
CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Applying Longitudinal Augmentation and Data Generation (LAUGEN) in
Medical Imaging

Anonymous CVPR submission

Paper ID *****

Abstract

Deep learning had transformative impact in medical imag-001
ing, in areas such as classification, segmentation, and re-002
port generation. Another area holding promises, is the003
area of personalized medicine, especially disease progres-004
sion modeling. However, longitudinal imaging is even more005
data-constrained than single time-point imaging, as it re-006
quires repeated acquisitions over extended periods, often007
spanning months or even years. To address this challenge,008
we introduce Longitudinal Augmentation and Data Gener-009
ation (LAUGEN) a lightweight, semi-synthetic image gen-010
eration framework which can be applied in the domain of011
medical image time series. LAUGEN is efficient, requiring012
only a single image and its segmentation to produce diverse013
pseudo-temporal sequences, and is capable of handling typ-014
ical 3D medical data. We demonstrate its use as a data aug-015
mentation strategy for improving model performance and016
propose its role as a tool for unit testing longitudinal mod-017
els, where pre-defined latent progressions enable controlled018
and arbitrarily many evaluations. Our qualitative results on019
the Brain Tumor Segmentation (BraTS) dataset and quanti-020
tative experiments on Automated Cardiac Diagnosis Chal-021
lenge (ACDC) dataset highlights LAUGEN’s potential to022
enrich datasets and enhance result diversity.023

1. Introduction024

Medical imaging has become a cornerstone of modern025
healthcare, enabling non-invasive diagnosis, treatment plan-026
ning, and disease monitoring. Over the decades, modalities027
such as X-ray, CT, PET, ultrasound and MRI have changed028
clinical workflows. The rise of deep learning in medicine029
has further advanced medical imaging, with models achiev-030
ing expert-level performance in tasks such as tumor detec-031
tion, segmentation, and anomaly detection. However, de-032
spite the successes, medical imaging remains a data-sparse033
domain. Unlike expansive natural image datasets such as034
ImageNet [5], which contains millions of labeled examples,035

medical imaging datasets are limited by privacy regulations, 036
ethical considerations, and the high costs of expert annota- 037
tion. This is even more pressing in the domain of image 038
time series, where most modalities are not temporal in na- 039
ture; In these cases, time series are acquired by imaging 040
patients over a long time period, sometimes over multiple 041
years, such as in Alzheimer’s Disease. This makes data 042
collection and curation even more difficult. Consequently, 043
there is a need for data generation methods capable of pro- 044
ducing longitudinal series from single images. Most exist- 045
ing approaches require extensive pre-training and are not 046
easily applicable when no temporal data is available. Clas- 047
sical models for disease progression, such as those used 048
in cancer prediction, also exist; however, they often suffer 049
from a modality gap, as the generated outputs are fully syn- 050
thetic. We therefore introduce Longitudinal Augmentation 051
and Data Generation (LAUGEN), which 052

1. Is training-free, and both model- and data agnostic; 053
2. Requires only a single image and segmentation to pro- 054

duce a semi-synthetic longitudinal series, which can 055
leverage ; 056

3. Serves as augmentation even if there are spatio-temporal 057
data are available. 058

2. Method 059

2.1. Related Work 060

Traditional augmentations like flipping, rotations, and in- 061
tensity shifts are common, but do not alleviate the severe 062
data limitations. More advances data augmentations, such 063
as using Diffusion models or GANs [3, 4, 9] aim to diver- 064
sify the data, typically targeting downstream classification 065
tasks. However, these models often require a lot of compu- 066
tational resources, and can only reproduce the input train- 067
ing data. These methods are generally not suited for im- 068
age time series data when only single time-point images 069
are available. Synthetic data generation has also been used 070
for pre-training [6, 8, 15], as well as for model validation 071
[1, 10, 11, 14]. 072
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Figure 1. Left: Additional augmentation strategies. From the vanilla uniform, to directional and Gaussian. Right: The second part shows
how conceptually the augmentations are turned into time series.

