
Implicitly Regularized RL with Implicit Q-Values

Anonymous Author(s)
Affiliation
Address
email

Abstract

The Q-function is a central quantity in many Reinforcement Learning (RL) algo-1

rithms for which RL agents behave following a (soft)-greedy policy w.r.t. to Q. It2

is a powerful tool that allows action selection without a model of the environment3

and even without explicitly modeling the policy. Yet, this scheme can only be used4

in discrete action tasks, with small numbers of actions, as the softmax cannot be5

computed exactly otherwise. Especially the usage of function approximation, to6

deal with continuous action spaces in modern actor-critic architectures, intrinsically7

prevents the exact computation of a softmax. We propose to alleviate this issue8

by parametrizing the Q-function implicitly, as the sum of a log-policy and of a9

value function. We use the resulting parametrization to derive a practical off-policy10

deep RL algorithm, suitable for large action spaces, and that enforces the softmax11

relation between the policy and the Q-value. We provide a theoretical analysis12

of our algorithm: from an Approximate Dynamic Programming perspective, we13

show its equivalence to a regularized version of value iteration, accounting for14

both entropy and Kullback-Leibler regularization, and that enjoys beneficial error15

propagation results. We then evaluate our algorithm on classic control tasks, where16

its results compete with state-of-the-art methods.17

1 Introduction18

A large body of reinforcement learning (RL) algorithms, based on approximate dynamic programming19

(ADP) [Bertsekas and Tsitsiklis, 1996, Scherrer et al., 2015], operate in two steps: A greedy step,20

where the algorithm learns a policy that maximizes a Q-function, and an evaluation step, that21

(partially) updates the Q-values towards the Q-values of the policy. A common improvement to these22

techniques is to use regularization, that prevents the new updated policy from being too different from23

the previous one, or from a fixed “prior” policy. For example, Kullback-Leibler (KL) regularization24

keeps the policy close to the previous iterate [Vieillard et al., 2020a], while entropy regularization25

keeps the policy close to the uniform one [Haarnoja et al., 2018a]. Entropy regularization, often26

used in this context [Ziebart, 2010], modifies both the greedy step and the evaluation step so that the27

policy jointly maximizes its expected return and its entropy. In this framework, the solution to the28

policy optimization step is simply a softmax of the Q-values over the actions. In small discrete action29

spaces, the softmax can be computed exactly: one only needs to define a critic algorithm, with a30

single loss that optimizes a Q-function. However, in large multi-dimensional – or even continuous –31

action spaces, one needs to estimate it. This estimation is usually done by adding an actor loss, that32

optimizes a policy to fit this softmax. It results in an actor-critic algorithm, with two losses that33

are optimized simultaneously [Haarnoja et al., 2018a]. This additional optimization step introduces34

supplementary errors to the ones already created by the approximation in the evaluation step.35

To remove these extraneous approximations, we introduce the Implicit Q-Functions (IQ) algorithm,36

that deviates from classic actor-critics, as it optimizes a policy and a value in a single loss. The37

core idea is to implicitly represent the Q-function as the sum of a value function and a log-policy.38

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

This representation ensures that the policy is an exact softmax of the Q-value, despite the use of any39

approximation scheme. We use this to design a practical model-free deep RL algorithm that optimizes40

with a single loss a policy network and a value network, built on this implicit representation of a41

Q-value. To better understand it, we abstract this algorithm to an ADP scheme, IQ-DP, and use this42

point of view to provide a detailed theoretical analysis. It relies on a key observation, that shows an43

equivalence between IQ-DP and a specific form of regularized Value Iteration (VI). This equivalence44

explains the role of the components of IQ: namely, IQ performs entropy and KL regularization. It45

also allows us to derive strong performance bounds for IQ-DP. In particular, we show that the errors46

made when following IQ-DP are compensated along iterations.47

Parametrizing the Q-value as a sum of a log-policy and a value is reminiscent of the dueling48

architecture [Wang et al., 2016], that factorizes the Q-value as the sum of an advantage and a value.49

In fact, we show that it is a limiting case of IQ in a discrete actions setting. This link highlights the50

role of the policy in IQ, which calls for a discussion on the necessary parametrization of the policy.51

Finally, we empirically validate IQ. We evaluate our method on several classic continuous control52

benchmarks: locomotion tasks from Openai Gym [Brockman et al., 2016], and hand manipulation53

tasks from the Adroit environment [Rajeswaran et al., 2017]. On these environments, IQ reaches54

performances competitive with state-of-the-art actor critic methods.55

2 Implicit Q-value parametrization56

+

.

.

.

Figure 1: view of the IQ parametrization.

