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ABSTRACT

Despite randomized smoothing being proven to give a robustness guarantee, the
standard performance of a smoothed deep reinforcement learning (DRL) agent ex-
hibits a significant trade-off between its utility and robustness. Naively introduc-
ing randomized smoothing during the training or testing can fail completely in the
DRL setting. To address this issue, we proposed new algorithms to train smoothed
robust DRL agents while attaining superior clean reward, empirical robustness,
and robustness guarantee in discrete and continuous action space. Our proposed
DS-DQN and AS-PPO outperform prior state-of-the-art robustly-trained agents
in robust reward by 1.6× on average and exhibit strong guarantees that previous
agents failed to achieve. Moreover, a stronger adversarial attack for smoothed
DQN agents is proposed, which is 4.6× more effective in decreasing the rewards
compared to existing adversarial attacks.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has reached performance beyond humans in many game en-
vironments (Mnih et al., 2013; Silver et al., 2016) as well as many safety-critical domains, such as
robotics (Kober et al., 2013; Fisac et al., 2019), autonomous driving (Kiran et al., 2022) and health-
care (Yu et al., 2023). Unfortunately, recent studies pointed out that DRL is vulnerable to adversarial
perturbations (Huang et al., 2017; Lin et al., 2017; Weng et al., 2020). Hence, it is necessary to im-
prove the robustness of the DRL agents before they can be deployed to real-world applications,
especially for safety-critical tasks.

Recently, the techniques developed for training a robust classifier have been adapted to improve
the robustness of DRL agents. For example, Pattanaik et al. (2018) adopted adversarial training
(Madry et al., 2018; Yuan et al., 2019) to train DRL agents with adversarial examples, and Zhang
et al. (2020); Oikarinen et al. (2021) proposed to robustify DRL agents with regularizers based
on robustness verification bounds (Gowal et al., 2018). More recently, Wu et al. (2022) proposed
the first framework named CROP to transform a DRL agent to a smoothed agent via Randomized
Smoothing (RS) (Cohen et al., 2019). CROP provided certified robustness guarantees for discrete-
action agents (e.g. DQN), and they showed that the certified radius of a smoothed agent is generally
larger compared to the vanilla agents when the original base agent is trained via robust training (e.g.
SADQN (Zhang et al., 2020), RadialDQN (Oikarinen et al., 2021)). Their approach does not involve
any training on the smoothed agents, as the transformation only involves applying RS.

Nevertheless, we found that the pipeline in CROP (Wu et al., 2022) may have a few issues. First,
there exists a significant trade-off between the clean reward and the robustness of the CROP agents.
The CROP agents cannot tolerate the large noise introduced by RS and suffer from a significant de-
crease in clean reward. In other words, CROP agents are not usable despite being robust. We present
our detailed observation and discussion in Section 2 Failure in existing smoothed DRL agents. Sec-
ond, the smoothing strategy in CROP may lead to an overestimation of the certifiable robustness.
Similarly, the attack evaluation is also ineffective in decreasing the reward of smoothed agents,
which may also provide an illusion of empirical robustness. We will discuss this in Section 3 Issues
of the smoothing strategy in CROP and Our stronger attack.

Motivated by these limitations, in this work, our primary goal is to devise new methods to mitigate
the trade-off between clean reward and robustness of the CROP agents and fix the issue of overes-
timation of the robustness with a new smoothing strategy and stronger attack. We first show that it
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Figure 1: The average clean reward and certified radius of our DS-DQN and CROP (Wu et al.,
2022). Our robust agents have much better clean reward compared to the CROP framework.

could be challenging to directly apply RS during the DRL training: the smoothed DRL agents could
completely fail unlike the classification settings (Cohen et al., 2019), suggesting the necessity of
more investigation and careful designs. Consequently, we propose two new smoothed DRL agents,
DS-DQN and AS-PPO, with better smoothing strategies that can attain both great clean reward and
robustness certification for discrete and continuous actions. Our agents establish new state-of-the-
art results under our stronger attack setting across several standard RL benchmarks on Atari games
(Brockman et al., 2016) and continuous control tasks (Brockman et al., 2016). Our contributions are
summarized as follows:

• We identify the issues in CROP (Wu et al., 2022), showing the poor trade-off (see Section 2) and
pointing out the overestimated robustness in their framework. We solve these issues by designing
new training algorithms, introducing better smoothing strategies, and evaluating smoothed agents
with our stronger attack. Furthermore, We extend the robust guarantee from DQN agents to the
PPO setting and defined action bound for continuous-action agents (see Section 4).

• We develop the first robust DRL training algorithms leveraging randomized smoothing with other
techniques for both discrete actions (DS-DQN) and continuous actions (AS-PPO). We also show
that naively training with RS does not work and it is necessary to combine denoise smoothing and
adversarial training.

• Our agents are the first state-of-the-art robust agents with a high robustness guarantee at the same
time (certified radius and reward lower bound), while the previous state-of-the-art only evaluate
their agents under empirical attacks. Our DS-DQN and AS-PPO earn 2.07× and 1.25× more
reward respectively than the current best agents under the strongest attack.

2 FAILURE IN EXISTING SMOOTHED DRL AGENTS

Despite RS being amenable to providing robustness certification, we found that there is a significant
trade-off between the reward and the robustness of the smoothed agents in CROP (Wu et al.,
2022). In their approach, they evaluated smoothed agents with a large smoothing factor σ = 0.1
since it can increase the certified radius, which ensures the action of the smoothed agent remains
unchanged within this radius. However, as we show in Figure 1, the clean reward of the CROP
agents is degraded significantly, regardless the base DRL agents are robustly trained (RadialDQN,
SADQN) or not (VanillaDQN). This makes the CROP agents impractical to use: a large certified
radius is not useful as a robust but badly performed agent is not acceptable for deployment.

On the other hand, one may wonder: why not use a smaller σ to avoid harming the performance of
the smoothed agents? As we show in Figure 6 (Appendix A.5) the cost of maintaining good clean
reward is to have much weaker robustness: for CROP, the certified radius is extremely small with
small σ. Similar issues can be found in the smoothed agents with continuous actions (e.g. PPO)
albeit less severe than the DQNs. The smoothed PPO agents (e.g. VanillaPPO+RS and SAPPO+RS
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(SGLD) (Zhang et al., 2020)) have worse clean reward than their non-smoothed versions, which will
be discussed in Section 5 Table 3.

In contrast, as shown in Figure 1, our proposed methods are capable of attaining high robustness and
clean reward under a large σ for both DQN and PPO agents, suggesting it is possible to mitigate the
trade-off between the robustness and utility of smoothed DRL agents. In the following section, we
introduce our proposed methods: DS-DQN for discrete actions and AS-PPO for continuous actions.

3 LEARNING ROBUST DRL AGENTS WITH RANDOMIZED SMOOTHING

In this section, we propose methods that leverage RS with other techniques to obtain certifiably
robust agents, while mitigating the trade-offs mentioned above and fixing the pipeline of robustness
evaluation in CROP. We focus on two representative RL algorithms: DQN for discrete action space,
and PPO for continuous action space, which are the focus of prior works in robust DRL literature
(Zhang et al., 2020; Oikarinen et al., 2021).

3.1 DS-DQN (DENOISED SMOOTHED - DEEP Q NETWORK)

Motivating example. Based on the experiments of Figure 1 in Section 2, we found that none of the
smoothed DQN agents in CROP (Wu et al., 2022) can tolerate the large Gaussian noise introduced by
RS during the testing. To eliminate the inconsistency between training and testing, our first attempt
is to incorporate RS into training, and we call this approach Smoothed-DQN (S-DQN). We formulate
the temporal difference loss of S-DQN as LTD = E[(r+γmaxa′ Qtarget(s

′, a′)−Q(s̃, a; θ))2], where
s̃ = s+N (0, σ2IN ), σ is the smoothing variance, Qtarget is the pretrained Q-Network, and θ is the
parameters of S-DQN. This implementation makes S-DQN agents learn under noises. However, we
found that S-DQN agents get very low clean reward despite having large certified radius as shown in
Table 2 row (b) in Section 5. This suggests that simply involving RS in DQN training is not a useful
idea, unlike the supervised learning setting where training with RS can achieve high clean accuracy
(Cohen et al., 2019) for a classifier. Hence, it is important to develop a strategy to remove the noise
from RS, which motivates us to propose DS-DQN leveraging the technique of Denoised Smoothing
(Salman et al., 2020). We describe the details of training, testing, and evaluating our DS-DQN in
the following paragraphs.

Training and loss function. The flow chart of the training process of DS-DQN is shown in Ap-
pendix A.2 Figure 4 (a). There are two parts of the training: collecting transitions and updating the
networks. First, we collect the transitions {st, at, rt, st+1} by taking the ϵ-greedy strategy, which
can be formulated as follows:

at =

{
argmaxa Q(D(s̃t; θ), a), with probability 1− ϵ

Random Action, with probability ϵ
(1)

where D is the denoiser that removes the noise from the input states, Q is the pretrained Q-network,
s̃t is the state with noise s̃t = st + N (0, σ2IN ), and σ is the standard deviation of the Gaussian
distribution. After collecting the transitions, they are stored in the replay buffer. In the second stage,
we sample some transitions from the replay buffer and update the parameters of the denoiser D. The
entire loss function is designed with two parts — reconstruction loss LR and temporal difference loss
LTD:

L = λ1LR + λ2LTD, (2)

where λ1 and λ2 are the hyperparameters. Suppose the sampled transition is {s, a, r, s′}, the recon-
struction loss LR is defined as:

LR =
1

N
||D(s̃; θ)− s||22, (3)

where s̃ = s + N (0, σ2IN ), and N is the dimension of the state. This is the mean square error
(MSE) between the original state and the output of the denoiser, which intends to reconstruct the
original state. The temporal difference loss LTD is defined as:

LTD =

{
1
2ζ η

2, if |η| < ζ

|η| − ζ
2 , otherwise

, η = r + γmax
a′

Q(s′, a′)−Q(D(s̃; θ), a), (4)
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where ζ is set to 1. This is the Huber loss of the temporal difference, which is often used in DQN
training. Note that the pretrained Q-network Q can be replaced with robust agents such as Oikari-
nen et al. (2021) and Zhang et al. (2020) and our DS-DQN framework can also be combined with
adversarial training to further improve the robustness. We will discuss this later in Section 5. The
full training algorithm can be found in Appendix A.6.1 Algorithm 1.

