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Abstract

Deep learning had transformative impact in medical imag-
ing, in areas such as classification, segmentation, and re-
port generation. Another area holding promises, is the
area of personalized medicine, especially disease progres-
sion modeling. However, longitudinal imaging is even more
data-constrained than single time-point imaging, as it re-
quires repeated acquisitions over extended periods, often
spanning months or even years. To address this challenge,
we introduce Longitudinal Augmentation and Data Gener-
ation (LAUGEN) a lightweight, semi-synthetic image gen-
eration framework which can be applied in the domain of
medical image time series. LAUGEN is efficient, requiring
only a single image and its segmentation to produce diverse
pseudo-temporal sequences, and is capable of handling typ-
ical 3D medical data. We demonstrate its use as a data aug-
mentation strategy for improving model performance and
propose its role as a tool for unit testing longitudinal mod-
els, where pre-defined latent progressions enable controlled
and arbitrarily many evaluations. Our qualitative results on
the Brain Tumor Segmentation (BraTS) dataset and quanti-
tative experiments on Automated Cardiac Diagnosis Chal-
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lenge (ACDC) dataset highlights LAUGEN's potential to
enrich datasets and enhance result diversity.

1. Introduction

Medical imaging has become a cornerstone of modern
healthcare, enabling non-invasive diagnosis, treatment plan-
ning, and disease monitoring. Over the decades, modalities
such as X-ray, CT, PET, ultrasound and MRI have changed
clinical workflows. The rise of deep learning in medicine
has further advanced medical imaging, with models achiev-
ing expert-level performance in tasks such as tumor detec-
tion, segmentation, and anomaly detection. However, de-
spite the successes, medical imaging remains a data-sparse
domain. Unlike expansive natural image datasets such as
ImageNet [5]], which contains millions of labeled examples,
medical imaging datasets are limited by privacy regulations,
ethical considerations, and the high costs of expert annota-
tion. This is even more pressing in the domain of image
time series, where most modalities are not temporal in na-
ture; In these cases, time series are acquired by imaging
patients over a long time period, sometimes over multiple
years, such as in Alzheimer’s Disease. This makes data
collection and curation even more difficult. Consequently,
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Figure 1. Left: Additional augmentation strategies. From the vanilla uniform, to directional and Gaussian. Right: The second part shows

how conceptually the augmentations are turned into time series.

there is a need for data generation methods capable of pro-
ducing longitudinal series from single images. Most exist-
ing approaches require extensive pre-training and are not
easily applicable when no temporal data is available. Clas-
sical models for disease progression, such as those used
in cancer prediction, also exist; however, they often suffer
from a modality gap, as the generated outputs are fully syn-
thetic. We therefore introduce Longitudinal Augmentation
and Data Generation (LAUGEN), which

1. Is training-free, and both model- and data agnostic;

2. Requires only a single image and segmentation to pro-
duce a semi-synthetic longitudinal series, which can
leverage ;

3. Serves as augmentation even if there are spatio-temporal
data are available.

2. Method
2.1. Related Work

Traditional augmentations like flipping, rotations, and in-
tensity shifts are common, but do not alleviate the severe
data limitations. More advances data augmentations, such
as using Diffusion models or GANs [3} 14, [9] aim to diver-
sify the data, typically targeting downstream classification
tasks. However, these models often require a lot of compu-
tational resources, and can only reproduce the input train-
ing data. These methods are generally not suited for im-
age time series data when only single time-point images
are available. Synthetic data generation has also been used
for pre-training [6} 18, [15]], as well as for model validation
[l [0y (114 [14].

2.2. Datasets

We focus on two datasets. The first the Brain Tumor Seg-
mentation (BraTS) dataset. This dataset only has single
time-point acquisitions. For our purposes we transform this
dataset to simulate longitudinal studies. The challenge is to

show that there is some merit in using that dataset, so we
conceptually show how it can be used. The second dataset
is the Automated Cardiac Diagnosis Challenge (ACDC) [2].
This dataset is commonly used as a proxy for longitudinal
learning, as it is acquired regularly, in 3D, and there are no
confounding factors in between scans, which are common
in cancer imaging datasets. On this dataset, we demonstrate
that our approach serves as a data augmentation strategy,
slightly enriching the data available. We note here that we
train on 90 samples, and validation is performed on 10 sam-
ples. In this section we describe the method. We build on
the work of [13]], which introduces a biological data aug-
mentation. This augmentation was used in [16]], in order to
improve on locating lesions. We extend the uniform data
augmentation with additional steps, namely unidirectional
and a single growth in a gaussian distribution. Which will
be shown in FigureT]

2.3. Data Augmentation

Algorithm 1 Semi-Synthetic Data Augmentation.

Require: Image set Z with |Z| =: N, Segmentation S, Bi-
ological Augmentation Function A, Latent Trajectory
T, Number of Time Points T’
Define a synthetic trajectory 7 = {z1, 22, ...
for 1,5 € Zdo
Extract single image I and segmentation S
fort =1to T do
Generate point from synthetic latent z; € T
Apply augmentation: (I;) < A(1, S, 2;)
end for
R« {L}[,
end for
Return {R;}Y,

aZT}

AN AN A A A

In Algorithm[T]we see the general augmentation strategy.
In Figure [T| we show the various augmentations, including



(a) BraTS: Start of the time series

(d) ACDC: ED heart phase (real).