2.2. Datasets073

We focus on two datasets. The first the Brain Tumor Seg-074
mentation (BraTS) dataset. This dataset only has single075
time-point acquisitions. For our purposes we transform this076
dataset to simulate longitudinal studies. The challenge is to077
show that there is some merit in using that dataset, so we078
conceptually show how it can be used. The second dataset079
is the Automated Cardiac Diagnosis Challenge (ACDC) [2].080
This dataset is commonly used as a proxy for longitudinal081
learning, as it is acquired regularly, in 3D, and there are no082
confounding factors in between scans, which are common083
in cancer imaging datasets. On this dataset, we demonstrate084
that our approach serves as a data augmentation strategy,085
slightly enriching the data available. We note here that we086
train on 90 samples, and validation is performed on 10 sam-087
ples. In this section we describe the method. We build on088
the work of [13], which introduces a biological data aug-089
mentation. We extend the uniform data augmentation with090
additional steps, namely unidirectional and a single growth091
in a gaussian distribution. Which will be shown in Figure 1.092

2.3. Data Augmentation093

In Algorithm 1 we see the general augmentation strategy.094
In Figure 1 we show the various augmentations, including095
two additional variants compared to the baseline. We define096
a latent trajectory T , where we sample from a distribution097
D. For simplicity and to reduce hyper-parameter tuning, we098
assume a linear latent trajectory:099

zt = m× t, (1)100

where m is sampled uniformly in a range, depending on the101
sample.102

2.4. Experimental Settings103

We train with the SimVP model [7] and their OpenSTL104
framework. The task is image generation, i.e. predicting105

Algorithm 1 Semi-Synthetic Data Augmentation.

Require: Image set I with |I| =: N , Segmentation S, Bi-
ological Augmentation Function A, Latent Trajectory
T , Number of Time Points T

1: Define a synthetic trajectory T = {z1, z2, ..., zT }
2: for I, S ∈ I do
3: Extract single image I and segmentation S
4: for t = 1 to T do
5: Generate point from synthetic latent zt ∈ T
6: Apply augmentation: (It)← A(I, S, zt)
7: end for
8: Ri ← {It}Tt=1

9: end for
10: Return {Ri}Ni=1

the next frame. We choose 4 context images, and 4 tar- 106
get images. For the mixing experiments, a portion of the 107
training data (defined by the mixing ratio), consists of 108
synthetically augmented series, see 1, combined with the 109
true time series, i.e. true medical time series. Addition- 110
ally, we define a ”last image” baseline, which uses the final 111
available context image as the prediction. We find that for 112
ACDC, SimVP outperforms this baseline; however, in other 113
experiments, this simple heuristic remains competitive, and 114
not all models are able to outperform it. 115

3. Qualitative Results 116

In Figure 2 we can see an example of the BraTS dataset, 117
that has been longitudinally augmented. In Fig. 2a and 118
Fig. 2b we can see the augmented images, and in Fig. 2c the 119
difference map between the two augmented images. Note 120
that that away from the boundary of the segmentation, the 121
changes are essentially zero. We also notice that despite the 122
simplicity of the change, which is uniform here, the result- 123
ing change is still not too simple. 124
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(a) BraTS: Start of the time series (b) BraTS: End of the time series (c) Difference map of Fig. 2a and Fig. 2b

(d) ACDC: ED heart phase (real). (e) ACDC: Synthetically augmented end. (f) Difference map of Fig. 2d and Fig. 2e

Figure 2. Figures 2a and 2b: two qualitative temporal samples from BRaTS which were longitudinally augmented with LAUGEN, and c)
the difference. d) Shows the ED phase, zoomed in, of the heart, with e) being the synthetic change, and e) the difference.

Figure 3. Performance in terms of mixing ratio of synthetic data. The last image baseline is RMSE : 12.144, SSIM : 0.8408,
PSNR : 24.00.