Issues of the smoothing strategy in CROP (Wu et al., 2022). In the testing stage, we need to
obtain the smoothed version of DRL agents. A simple way is to take the average of the output
samples, which is the smoothing strategy used in CROP. However, this might not lead to a precise
estimation of the certified radius since it requires estimating the output range [Vmin, Vmax] of the
Q-network. The certified radius proposed in CROP is shown as follows:

Rt =
σ

2
(Φ−1(

Q̃CROP(st, a1)−∆− Vmin

Vmax − Vmin
)− Φ−1(

Q̃CROP(st, a2) + ∆− Vmin

Vmax − Vmin
)), (5)

where Rt is the certified radius at time step t, QCROP : S × A → [Vmin, Vmax], Q̃CROP(s, a) =
1
mΣm

i=1QCROP(s + δi, a), δi ∼ N (0, σ2IN ),∀i ∈ {1, ...,m}, a1 is the action with the largest Q-

value among all the other actions, a2 is the ”runner-up” action, ∆ = (Vmax − Vmin)
√

1
2m ln 1

α , Φ
is the CDF of standard normal distribution, m is the number of the samples, and α is the one-side
confidence parameter. Based on this expression, the output range of the Q-network [Vmin, Vmax] can
significantly affect the certified radius. The certified radius is small when the output range of the
Q-network [Vmin, Vmax] is large (e.g. Suppose Q̃CROP(st, a1) = 3, Q̃CROP(st, a2) = −3, σ = 0.1,
m = 100, and α = 0.05. Even though there is a significant gap between the two Q-values, the
certified radius is only 0.007 under [Vmin, Vmax] = [−10, 10]. Instead, if we narrow down the interval
to [Vmin, Vmax] = [−3.5, 3.5], the certified radius grows to 0.086). CROP estimated [Vmin, Vmax] by
sampling some trajectories and finding the maximum and the minimum of the Q-values. However, if
the actual interval is much larger than the estimation (which is likely to happen in practice since it is
impossible to go over all the states), the calculated certified radius can be significantly overestimated.

Our hard randomized smoothing strategy for testing. To avoid the above issues, we leverage
the hard Randomized Smoothing (hard RS) strategy to compute the certified radius without knowing
[Vmin, Vmax]. We first define the hard Q-value Qh as follows:

Qh(s, a) = 1{a=argmaxa′ Q(s,a′)} (6)

The output range of the hard Q-value Qh is always [0, 1] and therefore does not lead to the afore-
mentioned problem. Then, we define the hard RS for DS-DQN as follows:

Q̃(s, a) = Eδ∼N (0,σ2IN )Qh(D(s+ δ), a). (7)

We use Monte Carlo sampling to estimate Q̃. The flow chart of the testing process of DS-DQN is
shown in Appendix A.2 Figure 4 (b), and the full algorithm is in Appendix A.6.2 Algorithm 2.

Our stronger attack. The flow chart of attacking DS-DQN is shown in Appendix A.2 Figure 4
(c). Note that the policy of our DS-DQN π̃(s) = argmaxa Q̃(s, a) is a smoothed policy different
from the base policy π(s) = argmaxa Q(s, a). In CROP (Wu et al., 2022), they evaluated all the
smoothed agents with the classic Projected Gradient Descent (PGD) attack. However, we found that
the classic PGD attack is not effective in decreasing the reward of the smoothed agents as shown
in Table 1. Hence, we introduce a new attack designed for the smoothed agents and evaluate the
performance of DS-DQN based on this attack. The objective of our attack is to solve the below
optimization problem:

min
∆s

log
expQ(D(s̃+∆s), a∗)

Σa expQ(D(s̃+∆s), a)
, s.t. ||∆s||p ≤ ϵ, (8)

where a∗ = argmaxa Q̃(s, a), Q̃(s, a) is defined in Eq.(7), s̃ = s + N (0, σ2IN ), ϵ is the attack
budget, and p = 2 or ∞ in our setting. Eq.(8) can be solved by PGD. In our new attack, the state
with perturbation is added with a noise sampled from Gaussian distribution with the corresponding
smoothing variance σ. We argue that this threat model is stronger than the classic PGD attack
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Table 1: The comparison between our new attack and the classic PGD attack. Our attack reduces
51% of the reward of DS-DQN on average, which is over 4.6× stronger than 11% of the classic
PGD attack. We set the attack budget ϵ = 0.05 in the ℓ∞ attack, and ϵ = 0.9 in the ℓ2 attack.
Agents Environments No Attack new ℓ∞ Attack (Ours) classic PGD ℓ∞ Attack new ℓ2 Attack (Ours) classic PGD ℓ2 Attack

DS-DQN Pong 21.0 ± 0.00 18.8 ± 1.17 19.4 ± 2.33 −16.8 ± 3.70 20.8 ± 0.40
Freeway 33.2 ± 0.40 23.8 ± 1.17 30.4 ± 1.85 26.8 ± 1.17 32.2 ± 1.17
RoadRunner 35420 ± 5116 0 ± 0 16200 ± 1482 13780 ± 3396 37000.0 ± 4565

because now the attacker has the information of the smoothing variance σ. In practice, the attacker
might not know the exact value of σ and can only perform the classic PGD attack, which will be
significantly weaker than our attack. The comparison of our attack against the classic PGD attack is
in Table 1. The full algorithm of our attack is in Appendix A.6.3 Algorithm 3.

3.2 AS-PPO (ADVERSARIAL SMOOTHED - PROXIMAL POLICY OPTIMIZATION)

Motivating example. Unlike Atari games, the states of the continuous control tasks are often not
image-based observations (e.g. Mujoco environment). Although we intended to make our algorithm
designed for DQN also apply to PPO, we found that the Denoised Smoothing strategy did not work
well in these environments. In particular, we found that the PPO agents are much more tolerant to
the Gaussian noise and allow us to directly train the agent with RS. This inspires us to develop a
Smoothed-PPO (S-PPO) agent, which is trained with RS. Table 3 row (c) in Section 5 shows the
performance of the S-PPO agent. Although the S-PPO agent is more robust than the vanilla PPO
agent, it is still not robust enough against the strongest attack. To resolve this issue, we propose
AS-PPO based on adversarial training to enhance the robustness of our smoothed PPO agents. We
describe the details of training, testing, and evaluating our AS-PPO in the following paragraphs.

Training and loss function. It is more complicated to do adversarial training in the RL setting
than in the classification problem. Before we define the objective, we first define the smoothed
policy π̃ of AS-PPO. We use the Median Smoothing (Chiang et al., 2020) strategy to smooth our
agents. The median value has a nice property: it is almost unaffected by the outliers. Hence, Median
Smoothing can give a better estimation of the expectation than mean smoothing when the number
of samples is small. The smoothed version of AS-PPO is defined as follows:

π̃i(a|s) = N (M̃i, Σ̃i), ∀i ∈ {1, ..., Naction} (9)

where M̃i = sup{M ∈ R|Pδ∼N (0,σ2IN )[a
mean
i ≤ M ] ≤ p}, Σ̃i = sup{Σ ∈ R|Pδ∼N (0,σ2IN )[a

std
i ≤

Σ] ≤ p}, (amean
i , astd

i ) is the output of policy network given a state with noise s + δ as in-
put, which represents the mean and standard deviation of the i-th coordinate of the action,
Naction is the dimension of the action, and p is the percentile. This is the definition of the
policy with Median Smoothing. Now, we can define the optimization problem as follows:
maxθ min{∆si}T

i=1
Et[min( π̃(at|st+∆st;θ)

π̃(at|st+∆st;θold)
Ât, clip( π̃(at|st+∆st;θ)

π̃(at|st+∆st;θold)
, 1 − ϵclip, 1 + ϵclip)Ât)], where

||∆st||∞ ≤ ϵ, Ât is the advantage, and ϵclip is the clipping hyperparameter. This is the objective
of the smoothed PPO algorithm but with an inner min. By Danskin’s theorem, we can first solve
the inner minimization problem and then solve the outer maximization. This can be done by jointly
training a policy network and an adversarial network. The adversary is another smoothed agent that
is able to perturb the state and aims to minimize the surrogate reward. The smoothed adversarial
policy is defined as follows:

Ãi(∆s|s) = N (M̃i, Σ̃i), ∀i ∈ {1, ..., Nstate} (10)

where A is the adversary, M̃i = sup{M ∈ R|Pδ∼N (0,σ2IN )[∆smean
i ≤ M ] ≤ p}, Σ̃i = sup{Σ ∈

R|Pδ∼N (0,σ2IN )[∆sstd
i ≤ Σ] ≤ p}, (∆smean

i ,∆sstd
i ) is the output of the adversarial network given

a state with noise s + δ as input, which represents the mean and standard deviation of the i-th
coordinate of the perturbation, Nstate is the dimension of the state, and p is the percentile.

The flow chart of the training process is shown in Appendix A.3 Figure 5. In the policy update,
we first collect the trajectories (with 50% of the states being perturbed by the adversary) with the
smoothed policy, and then update the value network and the policy network. In the adversary update,
we collect the trajectories with the states always being perturbed, and then update the value network
and the adversarial network. The full algorithm is in Appendix A.7.1 Algorithm 4 and 5.
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Testing. We also use Median Smoothing in the testing to obtain the smoothed policy. However, we
use the smoothed deterministic policy π̃i,det(s) = M̃i, ∀i ∈ {1, ..., Naction}, where M̃i = sup{M ∈
R|Pδ∼N (0,σ2IN )[a

mean
i ≤ M ] ≤ p}, and amean

i is the output of policy network given a state with
noise s+δ as input (amean

i = πi,det(s+δ)) representing the mean of the i-th coordinate of the action.
Here we only use the amean value of the output of the policy network for smoothing.

Attack. To evaluate the performance of our AS-PPO, we modify several attack methods proposed
in Zhang et al. (2020). They proposed the following attacks to evaluate the robustness of PPO
agents: Random Attack, Critic Attack, Maximal Action Difference (MAD) Attack, and Minimum
Robust Sarsa (Min-RS) Attack. More details about these attack algorithms can be found in Zhang
et al. (2020). We also evaluate our AS-PPO under the Optimal Attack (Zhang et al., 2021), which is
the current strongest attack for PPO using an adversarial agent to perturb the states. Our robustness
evaluations for PPO are mainly based on these methods. However, the difference is that when we
do PGD, the perturbed state is added with a noise sampled from Gaussian distribution with the
smoothing variance σ. This setting is similar to the stronger attack we used while attacking the
smoothed DQN agents.

4 ROBUSTNESS CERTIFICATION

The strength of the smoothed agents is that they come with certifiable robustness. Here we formally
formulate the certified radius, action bound, and reward lower bound of our agents.

Certified radius for DS-DQN. The certified radius for our DS-DQN is defined as follows:

Rt =
σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))), (11)

where a1 is the action with the largest Q-value among all the other actions, a2 is the ”runner-up”
action, Rt is the certified radius at time t, Φ is the CDF of normal distribution, σ is the smoothing
variance, and Q̃(s, a) is defined in Eq.(7). As long as the ℓ2 perturbation is bounded by Rt, the action
will not change. Note that our expression of the certified radius is different from Eq.(5) proposed
in CROP (Wu et al., 2022) since we use hard RS. The proof of the certified radius can be found in
Appendix A.10.

