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ABSTRACT

Self-supervised Learning (SSL) provides a strategy for constructing useful repre-
sentations of images without relying on hand-assigned labels. Many such meth-
ods aim to learn a function that maps distinct views of the same scene or object
to nearby points in the representation space. These methods are often justified
by showing that they optimize an objective that is an approximation of (or cor-
related with) the mutual information between representations of different views.
Here, we recast the problem from the perspective of manifold capacity, a measure
that has been used to evaluate the classification capabilities of a representation.
Specifically, we develop a contrastive learning framework that aims to maximize
the number of linearly separable object manifolds, yielding a Maximum Manifold
Capacity Representation (MMCR). We apply this method to unlabeled images,
each augmented by a set of basic transformations, and find that it learns mean-
ingful features using the standard linear evaluation protocol. Specifically, we find
that MMCRs support performance on object recognition comparable or better than
recently developed SSL frameworks, while providing more robustness to adver-
sarial attacks. Finally, empirical analysis reveals the means by which compression
of object manifolds gives rise to class separability.

1 INTRODUCTION

Natural images lie, at least locally, within manifolds whose intrinsic dimensionality is low relative
to that of their embedding space (the set of pixel intensities). Nevertheless, these manifolds are
enormously complex, as evidenced by the variety of natural scenes. A fundamental goal of ma-
chine learning is to extract these structures from observations, and use them to perform inference
tasks. In the context of recognition, consider the object submanifold, Mj , which consists of all
images of object j (for example, those taken from different camera locations, or under different
lighting conditions). Object recognition networks act to map images within a submanifold to nearby
representations, relative to images from other submanifolds, and this concept has been effictively
exploited in recent self-supervised learning (SSL) methods (Zbontar et al., 2021; Chen et al., 2020;
Caron et al., 2020; Bachman et al., 2019; Wang & Isola, 2020; Wang et al., 2022). Most of these
operate by minimizing pairwise distances between images within submanifolds, while contrastively
maximizing pairwise distances between images in different submanifolds.

A parallel effort in computational neuroscience has aimed to characterize manifolds in neural repre-
sentations, and their relationship to underlying neural circuits (Kriegeskorte & Kievit, 2013; Chung
& Abbott, 2021). Studies in various modalities have identified geometric structures in neural data
that are associated with behavioral tasks (Bernardi et al., 2020; DiCarlo & Cox, 2007; Hénaff et al.,
2021; Gallego et al., 2017; Nieh et al., 2021), and explored metrics for quantifying these represen-
tation geometries.

Here, we make use of a recently developed measure of manifold capacity, rooted in statistical
physics (Chung et al., 2018), which has been used to evaluate how many manifolds can be lin-
early separated within the representation space of various models. We develop a simplified form of
this meausre, and incorporate it into a novel contrastive objective, that maximizes the extent of the
global image manifold while minimizing that of constituent object manifolds. We apply this to an
unlabeled set of images, each augmented to form a small set of samples from their corresponding
manifold. We show that the learned representations
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• support high-quality object recognition, when evaluated using the standard linear evalua-
tion (Chen et al., 2020) paradigm (i.e., training a linear classifer to operate on the output of
the unsupervised network). In particular, performance is approximately matched to that of
other recently proposed SSL methods.

• extract semantically relevant features from the data, that can be revealed by examining the
learning signal derived from the unsupervised task

• have interpretable geometric properties
• are more robust to adversarial attack than those of other recently proposed SSL methods.

1.1 RELATED WORK

Our methodology is closely related to and inspired by recent advances in contrastive self-supervised
representation learning (SSL), but has a distinctly different motivation. Many recent frameworks
craft objectives that are designed to maximize the mutual information between representations of
different views of the same object (Oord et al., 2018; Chen et al., 2020; Oord et al., 2018; Tian
et al., 2020; Bachman et al., 2019)). However, estimating mutual information in high dimensional
feature spaces (which is the regime of modern deep learning models models) has been difficult
to compute historically (Belghazi et al., 2018), and furthermore it is not clear that more closely
approximating mutual information in the objective produces improved representations (Wang &
Isola, 2020). 1 By contrast, capacity estimation theories operate in the regime of large ambient
dimension as they are derived in the “large N (thermodynamic) limit” (Chung et al., 2018; Bahri
et al., 2020). Therefore we test whether one such measure, which until now had been used to
evaluate the quality of representations, might be useful as objective function in SSL.