3.1. Results Augmentation125

To show that method has some merit, we apply it as an126
actual data augmentation method for the image generation127
task. For this, we consider the ACDC [2] dataset. We aug-128
ment the number of real time series, with semi-synthetic129
augmentations of a single image from the time series. The130
image is the first image with segmentation, which is the end-131
diastolic (ED) phase.132

In Fig. 3 the effects of the size of the synthetic data ad-133
dition are shown. In order to give the realistic data a similar134
chance, we do not let the model train longer, but we repeat135
the original data. We see that a ratio of 0.1 gives the best re-136
sults for this dataset. Given the homogeneity of the changes137
in this particular dataset, the fact that we are only augment-138

ing in-distribution, and the simplicity of the augmentations, 139
it is surprising that we observe even a slight improvement. 140

In Fig. 4 we can see the difference the augmentation 141
makes on different dataset sizes. We note here that in this 142
dataset, there are 5 different disease characteristics. So de- 143
pending on the size different morphologies are possible. 144
Depending on the metric, the augmentation helps with the 145
smaller dataset sizes. However, in this experiment the same 146
images were selected. I.e. the augmentations did not add 147
samples that were not seen before. Considering that this 148
dataset is quite saturated, the improved results are surpris- 149
ing. In future work we could test whether we can further 150
add parts that the model has not seen before, thus increas- 151
ing the diversity of the dataset. 152
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Figure 4. Effects of augmentation on time series prediction on the ACDC dataset for the SimVP model. The amount of augmentation is
0.1 chosen from Fig. 3. The x-axis is to the number of datapoints in the dataset. The y-axis is the corresponding metric. As comparison,
the last available image has the metrics RMSE : 123.11, SSIM : 0.890, PSNR : 24.80.

3.2. Discussion153

We have shown the qualitative and quantitative results of154
our approach. Despite the small changes in ACDC, even155
mixing a small amount of synthetic data makes the predic-156
tion slightly better. This serves as a first proof of concept157
for our method.158

3.2.1. Use Case Scenarios159

Our method has several potential applications beyond stan-160
dard data augmentation. One possible direction is the use161
of LAUGEN to unit-test longitudinal models. The use of162
semisynthetic models for benchmarking models in [10, 16].163
Since we explicitly define the latent trajectories of the gen-164
erated image time series, we have access to the ground truth165
progression, unlike in some real longitudinal datasets. This166
allows us to assess whether trained models behave reliably167
under known and controlled progression patterns, and to168
identify potential failure modes in disease modeling.169

Another use case is pre-training on semi-synthetic data.170
Generalization remains a major challenge in medical imag-171
ing due to domain shifts across scanners, protocols, and in-172
stitutions. Training models on diverse, synthetic image time173
series could act as a form of spatio-temporal pre-training,174
helping models to better adapt to unseen real-world settings.175

3.2.2. Limitations176

Our approach currently has several limitations. While it is177
computationally efficient, it currently supports three aug-178
mentations, limiting the complexity of the augmentations.179
Yet, with multiple iterations, more complex patterns would180
be possible. In addition, it depends on the availability181
of segmentation masks, which may not be present in all182
datasets. However, this dependency is mitigated by the in-183
creasing availability of high quality, promptable segmenta-184
tion models such as SAM [12], which can generate masks185
even with minimal supervision. Since LAUGEN only uses186

segmentations to extract object boundaries, coarse segmen- 187
tations may be sufficient. Finally, the current latent trajec- 188
tory model is too simplistic - limited to a linear progression. 189
This was a deliberate choice for initial proof-of-concept ex- 190
periments. Future extensions could include more realistic, 191
disease-specific trajectories, such as sigmoidal curves (e.g. 192
Alzheimer’s), or even more complex trajectories for cancer. 193

4. Conclusion 194

In this work, we propose LAUGEN, a longitudinal augmen- 195
tation and data generation framework that we have applied 196
to medical imaging. We propose that LAUGEN can be used 197
as a kind of unit-test for models in medical imaging. We 198
also showed that LAUGEN can be used as in-distribution 199
data augmentation on ACDC. 200
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