Action bound for AS-PPO. Unfortunately, unlike the discrete action setting, there is no guarantee
that the action will not change under a certain radius in the continuous action setting. Hence, we
propose the Action Bound, which bounds the policy of smoothed PPO agents in a close region:

π̃det,p(st) ⪯ π̃det,p(st +∆s) ⪯ π̃det,p(st), s.t. ||∆s||2 ≤ ϵ, (12)
where π̃i,det,p(s) = sup{ai ∈ R|Pδ∼N (0,σ2IN )[πi,det(s + δ) ≤ ai] ≤ p},∀i ∈ {1, ..., Naction},
p = Φ(Φ−1(p) − ϵ

σ ), p = Φ(Φ−1(p) + ϵ
σ ), and p is the percentile. The proof of the action bound

can be found in Appendix A.11. We designed a metric based on this action bound to evaluate the
certified robustness for smoothed PPO agents. See Appendix A.13 for more details.

Reward lower bound for smoothed agents. By viewing the whole trajectory as a function Fπ ,
we define Fπ : RH×N → R that maps the vector of perturbations for the whole trajectory ∆s =
[∆s0, ...,∆sH−1]

T to the cumulative reward. Then, the reward lower bound is defined as follows:

F̃π,p(∆s) ≥ F̃π,p(0), s.t. ||∆s||2 ≤ B, (13)

where F̃π,p(∆s) = sup{r ∈ R|Pδ∼N (0,σ2IH×N )[Fπ(δ + ∆s) ≤ r] ≤ p}, F̃π,p(0) = sup{r ∈
R|Pδ∼N (0,σ2IH×N )[Fπ(δ) ≤ r] ≤ p}, δ = [δ0, ..., δH−1]

T , p = Φ(Φ−1(p) − B
σ ), H is the length

of the trajectory, and B is the ℓ2 attack budget for the entire trajectory. If the attack budget of each
state is ϵ, then B = ϵ

√
H . This bound ensures that the reward will not fall below a certain value

while given any ℓ2 perturbation with budget B. The proof of the reward lower bound can be found
in Appendix A.12.

In practice, we use Monte Carlo sampling to estimate all the bounds in Section 4, and hence, it is
necessary to introduce the confidence interval which can change the bounds while the sample num-
ber is different. We give the detailed formula of the bounds we used to conduct all the experiments
in Appendix A.9.
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Figure 2: The average normalized reward of different DQN agents. Our agents achieve high robust
reward under attack with a large budget.

5 EXPERIMENT

Setup. In our DQN settings, the evaluations are done in three Atari environments — Pong, Free-
way, and RoadRunner. We train the denoiser D with different base models and with adversarial
training. Our methods are listed as follows:

• DS-DQN (Vanilla): using simple DQN as pretrained Q-network.
• DS-DQN (Radial) and DS-DQN (SADQN): using RadialDQN (Oikarinen et al., 2021) and

SADQN (Zhang et al., 2020) as pretrained Q-network respectively.
• DAS-DQN (Denoised Adversarial Smoothed - DQN) (Vanilla): the implementation of DS-

DQN (Vanilla) combined with adversarial training.

We compare our DS-DQN with the following baselines:

• RadialDQN (Oikarinen et al., 2021): the current state-of-the-art robust agent.
• SADQN (Zhang et al., 2020): a robust agent.
• CROP (Wu et al., 2022): the smoothed agents. CROP small σ are the implementation of

the CROP framework using a relatively small smoothing factor.

In our PPO settings, the evaluations are done on three continuous control tasks in the Mujoco envi-
ronments — Walker, Hopper, and Humanoid. We train each agent 15 times and report the median
performance as suggested in Zhang et al. (2020) for a fair comparison. We compare our AS-PPO
with the following baselines:

• SAPPO (SGLD) and (Convex) (Zhang et al., 2020): the two SAPPO implementations.
• SAPPO+RS (SGLD) and (Convex): the naively smoothed SAPPO agents similar to CROP.

See Appendix A.8 for more details about our setting.

Evaluation of DS-DQN. The robust reward under ℓ∞ and ℓ2 PGD attack of our DS-DQN is shown
in Figure 2. Note that we use our stronger attack setting introduced in Section 3.1 to evaluate all
the smoothed agents. Our DS-DQNs and DAS-DQN receive higher reward than the current state-
of-the-art RadialDQN under a large attack budget. It can be seen that our DS-DQN (Vanilla) is
already more robust than RadialDQN even without further using other robust agents as base models.
RadialDQN and CROP small σ (Radial) achieve similar performance indicating that the CROP
framework cannot improve the empirical robustness if using small σ to avoid decreasing the clean
reward. More detailed experiment results and discussion about the robust reward under attack can be
found in Appendix A.15. For the robustness certification, our methods exhibit large certified radius
and high reward lower bound without compromising the clean reward, which is shown in Table 2.
More detailed experiment results of the reward lower bound can be found in Appendix A.14.
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Table 2: The average clean reward, certified radius, and reward lower bound of different smoothed
agents. Our agents have much better clean reward and robustness. The agents with extremely low
reward are highlighted in red. The reward lower bound is calculated while given any ℓ2 perturbation
with budget ϵ = 0.005 at each state.

Average Certified Radius ↑ Average Clean Reward ↑ Reward Lower Bound ↑

Environments Pong Freeway RoadRunner Pong Freeway RoadRunner Pong Freeway RoadRunner

Our proposed methods:
DS-DQN (Vanilla) 0.0614 0.0891 0.0739 21.0 33.2 35420 12.0 26.0 16500
DS-DQN (Radial) 0.1046 0.1316 0.0962 21.0 32.2 31760 19.0 25.0 12921
DS-DQN (SADQN) 0.1157 0.1362 0.0886 21.0 30.0 31080 19.7 24.0 19170
DAS-DQN (Vanilla) 0.0509 0.0970 0.0667 18.8 32.6 28840 11.0 26.0 17770

Baselines:
(a) CROP
CROP (Vanilla) 0.0027 0.0432 0.0078 −20.4 22.2 17060 −21.0 8.0 0
CROP (Radial) 0.1163 0.1396 0.1084 −21.0 22.2 9180 −21.0 19.0 3000
CROP (SADQN) 0.1152 0.1396 0.1025 −21.0 22.2 14060 −21.0 19.0 3300
(b) Naive training with RS
S-DQN 0.1163 0.0998 0.1163 −21.0 0.0 960 −21.0 0.0 900

Table 3: The average normalized reward of dif-
ferent PPO agents. Our agents achieve high
clean reward, robust reward, and robustness
guarantee at the same time. The reward lower
bound is calculated while given any ℓ2 pertur-
bation with budget ϵ = 0.01 at each state. Note
that the ℓ2 budget of reward lower bound is
smaller than the ℓ∞ budget of Min-RS attack.
Hence, it is possible to have a higher lower
bound than the reward under attack.
Methods Average Normalized Reward ↑

Clean Reward Min-RS Attack Lower Bound

Our proposed methods:
AS-PPO 0.997 0.720 0.624

Baselines:
(a) Smoothed agents
SAPPO+RS (SGLD) 0.903 0.634 0.639
SAPPO+RS (Convex) 0.943 0.514 0.598
VanillaPPO+RS 0.767 0.224 0.179
(b) Non-smoothed agents
SAPPO (SGLD) 0.963 0.597 −
SAPPO (Convex) 0.940 0.482 −
VanillaPPO 0.847 0.181 −
(c) Naive training with RS
S-PPO 0.849 0.491 0.527

Evaluation of AS-PPO. The clean reward, re-
ward lower bound, and robust reward under Min-
RS attack of our AS-PPO is shown in Table 3.
Note that we also use our stronger attack set-
ting introduced in Section 3.2 to evaluate all the
smoothed PPO agents. Our AS-PPO has the high-
est reward under the Min-RS attack and also ex-
hibits a better trade-off between the clean reward
and robustness certification (the reward lower
bound). Through comparing rows (a) and (b), the
clean reward is degraded and the reward under at-
tack only slightly improves when RS is present,
which suggests that naively applying RS similar
to the CROP (Wu et al., 2022) framework dur-
ing the testing cannot address the issue of the
poor trade-off. In addition, our AS-PPO receives
a much higher clean reward on average, which
shows that the randomized smoothing approach
can further help boost performance in the non-
adversarial setting. The Optimal Attack results
is shown in Table 4. We directly compare to the
SAPPO implementation in Zhang et al. (2021) to
ensure a fair comparison. Our AS-PPO also performs well under the optimal attack which suggests
that our AS-PPO is still more robust under the state-of-the-art attack for PPO. More detailed exper-
iment results and discussion about the robust reward under different attacks and the reward lower
bound can be found in Appendix A.15 and A.14 respectively.

6 BACKGROUND AND RELATED WORKS

Table 4: The Optimal Attack results of
our AS-PPO and SAPPO performance
reported in Zhang et al. (2021).

Optimal Attack

Environment Walker Hopper

Our proposed methods:
AS-PPO 4296 1500

Baseline:
SAPPO in (Zhang et al., 2021) 2908 1076

Randomized Smoothing (RS). Randomized Smooth-
ing (Cohen et al., 2019) has been proved to provide ro-
bustness guarantee to a smoothed classifier under ℓ2 per-
turbation on input examples. The idea is to transform
an arbitrary base classifier into an L-Lipschitz smoothed
classifier by adding Gaussian noises to the input. This
transformation facilitates black-box robustness verifica-
tion on the smoothed classifier, which ensures the clas-
sification result remains unchanged within the certified
radius without the need to know the model parameters.
This can be formulated as below. Given a base classifier f : Rd → Y , and let f̃ : Rd → Y be the

8
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Table 5: The comparison between our proposed methods and other robust DRL agents. Our methods
are desirable in both empirical robustness and robustness guarantee.
Methods Empirical Robustness Robustness Guarantee

Clean Reward↑ Reward under Attack↑ Certified Radius Action bound Reward lower bound↑
(DQN) (PPO) (DQN and PPO)

Our methods:
DS-DQN & AS-PPO High Highest Yes Yes High

Baselines:
SADQN & SAPPO High High No No No
RADIAL-RL High High No No No
CROP Low Low Yes No PPO implementation Low

smoothed classifier (i.e., f after RS), f̃ can be expressed as f̃(x) = argmaxc∈Y Pδ∼N (0,σ2I)[f(x+

δ) = c], where δ is a random vector following Gaussian distribution N (0, σ2I). The smoothed clas-
sifier f̃ predicts class cA with probability pA, and predicts the ”runner-up” class cB with probability
pB . The certified radius of f̃ is denoted as R such that f̃(x + ∆) = f̃(x), ∀||∆||2 ≤ R. R can
be derived as R =

σ

2
(Φ−1(pA) − Φ−1(pB)), where Φ−1 is the inversed Gaussian CDF. When we

replace pA and pB by pA and pB , where pA is the lower confidence bound of pA, and pB is the
upper confidence bound of pB , the certified radius still holds. In practice, we can use Monte Carlo
sampling to estimate pA and pB .

Denoised Smoothing (Salman et al., 2020). In Salman et al. (2020), the authors proposed to
add a denoiser before the original image classifier with the goal of removing the Gaussian noises
introduced by RS. This approach gives the classifier the ability to tolerate large noises. Our method
is the first work leveraging Denoised Smoothing in the DRL setting.

