layers, and these
co-attention mechanisms can be used to directly relate visual
and textual tokens. Early fusion strategies are also adopted
by MDETR [23] which enforces image-text alignment with
appropriate learning objectives, and GLIP [24] in which image
and language encoders are simultaneously trained to correctly
assign a word to a specific image region.

In a generative learning scenario, Chen and Li [25] train
a text-guided diffusion model to gradually recover ground
truth bounding boxes from their noise-perturbed versions. On
the other hand, Tang er al. [26] focus on a standard image
generation model and demonstrate how various linguistic
aspects of the input text prompt affect the generated image,
by extracting and visualising the cross-attention heatmaps; this
allows interpretation of stable diffusion’s image generation
process. They further evaluate use of the heatmaps for seg-
menting the objects, a localisation task which has parallels
with phrase grounding, albeit the target image is a result of
the text prompt rather than a parallel input. This approach is
similar in principle to ours, but for the opposite process of
denoising (corresponding to image generation).

D. Medical Visual Phrase Grounding

In the medical imaging domain, phrase grounding is con-
sidered a difficult task due to the inherent variation in tex-
tual information; radiologists commonly use domain-specific
terms, describe the absence of pathological findings (e.g. “No
pneumothorax or pleural effusion’), or use phrases that convey
a level of uncertainty (e.g. “Blunting of the right costophrenic
angle is consistent with a small right pleural effusion”.

Earlier works have taken different approaches. Bhalodia et
al. [27] extract pneumonia-related attributes from radiology
reports, while a pre-trained bounding box detector is used to
extract regions of interest (ROIs) and their associated features.

Then, using both streams of information, their system is
trained to correctly classify attributes from visual features, as
well as to maximise the similarity for a given image-text pair.

End-to-end discriminative methods to date are largely fully
supervised [28], [29] or rely on self-supervised contrastive
formulations [11], [12], [30]. Specifically, Chen et al. [28]
train a vision-language Transformer model to directly predict
bounding boxes, whereas Xu et al. [29] gather publicly avail-
able labelled chest X-ray datasets and train a single model via
multi-task learning. LIMITR [30] is a self-supervised method
that aligns local cross-modal representations that are further
weighted via learnable significance scores. Lastly, BioViL [11]
is an end-to-end model with a BERT text encoder finetuned
on radiology reports that is optimised via both global and
local cross-modal contrastive losses. Bannur et al. [12] extend
the BioViL model to support longitudinal information across
patients, and the resulting system (BioViL-T) achieves state-
of-the-art performance on medical phrase grounding.

In contrast, we adopt a generative approach to this task.
A concurrent work also applies diffusion models to phrase
grounding [31]. Our approach differs in several ways: First, we
use a pre-trained, publicly available diffusion model and pro-
pose mechanisms to perform phrase grounding whilst keeping
the model frozen, whereas [31] focuses on training the model
from scratch. Second, to define these mechanisms, we pay
attention to how we select cross-attention layers and timesteps,
whereas [31] simply average across both time and layers.
Finally, we compare our method with more recent state-of-
the-art and other, recently proposed, baselines. Nevertheless,
the findings of [31] are beneficial for our work. They show
that learning both text and visual encoders simultaneously
severely degrades performance. In addition, regarding the
textual information that is available for phrase grounding,
they show that using sentences from the original radiology
reports (as is the case, for example, for the MS-CXR [11]
dataset) leads to the best overall results, outperforming both
synthetically generated text (with ChatGPT) and the simplest
case of using the class string as the input prompt.

[1l. METHODOLOGY

We adopt the following notation: x is a scalar, x denotes a
vector, X is a tensor, X denotes a vector space, f : X — X
is the mapping between two vector spaces that is performed
by a neural network f, and fy refers to the total number
of learnable parameters (weights) in the network. We also
consider a dataset D = {x;,p;}¥, with a total of N image-
text pairs. For simplicity, we will next present our pipeline
while considering a single input (x, p); the extension to a batch
is trivial.