We consider the standard Reinforcement Learning (RL)57

setting, formalized as a Markov Decision Process (MDP).58

An MDP is a tuple {S,A, P, r, γ}. S and A are the59

finite state and action spaces1, γ ∈ [0, 1) is the discount60

factor and r : S ×A → [−Rmax, Rmax] is the bounded61

reward function. Write ∆X the simplex over the finite set62

X . The dynamics of an MDP are defined by a Markovian63

transition kernel P ∈ ∆S×AS , where P (s′|s, a) is the64

probability of transitioning to state s′ after taking action65

a in s. An RL agent acts through a stochastic policy66

π ∈ ∆SA, a mapping from states to distribution over67

actions. The quality of a policy is quantified by the value68

function, Vπ(s) = Eπ[
∑∞
t=0 γ

tr(st, at)|s0 = s]. TheQ-function is a useful extension, which notably69

allows choosing a (soft)-greedy action in a model-free setting, Qπ(s, a) = r(s, a) + Es′|s,a[Vπ(s′)].70

An optimal policy is one that achieve the highest expected return, π∗ = argmaxπ Vπ .71

A classic way to design practical algorithms beyond the tabular setting is to adopt the Actor-Critic72

perspective. In this framework, an RL agent parametrizes a policy πθ and a Q-value Qψ with function73

approximation, usually through the use of neural networks, and aims at estimating an optimal74

policy. The policy and the Q-function are then updated by minimizing two losses: the actor loss75

corresponds to the greedy step, and the critic loss to the evaluation step. The weights of the policy76

and Q-value networks are regularly frozen into target weights ψ̄ and θ̄. With entropy regularization,77

the greedy step amounts to finding the policy that maximizes Es∼S,a∼πθ [Qψ̄(s, a) + τ lnπθ(a|s)]78

(maximize the Q-value with stochastic enough policy). The solution to this problem is simply79

πθ(·|s) = softmax(Qψ̄(s, ·)/τ), which is the result of the greedy step of regularized Value Iteration80

(VI) [Geist et al., 2019] and, for example, how the optimization step of Soft Actor-Critic [Haarnoja81

et al., 2018a, SAC] is built. In a setting where the action space is discrete and small, it amounts82

to a simple softmax computation. However, on more complex action spaces (continuous, and/or83

with a higher number of dimensions: as a reference, the Humanoid-v2 environment from Openai84

Gym [Brockman et al., 2016] has an action space of dimension 17), it becomes prohibitive to use85

the exact solution. In this case, the common practice is to resort to a approximation with a parametric86

distribution model. In many actor critic algorithms (SAC, TD3[Fujimoto et al., 2018], ...), the policy87

is modelled as a Gaussian distribution over actions. It introduces approximation errors, resulting88

from the partial optimization process of the critic, and inductive bias, as a Gaussian policy cannot89

represent an arbitrary softmax distribution. We now turn to the description of our core contribution:90

the Implicit Q-value (IQ) algorithm, introduced to mitigate this discrepancy.91

1We restrict to finite spaces for the sake of analysis, but our approach applies to continuous spaces.

2

IQ implicitly parametrizes a Q-value via an explicit parametrization of a policy and a value, as92

visualized in Fig. 1. Precisely, from a policy network πθ and a value network Vφ, we define our93

implicit Q-value as94

Qθ,φ(s, a) = τ lnπθ(a|s) + Vφ(s). (1)
Since πθ is constrained to be a distribution over the actions, we have by construction that πθ(a|s) =95

softmax(Qθ,φ/τ), the solution of the regularized greedy step (see Appx. A.1 for a detailed proof).96

Hence, the consequence of using such a parametrization is that the greedy step is performed exactly,97

even in the function approximation regime. Compared to the classic actor-critic setting, it thus gets98

rid of the errors created by the actor. Note that calling Vφ a value makes sense, since following the99

same reasoning we have that Vφ(s) = τ ln
∑
a′ exp(Qθ,φ(s, a′)/τ), a soft version of the value. With100

this parametrization in mind, one could derive a deep RL algorithm from any value-based loss using101

entropy regularization. We conserve the fixed-point approach of the standard actor-critic framework,102

θ and φ are regularly copied to θ̄ and φ̄, and we design an off-policy algorithm, working on a replay103

buffer of transitions (st, at, rt, sst+1) collected during training. Consider two hyperparameters,104

τ ∈ (0,∞) and α ∈ (0, 1) that we will show in Sec. 3 control two forms of regularization.105

The policy and value are optimized jointly by minimizing the loss106

LIQ(θ, φ) = Ê
[(
rt + ατ lnπθ̄(at|st) + γVφ̄(st+1)− τ lnπθ(at|st)− Vφ(st)

)2]
, (2)

where Ê denote the empirical expected value over a dataset of transitions. IQ consists then in a107

single loss that optimizes jointly a policy and a value. This brings a notable remark on the role of108

Q-functions in RL. Indeed, Q-learning was introduced by Watkins and Dayan [1992] – among other109

reasons – to make greediness possible without a model (using a value only, one needs to maximize110

it over all possible successive states, which requires knowing the transition model), and consequently111

derive practical, model-free RL algorithms. Here however, IQ illustrates how, with the help of112

regularization, one can derive a model-free algorithm that does not rely on an explicit Q-value.113

3 Analysis114

In this section, we explain the workings of the IQ algorithm defined by Eq. (2) and detail the influence115

of its hyperparameters. We abstract IQ into an ADP framework, and show that, from that perspective,116

it is equivalent to a Mirror Descent VI (MD-VI) scheme [Geist et al., 2019], with both entropy and117