Training robust DRL agents. There are several existing works of learning robust DRL agents:

• SADQN and SAPPO (Zhang et al., 2020): To train a robust policy, Zhang et al. (2020)
derived a robust regularizer based on the total variation distance and KL-divergence be-
tween the perturbed policies and the original policies. They proposed SADQN for robust
DQN and proposed SAPPO (SGLD) and SAPPO (Convex) for robust PPO.

• RADIAL-RL (Oikarinen et al., 2021): RadialRL is the state-of-the-art DRL agent against
ℓp-norm attack on both Atari games and continuous control tasks. The key idea of their
approach is to use the adversarial loss as a regularizer based on the robustness verification
bounds.

• CROP (Wu et al., 2022): CROP is the first framework using RS to study the robustness
certification of DRL agents. However, they only transform existing pretrained DRL agents
into smoothed agents by exploiting RS at the testing stage. Their approach exhibits a sig-
nificant trade-off between the clean reward and certified radius as we discussed in Section
2. This failure case shows that the CROP agents are not usable in practice because robust
but poorly performed agents are not useful. Therefore, it is necessary to apply our proposed
method.

The comparison between our method and the above robust DRL agents is shown in Table 5.

7 CONCLUSION AND FUTURE WORKS

In this work, we have shown with extensive experiments that our proposed DS-DQN and AS-PPO
agents can mitigate the trade-off between robustness and clean reward, unlike the CROP agents.
Our agents achieve high clean reward and are robust in terms of both robustness certificates and
robust reward against the current strongest attack, establishing the new state-of-the-art in the field.
In future work, we are planning to investigate the idea of leveraging robustness certificates into
training to further strengthen the robustness and utility of DRL agents.
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A.1 OVERVIEW OF OUR FRAMEWORK

Figure 3: The overview of our framework. Simply applying randomized smoothing at the testing
stage fails in robustness guarantee as well as defending against attacks.

A.2 THE PIPELINE OF OUR DS-DQN

Figure 4: The flow chart of: (a) training process of DS-DQN, (b) testing process of DS-DQN, (c)
our new attack pipeline for DS-DQN, which can effectively decrease the reward of any smoothed
agents.

A.3 THE PIPELINE OF OUR AS-PPO

Figure 5: The flow chart of the training process of AS-PPO.
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A.4 DETAILED CONTRIBUTIONS OF OUR WORK

• Contributions related to the CROP (Wu et al., 2022) framework:
– We identify the failure mode of the existing smoothed DRL agents, showing that CROP

agents have poor trade-offs on the clean reward and robustness (see Section 2).
– We point out that the robustness of the CROP agents might be overestimated due to the

smoothing strategy and attack they used. We fix this issue by introducing hard RS and a
stronger attack.

– We extend their proposed robust guarantee for DQN agents to the PPO setting and defined
action bound. To our best knowledge, the action bound for PPO has never been derived
before. We also do experiments on this bound (see Appendix A.13).

• Contributions related to robust DRL agents:
– Our agents achieved the state-of-the-art results under attack. In the discrete action setting,

our DS-DQN earns 2.07× more reward on average than the current best agent under the
strongest attack. In the continuous action setting, our AS-PPO earns 1.25× more reward
under the strongest attack.

– Our agent is the first state-of-the-art agents with high robustness guarantee at the same time
(certified radius and reward lower bound), while the previous state-of-the-art only evaluate
their agents under empirical attack.

• Contributions related to Randomized Smoothing (RS) in DRL:
– We develop the first robust DRL training algorithms leveraging randomized smoothing for

both discrete actions (DS-DQN) and continuous actions (AS-PPO).
– We show that simply training with RS does not work, and is necessary to use denoised

smoothing and adversarial training.
– We point out that different smoothing strategies can affect the robustness guarantee. (i.e. Our

hard RS strategy is not affected by the output range of the Q-network and generally achieves
larger certified radius.)

• Contributions related to adversarial attack:
– We develop a new attack aiming at attacking smoothed agents. This attack model we pro-

posed can be easily used on any attack based on optimization.

14
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A.5 COMPARISON OF OUR DS-DQN WITH CROP USING SMALL SMOOTHING FACTOR

Figure 6: The average clean reward and certified radius of our DS-DQN and CROP (small σ). Our
agents have much larger certified radius compared to the CROP framework with small σ.

A.6 DETAILED ALGORITHMS OF DS-DQN

A.6.1 TRAINING ALGORITHM OF DS-DQN

The training algorithm of DS-DQN is shown in Algorithm 1. The algorithm includes all the details
of the training procedure introduced in Section 3.1. We first add a noise to the current state and
take action with ϵ-greedy strategy, Then, store the transitions {st, at, rt, st+1} into the replay buffer.
Note that the state st we stored here is the clean state without noise. When updating the denoiser D,
we sample a batch of transitions from the replay buffer, add noise to the state again, and compute
the loss.

Algorithm 1 Train DS-DQN
1: Input: smoothing variance σ, steps T , replay buffer B, Denoiser D, pretrained Q network Q
2: for t = 1 to T do
3: Sample a noise from the normal distribution and add to the state s̃t = st +N (0, σ2IN )
4: Select a random action at with probability ϵt, otherwise at = argmaxa Q(D(s̃t; θ), a)
5: Store the transition {st, at, rt, st+1} in B
6: Sample a batch of samples {s, a, r, s′} from B
7: Sample a noise from the normal distribution and add to the state s̃ = s+N (0, σ2IN )
8: Compute the reconstruction loss LR = MSE(D(s̃; θ), s)
9: Compute the temporal difference loss LTD = Huber(r+ γmaxa′ Q(s′, a′)−Q(D(s̃; θ), a))

10: Total loss L = λ1LR + λ2LTD
11: Perform gradient descent to minimize loss L and update the parameters θ of the denoiser D
12: end for

A.6.2 TESTING ALGORITHM OF DS-DQN

The testing algorithm of DS-DQN is shown in Algorithm 2. The algorithm includes all the details
of the testing procedure introduced in Section 3.1. We use the hard Randomized Smoothing strategy
to smooth our agent and do Monte Carlo sampling to estimate the expectation. The definition of Qh

is in Eq.(6).
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Algorithm 2 Test DS-DQN
1: Input: smoothing variance σ, number of samples M , number of the actions N , Denoiser D,

pretrained Q network Q
2: while not end game do
3: Get state s from the environment
4: for m = 1 to M do
5: Sample a noise from the normal distribution and add to the state s̃m = sm +N (0, σ2IN )
6: Store the Qh value of all the actions [Qh(D(s̃m), a1), ..., Qh(D(s̃m), aN )] to the list
7: end for
8: Take the mean of the Qh value of each action Q̃(s, an) =

1
MΣM

m=1Qh(D(s̃m), an)

9: Choose the action with the maximum Q̃ value a∗ = argmaxan
Q̃(s, an)

10: Take action and get the reward
11: end while
12: Return the total reward

A.6.3 ATTACK ALGORITHM OF DS-DQN

The algorithm of attacking DS-DQN is shown in Algorithm 3. The algorithm includes all the details
of the attack procedure introduced in Section 3.1. Note that our new attack considers the noise
caused by randomized smoothing while doing PGD.

Algorithm 3 New PGD attack designed for DS-DQN
1: Input: number of iterations T , attack budget ϵ, smoothing variance σ, number of samples M ,

Denoiser D, pretrained Q network Q
2: Get state s from the environment
3: ŝ = s
4: for t = 1 to T do
5: Sample a noise from the normal distribution and add to the state ˜̂s = ŝ+N (0, σ2IN )
6: Compute the cross-entropy loss

L = − log exp(Q(D(˜̂s),a∗))

Σa exp(Q(D(˜̂s),a))
,

where a∗ is the original optimal action decided by the agent
7: Calculate the gradient with respect to ŝ, and project to the ℓ2 or ℓ∞ norm ball
8: Update ŝ by adding the gradient
9: end for

10: Return the perturbed state ŝ
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A.7 DETAILED ALGORITHMS OF AS-PPO

A.7.1 TRAINING ALGORITHM OF AS-PPO

The training algorithm of AS-PPO is shown in Algorithm 4 and 5. The algorithm includes all the
details of the training procedure introduced in Section 3.2. The algorithm of CollectTrajectories
function used in the step A1 and B1 of Algorithm 4 is shown in Algorithm 5. Note that in step A1,
there is a 50% chance to add a perturbation to the state. However, when we do step B1, we always
use the perturbed state.

Algorithm 4 Train AS-PPO
1: Input: smoothing variance σ, attack budget ϵ, number of samples M , iterations T , Policy

network π, Value network V , adversary network A
2: for t = 1 to T do
3: // Step A1: Collect trajectories for policy training

{τk} = CollectTrajectories(CollectAdversaryTrajectories = False)
4: Compute cumulative reward R̂k,i for each step i in episode k with discount factor γ
5: // Step A2: Update the value network with loss

LV (θ) =
1

Σk|τk|ΣτkΣi(V (sk,i)− R̂k,i)
2

6: // Step A3: Update the policy network
7: for m = 1 to M do
8: Sample a noise from the normal distribution and add to the state s̃k,i,m = sk,i,m +

N (0, σ2IN )
9: Store the output of the policy network (amean

k,i,m, astd
k,i,m) to the list, where

N (amean
k,i,m, astd

k,i,m) = π(ak,i,m|s̃k,i,m)
10: end for
11: Take the median and obtain the smoothed policy

π̃(ak,i|sk,i) = N (median(amean
k,i,1, ..., a

mean
k,i,M ),median(astd

k,i,1, ..., a
std
k,i,M ))

12: Update the policy network with the PPO loss
L(θ) = − 1

Σk|τk|ΣτkΣi min(
π̃(ak,i|sk,i;θ)
π̃(ak,i|sk,i;θold)

Âk,i, clip( π̃(ak,i|sk,i;θ)
π̃(ak,i|sk,i;θold)

, 1− ϵclip, 1 + ϵclip)Âk,i),

where Âk,i is the advantage
13: // Step B1: Collect trajectories for adversarial training

{τk} = CollectTrajectories(CollectAdversaryTrajectories = True)
14: Compute cumulative reward R̂k,i for each step i in episode k with discount factor γ
15: // Step B2: Update the value network again

LV (θ) =
1

Σk|τk|ΣτkΣi(V (sk,i)− R̂k,i)
2

16: // Step B3: Update the adversarial network
17: Negate the reward for adversarial training
18: for m = 1 to M do
19: Sample a noise from the normal distribution and add to the state s̃k,i,m = sk,i,m +

N (0, σ2IN )
20: Store the output of the adversarial network (∆smean

k,i,m,∆sstd
k,i,m) to the list, where

N (∆smean
k,i,m,∆sstd

k,i,m) = A(∆sk,i,m|s̃k,i,m)
21: end for
22: Take the median and obtain the smoothed adversary

Ã(∆sk,i|sk,i) = N (median(∆smean
k,i,1, ...,∆smean

k,i,M ),median(∆sstd
k,i,1, ...,∆sstd

k,i,M ))
23: Update the adversarial network by the adversary loss

L(θ) = 1
Σk|τk|ΣτkΣi min(

Ã(∆sk,i|sk,i;θ)

Ã(∆sk,i|sk,i;θold)
Âk,i, clip( Ã(∆sk,i|sk,i;θ)