A. Overview of the Latent Diffusion Model

We follow the standard setup of the LDM architecture as
proposed in [2]. The core components of the LDM are as
follows. First, the visual encoder E : X — Z yields a
compressed latent representation z; of the input image z.
Then, in the first part of the diffusion process (also called the
forward process), Gaussian noise is added to zg. This process
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Fig. 2: Overview of our proposed phrase grounding pipeline based on the Latent Diffusion Model [2]. The input image-text
pair is first processed via the encoders E and Ty, respectively. Then, at each timestep of the diffusion process t = 1,...,T, we
gather cross-attention maps from the U-Net €g. The output heatmap h is generated by averaging the gathered attention maps.

is iterative, meaning that noise is repeatedly added over time
to z; (t =1,...,T), leading to a final latent representation zp
that is pure noise. Next, in the second part of the diffusion
process (i.e., the reverse process), the goal is to repeatedly
denoise the latent representations z; (t = T, ...,1) until z,
is recovered. The denoising task is carried out by a U-Net
model €9 : Z — Z that predicts the noise introduced at
timestep t. Finally, a visual decoder D : Z — X’ generates
the reconstructed image X.

B. Image-Text Alignment via Cross-Attention

To aid reconstruction, information about the image x in
text form is also injected in the U-Net model €g via the cross-
attention layers, which ultimately capture interactions between
the visual and textual streams. Concretely, the prompt p that
accompanies the image x is first split into S tokens and then
passed through a text encoder 19. The resulting text features
serve as context in each cross-attention layer of the U-Net,
i.e., they are used to generate keys k and values v, whereas
queries q are extracted from visual features. Intuitively, queries
q provide a high-level description of the visual content per
spatial location, keys k provide a high-level description of the
textual content per token, and values v contain more detailed
textual features per token. The cross-attention operation is
defined in Eq. (1) below, where Pk and P~ denote linear
projection layers for the keys and values, respectively, and d
is a scaling factor.

k = Px(79(p))
T

Vd

cross-attention map

v =Pv(7(p))

A, = softmax( ) Attention(q, k,v) = 4, - v.

(D

At each layer and timestep, cross-attention maps A, €
RS*BXEB are computed according to Eq. (1), where S is the
number of prompt tokens and B is the spatial size (either 16 or
32, depending on the layer’s level in the U-Net architecture).
Let N denote the total number of cross-attention layers in
the U-Net and T the number of diffusion timesteps. That
leaves us with N x T attention maps in total, where each one
varies depending on the visual features (low-level features or
higher-level semantics) and the noise level in each latent z;.
The extracted cross-attention maps are then used for phrase
grounding.

C. Zero-shot Phrase Grounding with the LDM

We use a pre-trained LDM to perform zero-shot phrase
grounding. More specifically, given an image and a prompt as
input, we extract intermediate cross-attention maps from the
U-Net and aggregate them into a heatmap h. In the ideal case
of perfect image-text alignment, h will be highly activated on
the regions of interest specified by the prompt. An overview
of our approach is presented in Fig. 2.

Specifically, our method is based on DDIM inversion [32]
which maps input features z; into noise zp. Note that we
avoid classifier-free guidance during sampling as it would
increase the accumulated error introduced by DDIM inversion
[33]. To this end, we sample z;;; from the LDM using only
the unconditional inputs: the latent representation z; and a
null prompt (the empty string (). However, we gather the
cross-attention maps using the previously sampled z; and the
conditioning input (prompt p). Our method is summarised in
Alg. 1.

Using Alg. 1, we gather a total of N x T cross-attention
maps A. However, inspired by a prior work on semantic
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Algorithm 1 Extracting cross-attention maps via DDIM in-
version.

Require: image x, prompt p, encoder E, U-Net €g, timesteps
T, noise schedule parameters o

1: zo + E(2) > initial visual features
20 A+ > gathered cross-attention maps
3: fort«+0OtoT —1do

4: €05 A@ ¢+ €q(zt,t,0) > unconditional path
5: €ps Ap < €9(21,t,p) > conditional path
6: A+~ [A Ap 4 > add current map to the stack
T Va2 T e

8: 2t Zgt1 > update latents
9: end for

10: return A

segmentation with diffusion models [5], we aim to optimise
phrase grounding performance by selecting attention maps
only from middle timesteps and middle cross-attention layers.
This choice is motivated by the following two observations.
First, for t — T, latents z; are highly noisy and lose infor-
mation about the image’s global structure, thus attention maps
do not convey any semantic meaning. On the contrary, for
t — 0, z; contains fine-grained details about the input which,
according to [5], hurt segmentation performance. Therefore,
focusing on middle timesteps strikes a balance. Correspond-
ingly, earlier (resp. final) layers are more informative for small
(resp. large) objects in the image, meaning that those features
would either activate over the entire image or only on large
anatomical structures. Therefore, selecting the middle cross-
attention layers balances between these two extreme cases.