KL regularization. Let us first introduce some useful notations. We make use of the actions partial118

dot-product notation: for u, v ∈ RS×A, we define 〈u, v〉 =
(∑

a∈A u(s, a)v(s, a)
)
s
∈ RS . For119

any V ∈ RS , we have for any (s, a) ∈ S × A PV (s, a) =
∑
s′ P (s′|s, a)V (s′). We will define120

regularized algorithms, using the entropy of a policy, H(π) = −〈π, lnπ〉, and the KL divergence121

between two policies, KL(π||µ) = 〈π, lnπ − lnµ〉. The Q-value of a policy is the unique fixed122

point of its Bellman operator Tπ defined for any Q ∈ RS×A as TπQ = r + γP 〈π,Q〉. We denote123

Q∗ = Qπ∗ the optimal Q-value (the Q-value of the optimal policy). When the MDP is entropy-124

regularized with a temperature τ , a policy π admits a regularized Q-value Qτπ , the fixed point of the125

regularized bellman operator T τπQ = r + γP 〈π,Q− τ lnπ〉. A regularized MDP admits an optimal126

regularized policy πτ∗ and a unique optimal regularized Q-value Qτ∗ [Geist et al., 2019].127

3.1 Ideal case128

First, let us look at the ideal case, i.e. when LIQ is exactly minimized at each iteration (tabular129

representation, dataset covering the whole state-action space, expectation rather than sampling for130

transitions). In this context, IQ can be understood as a Dynamic Programming (DP) scheme that131

iterates on a policy πk+1 and a value Vk. They are respectively equivalent to the target networks πθ̄132

and Vφ̄, while the next iterate (πk+2, Vk+1) matches the solution (πθ, Vφ) of the optimization problem133

in Eq. (2). We call the scheme IQ-DP(α, τ) and one iteration is defined by choosing (πk+2, Vk+1)134

such that the squared term in Eq. (2) is 0, that is135

τ lnπk+2 + Vk+1 = r + ατ lnπk+1 + γPVk. (3)

This equation is well-defined, due to the underlying constraint that πk+2 ∈ ∆SA (the policy must be a136

distribution over actions), that is
∑
a∈A π(a|s) = 1 for all s ∈ S. The basis for our discussion will137

be the equivalence of this scheme to a version of regularized VI. Indeed, we have the following result,138

proved in Appendix A.3.139

3

Theorem 1. For any k ≥ 1, let (πk+2, Vk+1) be the solution of IQ-DP(α, τ) at step k. We have that140 {
πk+2 = argmax〈π, r + γPVk〉+ (1− α)τH(π)− ατ KL(π||πk+1)

Vk+1 = 〈πk+2, r + γPVk〉+ (1− α)τH(πk+2)− ατ KL(πk+2||πk+1)

so IQ-DP(α, τ) produces the same sequence of policies as a value-based version of Mirror Descent141

VI, MD-VI(ατ, (1− α)τ) [Vieillard et al., 2020a].142

Discussion. The previous results sheds a first light on the nature of the IQ method. Essentially,143

IQ-DP is a parametrization of a VI scheme regularized with both entropy and KL divergence, MD-144

VI(ατ, (1− α)τ). This first highlights the role of the hyperparameters, as its shows the interaction145

between the two forms of regularization. The value of α balances between those two: with α = 0,146

IQ-DP reduces to a classic VI regularized with entropy; with α = 1 only the KL regularization147

will be taken into account. The value of τ then controls the amplitude of this regularization. In148

particular, in the limit α = 0, τ → 0, we recover the standard VI algorithm. This results also149

justifies the soundness of IQ-DP. Indeed, this MD-VI scheme is known to converge to π(1−α)τ
∗ the150

optimal policy of the regularized MDP [Vieillard et al., 2020a, Thm. 2] and this results readily151

applies to IQ2. Another consequence is that it links IQ to Advantage Learning (AL) [Bellemare et al.,152

2016]. Indeed, AL is a limiting case of MD-VI when α > 0 and τ → 0 [Vieillard et al., 2020b].153

Therefore, IQ also generalizes AL, and the α parameter can be interpreted as the advantage coefficient.154

Finally, a key observation is that IQ performs KL regularization implicitly, the way it was introduced155

by Munchausen RL [Vieillard et al., 2020b], by augmenting the reward with the ατ lnπk+1 term156

(Eq. (3)). This observation will have implications discussed next.157

3.2 Error propagation result158

Now, we are interested in understanding how errors introduced by the function approximation used159

propagate along iterations. At iteration k of IQ, denote πk+1 and Vk the target networks. In the160

approximate setting, we do not solve Eq. (3), but instead, we minimize L(θ, φ) with stochastic161

gradient descent. This means that πk+2 and Vk+1 are the result of this optimization, and thus the next162

target networks. The optimization process introduces errors, that come from many sources: partial163

optimization, function approximation (policy and value are approximated with neural networks),164

finite data, etc. We study the impact of these errors on the distance between the optimal Q-value165

of the MDP and the regularized Q-value of the current policy used by IQ, Q(1−α)τ
πk+1 . We insist right166

away that Q(1−α)τ
πk+1 is not the learned, implicit Q-value, but the actual Q-value of the policy computed167

by IQ in the regularized MDP. We have the following result concerning the error propagation.168

Theorem 2. Write πk+1 and Vk the kth update of respectively the target policy and value networks.169

Consider the error at step k, εk ∈ RS×A, as the difference between the ideal and the actual updates170

of IQ. Formally, we define the error as, for all k ≥ 1,171

εk = τ lnπk+2 + Vk+1 − (r + ατ lnπk+1 + γPVk),

and the moving average of the errors as172

Ek = (1− α)

k∑
j=1

αk−jεj .