Ã(∆sk,i|sk,i;θold)
, 1−ϵclip, 1+ϵclip)Âk,i),

where Âk,i is the advantage (calculated with the negated reward)
24: end for
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Algorithm 5 CollectTrajectories function
1: Input: number of trajectories K, probability of using adversarial examples p, attack budget ϵ,

smoothing variance σ, number of samples M , Policy network π, adversary network A
2: for k = 1 to K do
3: while not end game do
4: Get state s from the environment
5: if CollectAdversaryTrajectories or random(0, 1) ≤ p then
6: ∆s ∼ A(∆s|s)
7: s = s+ ϵ tanh(∆s)
8: end if
9: for m = 1 to M do

10: Sample a noise from the normal distribution and add to the state s̃m = sm+N (0, σ2IN )

11: Store the mean and standard deviation of the action (amean
m , astd

m ) to the list, where
N (amean

m , astd
m ) = π(a|s̃m)

12: end for
13: Take the median and obtain the smoothed policy

π̃(a|s) = N (median(amean
1 , ..., amean

M ),median(astd
1 , ..., astd

M ))
14: Take action with the smoothed policy and collect the reward
15: end while
16: Store the trajectory τk
17: end for
18: Return the set of the trajectories {τk}
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A.8 DETAILED SETTINGS FOR DQN AND PPO

A.8.1 SETTINGS FOR DQN

Our DQN implementation is based on the SADQN (Zhang et al., 2020) and CROP (Wu et al.,
2022). We use the pretrained VanillaDQN agent without any robust training as our base model and
the DnCNN structure proposed in Zhang et al. (2017) as the denoiser to train DS-DQN (Vanilla).
We train our DS-DQN for 300, 000 frames in every environment. The training time of DS-DQN is
roughly 12 hours on our hardware, which is much faster than 40 hours of SADQN and 17 hours of
RadialDQN. The smoothing variance σ for all the agents other than CROP small σ is set to 0.1 in
Pong, 0.12 in Freeway, and 0.1 in RoadRunner. The smoothing variance of CROP small σ is set to
0.01. All the experiment results under attack are obtained by taking the average of 5 episodes.

A.8.2 SETTINGS FOR PPO

Our PPO implementation is based on the SAPPO (Zhang et al., 2020). We train AS-PPO for 2500×
2048 steps in Walker and Hopper, and 8000 × 2048 steps in Humanoid. Only 50% of the policy
updates use adversary examples to ensure that AS-PPO also achieves high clean reward. Note that
there is a variance between the performance of each agent trained with the same algorithm. To get a
fair and comparable result, we train each agent 15 times and reported the median of the performance
as suggested in Zhang et al. (2020). The smoothing variance σ for all the smoothed agents is set
to 0.2 in Walker, 0.3 in Hopper, and 0.4 in Humanoid. The ℓ∞ attack budget for all the attacks for
PPO (Random, Critic, MAD, Min-RS, and Optimal Attack) is set to 0.05 in Walker and 0.075 in
Hopper and Humanoid. All the experiment results under attack are obtained by taking the average
of 50 episodes.
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A.9 DETAILS OF ESTIMATING BOUNDS

A.9.1 ESTIMATING THE CERTIFIED RADIUS FOR DS-DQN

In practice, we use Monte Carlo sampling to estimate Q̃, which denotes as Q̃est. The estimation of
the Certified Radius is formulated as follows:

Rest,t =
σ

2
(Φ−1(Q̃est(st, a1)−∆)− Φ−1(Q̃est(st, a2) + ∆)), (14)

where Q̃est(s, a) =
1
mΣm

i=1Qh(D(s+ δi), a), δi ∼ N (0, σ2IN ),∀i ∈ {1, ...,m}, ∆ =
√

1
2m ln 1

α ,
m is the number of the samples (m = 100 in our setting), and α is the one-side confidence parameter
(α = 0.05 in our setting). The proof of this estimation can be found in Appendix A.10.

A.9.2 ESTIMATING THE ACTION BOUND FOR AS-PPO

In practice, we use Monte Carlo sampling to estimate π̃det,p, which denotes as π̃det,pest . The estimation
of the Action Bound is formulated as follows:

π̃det,pest(st) ⪯ π̃det,pest(st +∆s) ⪯ π̃det,pest(st), s.t ||∆s||2 ≤ ϵ, (15)

where π̃i,det,pest(s) = max{ai ∈ R| |{x ∈ Si|x ≤ ai}| ≤ ⌈mpest⌉}, Si = {πi,det(s +
δ1), ..., πi,det(s + δm)},∀i ∈ {1, ..., Naction}, δj ∼ N (0, σ2IN ),∀j ∈ {1, ...,m}, pest =

Φ(Φ−1(pest − ∆) − ϵ
σ ), pest = Φ(Φ−1(pest + ∆) + ϵ

σ ), ∆ =
√

1
2m ln 1

α , m is the number of
the samples (m = 100 in our setting), and α is the one-side confidence parameter (α = 0.05 in our
setting). The proof of this estimation can be found in Appendix A.11.

A.9.3 ESTIMATING THE REWARD LOWER BOUND FOR SMOOTHED AGENTS

In practice, we use Monte Carlo sampling to estimate F̃π,p, which denotes as F̃π,pest . The estimation
of the Reward Lower Bound is formulated as follows:

F̃π,pest(∆s) ≥ F̃π,pest(0), s.t. ||∆s||2 ≤ B, (16)

where F̃π,pest(∆s) = max{r ∈ R||{x ∈ S|x ≤ r}| ≤ ⌈mτpest⌉}, S = {Fπ(δ1 +

∆s), ..., Fπ(δmτ
+∆s)}, δi ∼ N (0, σ2IH×N ),∀i ∈ {1, ...,mτ}, pest = Φ(Φ−1(pest −∆)− B

σ ),

∆ =
√

1
2mτ

ln 1
α , mτ is the number of sample trajectories (mτ = 1000 in our setting), and α is the

one-side confidence parameter (α = 0.05 in our setting). Note that in this setting, each state is added
with a perturbation. Therefore, m = 1. The proof of this estimation can be found in Appendix A.12.
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A.10 PROOF OF THE CERTIFIED RADIUS FOR DS-DQN

In this section, we give the formal proof of the certified radius introduced in Section 4. Our proof is
based on the proof proposed by Salman et al. (2019) in Appendix A. Recall that we have:

Rt =
σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))), (17)

where a1 is the action with the largest Q-value among all the other actions, a2 is the ”runner-up”
action, Rt is the certified radius at time t, Φ is the CDF of normal distribution, σ is the smoothing
variance, and Q̃(s, a) is defined in Eq.(7).

We first go over the lemma needed for proof.

Lemma 1 For the function Qh : S ×A → [0, 1], the function Q̃ is
1

σ

√
2

π
-Lipschitz.

Proof. From the definition of Q̃, we have

Q̃(s, a) = (Qh ∗ N (0, σ2In))(D(s), a) =
1

(2π)n/2σn

∫
Rn

Qh(D(t), a) exp
(
− 1

2σ2
||s− t||22

)
dt.

(18)
Take the gradient w.r.t. s, we have

∇sQ̃(s, a) =
1

(2π)n/2σn

∫
Rn

1

σ2
(s− t)Qh(D(t), a) exp

(
− 1

2σ2
||s− t||22

)
dt. (19)

For any unit direction u, we have

u · ∇sQ̃(s, a) ≤ 1

(2π)n/2σn

∫
Rn

1

σ2
|u · (s− t)| exp

(
− 1

2σ2
||s− t||22

)
dt

=
1

σ2

∫
Rn

1√
2πσ

|u · (s− t)| exp
(
− 1

2σ2
||s− t||22

)
dt

=
1

σ2

∫ +∞

−∞

1√
2πσ

|z| exp
(
− 1

2σ2
z2
)
dz

=
1

σ2
Ez∼N (0,σ2)[|z|]

=
1

σ

√
2

π
.

(20)

In fact, there is a stronger smoothness property for Q̃.

Lemma 2 For the function Qh : S ×A → [0, 1], the mapping s 7→ σΦ−1(Q̃(s, a)) is 1-Lipschitz.

Proof. Take the gradient of Φ−1(Q̃(s, a)) w.r.t. s, we have

∇Φ−1(Q̃(s, a)) =
∇Q̃(s, a)

Φ′(Φ−1(Q̃(s, a)))
. (21)

We intend to show that for any unit direction u,

u · σ∇Φ−1(Q̃(s, a)) ≤ 1

u · σ∇Q̃(s, a) ≤ Φ′(Φ−1(Q̃(s, a)))

u · σ∇Q̃(s, a) ≤ 1√
2π

exp
(
−1

2
(Φ−1(Q̃(s, a)))2

)
.

(22)

The left-hand side can be written as
1

σ
Eδ∼N (0,σ2In)[Qh(D(s+ δ), a)δ · u]. (23)
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We claim that the supremum of the above quantity over all functions Qh : S × A → [0, 1], subject
to E[Qh(D(s+ δ), a)] = Q̃(s, a), is equal to

1

σ
E[(δ · u)1{δ · u ≥ −σΦ−1(Q̃(s, a))}] = 1√

2π
exp

(
−1

2
(Φ−1(Q̃(s, a)))2

)
. (24)

To prove the claim is true, note that h : δ 7→ 1{δ · u ≥ −σΦ−1(Q̃(s, a))} achieves equality.
Assume by contradiction that the maximum is reached by some function f : δ → [0, 1]. Consider
the set Ω+ = {δ|h(δ) > f(δ)} and the set Ω− = {δ|h(δ) < f(δ)}. Now construct the new
function f ′ = f + (h− f)1{Ω+} − (f − h)1{Ω−}, which takes value in [0, 1]. Since both h and
f integrate to Q̃(s, a), we have

∫
Ω+(h − f)dδ =

∫
Ω−(f − h)dδ. This gives that f ′ also integrates

to Q̃(s, a). By the definition of h, for any δ1 ∈ Ω+ and δ2 ∈ Ω−, we have δ1 · u > δ2 · u, and since∫
Ω+(h− f)dδ =

∫
Ω−(f − h)dδ, we have∫

Ω+

(δ · u)(h− f)(δ)dδ >

∫
Ω−

(δ · u)(f − h)(δ)dδ∫
(δ · u)f(δ)dδ <

∫
(δ · u)f(δ)dδ +

∫
Ω+

(δ · u)(h− f)(δ)dδ −
∫
Ω−

(δ · u)(f − h)(δ)dδ∫
(δ · u)f(δ)dδ <

∫
(δ · u)f ′(δ)dδ

(25)

Hence, the maximum is obtained at h. The claim holds, and hence, we have

u · σ∇Φ−1(Q̃(s, a)) ≤ 1. (26)

Now, we can prove the certified radius in Eq.(17).