The selected cross-attention maps are intensity-normalised
to span the range [0,1] and resized to match the image’s spatial
dimensions with bilinear interpolation. The output heatmap
h is formed by averaging maps across layers, timesteps and
tokens. Denoting the selected cross-attention layers, timesteps,
and all tokens excluding padding as L', T’,S’, respectively,
Eq. (2) outlines this operation.

h= E E E Resize(Norm (A,
IEL' teT" ses"

colit) )

As a final step, results are refined by applying additional
post-processing techniques on the generated heatmap h that
do not involve any learnable parameters or any form of
supervision, thus not violating the zero-shot scenario. Here,
we use binary-Otsu thresholding [34] to separate the more
strongly activating foreground from the more weakly activat-
ing background. The output binary mask is then applied to
the heatmap h to suppress weak signals while leaving the
foreground activations unaffected.

V. EXPERIMENTAL RESULTS
A. LDM Pre-training Setup

First, we briefly discuss the LDM pre-training stage. Here,
we use an open-source implementation of the LDM [35]
along with a provided checkpoint. The model is pre-trained on
MIMIC-CXR [36], a large-scale dataset of chest radiographs

accompanied by free-text reports. The training set consists
of 368,960 chest X-ray images, whereas the text prompt
for each image is a randomly sampled sentence from the
corresponding radiology report, from either the Impressions
or Findings section. Note that the pre-trained weights, as well
as the configuration files with all training-related details, are
publicly available in the MONAI Generative framework [37].

B. LDM Phrase Grounding Setup

We now instantiate our best performing setup for the phrase
grounding task. We transform the input image into fixed spatial
dimensions of 512 x 512. For the diffusion process, we set the
total number of timesteps of the inverse DDIM scheduler to
T = 300. In terms of text processing, we use the standard
CLIP text encoder with frozen weights. Prior to encoding, the
input prompt is tokenised and then either padded or truncated
to match the maximum sequence length (S = 77 tokens).
Since the CLIP text encoder is not trained on radiology reports,
domain-specific medical terms are out-of-vocabulary (OOV);
in practice this includes all of the pathology names except
“pneumonia”. The CLIP tokeniser handles any unknown OOV
word by splitting it into multiple known sub-tokens.

The initial size of the gathered attention maps is
RS*XBxBXLXT where I, = 11 is the total number of cross-
attention layers in the U-Net and B € {16,32} denotes their
spatial size (depending on the layer’s level in the U-Net). After
the selection stage described in Section III-C, we end up with
attention maps collected from L = 4 layers (i.e., from the 3rd,
4h 6™ and 7" cross-attention layers), which automatically
sets their spatial size to B = 16, and also from 60 different
timesteps (i.e., from timestep 120 to 180) out of 7' = 300 steps
in total. These choices are justified via the ablation study in
Subsection IV-H. Note, however, that we did not perform an
exhaustive search to find the optimal combination of selected
layers and timesteps; in fact, it is possible that different settings
per pathology might lead to better performance (we leave
this for future work). Last, following [11], [12], the resulting
heatmap h with resolution 512 x 512 is convolved with a
Gaussian kernel (o = 2.5) prior to Otsu thresholding.

C. Evaluation Dataset

We evaluate our proposed system on the MS-CXR bench-
mark [11] which consists of 1,158 image-sentence pairs with
ground truth bounding boxes indicating the pathology. Note
that this dataset is extracted from the official MIMIC-CXR
test set. We further pre-process the dataset by merging entries
corresponding to the same patient and the same sentence, i.e.,
an image might have more than one ground truth bounding
box as reference for a given text prompt, where the pathology
appears in multiple locations. We made the choice to compute
metrics on a per-image basis (and not per bounding box) as
this matched the performance reported by [11], [12].