We have the following results for two different cases depending on the value of α. Note that when173

α < 1, we bound the distance to regularized optimal Q-value.174

1. General case: 0 < α < 1 and τ > 0, entropy and KL regularization together:175

‖Q(1−α)τ
∗ −Q(1−α)τ

πk
‖∞ ≤

2

(1− γ)2

(1− γ)

k∑
j=1

γk−j‖Ej‖∞

+ o

(
1

k

)
.

2. Specific case α = 1, τ > 0, use of KL regularization alone:176

‖Q∗ −Qπk‖∞ ≤
2

1− γ

∥∥∥∥∥∥1

k

k∑
j=1

εj

∥∥∥∥∥∥
∞

+O

(
1

k

)
.

2Vieillard et al. [2020a] show this for Q-functions, but it can straightforwardly be extended to value functions.

4

Sketch of proof. The full proof is provided in Appendix A.4. We build upon the connection we177

established between IQ-DP and a VI scheme regularized by both KL and entropy in Thm. 1. By178

injecting the proposed representation into the classic MD-VI scheme, we can build upon the analysis179

of Vieillard et al. [2020a, Thm. 1 and 2] to provide these results.180

Impact of KL regularization. The KL regularization term, and specifically in the MD-VI frame-181

work, is discussed extensively by Vieillard et al. [2020a], and we refer to them for in-depth analysis182

of the subject. We recall here the main interests of KL regularization, as illustrated by the bounds of183

Thm 2. In the second case, where it is the clearest (only KL is used), we observe a beneficial property184

of KL regularization: Averaging of errors. Indeed, in a classic non-regularized VI scheme [Scherrer185

et al., 2015], the error ‖Q∗ −Qπθ‖ would depend on a moving average of the norms of the errors186

(1 − γ)
∑k
j=1 γ

k−j‖εk‖∞, while with the KL it depends on the norm of the average of the errors187

(1/k)‖
∑k
j=1 εk‖. In a simplified case where the errors would be i.i.d. and zero mean, this would188

allow convergence of approximate MD-VI, but not of approximate VI. In the case α < 1, where we189

introduce entropy regularization, the impact is less obvious, but we still transform a sum of norm of190

errors into a sum of moving average of errors, which can help by reducing the underlying variance.191

Link to Munchausen RL. As stated in the sketched proof, Thm. 2 is a consequence of [Vieillard192

et al., 2020a, Thm. 1 and 2]. A crucial limitation of this work is that the analysis only applies193

when no errors are made in the greedy step. This is possible in a relatively simple setting, with194

tabular representation, or with a linear parametrization of the Q-function. However, in the general195

case with function approximation, exactly solving the optimization problem regularized by KL196

is not immediately possible: the solution of the greedy step of MD-VI(ατ, (1 − α)τ) is πk+2 ∝197

exp(Qk+1/τ)παk (where Qk+1 = r + γPVk), so computing it exactly would require remembering198

every πj during the procedure, which is not feasible in practice. A workaround to this issue was199

introduced by Vieillard et al. [2020b] as Munchausen RL: the idea is to augment the reward by the200

log-policy, to implicitly define a KL regularization term, while reducing the greedy step to a softmax.201

As mentioned before, in small discrete action spaces, this allows to compute the greedy step exactly,202

but it is not the case in multidimensional or continuous action spaces, and thus Munchausen RL loses203

its interest in such domains. With IQ, we utilize the Munchausen idea to implicitly define the KL204

regularization; but with our parametrization, the exactness of the greedy step holds even for complex205

action spaces: recall that the parametrization defined in Eq. (1) enforces that the policy is a softmax of206

the (implicit) Q-value. Thus, IQ can be seen as an extension of Munchausen RL to multidimensional207

and continuous action spaces.208

3.3 Link to the dueling architecture209

Dueling Networks (DN) were introduced as a variation of the seminal Deep Q-Networks (DQN, Mnih210

et al. [2015]), and has been empirically proven to be efficient (for example by Hessel et al. [2018]). The211

idea is to represent the Q-value as the sum of a value and an advantage. In this setting, we work with212

a notion of advantage defined over Q-functions (as opposed to defining the advantage as a function of213

a policy). For any Q ∈ RS×A, its advantage AQ is defined AQ(s, a) = Q(s, a)−maxa′∈AQ(s, a′).214

The advantage encodes a sub-optimality constraint: it has negative values and its maximum over215

actions (the action maximizing the Q-value) is 0. Wang et al. [2016] propose to learn a Q-value by216

defining and advantage network FΘ and a value network VΦ, which in turn define a Q-value QΘ,Φ as217

QΘ,Φ(s, a) = FΘ(s, a)−max
a′∈A

FΘ(s, a′)︸ ︷︷ ︸
advantage

+VΦ(s).