(b) BraTS: End of the time series

(c) Difference map of Fig. E and Fig.@

(e) ACDC: Synthetically augmented end.  (f) Difference map of Figla.nd Fig.@

Figure 2. Figuresand two qualitative temporal samples from BRaTS which were longitudinally augmented with LAUGEN, and c)
the difference. d) Shows the ED phase, zoomed in, of the heart, with e) being the synthetic change, and e) the difference.

two additional variants compared to the baseline. We define
a latent trajectory 7, where we sample from a distribution
D. For simplicity and to reduce hyper-parameter tuning, we
assume a linear latent trajectory:

zz =m X t, (D)

where m is sampled uniformly in a range, depending on the
sample.

2.4. Experimental Settings

We train with the SimVP model [7] and their OpenSTL
framework. The task is image generation, i.e. predicting
the next frame. We choose 4 context images, and 4 tar-
get images. For the mixing experiments, a portion of the
training data (defined by the mixing ratio), consists of
synthetically augmented series, see [T} combined with the
true time series, i.e. true medical time series. Addition-
ally, we define a last image” baseline, which uses the final
available context image as the prediction. We find that for
ACDC, SimVP outperforms this baseline; however, in other
experiments, this simple heuristic remains competitive, and
not all models are able to outperform it.

3. Qualitative Results

In Figure 2] we can see an example of the BraTS dataset,
that has been longitudinally augmented. In Fig. 2a] and
Fig.[2bwe can see the augmented images, and in Fig. 2¢]the
difference map between the two augmented images. Note
that that away from the boundary of the segmentation, the

changes are essentially zero. We also notice that despite the
simplicity of the change, which is uniform here, the result-
ing change is still not too simple.

3.1. Results Augmentation

To show that method has some merit, we apply it as an
actual data augmentation method for the image generation
task. For this, we consider the ACDC [2] dataset. We aug-
ment the number of real time series, with semi-synthetic
augmentations of a single image from the time series. The
image is the first image with segmentation, which is the end-
diastolic (ED) phase.

In Fig. 3] the effects of the size of the synthetic data ad-
dition are shown. In order to give the realistic data a similar
chance, we do not let the model train longer, but we repeat
the original data. We see that a ratio of 0.1 gives the best re-
sults for this dataset. Given the homogeneity of the changes
in this particular dataset, the fact that we are only augment-
ing in-distribution, and the simplicity of the augmentations,
it is surprising that we observe even a slight improvement.

In Fig. ] we can see the difference the augmentation
makes on different dataset sizes. We note here that in this
dataset, there are 5 different disease characteristics. So de-
pending on the size different morphologies are possible.
Depending on the metric, the augmentation helps with the
smaller dataset sizes. However, in this experiment the same
images were selected. l.e. the augmentations did not add
samples that were not seen before. Considering that this
dataset is quite saturated, the improved results are surpris-
ing. In future work we could test whether we can further
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Figure 4. Effects of augmentation on time series prediction on the ACDC dataset for the SimVP model. The amount of augmentation is
0.1 chosen from Fig.[3] The x-axis is to the number of datapoints in the dataset. The y-axis is the corresponding metric. As comparison,
the last available image has the metrics RM SFE : 123.11, SSIM : 0.890, PSNR : 24.80.

add parts that the model has not seen before, thus increas-
ing the diversity of the dataset.

3.2. Discussion

We have shown the qualitative and quantitative results of
our approach. Despite the small changes in ACDC, even
mixing a small amount of synthetic data makes the predic-
tion slightly better. This serves as a first proof of concept
for our method.

3.2.1. Use Case Scenarios

Our method has several potential applications beyond stan-
dard data augmentation. One possible direction is the use
of LAUGEN to unit-test longitudinal models. The use of
semisynthetic models for benchmarking models in [10, [17].
Since we explicitly define the latent trajectories of the gen-
erated image time series, we have access to the ground truth
progression, unlike in some real longitudinal datasets. This
allows us to assess whether trained models behave reliably
under known and controlled progression patterns, and to
identify potential failure modes in disease modeling.

Another use case is pre-training on semi-synthetic data.
Generalization remains a major challenge in medical imag-
ing due to domain shifts across scanners, protocols, and in-
stitutions. Training models on diverse, synthetic image time
series could act as a form of spatio-temporal pre-training,
helping models to better adapt to unseen real-world settings.

3.2.2. Limitations

Our approach currently has several limitations. While it is
computationally efficient, it currently supports three aug-
mentations, limiting the complexity of the augmentations.
Yet, with multiple iterations, more complex patterns would
be possible. In addition, it depends on the availability
of segmentation masks, which may not be present in all
datasets. However, this dependency is mitigated by the in-
creasing availability of high quality, promptable segmenta-
tion models such as SAM [12], which can generate masks
even with minimal supervision. Since LAUGEN only uses
segmentations to extract object boundaries, coarse segmen-
tations may be sufficient. Finally, the current latent trajec-
tory model is too simplistic - limited to a linear progression.



This was a deliberate choice for initial proof-of-concept ex-
periments. Future extensions could include more realistic,
disease-specific trajectories, such as sigmoidal curves (e.g.
Alzheimer’s), or even more complex trajectories for cancer.

4. Conclusion

In this work, we propose LAUGEN, a longitudinal augmen-
tation and data generation framework that we have applied
to medical imaging. We propose that LAUGEN can be used
as a kind of unit-test for models in medical imaging. We
also showed that LAUGEN can be used as in-distribution
data augmentation on ACDC.
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