D. Baselines

We compare our proposed method to 4 state-of-the-art
baselines trained in a discriminative manner, using either
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fully supervised or self-supervised learning. Fully supervised
networks (MedRPG [28], OmniFM-DR [29]) are trained to cor-
rectly predict the ground truth bounding box, whereas the self-
supervised networks (BioViL [11], BioViL-T [12]) are trained
to maximise the cosine similarity between visual and textual
features derived from the corresponding image and report. We
evaluate our system against these 4 methods only since they
were shown to outperform previous approaches, with BioViL-
T [12] setting the current state-of-the-art on phrase grounding.
For all methods, we use the publicly available pre-trained
model checkpoints provided by the respective authors.

E. Metrics

Given a predicted heatmap H (with values in [0, 1] range)
and ground truth binary segmentation mask Mg which has
ones within each bounding box area and zero otherwise,
phrase grounding performance is measured via the following
evaluation metrics:

1) Mean Intersection over Union (mloU): mloU is a standard
metric to evaluate segmentation performance. The predicted
binary mask at threshold thr is defined as My = {h € H :
h > thr}. Then, IoU at given threshold thr is calculated as

|MH n MGTl
|MH U MGT|.

Here, following [11], we calculate mIoU as the average over
5 different thresholds thr € [0.1,0.2,0.3,0.4,0.5].

2) Area Under ROC Curve (AUC-ROC): The area under the
receiver operating characteristic curve is another method to
estimate segmentation performance on a per-pixel basis given
H and Mgr.

3) Contrast-to-Noise Ratio (CNR): CNR as used in [11] is
a threshold-agnostic measure that reflects the distribution of
raw heatmap activations over the entire input. Let A denote
the area within each bounding box, whereas A is the rest of
the heatmap, i.e., H = AUA. Then, after calculating the mean
 and variance o2 of the raw heatmap scores for each area A
and A, respectively, CNR is defined as

HA — A

/ 2 2
O‘A—I—O'A

Note that this definition will penalise the case where g <
1 5. However, following [11], we also provide results for the
absolute CNR evaluated as

3)

IoUathr =

CNR = “4)

ICNR| = Ipa = pal (5)
0124 + 0’%

F. Evaluation Protocol

To ensure a fair comparison across all approaches, we adopt

the following protocol:

o All metrics are computed on the original image dimen-
sions. Therefore, for heatmap-based methods such as
[11], [12], and our own method, we first perform nearest
neighbor interpolation with appropriate zero padding to
match the original image resolution. Note that each of
those methods initially generates a fixed size heatmap

which matches the respective input size: for BioViL [11]
the resolution is 480 x 480, for BioViL-T [12] it is equal
to 448 x 448, while our LDM-based approach outputs
a 512 x 512 heatmap per image. For methods [28] and
[29] that predict bounding box coordinates, the predicted
bounding box regions are resized to the width and height
of the original image.

« Since heatmaps generated with BioViL [11] and BioViL-T
[12] methods are in the [—1, 1] range (due to cosine sim-
ilarity), whereas our method yields heatmaps in the [0, 1]
range, we set all negative values for the aforementioned
baselines [11], [12] to O.

e Both MedRPG [28] and OmniFM-DR [29] are Trans-
former models that predict bounding box coordinates.
Thus, we evaluate [28], [29] only in terms of mloU.

e MedRPG [28] does not support the case where more than
one bounding box exists per image. Therefore, for those
images, we evaluate it on each bounding box separately
and only report the maximum value of mloU per image.

G. Results and Discussion

In this section we report results using the 4 aforementioned
metrics (mIoU, AUC-ROC, |CNR| and CNR), and also discuss
implications. Overall phrase grounding results on the MS-CXR
database are reported in Table I. In Subsection IV-H we show
the results of a separate ablation study.

We now provide an interpretation of the results shown in
Table I. More specifically, we draw the following conclu-
sions: First, our proposed method outperforms both supervised
baselines MedRPG [28] and OmniFM-DR [29] by a large
margin. This also holds for the baselines [11] and [12] trained
on image-text pairs via self-supervision. This suggests that
phrase grounding performance is largely affected by the size
of the pre-training dataset, while bounding box annotations are
typically scarce.