Subtracting the maximum over the actions ensures that the advantage network indeed represents an218

advantage. Note that dueling DQN was designed for discrete action settings, where computing the219

maximum over actions is not an issue.220

In IQ, we need a policy network that represents a distribution over the actions. There are several221

practical ways to represent the policy, that are discussed in Sec 4. For the sake of simplicity, let us for222

now assume that we are in a mono-dimensional discrete action space, and that we use a common223

scaled softmax representation. Specifically, our policy is represented by a neural network (eg. fully224

connected) Fθ, that maps state-action pairs to logits Fθ(s, a). The policy is then defined as πθ(·|s) =225

softmax(Fθ(s, ·)/τ). Directly from the definition of the softmax, we observe that τ lnπθ(a|s) =226

5

Fθ(s, a) − τ ln
∑
a′∈A exp(Fθ(s, a

′)/τ). The second term is a classic scaled logsumexp over the227

actions, a soft version of the maximum: when τ → 0, we have that τ ln
∑′
a exp(F (s, a′)/τ) →228

maxa′ F (s, a′). Within the IQ parametrization, we have229

Qθ,φ = Fθ(s, a)− τ ln
∑
a′∈A

exp(F (s, a′)/τ)︸ ︷︷ ︸
soft-advantage

+Vφ(s),

which makes a clear link between IQ and DN. In this case (scaled softmax representation), the230

IQ parametrization generalizes the dueling architecture, retrieved when τ → 0 (and with an ad-231

ditional AL term whenever α > 0, see Sec. 3). In practice, Wang et al. [2016] use a differ-232

ent parametrization of the advantage, replacing the maximum by a mean, defining QΘ,Φ(s, a) =233

AΘ(s, a)−|A|−1
∑
a′∈AAΘ(s, a′)+VΦ(s). We could use a similar trick and replace the logsumexp234

by a mean in our policy parametrization, but in our case this did not prove to be efficient in practice.235

We showed how the log-policy represents a soft version of the advantage. While this makes its role in236

the learning procedure clearer, it also raises questions about what sort of representation would be the237

most suited for optimization.238

4 Practical considerations239

We now describe key practical issues encountered when choosing a policy representation. The main240

one comes from the delegation of the representation power of the algorithm to the policy network.241

In a standard actor-critic algorithm – take SAC for example, where the policy is parametrized as a242

Gaussian distribution – the goal of the policy is mainly to track the maximizing action of the Q-value.243

Thus, estimation errors can cause the policy to choose sub-optimal actions, but the inductive bias244

caused by the Gaussian representation may not be a huge issue in practice, as long as the mean of the245

Gaussian policy is not too far from the maximizing action. In other words, the representation capacity246

of an algorithm such as SAC lies mainly in the representation capacity of its Q-network.247

In IQ, we have a parametrization of the policy that enforces it to be a softmax of an implicit Q-248

value. By doing this, we trade in estimation error – our greedy step is exact by construction – for249

representation power. More precisely, as the Q-value is not parametrized explicitly, but through the250

policy, the representation power of IQ is in its policy network, and a “simple” representation might251

not be enough anymore. For example, if we parameterized the policy as a Gaussian, this would252

amount to parametrize an advantage as a quadratic function of the action: this would drastically limit253

what the IQ could represent.254

Multicategorical policies. To address this issue, we turn to other, richer, distribution representa-255

tions. In practice, we consider a multi-categorical discrete softmax distribution. Precisely, we are in256

the context of a multi-dimensional action space A of dimension d, each dimension being a bounded257

interval. We discretize each dimension of the space uniformly in n values δj , for 0 ≤ j ≤ n − 1.258

It effectively defines a discrete action space A′ =×d

j=1
Aj , with Aj = {δ0, . . . δn−1}. A multidi-259

mensional action is a vector a ∈ A′, and we denote aj the jth component of the action a. Assuming260

independence between actions conditioned on states, a policy πθ can be factorized as the product of261

d marginal mono-dimensional policies πθ(a|s) =
∏d
j=1 π

j
θ(a

j |s). We represent each policy as the262

softmax of the output of a neural network F jθ , an thus we get the full representation263

πθ(a|s) =

d∏
j=1

softmax
(
F jθ (·|s)

)
(aj).

The F jθ functions can be represented as neural networks with a shared core, which only differ in the264

last layer. This type of multicategorical policy can represent any distribution (with n high enough)265

that does not encompass a dependency between the dimensions. The independence assumption266

is quite strong, and does not hold in general. From an advantage point of view, it assumes that267

the soft-advantage (i.e. the log-policy) can be linearly decomposed along the actions. While this268

somehow limits the advantage representation, it is a much weaker constraint than paramterizing the269

advantage as a quadratic function of the action (which would be the case with a Gaussian policy). In270

6

practice, these types of multicategorical policies have been experimented [Akkaya et al., 2019, Tang271

and Agrawal, 2020], and have proven to be efficient on continuous control tasks.272

Even richer policy classes can be explored. To account for dependency between dimensions, one273

could envision auto-regressive multicategorical representations, used for example to parametrize274

a Q-value by Metz et al. [2017]. Another approach is to use richer continuous distributions, such275

as normalizing flows [Rezende and Mohamed, 2015, Ward et al., 2019]. In this work, we restrict276

ourselves to the multicategorical setting, which is sufficient to get satisfying results (Sec. 6), and277

we leave the other options for future work.278

5 Related work279

Similar parametrizations. Other algorithms make use of a similar parametrization. First, Path280