Theorem 1 Let Qh : S × A → [0, 1], and Q̃(s, a) = Eδ∼N (0,σ2I)Qh(D(s+ δ), a). At time step
t with state st, the certified radius is

Rt =
σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))), (27)

where a1 is the action with the largest Q-value among all the other actions, a2 is the ”runner-up”
action, Rt is the certified radius at time t, Φ is the CDF of normal distribution, and σ is the smoothing
variance. The certified radius gives a lower bound on the minimum ℓ2 adversarial perturbation
required to change the policy from a1 to a2.

Proof. Let the perturbation be ∆s and able to change the action from a1 to a2. By lemma 2, we have

σΦ−1(Q̃(st, a1))− σΦ−1(Q̃(st +∆s, a1)) ≤ ||∆s||2 (28)

Since the perturbation can change the action, we have Q̃(st + ∆s, a1) ≤ Q̃(st + ∆s, a2), which
leads to

σΦ−1(Q̃(st, a1))− σΦ−1(Q̃(st +∆s, a2)) ≤ ||∆s||2 (29)

By lemma 2 and Q̃(st +∆s, a2) ≥ Q̃(st, a2), we have

σΦ−1(Q̃(st +∆s, a2))− σΦ−1(Q̃(st, a2)) ≤ ||∆s||2 (30)

Combine Eq.(29) and Eq.(30), we have

||∆s||2 ≥ σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))), (31)

which gives us the certified radius

Rt =
σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))). (32)

Now, we prove the practical version of the certified radius introduced in Appendix A.9.1:
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Theorem 2 Let Qh : S × A → [0, 1], and Q̃est(s, a) = 1
mΣm

i=1Qh(D(s + δi), a), δi ∼
N (0, σ2IN ), ∀i ∈ {1, ...,m}. At time step t with state st, the certified radius is

Rest,t =
σ

2
(Φ−1(Q̃est(st, a1)−∆)− Φ−1(Q̃est(st, a2) + ∆)), (33)

where ∆ =
√

1
2m ln 1

α , m is the number of the samples, α is the one-side confidence parameter, a1
is the action with the largest Q-value among all the other actions, a2 is the ”runner-up” action, Rt is
the certified radius at time t, Φ is the CDF of normal distribution, and σ is the smoothing variance.

Proof. By Hoeffding’s Inequality, for any t ≥ 0, we have

P (Q̃est − Q̃ ≥ t) ≤ exp−2mt2 . (34)

Rearrange the inequality

P (Q̃est − Q̃ ≥
√

1

2m
ln

1

α
) ≤ α. (35)

Hence, a 1− α confidence lower bound Q̃ of Q̃ is

Q̃ = Q̃est −
√

1

2m
ln

1

α
= Q̃est −∆. (36)

Similarly, we have 1− α confidence upper bound Q̃ of Q̃

Q̃ = Q̃est +∆. (37)

Substitute Q̃(st, a1) with the lower bound and Q̃(st, a2) with the upper bound, we have

Rest,t =
σ

2
(Φ−1(Q̃est(st, a1)−∆)− Φ−1(Q̃est(st, a2) + ∆)) (38)
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A.11 PROOF OF THE ACTION BOUND FOR AS-PPO

In this section, we give the formal proof of the action bound introduced in Section 4. Our proof is
based on the proof proposed by Chiang et al. (2020) in Appendix B. Recall that we have:

π̃det,p(st) ⪯ π̃det,p(st +∆s) ⪯ π̃det,p(st), s.t ||∆s||2 ≤ ϵ, (39)

where π̃i,det,p(s) = sup{ai ∈ R|Pδ∼N (0,σ2I)[πi,det(s + δ) ≤ ai] ≤ p},∀i ∈ {1, ..., Naction}, p =

Φ(Φ−1(p)− ϵ
σ ), p = Φ(Φ−1(p) + ϵ

σ ), Φ is the CDF of normal distribution, and σ is the smoothing
variance.

Theorem 3 Let π : S → A be the policy network, and π̃i,det,p(s) = sup{ai ∈
R|Pδ∼N (0,σ2I)[πi,det(s + δ) ≤ ai] ≤ p},∀i ∈ {1, ..., Naction}. At time step t with state st, the
action bound is

π̃det,p(st) ⪯ π̃det,p(st +∆s) ⪯ π̃det,p(st), s.t ||∆s||2 ≤ ϵ, (40)

where p = Φ(Φ−1(p) − ϵ
σ ), p = Φ(Φ−1(p) + ϵ

σ ), Φ is the CDF of a normal distribution, and σ is
the smoothing variance.

Proof. Let Ei(st) = Eδ∼N (0,σ2IN )[1{πi,det(st + δ) ≤ π̃i,det,p(st)}], and we have Ei : RN → [0, 1],
∀i ∈ {1, ..., Naction}. The mapping st 7→ σΦ−1(Ei(st)) is 1-Lipschitz, which can be proved by the
similar technique used in Lemma 2. Since Ei(st) = Pδ∼N (0,σ2IN )[πi,det(st + δ) ≤ π̃i,det,p(st)],
given the perturbation ∆s, we have

σΦ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ +∆s) ≤ π̃i,det,p(st)])−

σΦ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ) ≤ π̃i,det,p(st)]) ≤ ||∆s||2.
(41)

Rearrange the inequality, we have

Φ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ +∆s) ≤ π̃i,det,p(st)])

≤ Φ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ) ≤ π̃i,det,p(st)]) +
||∆s||2

σ

≤ Φ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ) ≤ π̃i,det,p(st)]) +
ϵ

σ

= Φ−1(p) +
ϵ

σ

= Φ−1(p).

(42)

By the monotonicity of Φ, we have

Pδ∼N (0,σ2IN )[πi,det(st + δ +∆s) ≤ π̃i,det,p(st)] ≤ p. (43)

Recall that π̃i,det,p(st + ∆s) = sup{ai ∈ R|Pδ∼N (0,σ2IN )[πi,det(st + δ + ∆s) ≤ ai] ≤ p},∀i ∈
{1, ..., Naction}, we have

π̃det,p(st) ⪯ π̃det,p(st +∆s). (44)

We can show that π̃det,p(st + ∆s) ⪯ π̃det,p(st) for all ||∆s||2 ≤ ϵ with the similar technique.
Combine the two bounds we have

π̃det,p(st) ⪯ π̃det,p(st +∆s) ⪯ π̃det,p(st). (45)

Now, we prove the practical version of the action bound introduced in Appendix A.9.2:

Theorem 4 Let π : S → A be the policy network, and π̃i,det,pest(s) = max{ai ∈ R| |{x ∈
Si|x ≤ ai}| ≤ ⌈mpest⌉}, Si = {πi,det(s + δ1), ..., πi,det(s + δm)},∀i ∈ {1, ..., Naction}, δj ∼
N (0, σ2IN ),∀j = 1, ...,m. At time step t with state st, the action bound is

π̃det,pest(st) ⪯ π̃det,pest(st +∆s) ⪯ π̃det,pest(st), s.t ||∆s||2 ≤ ϵ, (46)

where pest = Φ(Φ−1(pest − ∆) − ϵ
σ ), pest = Φ(Φ−1(pest + ∆) + ϵ

σ ), ∆ =
√

1
2m ln 1

α , m is the
number of the samples, α is the one-side confidence parameter, Φ is the CDF of normal distribution,
and σ is the smoothing variance.
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Proof. By Hoeffding’s Inequality, for any t ≥ 0, we have

P (pest − p ≥ t) ≤ exp−2mt2 . (47)

Rearrange the inequality

P (pest − p ≥
√

1

2m
ln

1

α
) ≤ α. (48)

Hence, a 1− α confidence lower bound p of p is

p = pest −
√

1

2m
ln

1

α
= pest −∆. (49)

Similarly, we have 1− α confidence upper bound p of p

p = pest +∆. (50)

Substitute Φ(Φ−1(p) − ϵ
σ ) with the lower bound, and Φ(Φ−1(p) + ϵ

σ ) with the upper bound, we
have [

Φ(Φ−1(pest −∆)− ϵ

σ
), Φ(Φ−1(pest +∆) +

ϵ

σ

]
, (51)

which is the new upper bound and lower bound in the expression.
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A.12 PROOF OF THE REWARD LOWER BOUND FOR SMOOTHED AGENTS

In this section, we give the formal proof of the reward lower bound introduced in Section 4. Our
proof is based on the proof proposed by Chiang et al. (2020) in Appendix B. Recall that we have:

F̃π,p(∆s) ≥ F̃π,p(0), s.t. ||∆s||2 ≤ B, (52)

where F̃π,p(∆s) = sup{r ∈ R|Pδ∼N (0,σ2IH×N )[Fπ(δ + ∆s) ≤ r] ≤ p}, p = Φ(Φ−1(p) − B
σ ),

and B is the ℓ2 attack budget of the entire trajectory.

Theorem 5 Let Fπ : RH×N → R be the function mapping the perturbation to the total reward,
and F̃π,p(∆s) = sup{r ∈ R|Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ r] ≤ p}. The reward lower bound is

F̃π,p(∆s) ≥ F̃π,p(0), s.t. ||∆s||2 ≤ B, (53)

where p = Φ(Φ−1(p)− B
σ ), B is the ℓ2 attack budget of the entire trajectory, Φ is the CDF of normal

distribution, and σ is the smoothing variance.

Proof. Let E(∆s) = Eδ∼N (0,σ2IH×N )[1{Fπ(δ + ∆s) ≤ F̃π,p(0)}], and we have E : RH×N →
[0, 1]. The mapping ∆s 7→ σΦ−1(E(∆s)) is 1-Lipschitz by Lemma 2. Since E(∆s) =

Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ F̃π,p(0)], given the perturbation ∆s, we have

σΦ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ F̃π,p(0)])− σΦ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ) ≤ F̃π,p(0)])

≤ ||∆s||2.
(54)

Rearrange the inequality, we have

Φ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ F̃π,p(0)])

≤ Φ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ) ≤ F̃π,p(0)]) +
||∆s||2

σ

≤ Φ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ) ≤ F̃π,p(0)]) +
B

σ

= Φ−1(p) +
B

σ

= Φ−1(p).

(55)

By the monotonicity of Φ, we have

Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ F̃π,p(0)] ≤ p. (56)

Recall that F̃π,p(∆s) = sup{r ∈ R|Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ r] ≤ p}, we have

F̃π,p(∆s) ≥ F̃π,p(0). (57)

Now, we prove the practical version of the reward lower bound introduced in Appendix A.9.3:

Theorem 6 Let Fπ : RH×N → R be the function mapping the perturbation to the total reward,
and F̃π,pest(∆s) = max{r ∈ R||{x ∈ S|x ≤ r}| ≤ ⌈mτpest⌉}, S = {Fπ(δ1 +∆s), ..., Fπ(δmτ +
∆s)}, δi ∼ N (0, σ2IH×N ),∀i = {1, ...,mτ}. The reward lower bound is

F̃π,pest(∆s) ≥ F̃π,pest(0), s.t. ||∆s||2 ≤ B, (58)

where pest = Φ(Φ−1(pest −∆)− B
σ ), ∆ =

√
1

2mτ
ln 1

α , mτ is the number of sample trajectories, α
is the one-side confidence parameter, Φ is the CDF of normal distribution, and σ is the smoothing
variance.