Operationally, many existing methods are optimized to minimize some notion of distance between
the representations of different augmented views of the same image, while maximizing the distance
between representations of (augmented views of) distinct images (these are thought of as encour-
aging alignment and uniformity in the framework of Wang & Isola (2020)). When taking the view
that different views of an image form a continuous manifold that we aim to compress, the distance
between two randomly sampled points from said manifold seems a strange choice for the size met-
ric to optimize for. Perhaps unsurprisingly it has been demonstrated on multiple occasions, notably
by the success of the “multi-crop,” strategy implemented SwAV (Caron et al., 2020) and earlier in
the contrastive multiview coding work by Tian et al. (2020)). However most commonly the use of
multiple views is such that the objective effectively becomes a Monte Carlo estimate with more than
one sample of the same pairwise distance function.

Rather than using the mean distance or cosine similarity between pairs of points, we use a nuclear
norm as a combined measure of size and dimensionality of groups of points, an idea that is strongly
motivated by learning theory. The nuclear norm has been previously used to induce or infer low
rank structure in the representation of data, for example, in Hénaff et al. (2015); Wang et al. (2022);
Lezama et al. (2018). In particular, Wang et al. (2022) employ the nuclear norm as a regularizer to
supplement an InfoNCE loss. Our approach represents a more radical departure from the traditional
InfoNCE loss, as we will detail below. Rather than pair a low-rank prior with a logistic regression-
based likelihood, we make the more symmetric choice of employing a high rank likelihood. This
allows the objective to explicitly discourage dimensional collapse, a well known issue in SSL (Jing
et al., 2021).

Another consequence of encouraging maximal rank over the dataset is that the objective encourages
the representation to form a simplex equiangular tight frame (sETF). sETFs have been shown to be
optimal in terms of cross-entropy loss when features lie on the unit hypersphere (Lu & Steinerberger,
2020), and such representations can be obtained in the supervised setting when optimizing either the
traditional cross-entropy loss or a supervised contrastive loss (Papyan et al., 2020; Graf et al., 2021).
Recent work has shown that many popular objectives in SSL can be understood as different methods
of approximating a loss function whose minima form sETFs (Dubois et al., 2022). Our approach is
novel, in that it encourages sETF representations by directly optimizing the distribution of singular
values, rather than minimizing a cross-entropy loss.

1Barlow Twins (Zbontar et al., 2021) notably avoids the curse of dimensionality because their objective
effectively estimates information under a Gaussian parameterization rather than doing so non-parametrically as
in the InfoNCE loss. Our method also makes use of Guasian/second order parameterizations, as detailed below.
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2 MAXIMUM MANIFOLD CAPACITY REPRESENTATIONS

Figure 1: Two dimensional illustrations of high and low capacity representations. Left: the capac-
ity (linear separability) of a random set of elliptical regions can be improved, either by reducing
their sizes (while maintaining their dimensionalities), or by reducing their dimensionalities (while
maintaining their sizes). Right: the objective proposed in this paper aims to minimize the nuclear
norm (product of size and sqrt dimensionality) of normalized data vectors (ie., lying on the unit
sphere). Before training the manifolds have a large extent and thus the matrix of their corresponding
centroid vectors has low nuclear norm. After training the capacity is increased. The manifolds are
compressed and repelled from each other, resulting in centroid matrix with larger nuclear norm and
lower similarity.

2.1 MANIFOLD CAPACITY THEORY

Consider a set of P manifolds embedded in a feature space of dimensionality D, each assigned a
random binary class label. Manifold capacity theory is concerned with the question: what is the
largest value of P

D such that there exists (with high probability) a hyperplane separating the two
classes? Recent theoretical work has demonstrated that there exists a critical value, dubbed the
manifold capacity αC , such that when P

D < αC the probability of finding a separating hyperplane
is approximately 1.0, and when P

D > αC the probability is approximately 0.0. Furthermore, αC

can be accurately predicted from three key quantities: (1) the manifold radius RM , which measures
the size of the manifold relative to its distance from the origin, (2) the manifold dimensionality DM

which estimates the number of dimensions along which a manifold has significant extent, and (3) the
centroid correlation (if the positions of manifolds are correlated with each other they will be more
difficult to separate). In particular, when the centroid correlation is low the manifold capacity can
be approximated by ϕ(RM

√
DM ) where ϕ(·) is a monotonically decreasing function.