Consistency Learning (PCL, [Nachum et al., 2017]) also parametrize the Q-value as a sum of a281

log-policy and a value. Trust-PCL [Nachum et al., 2018], builds on PCL by adding a trust region282

constraint on the policy update, similar to our KL regularization term. A key difference with IQ is that283

(Trust-)PCL is a residual algorithm, while IQ works around a fixed-point scheme. Shortly, Trust-PCL284

can be seen as a version of IQ without the target value network Vφ̄. These entropy-regularized residual285

approaches are derived from the softmax temporal consistency principle, which allows to consider286

extensions to a specific form of multi-step learning (strongly relying on the residual aspect), but they287

also come with drawbacks, such as introducing a bias in the optimization when the environment is288

stochastic [Geist et al., 2017]. Second, Quinoa [Degrave et al., 2018] uses a similar loss to Trust-PCL289

and IQ (without reference to the former Trust-PCL), but do not propose any analysis, and is evaluated290

only on a few tasks. Third, Normalized Advantage Function (NAF, Gu et al. [2016]) is designed with291

similar principles. In NAF, a Q-value is parametrized as a value and and an advantage, the former292

being quadratic on the action. It matches the special case of IQ with a Gaussian policy, where we293

recover this quadratic parametrization.294

Regularization. Entropy and KL regularization are used by many other RL algorithms. Notably,295

from a dynamic programming perspective, IQ-DP(0, τ) performs the same update as SAC – an296

entropy regularized VI. This equivalence is however not true in the function approximation regime.297

Due to the empirical success of SAC and its link to IQ, it will be used as our main baseline on298

continuous control tasks. Other algorithms also use KL regularization, notably Maximum a posteriori299

Policy Optimization (MPO, Abdolmaleki et al. [2018]). We refer to Vieillard et al. [2020a] for an300

exhaustive review of algorithms encompassed within the MD-VI framework.301

6 Experiments302

Environments and metrics. We evaluate IQ first on the Mujoco environment from OpenAI303

Gym [Brockman et al., 2016]. It consists of 5 locomotion tasks, with action spaces ranging from 3304

(Hopper-v2) to 17 dimensions (Humanoid-v2). We use a rather long time horizon setting, evaluating305

our algorithm on 20M steps on each environments. We also provide result on the Adroit manipulation306

dataset [Rajeswaran et al., 2017], with a similar setting of 20M environment steps. Adroit is a307

collection of 4 hand manipulation tasks. This environment is often use in an offline RL setting, but308

here we use it only as a direct RL benchmark. Out of these 4 tasks, we only consider 3 of them: We309

could not find any working algorithm (baseline or new) on the “relocate” task. To summarize the310

performance of an algorithm, we report the baseline-normalized score along iterations: It normalizes311

the score so that 0% corresponds to a random score, and 100% to a given baseline. It is defined for312

one task as score =
scorealgorithm−scorerandom

scorebaseline−scorerandom
, where the baseline is the best version of SAC on Mujoco and313

Adroit after 20M steps. We then report aggregated results, showing the mean and median of these314

normalized scores along the tasks. Each score is reported as the average over 20 random seeds. For315

each experiment, the corresponding standard deviation is reported in B.3316

IQ algorithms. We implement IQ with the Acme [Hoffman et al., 2020] codebase. It defines two317

deep neural networks, a policy network πθ and a value network Vφ. IQ interacts with the environment318

through πθ, and collect transitions that are stored in a FIFO replay buffer. At each interaction, IQ319

updates θ and φ by performing a step of stochastic gradient descent with Adam [Kingma and Ba,320

2015] on LIQ (Eq. (2)). During each step, IQ updates a copy of the weights θ, θ̄, with a smooth321

7

0 25 50 75 100 125 150 175 200
steps (1e5)

0

20

40

60

80

100

m
ea

n
sc

or
es

 (%
) IQ

M-IQ
PCL
Trust-PCL
IQ-Gaussian
M-IQ-Gaussian
SAC

0 25 50 75 100 125 150 175 200
steps (1e5)

0

20

40

60

80

100

m
ed

ia
n

sc
or

es
 (%

) IQ
M-IQ
PCL
Trust-PCL
IQ-Gaussian
M-IQ-Gaussian
SAC

Figure 2: SAC-normalized scores on Gym. Left: Mean scores. Right: Median scores.

update θ̄ ← (1 − λ)θ̄ + λθ, with λ ∈ (0, 1). It tracks a similar copy φ̄ of φ. We keep almost all322

common hyperparameters (networks architecture, λ, etc.) the same as our main baseline, SAC. We323

only adjust the learning rate for two tasks, Humanoid and Walker, where we used a lower value: we324

found that IQ benefits from this, while for SAC we did not observe any improvement (we provide325

more details and complete results in Appx. B.3). Our value network has the same architecture as the326

SAC Q-networks except that the input size is only the state size (as it does not depend on the action).327