Proof. By Hoeffding’s Inequality, for any t ≥ 0, we have

P (pest − p ≥ t) ≤ exp−2mτ t
2

. (59)
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Rearrange the inequality

P (pest − p ≥
√

1

2mτ
ln

1

α
) ≤ α. (60)

Hence, a 1− α confidence lower bound p of p is

p = pest −
√

1

2mτ
ln

1

α
= pest −∆. (61)

Substitute Φ(Φ−1(p)− B
σ ) with the lower bound, we have

Φ(Φ−1(pest −∆)− B

σ
), (62)

which is the new lower bound in the expression.
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A.13 THE ACTION DIVERGENCE OF SMOOTHED PPO AGENTS

We designed a metric based on the action bound in Section 4 to evaluate the certified robustness of
the smoothed PPO agents. We define the Action Divergence as follows:

ADIV = Es,ϵ

[ ||π̃det,pest(s)− π̃det,pest(s)||2
2ϵ

]
, (63)

where ϵ is the ℓ2 attack budget used in estimating the action bound, and the definition of pest
and pest is in Appendix A.9.2. We found that the ℓ2 norm of the difference between the upper
and lower bound of the actions is proportional to the magnitude of the ℓ2 budget ϵ, which makes
||π̃det,pest (s)−π̃det,pest (s)||2

2ϵ almost unchanged under different ϵ setting. Hence, we take the expectation
over the state s and the budget ϵ to estimate this fraction, which is the ADIV proposed here. We
estimate the ADIV by taking the average of 50 trajectories with three different ϵ settings (ϵ = 0.1,
ϵ = 0.2, and ϵ = 0.3).

ADIV describes the worst-case stability of the actions of a PPO smoothed agent under any ℓ2 per-
turbation. The more this value is, the more unstable the smoothed agent is under the ℓ2 attack. The
result is shown in Table 6. Generally, all the smoothed robust agents have a smaller ADIV than the
smoothed vanillaPPO agent. Note that although the SAPPO+RS (Convex) implementation has the
smallest ADIV, our AS-PPO performs better under Min-RS attack and has a higher reward lower
bound compared to SAPPO+RS (Convex) as shown in Table 3

Table 6: The Action Divergence of different smoothed agents.
Methods Action Divergence (lower is better)

Walker Hopper Humanoid

AS-PPO (Ours) 4.199 1.378 3.257

SAPPO+RS (SGLD) 2.836 1.773 3.095
SAPPO+RS (Convex) 1.258 1.183 1.852
VanillaPPO+RS 5.090 4.650 8.698
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A.14 DETAIL EXPERIMENT RESULTS OF REWARD LOWER BOUND

Table 7 shows the details of the reward lower bound for smoothed DQN agents under different ℓ2
budget ϵ. We use the same budget ϵ for every state, and hence, the total budget B = ϵ

√
H , where

H is the length of the trajectory. We set H = 2500 in Pong, Freeway, and RoadRunner. The reward
lower bound of DS-DQN (Vanilla) is comparable with the bound of DS-DQN (Radial), DS-DQN
(SADQN), and DAS-DQN (Vanilla), which suggests that our Denoised Smoothing setting already
achieved a high robustness guarantee even without further using other robust agents as base models
or leveraging adversarial training.

Table 7: The reward lower bound of different smoothed DQN agents under different ℓ2 attack bud-
gets. The smoothing variance σ for all the agents is set to 0.1 in Pong, 0.12 in Freeway, and σ = 0.1
in RoadRunner.
Pong ℓ2 attack budget

ϵ(ℓ2) 0.001 0.002 0.003 0.004 0.005

Ours:
DS-DQN (Vanilla) 18.0 17.0 16.0 14.0 12.0
DS-DQN (Radial) 20.0 20.0 19.0 19.0 19.0
DS-DQN (SADQN) 21.0 21.0 21.0 20.0 19.7
DAS-DQN (Vanilla) 18.0 17.0 15.0 14.0 11.0
CROP:
CROP (Radial) −21.0 −21.0 −21.0 −21.0 −21.0
CROP (SADQN) −21.0 −21.0 −21.0 −21.0 −21.0
CROP (Vanilla) −21.0 −21.0 −21.0 −21.0 −21.0
Naive training with RS:
S-DQN −21.0 −21.0 −21.0 −21.0 −21.0

Freeway

Ours:
DS-DQN (Vanilla) 28.0 28.0 27.0 26.0 26.0
DS-DQN (Radial) 28.0 27.0 26.0 26.0 25.0
DS-DQN (SADQN) 27.0 26.0 25.0 24.0 24.0
DAS-DQN (Vanilla) 29.0 29.0 28.0 27.0 26.0
CROP:
CROP (Radial) 20.4 20.0 20.0 20.0 19.0
CROP (SADQN) 21.0 20.0 20.0 20.0 19.0
CROP (Vanilla) 11.0 10.0 10.0 9.0 8.0
Naive training with RS:
S-DQN 0.0 0.0 0.0 0.0 0.0

RoadRunner

Ours:
DS-DQN (Vanilla) 25900.0 23900.0 22000.0 19400.0 16500.0
DS-DQN (Radial) 24500.0 22515.0 20800.0 19297.2 12920.9
DS-DQN (SADQN) 25200.0 23400.0 22000.0 20594.4 19169.5
DAS-DQN (Vanilla) 25100.0 23000.0 21100.0 19600.0 17769.5
CROP:
CROP (Radial) 6400.0 5300.0 3800.0 3400.0 3000.0
CROP (SADQN) 11900.0 10700.0 8800.0 6600.0 3300.0
CROP (Vanilla) 0.0 0.0 0.0 0.0 0.0
Naive training with RS:
S-DQN 900.0 900.0 900.0 900.0 900.0
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Table 8 shows the reward lower bound for smoothed PPO agents under different ℓ2 budget ϵ. We
use the same budget ϵ for every state, and hence, the total budget B = ϵ

√
H , where H is the length

of the trajectory. We set H = 1000 in Walker, Hopper, and Humanoid. Our AS-PPO exhibits a
higher reward lower bound under Walker and Humanoid environments. Despite not outperforming
SAPPO+RS (SGLD) in Hopper, AS-PPO still has a much higher reward lower bound compared to
VanillaPPO+RS.

Table 8: The reward lower bound of different smoothed PPO agents under different ℓ2 attack bud-
gets. The smoothing variance σ for all the agents is set to 0.2 in Walker, 0.3 in Hopper, and σ = 0.4
in Humanoid.
Walker ℓ2 attack budget

ϵ(ℓ2) 0.002 0.004 0.006 0.008 0.01

Ours:
AS-PPO 5345.3 5013.5 4869.6 3255.9 2391.94
Naively smoothed agents:
SAPPO+RS (SGLD) 4641.8 4545.2 4246.9 3382.6 2534.5
SAPPO+RS (Convex) 4307.2 4247.4 4149.5 3207.0 2367.2
VanillaPPO+RS 1474.7 1250.3 1118.1 894.1 630.7
Naive training with RS:
S-PPO 4047.4 4001.7 3732.9 2244.8 1760.4

Hopper

Ours:
AS-PPO 2055.3 1828.4 1694.4 1526.7 1438.6
Naively smoothed agents:
SAPPO+RS (SGLD) 2075.9 1891.2 1814.0 1693.6 1590.8
SAPPO+RS (Convex) 2012.1 1839.1 1768.1 1657.1 1485.9
VanillaPPO+RS 1084.5 1014.5 899.3 832.3 686.3
Naive training with RS:
S-PPO 1731.19 1562.0 1439.5 1358.1 1254.5

Humanoid

Ours:
AS-PPO 7075.3 7065.0 7019.2 7008.9 7000.2
Naively smoothed agents:
SAPPO+RS (SGLD) 6836.9 6829.8 6823.4 6817.0 6812.3
SAPPO+RS (Convex) 6435.2 6424.6 6415.5 6407.2 6398.8
VanillaPPO+RS 2815.3 2250.3 1984.9 1761.7 1572.5
Naive training with RS:
S-PPO 6212.3 6207.0 6200.4 6195.3 6189.8
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A.15 DETAIL EXPERIMENT RESULTS OF REWARD UNDER ATTACK

Table 9 and Table 10 shows the reward of DQN agents under ℓ∞ and ℓ2 PGD attack. Note that
we used our new attack, which is stronger than the classic PGD attack, in Section 3.1 to evaluate
all the smoothed agents. Our DS-DQN (Vanilla) already outperformed the state-of-the-art robust
agent, RadialDQN, in most of the settings except for ℓ∞ attack in RoadRunner. The problem of
not performing well under ℓ∞ attack in RoadRunner was solved by introducing DS-DQN (Radial),
DS-DQN (SADQN), and DAS-DQN. DS-DQN (Radial) performs especially well under PGD attack
in all the environments, which suggests that our DS-DQN can be further boosted by changing the
base model to a robust agent.

Table 9: The reward of DQN agents under ℓ∞ PGD attack. The smoothing variance σ for our agents
is set to 0.1 in Pong, 0.12 in Freeway, and σ = 0.1 in RoadRunner. For all the CROP small σ agents,
σ = 0.01.
Pong ℓ∞ PGD attack (used our new attack to evaluate the smoothed agents)

ϵ(ℓ∞) 0.01 0.02 0.03 0.04 0.05

Ours:
DS-DQN (Vanilla) 19.2±0.75 18.4±2.15 19.2±1.17 17.2±2.56 18.8±1.17
DS-DQN (Radial) 21.0±0.00 21.0±0.00 21.0±0.00 20.8±0.40 19.0±1.41
DS-DQN (SADQN) 21.0±0.00 20.4±1.20 19.6±1.50 18.4±2.42 17.0±3.74
DAS-DQN (Vanilla) 19.4±1.62 19.0±1.41 18.8±1.94 17.2±1.94 13.8±5.88
SOTA robust agents:
RadialDQN 21.0±0.00 19.6±2.80 −20.2±0.40 −20.6±0.49 −21.0±0.00
SADQN 21.0±0.00 −19.4±0.80 −21.0±0.00 −21.0±0.00 −21.0±0.00
CROP small σ:
CROP (Radial) 21.0±0.00 8.6±4.22 −19.8±0.98 −21.0±0.00 −21.0±0.00
CROP (SADQN) 21.0±0.00 −19.8±1.47 −21.0±0.00 −21.0±0.00 −21.0±0.00

Freeway

Ours:
DS-DQN (Vanilla) 32.6±1.20 31.6±1.50 30.0±1.10 28.0±1.41 23.8±1.17
DS-DQN (Radial) 32.2±0.75 31.4±1.02 30.4±1.02 29.4±0.49 30.2±1.47
DS-DQN (SADQN) 30.0±0.00 29.8±0.40 27.6±1.50 26.8±1.47 27.2±1.72
DAS-DQN (Vanilla) 32.8±1.17 30.6±1.36 29.0±1.10 27.2±0.98 26.0±1.26
SOTA robust agents:
RadialDQN 33.0±1.10 29.0±1.70 23.4±1.96 19.2±1.47 20.0±1.10
SADQN 30.0±0.00 27.2±1.17 20.4±0.49 20.8±0.98 18.8±1.33
CROP small σ:
CROP (Radial) 32.6±0.49 27.4±2.73 23.6±1.96 20.4±1.62 21.2±1.72
CROP (SADQN) 30.0±0.00 27.0±0.89 21.4±1.02 20.2±0.75 19.0±1.41