Second, our method is competitive with both BioViL vari-
ants [11], [12] for most pathologies on the MS-CXR dataset. In
fact, our pipeline based on the LDM sets a new state-of-the-art
in terms of both mIoU (0.9 % relative improvement to BioViL-
T [12]) and AUC-ROC (0.2 % relative increase to BioViL-T
[12]) metrics averaged across all classes. Note also that both
BioViL models [11], [12] use radiology-specific text encoders
which are expected to further improve performance, whereas
our method relies on a frozen CLIP text encoder pre-trained on
data collected from the Internet. In addition, unlike all other
approaches that use discriminative models such as ResNets
[11], [12] (or Transformers [28], [29]), the LDM is based on a
U-Net for feature extraction, thus its representations are readily
applicable to localisation tasks such as phrase grounding. We
also observe that the results exhibit high variance across all
methods. This is likely a data related issue and needs to be
further investigated in the future.

Furthermore, given both definitions of the CNR metric
presented in Eqgs. (4) and (5), respectively, our method remains
fairly robust between the two. Specifically, our approach yields
the lowest difference between |[CNR| and CNR for 7 out of
8 pathologies. This highlights that |[CNR|, which is defined
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TABLE I: Phrase grounding results on MS-CXR dataset. Mean results, and their respective standard deviation, are reported
across the 8 pathologies of interest and also averaged (Avg). N denotes the sample size per pathology. Both |[CNR| and CNR
metrics are unbounded, i.e., in (—00, c0) range. mIoU and AUC-ROC are reported in (%). Higher is better for all metrics (1).
Note that, due to implementation details, only mloU can be computed for methods [28] and [29]. Best metrics are highlighted

with bold. Second best metrics are underlined.

. Pneumonia | Pneumothorax | Consolidation | Atelectasis | Edema | Cardiomeg. | Lung Opac. | Pleural Eff.
Method Metric Avg
(N=182) (N=243) (N=117) (N=61) | (N=44) | (N=333) (N=82) (N=96)

MedRPG [28] mloU 11.3 5.8 6.1 12.2 5.1 16.3 6.5 11.7 94

OmniFM-DR [29] mloU 12.6 7.0 24.7 54 17.0 30.9 154 5.1 14.8
|CNR| 1.560.80 0.78 0.56 1.790.77 1.370.65 |0.850.57 | 0.810.54 1.240.81 138071 |1.220.35
BioViL [11] CNR 1.490.89 0.630.71 1.730.83 1.280.77 [0.770.60 | 0.730.64 1.180.88 1.330.78 |1.140.37
mloU 27.316.0 10.210.2 318143 24.114.2 |21317.2| 220186 15.014.1 204116 |21.56.31
AUC-ROC | 76.516.4 66.317.5 83.512.1 764151 |65.113.1| 645143 68.917.2 76.6158 |72.26.50
|CNR| 1.700.70 1.010.63 1.790.76 1470.66 |0.840.46 | 1.060.50 1.590.87 1.550.67 [1.380.33
BioViL-T [12] CNR 1.66 .77 091¢.75 1.74 .52 1450.69 |0.770.50 | 1.05¢.52 1.540.94 1.530.70 [1.330.34
mloU 29.013.9 12.6 126 30.212.9 247128 |19.015.1| 235153 17.512.6 18.610.2 |21.95.65
AUC-ROC | 80.115.0 70.118.0 839117 76.414.4 |63.011.9| 66.1126 76.316.1 738150 |73.76.58
|CNR| 1.020.46 0.460.31 1.180.55 1.060.50 |0.760.36| 0.910.43 1.120.57 0.880.43 |0.920.22
Ours CNR 1.020.47 -0.08 0.53 1.160.57 1.060.51 |0.710.45| 0.900.44 1.08 0.63 0.860.46 |0.840.37
mloU 23.811.9 5.305.30 247 14.4 250111 (305196 | 374116 16.713.0 1939.03 [22.85.04
AUC-ROC | 7899 78 495148 81.19.98 791101 [72411.4| 753100 79.6 13.0 75.210.7 | 73.99.62

in [11] and [12], overestimates performance, thus it is less
reliable.