The policy network has the same architecture as the SAC policy network, and differs only by its328

output: IQ policy outputs a multicategorical policy (so n · d values, where d is the dimensionality of329

the action space and n is the number of discrete action on each dimension), while SAC policy outputs330

2 d-dimensional vectors (mean and diagonal covariance matrix of a Gaussian). We use n = 11 in our331

experiments. IQ introduces two hyperparameters, α and τ . We tested several values of τ between332

10−4 and 1, and selected a value per task suite: we use τ = 0.01 on Mujoco tasks and τ = 0.001 on333

Adroit. We tested values of α in {0., 0.1, 0.5, 0.9, 0.99}. To make the distinction between the cases334

when α = 0 and α > 0, we denote IQ(α > 0) as M-IQ, for Munchausen-IQ, since it makes use of335

the Munchausen regularization term. For M-IQ, we found α = 0.9 to be the best performing value,336

which is consistent with the findings of Vieillard et al. [2020b]. We report results for non-optimal337

values of τ in the ablation study (Section 6). Extended explanations are provided in Appendix B.2.338

Baselines. On continuous control tasks, our main baseline is SAC, as it reaches state-of-the-art339

performance on Mujoco tasks. We compare to the version of SAC that uses an adaptive temperature for340

reference, but note that for IQ we keep a fixed temperature (τ) setting. To reach its best performance,341

SAC either uses a specific temperature value per task, or an adaptive scheme that controls the entropy342

of the policy. This method could be extended to multicategorical policies, but we leave this for343

future work, and for IQ we use the same value of τ for all tasks of an environment (10−2 on Gym,344

10−3 on Adroit). We use SAC with the default parameters from Haarnoja et al. [2018b] on Gym,345

and a specificly tuned version of SAC on Adroit. Remarkably, SAC and IQ work with similar346

hyperparameter ranges on both benchmarks. We only found that using a learning rate of 3 · 10−5347

(instead of 3 · 10−4) gave better performance on Adroit. We also compare IQ to Trust-PCL. It is the348

closest algorithm to IQ, with a similar parametrization. To be fair, we compare to our version of349

Trust-PCL, which is essentially a residual version of IQ, where the target value network Vφ̄ is replaced350

by the online one. We use Trust-PCL with a fixed temperature, and we tuned this temperature to the351

environment. We found that Trust-PCL reaches its best performance with significantly lower values352

of τ compared to IQ. In the ablation (Fig. 2) we used τ = 10−4 for PCL and Trust-PCL.353

Comparison to baselines. We report aggregated results of IQ and M-IQ on Gym in Fig. 2 and354

on Adroit in Fig. 3, and corresponding standard deviations in Appx. B.3. IQ reaches competitive355

performance to SAC. It is less sample efficient on Gym (SAC reaches higher performance sooner),356

but faster on Adroit, and IQ reaches a close final performance on both environments. These results357

also show the impact of the α parameter. Although the impact of the Munchausen term (i.e KL358

regularization) might not seem as impressive as in discrete actions, these results show that using that359

term is never detrimental, and can even bring a slight improvement on Gym; while it does not add360

any compute complexity to the algorithm. We also report scores on each individual task in Appx. B.3,361

along with in-depth discussion on the performance and the impact of hyperparameters.362

8

0 50 100 150 200
steps (1e5)

0

20

40

60

80

100

m
ea

n
sc

or
es

 (%
)

IQ
M-IQ
SAC

0 50 100 150 200
steps (1e5)

0

20

40

60

80

100

m
ed

ia
n

sc
or

es
 (%

) IQ
M-IQ
SAC

Figure 3: SAC-normalized scores on Adroit. Left: Mean scores. Right: Median scores.

0 1 2
steps 1e7

0

5000

10000

15000

sc
or
e

HalfCheetah-v2

τ=0.001
τ=0.01
τ=0.1
SAC

0 1 2
steps 1e7

0

2000

4000

6000

sc
or
e

Ant-v2

0 1 2
steps 1e7

0

2000

4000

sc
or
e

Walker2d-v2

0 1 2
steps 1e7

1000

2000

3000

sc
or
e

Hopper-v2

0 1 2
steps 1e7

0

2000

4000

6000

8000

sc
or
e

Humanoid-v2

Figure 4: Influence of τ on IQ with α = 0.

Influence of the temperature. We study the influence of the temperature on the Mujoco tasks363

in Fig. 4. We report the score of IQ for several values of τ (with α = 0 here,and with α > 0 in364

Appx.B.3), on all environments of Mujoco. It shows that τ needs to be selected carefully: while365

it helps learning, too high values of τ can be detrimental to the performance, and it highlights366

that its optimal value might be dependant on the task. Another observation is that τ has a much367

stronger influence on IQ than α. This is a key empirical difference regarding the performance of368

M-DQN [Vieillard et al., 2020b]. M-DQN shares similar τ and α parameters, but is specific to369

discrete actions. It benefits from a high value of α: M-DQN with α = 0.9 largely outperforms370

M-DQN with α = 0 on the Atari benchmark. While this term still has effect in IQ on some tasks, it is371

empirically less useful, even though it is never detrimental; this discrepancy is yet to be understood.372