For manifolds of arbitrary geometry calculating the manifold radii and dimensionalities involves an
iterative process that alternates between determining the set of “anchor points” on each manifold
that are relevant for the classification problem, and computing the statistics of random projections
of these anchor points (Cohen et al., 2020). This process is both computationally costly and non-
differentiable, and therefore not suitable for use as an objective function. For more detail on the
general theory see A.2. However, if the submanifolds are assumed to be elliptical in shape there is
an analytical expression for each of these,

RM =
√∑

i λ
2
i , DM =

(
∑

i λi)
2∑

i λ
2
i

, (1)

where the λ2
i are the eigenvalues of the covariance matrix of points on the manifold. For reference,

for a batch of 100 128-D manifolds with 100 points sampled from each, computing these elliptical-
assuming measures is approximately 500 times faster in terms of wall-clock time.

Using these definitions for manifold radius and dimensionality we can write the capacity as
αC = ϕ(

∑
i σi) where σi are the singular values of a matrix containing points on the manifold

(which are the square roots of the eigenvalues of the covariance matrix). In this form, the sum is the
L1 norm of the singular values, known as the Nuclear Norm of the matrix. When used as an ob-
jective function, this measure will prefer sparse solutions (i.e., a small number of non-zero singular
values) corresponding to low dimensionality. It is worth comparing this objective to another natural
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candidate for quantifying size: the determinant of the covariance matrix. The determinant is equal
to the product of the eigenvalues (which captures the squared volume of the corresponding ellipse),
but lacks the preference for lower dimensionality that comes with the Nuclear Norm. Specifically,
since the determinant is zero whenever one (or more) eigenvalue is zero, it cannot distinguish zero-
volume manifolds of different dimensionality. In Yu et al. (2020), lossy coding rate (entropy) is used
as a measure of compactness, which simplifies to the log determinant under a Gaussian model Ma
et al. (2007). In that work, the identity matrix is added to a multiple of the feature covariance matrix
before evaluating the determinant, which solves the dimensionality issue described above.

2.2 OPTIMIZING MANIFOLD CAPACITY

Manifold Capacity has been previously used to evaluate and compare network representations
(Chung et al., 2018; Cohen et al., 2020). Here, we explore its use as an objective function for
self-supervised learning. For each input image (notated as a vector xb ∈ RD) we generate K sam-
ples from the corresponding manifold by applying a set of random augmentations (each drawn from
the same distribution), yielding a manifold sample matrix X̃b ∈ RD×K . Each augmented image is
transformed by a Deep Neural Network, which computes nonlinear function f(xb; θ) parameterized
by θ, and the d-dimensional responses are projected onto the unit sphere yielding manifold response
matrix Zb ∈ Rd×K . The centroid cb is approximated by averaging across the columns. For a set
of images {x1, ...,xB} we compute normalized response matrices {Z1, ...,ZB} and assemble their
corresponding centroids into matrix C ∈ Rd×B .

Given the responses and their centroids, the loss function is expressed as:

L = −||C||∗ + λEb[||Zb||∗] (2)

where || · ||∗ indicates the nuclear norm and λ is a tradeoff parameter. The first term maximizes
the extent of the “centroid manifold” to encourage separability while the second term encourages
object manifold compression .

Compression by Maximizing Centroid Nuclear Norm Alone Interestingly, the first term also has
a compressive effect. This is because each centroid vector, as a mean of unit vectors, has norm that
is linearly related to the average cosine similarity of vectors of said unit vectors. Specifically,

||cb||2 =
1

K
+

2

K2

K∑
k=1

k−1∑
l=1

zT
b,kzb,l (3)

Here zb,i denotes the representation of the ith augmentation of xb. Then because the nuclear norm

is bounded below by the Frobenius norm (Recht et al., 2010), ||C||∗ ≥ ||C||F =
√∑B

b=1 ||cb||2,
maximizing the centroid nuclear norm optimizes an upper bound on the norms of centroid vectors,
thus encouraging intra-object manifold similarity. We can gain further insight by considering how
the distribution of singular vectors of a matrix depends on the norms and pairwise similarities of
the constituent column vectors. While no closed form solution exists for the singular values of an
arbitrary matrix, the case where the matrix is composed of two column vectors can provide useful
intuition. If C = [c1, c2], Z1 = [z1,1, z1,2], Z2 = [z2,1, z2,2], the singular values of C and Zi are:

σ(C) =

√
||c1||2 + ||c2||2 ± ((||c1||2 − ||c2||2)2 + 4(cT1 c2)

2)1/2

2

σ(Zi) =
√

1± zT
i,1zi,2

(4)