We also observe that every method performs poorly on the
Pneumothorax class (our approach leads to a negative CNR
value). We note that pneumothorax causes a dark air space
(i.e., a region with low intensity pixels) in the position of
the collapsed lung, as opposed to the other pathologies which
manifest as “bright” regions. These dark regions may be more
difficult to differentiate from normal lung.

H. Ablation Study

In Table II we provide an ablation study showing how dif-
ferent hyperparameters affect phrase grounding performance.
To speed up experiments, we set the total number of timesteps
to T=100, yet the empirical observations are expected to also
hold for larger T. Starting from the initial setup of collecting
all attention maps (L=11, T=100), we focus either on middle
cross-attention layers (L=6) or middle timesteps (T=20). We
see that both of the aforementioned choices have a positive
impact on both metrics. Furthermore, we observe that the
combination thereof (L=6, T=20) yields a substantial boost
in performance compared to the initial setup (L=11, T=100).
We also show the effect of using binary Otsu thresholding. In
fact, although we notice a slight decrease in CNR, mloU is
increased by 3.5%. Note also how different pathologies might
benefit from different setups.

Moreover, the ablation study presented in Table III shows
the impact of prompt tokens on phrase grounding performance.
To this end, while fixing all other components of our system
(L=6, T=20 out of 100 timesteps in total), we discard cross-
attention maps that are not related to pathology tokens i.e.,
the (sub-)tokens corresponding to the pathology label names.
Also, for this experiment, we filtered out inputs that do not
contain the pathology name in the prompt, thus reducing
the dataset to 694 image-text pairs. The results in Table III

indicate that cross-attention maps corresponding to pathol-
ogy tokens are not sufficient to perform phrase grounding
(interestingly, when we only use pathology tokens, perfor-
mance on Pneumothorax class slightly improves; however,
this approach clearly underperforms on all other classes).
This can be attributed to the fact that text prompts usually
contain additional important information such as location (e.g.,
right, left, bibasilar) and severity (e.g., mild, moderate, severe)
modifiers that can be used to localise the underlying pathology.

I. Qualitative Analysis

Fig. 3 depicts non cherry-picked examples from the MS-
CXR dataset and the generated heatmaps for BioViL [11],
BioViL-T [12], and our method. We observe that both BioViLL
models provide more densely localised results compared to our
system, which activates on larger input areas. However, unlike
BioViL(-T), our method does not miss an area of interest (cf.
third row of Fig. 3 for pathology Lung Opacity). We note that
our LDM-based method could also be focusing on less relevant
anatomical regions in some cases (cf. first row of Fig. 3 for
Pneumothorax) that can be recognised as easy false positives.

V. CONCLUSION

In this work we have presented a novel approach for per-
forming phrase grounding with a pre-trained Latent Diffusion
Model. In fact, we draw on the parts of the model that integrate
visual and textual features, namely the cross-attention layers.
These layers, as evidenced by our results, provide a rich source
of information that can be readily used to solve the task
at hand. Our proposed method does not alter the backbone
generative model in any way, thus operating in zero-shot.

Our proposed system is limited by the computational cost of
the LDM sampling process (one inference per timestep), which
leads to slower inference speed compared to other baselines.
We also identified certain pathologies (e.g., Pneumothorax)
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TABLE II: Ablation study on the choice of layers L and timesteps T, as well as the effect of applying Otsu thresholding. Note
that T=20 refers to the [40, 60] range out of 100 steps in total, while L=6 includes layers with index in {3, ...,8} range out of
11 in total. CNR metric is unbounded, mloU is in (%). Best metrics are highlighted with bold.