Ablation study. We perform an ablation on important components of IQ in Fig. 2. (1) We replace373

the target network by its online counterpart in Eq. (2), which gives us Trust-PCL (and PCL is obtained374

by setting α = 0), a residual version of our method. IQ and M-IQ both outperform Trust-PCL and375

PCL on Mujoco. (2) We use a Gaussian parametrization of the policy instead of a multicategorical376

distribution. We observe on Fig. 2 that this causes the performance to drop drastically. This377

empirically validates the considerations about the necessary complexity of the policy from Section 4.378

7 Conclusion379

We introduced IQ, a parametrization of a Q-value that mechanically preserves the softmax relation380

between a policy and an implicit Q-function. Building on this parametrization, we derived an off-381

policy algorithm, that learns a policy and a value by minimizing a single loss, in a fixed-point fashion.382

We provided insightful analysis that justifies our parametrization and the algorithm. Specifically, IQ383

performs entropy and (implicit) KL regularization on the policy. While this kind of regularization had384

already been used and analyzed in RL, it was limited by the difficulty of estimating the softmax of Q-385

function in continuous action settings. IQ ends this limitation by avoiding any approximation in this386

softmax, effectively extending the analysis of this regularization. This parametrization comes at a cost:387

it shifts the representation capacity from theQ-network to the policy, which makes the use of Gaussian388

representation ineffective. We solved this issue by considering simple multicategorical policies, which389

allowed IQ to reach performance comparable to state-of-the-art methods on classic continuous control390

benchmarks. Yet, we envision that studying even richer policy classes may results in even better391

performance. In the end, this work brings together theory and practice: IQ is a theory-consistent392

manner of implementing an algorithm based on regularized VI in continuous actions settings.393

9

References394

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin395

Riedmiller. Maximum a posteriori policy optimisation. In International Conference on learning396

Representations (ICLR), 2018.397

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,398

Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a399

robot hand. arXiv preprint arXiv:1910.07113, 2019.400

Marc G Bellemare, Georg Ostrovski, Arthur Guez, Philip S Thomas, and Rémi Munos. Increasing401

the action gap: New operators for reinforcement learning. In AAAI Conference on Artificial402

Intelligence (AAAI), 2016.403

Dimitri P Bertsekas and John N Tsitsiklis. Neuro dynamic programming. Athena Scientific Belmont,404

MA, 1996.405

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and406

Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.407

Jonas Degrave, Abbas Abdolmaleki, Jost Tobias Springenberg, Nicolas Heess, and Martin Riedmiller.408

Quinoa: a q-function you infer normalized over actions. Deep RL Workshop at NeurIPS, 2018.409

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-410

critic methods. In International Conference on Machine Learning (ICML), pages 1587–1596.411

PMLR, 2018.412

Matthieu Geist, Bilal Piot, and Olivier Pietquin. Is the bellman residual a bad proxy? Advances in413

Neural Information Processing Systems (NeurIPS), 2017.414

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A Theory of Regularized Markov Decision415

Processes. In International Conference on Machine Learning (ICML), 2019.416

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with417

model-based acceleration. In International Conference on Machine Learning (ICML), 2016.418

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy419

maximum entropy deep reinforcement learning with a stochastic actor. In International Conference420

on Machine Learning (ICML), 2018a.421

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash422

Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and423

applications. arXiv preprint arXiv:1812.05905, 2018b.424

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan425

Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in426

deep reinforcement learning. In AAAI Conference on Artificial Intelligence (AAAI), 2018.427

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex analysis. Springer428

Science & Business Media, 2004.429

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara430

Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex431

Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew432

Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed433

reinforcement learning. arXiv preprint arXiv:2006.00979, 2020. URL https://arxiv.org/434

abs/2006.00979.435

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In nternational436

Conference for Learning Representations (ICLR), 2015.437

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of438

continuous actions for deep rl. arXiv preprint arXiv:1705.05035, 2017.439

10

https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2006.00979

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,440

Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control441

through deep reinforcement learning. Nature, 518(7540):529, 2015.442

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between443

value and policy based reinforcement learning. Advances in Neural Information Processing Systems444

(NeurIPS), 2017.445

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Trust-pcl: An off-policy trust446

region method for continuous control. International Conference on Learning Representations447

(ICLR), 2018.448

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel449

Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement450

learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.451

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International452

Conference on Machine Learning (ICML). PMLR, 2015.453

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist.454

Approximate modified policy iteration and its application to the game of Tetris. Journal of Machine455

Learning Research, 16:1629–1676, 2015.456

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.457

In AAAI Conference on Artificial Intelligence 5AAAI), volume 34, pages 5981–5988, 2020.458

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.459

Leverage the average: an analysis of kl regularization in rl. In Advances in Neural Information460

Processing Systems (NeurIPS), 2020a.461

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. Advances462

in Neural Information Processing Systems (NeurIPS), 2020b.463

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling464

network architectures for deep reinforcement learning. In International conference on machine465

learning (ICML), pages 1995–2003. PMLR, 2016.466

Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving exploration in soft-actor-467

critic with normalizing flows policies. arXiv preprint arXiv:1906.02771, 2019.468

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.469

Brian D Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal470

Entropy. PhD thesis, University of Washington, 2010.471

11