RoadRunner

Ours:
DS-DQN (vanilla) 22300±2771 12420±1633 1340±2531 0±0 0±0
DS-DQN (Radial) 35490±3670 33480±346826580±13025 22280±3037 19920±1713
DS-DQN (SADQN) 32280±4712 27080±3043 21580±2687 15660±1861 14120±1768
DAS-DQN (Vanilla) 29300±2534 24500±2951 21400±2592 23800±2733 19540±4317
SOTA robust agents:
RadialDQN 48760±4968 26280±2006 9700±7188 3020±1067 760±472
SADQN 30300±1491 2320±1786 120±240 40±80 0±0
CROP small σ:
CROP (Radial) 40220±8021 24000±3923 12220±6516 2060±2188 940±1169
CROP (SADQN) 28720±5756 1540±714 200±276 220±286 0±0
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Table 10: The reward of DQN agents under ℓ2 PGD attack. The smoothing variance σ for our agents
is set to 0.1 in Pong, 0.12 in Freeway, and σ = 0.1 in RoadRunner. For all the CROP small σ agents,
σ = 0.01.
Pong ℓ2 PGD attack (used our new attack to evaluate the smoothed agents)

ϵ(ℓ2) 0.1 0.3 0.5 0.7 0.9

Ours:
DS-DQN (Vanilla) 20.6±0.80 15.0±3.10 8.2±2.4 −12.6±4.41 −16.8±3.70
DS-DQN (Radial) 21.0±0.00 18.8±1.94 15.2±3.31 9.8±4.26 5.2±4.79
DS-DQN (SADQN) 21.0±0.00 20.6±0.49 19.8±1.47 2.0±12.6 −16.2±2.64
DAS-DQN (Vanilla) 19.6±1.02 17.4±1.85 7.6±2.65 −10.6±4.63 −15.0±2.83
SOTA robust agents:
RadialDQN 21.0±0.00 6.0±5.02 −10.6±12.7 −19.4±1.20 −21.0±0.00
SADQN 21.0±0.00 −3.6±20.1 −20.6±0.49 −20.8±0.40 −21.0±0.00
CROP small σ:
CROP (Radial) 21.0±0.00 2.0±3.03 −21.0±0.00 −21.0±0.00 −21.0±0.00
CROP (SADQN) 21.0±0.00 −3.6±19.4 −20.6±0.80 −20.8±0.40 −21.0±0.00

Freeway

Ours:
DS-DQN (Vanilla) 32.6±1.02 31.4±1.36 30.0±1.55 29.0±1.10 26.8±1.17
DS-DQN (Radial) 31.8±0.98 31.2±1.17 30.0±2.10 28.0±1.67 26.6±1.36
DS-DQN (SADQN) 30.0±0.00 29.4±0.80 28.2±1.17 27.4±1.20 27.2±0.75
DAS-DQN (Vanilla) 32.6±1.02 31.0±1.41 29.8±0.75 29.2±1.94 27.6±2.06
SOTA robust agents:
RadialDQN 33.0±1.10 29.2±0.98 23.8±1.47 24.8±2.79 22.4±0.80
SADQN 30.0±0.63 26.4±4.03 27.4±3.14 27.2±2.32 27.6±2.06
CROP small σ:
CROP (Radial) 32.6±0.49 28.8±1.83 23.8±0.98 23.8±1.33 23.2±0.98
CROP (SADQN) 30.0±0.63 25.6±3.14 26.2±1.83 27.2±2.32 27.2±2.32

RoadRunner

Ours:
DS-DQN (Vanilla) 31560±5942 24520±2986 21560±2585 17500±4693 13780±3396
DS-DQN (Radial) 32480±6251 23200±2700 22460±2922 20120±121221280±1251
DS-DQN (SADQN) 30900±5055 21320±2785 19700±1485 19580±1206 17240±1453
DAS-DQN (Vanilla) 27880±3626 22440±2526 24860±3197 19380±1488 18940±1904
SOTA robust agents:
RadialDQN 45720±1110534480±3292 19080±4370 10440±4340 8300±2663
SADQN 38060±5522 18860±3364 6260±3212 3280±1785 1300±1023
CROP small σ:
CROP (Radial) 40240±8007 27020±11677 17980±5887 8000±3592 6120±1957
CROP (SADQN) 40900±7677 20440±1678 5960±4273 2540±1263 1100±593
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Table 11 shows the reward of PPO agents under different ℓ∞ attacks. Note that we trained each
agent 15 times and reported the median of the performance as suggested in Zhang et al. (2020)
to get a fair and comparable result. We also used our new attack in Section 3.2 to evaluate the
smoothed agents. Our AS-PPO exhibits a better trade-off between the clean reward and the robust
reward under attacks in all environments and performs especially well in Walker. Our AS-PPO also
receives a much higher clean reward in Humanoid. Humanoid has a high state space dimension
(376) and is harder to train than Walker and Hopper. This result suggests that our approach can
further help agents learn in the non-adversarial setting.

Table 11: The reward of PPO agents under different attacks. The smoothing variance σ for all the
smoothed agents is set to 0.2 in Walker, 0.3 in Hopper, and 0.4 in Humanoid. The ℓ∞ attack budget
is set to 0.05 in Walker and 0.075 in Hopper and Humanoid.
Walker Clean Reward Reward under Attack

Random Critic MAD Min-RS

Ours:
AS-PPO 4969.3± 137.1 5039.4± 1132.8 5488.0± 568.0 5290.4± 966.9 4322.8
SAPPO:
SGLD 4911.8± 188.9 4894.8± 139.9 5019.0± 65.2 4755.7± 413.1 2605.6
Convex 4486.6± 60.7 4475.0± 48.7 4572.0± 52.3 4343.4± 329.4 2168.2
SAPPO+RS:
SGLD+RS 4893.6± 220.2 4876.4± 112.7 5015.8± 74.6 4782.2± 290.7 2615.3
Convex+RS 4475.9± 41.1 4467.7± 41.5 4573.7± 50.6 4369.9± 366.4 2794.1

Hopper

Ours:
AS-PPO 3666.9± 283.4 3545.5± 373.1 3705.8± 4.8 2916.4± 874.3 1557.9
SAPPO:
SGLD 3523.1± 329.0 3080.2± 745.4 3665.5± 8.2 2996.6± 786.4 1403.3
Convex 3704.1± 2.2 3708.7± 23.8 3698.4± 4.4 3443.1± 466.7 1235.8
SAPPO+RS:
SGLD+RS 2689.6± 793.5 2739.9± 715.1 3667.5± 7.4 2809.9± 787.4 1560.9
Convex+RS 3685.2± 15.1 3683.8± 37.4 3683.5± 9.4 3611.0± 150.9 1529.2

Humanoid

Ours:
AS-PPO 6977.9± 47.7 6960.4± 27.2 7013.2± 25.4 6825.3± 953.2 6070.3
SAPPO:
SGLD 6624.0± 25.5 6614.1± 21.4 6587.0± 23.1 6586.4± 23.5 6200.5
Convex 6400.6± 156.8 6207.9± 783.3 6397.9± 35.6 6379.5± 30.5 4707.2
SAPPO+RS:
SGLD+RS 6968.1± 19.0 6954.6± 19.1 6927.6± 26.2 6883.8± 35.5 6657.9
Convex+RS 6517.2± 56.1 6524.0± 41.9 6520.2± 42.2 6472.2± 61.2 3946.7
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A.16 TRAINING VARIANCE OF DS-DQN

We also reported the training variance of our DS-DQN (Vanilla) in Table 12. Unlike AS-PPO, DS-
DQN has a much smaller variance and hence we only show the results of one training of DS-DQN
in our main experiments.

Table 12: The training variance of DS-DQN (Vanilla). The L-inf attack budget of robust reward is
set to 0.03 in Pong and Freeway, and 0.01 in RoadRunner. It can be seen that the training variance
of DS-DQN (Vanilla) is small and the median of these 5 agents is very close to what we reported in
Table 2 and Figure 2.
Pong Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 AVG & STD

Clean Reward 21.0 21.0 20.8 20.8 20.4 20.8± 0.24
Certified Radius 0.0614 0.0556 0.0629 0.0617 0.0546 0.0592± 0.0038
Robust Reward 19.0 19.8 19.6 20.2 18.4 19.4± 0.71

Freeway

Clean Reward 32.8 32.4 32.0 32.6 32.0 32.4± 0.36
Certified Radius 0.0891 0.0886 0.0951 0.0891 0.0914 0.0907± 0.0027
Robust Reward 30.2 28.4 27.4 29.6 24.4 28.0± 2.28

RoadRunner

Clean Reward 36820 30120 38900 30400 36820 34612± 4064
Certified Radius 0.0739 0.0769 0.0635 0.0648 0.0769 0.0712± 0.0066
Robust Reward 20060 22360 21820 25380 19340 21792± 2356
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A.17 OTHER EXPERIMENT RESULTS

Table 13 shows the results of AS-PPO trained under difference smoothing variance σ. In Walker,
we found that σ = 0.2 is the best setting among all the other values. In Hopper, there is a trade-off
between the clean reward and the robust reward under different attacks. This tendency also appears
in Humanoid. We choose the σ that achieves the highest reward under the Min-RS attack as our
setting.

Table 13: The performance of AS-PPO with different smoothing variance σ.
Walker ϵ(ℓ∞) = 0.05

Smoothing Variance σ 0.1 0.2 0.3

Clean 4938.82± 16.92 4969.28± 137.07 4804.48± 582.28
Random 4921.7± 23.59 5039.42± 1132.80 4824.78± 101.88
Critic 5006.05± 44.92 5487.99± 567.96 4923.6± 1116.18
MAD 4933.05± 81.04 5290.36± 966.92 4665.54± 1244.06
Min-RS 3203.09 4322.79 3339.11

Hopper ϵ(ℓ∞) = 0.075

Smoothing Variance σ 0.1 0.2 0.3

Clean 3650.53± 14.50 3758.52± 44.62 3666.92± 283.36
Random 3627.58± 24.61 3719.45± 26.23 3545.54± 373.12
Critic 3606.85± 29.53 3758.99± 12.26 3705.8± 4.76
MAD 2763.29± 772.89 3360.12± 520.56 2916.44± 874.28
Min-RS 1010.31 1354.46 1557.93

Humanoid ϵ(ℓ∞) = 0.075

Smoothing Variance σ 0.3 0.4 0.5

Clean 7157.50± 463.39 6977.93± 47.74 6847.94± 28.56
Random 7135.64± 22.92 6960.41± 27.16 6719.15± 896.53
Critic 7277.57± 35.71 7013.24± 25.35 6853.16± 21.31
MAD 6880.31± 969.87 6825.31± 953.20 6762.92± 1007.46
Min-RS 4764.57 6070.29 5577.89
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