Setup Metric | Pneumonia | Pneumothorax | Consolidation | Atelectasis | Edema | Cardiomegaly | Lung Opacity | Pleural Eff. | Avg
L=11. T=100 CNR 0.87 -0.15 0.90 0.98 0.56 0.52 0.90 0.89 0.68
mloU 15.0 5.4 16.3 16.5 252 229 10.8 13.9 15.7

L=11, T=20 CNR 0.89 -0.15 0.94 0.97 0.66 0.60 091 0.88 0.71
mloU 16.1 53 17.3 17.2 25.7 243 11.8 14.0 16.5

L=6. T=100 CNR 0.89 -0.08 0.98 1.03 0.58 0.72 0.98 0.89 0.75
mloU 15.7 5.5 17.0 17.2 25.7 25.7 11.1 144 16.6

L=6. T=20 CNR 0.92 -0.05 1.02 1.03 0.67 0.79 0.99 0.89 0.78
mloU 15.8 5.7 174 17.0 26.8 27.5 11.6 13.9 17.0

CNR 0.89 -0.14 1.00 1.00 0.62 0.81 0.96 0.85 0.75

126, 1220, 060 oo | 20 5.1 214 22 | 285 333 14.4 178|204

TABLE Ill: Ablation study on the effect of the selected prompt tokens. In the first setup (Pathology tokens), cross-attention
maps are extracted only from tokens related to the pathology, whereas the second setup (All tokens) considers the entire prompt.
CNR metric is unbounded, mloU is in (%). Best metrics are highlighted with bold.

Setup Metric | Pneumonia | Pneumothorax | Consolidation | Atelectasis | Edema | Cardiomegaly | Lung Opacity | Pleural Eff. | Avg
Patholoay tokens CNR 0.05 0.25 0.40 0.39 0.45 0.41 0.00 0.50 0.31
& mioU | 9.50 6.76 14.7 133 | 224 259 2.59 134|136
CNR 0.93 -0.11 1.12 1.04 0.64 0.96 0.59 0.89 0.76
All tokens
mloU 21.8 5.07 21.9 229 29.5 41.4 6.55 17.8 20.9
Prompt Image BioViL BioViL-T LDM (ours)

fluid level posteriorly,
which represents a

loculated

hydropneumothorax

bibasilar atelectasis

noted

Minimal residual

right middle

lobe opacity,
otherwise clear

lungs

Moderate
right pleural

fluid remains

CNR=1.42 mloU=0.0386

CNR=2.17 mloU=0.3919

CNR=0.54 mloU=0.0025

CNR=2.20 mloU=0.2271

alelalil

CNR=1.57 mloU=0.0573

CNR=2.28 mloU=0.3786

CNR=0.90 mloU=0.0000

CNR=2.54 mloU=0.3316

CNR=0.87 mloU=0.0299

.

CNR=1.70 mloU=0.3331

CNR=2.86 mloU=0.0187

CNR=0.47 mloU=0.0910

Fig. 3: Randomly selected results for the phrase grounding task. For each input image-prompt pair, we show the heatmaps
generated from BioViL [11], BioViL-T [12] and our own method, respectively, overlaid on the original images. Ground truth
classes are highlighted in bold within each prompt. Ground truth bounding boxes are depicted in green. For each method, we
also provide the reported |CNR| and mIoU metrics (shown on top of each figure). Best viewed in colour.
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where all models, including ours, underperform; this requires
further analysis as it might indicate hidden data biases. We
also expect that an LDM trained on chest X-rays will perform
poorly in significantly different medical contexts (e.g., brain
MRIs) without fine-tuning.

Regarding future work, it is worth experimenting with few-
shot fine-tuning methods (e.g., low rank adaptation [38]) that
would allow us to incorporate new knowledge to the pre-
trained LDM, or even adapt it to unknown data distributions,
with a small target dataset. In this direction, according to
prior works in zero-shot domain adaptation, we would likely
require access to either task-irrelevant target data [39] or
target domain-specific prompts [40], [41] to make our zero-
shot method robust to domain shifts. Moreover, devising faster
sampling methods tailored for the phrase grounding task would
render the LDM more efficient for real-world scenarios. We
also believe that further improvements on the generative aspect
of the LDM (e.g., mitigating various data biases [42]) will
bring a positive effect on the model’s downstream perfor-
mance.

In terms of broader impact, our proposed framework might
be used to automatically link reports to the relevant image
locations, allowing fast inclusion of key images and easy
navigation when reviewing a previous scan. We might also
extend to the task of diagnosis by creating text prompts such as
"Where is {pathology_label}?", to achieve an off-
the-shelf detector (beyond the scope of this paper).
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