So, ||σ(C)||1 = ||C||∗ is maximized when the centroid vectors have maximal norms (bounded
above by 1, since they are the centroids of unit vectors), and are orthogonal to each other. As
we saw above the centroid norms is a linear function of within-manifold similarity. Similarly,
||σ(Zi)||1 = ||Zi||∗ is minimized when the within-manifold similarity is maximal. So, both terms
in the objective encourage object manifold compression (in the simple case described above the ef-
fect is nearly mathematically equivalent). Surprisingly, this implies the first term alone encapsulates
both of the key ingredients of a contrastive learning framework, and we do observe that simply max-
imizing ||C||∗ is sufficient to learn a useful representation. This is because the compressive role of
“positives” in contrastive learning is carried out by forming the centroid vectors, so the objective is
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not positive-free even with λ = 0. For example, if only a single view is used the objective lacks a
compressive component and fails to produce a useful representation. We will refer to this version
of the objective (with λ = 0) as “implicit manifold compression.” In A.5 we demonstrate empir-
ically that this implicit form effectively reduces ||Zb||∗ So, all three factors which determine the
manifold capacity (radius, dimensionality, and centroid correlations) can be elegantly expressed in
an objective function with a single term, −||C||∗.

Computational Complexity: The implicit form of our method involves computing a singular value
decomposition of C ∈ Rd×B which has complexity O(Bd× min(B, d)), where B is the batch size
and d is the dimensionality of the output. By comparison, many popular methods in SSL involve
computing the pairwise cosine similarity between members of the batch, which has complexity
O(B2d). Additionally, the complexity of our method (in implicit form) is constant with respect to
the number of views used (though the feature extraction phase is linear in the number of views),
while pairwise similarity metrics will have quadratic complexity with the number of views.

3 METHODS

3.1 IMPLEMENTATION DETAILS

Architecture. For all experiments we use ResNet-50 (He et al., 2016) as a backbone architecture
(for variants trained on CIFAR we removed max pooling layers). Following Chen et al. (2020), we
append a small perceptron with one hidden layer to the output of the average pooling layer of the
ResNet so that zi = g(h(xi)), where h is the ResNet and g is the MLP.

Optimization We employ a standard set of augmenetations, taking them directly from (Zbontar
et al., 2021). For CIFAR and STL-10 we used relatively small batch sizes and the Adam optimizer
with a fixed learning rate, for ImageNet-100 we used batch size of 2048 for all three methods and
the LARS optimizer with linear warmup and cosine decay. We used a large number of views for
small datasets with MMCR (40 for CIFAR and 20 for STL), and a much smaller number of views
for ImageNet-100 (we report results for 4 views and 2 views). For more details on specific hyperpa-
rameter settings see A.3.

3.2 EVALUATION METHODS

Classification Accuracy. We follow a standard linear evaluation protocol: the parameters of the
encoder, h are frozen and a linear function is trained to classify images using the standard supervised
cross entropy loss function, see A.6 for details. We pre-train and evaluate classification performance
on CIFAR-10/100, STL-10, and ImageNet-100 (a 100 class subset of the full ImageNet Dataset)
(Krizhevsky et al., 2009; Coates et al., 2011; Deng et al., 2009).

Mean Field Theory Manifold Analysis. In manifold capacity theory Chung et al. (2018), the radius
and dimensionality of manifolds with arbitrary geometry (i.e., not restricted to elliptical form) are
determined by the statistics of particular anchor points within the convex hull of the manifold. The
anchor points of each manifold are those that uniquely specify the maximum margin separating
hyperplanes between said manifold and other manifolds. Though this measure is not well suited
for use as an objective, we use it to analyze the capacity of our self-supervised representation (see
Fig. 3).

Subspace Angle. Besides measuring the size and dimensionality of individual object manifolds we
also wish to characterize the degree of overlap between pairs of manifolds. For this, we measure the
angle between their subspaces (Knyazev & Argentati, 2002).

Shared Variance. Object manifolds will generally have a lower intrinsic dimensionality then the
space they are embedded in. Therefore, the data will have low variance along several of the principal
vectors used to calculate the set of subspace angles, and so many of the principal angles will have
little meaning. To address this limitation we also compute the shared variance between the linear
subspaces that contain object manifolds.

Adversarial Robustness. Once a linear classifier has been trained on top of the representation,
the end-to-end system can be subjected to standard adversarial attacks. We evaluate adversarial
robustness under ℓ∞ PGD attacks and AutoAttack (Madry et al., 2018; Croce & Hein, 2020).
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Table 1: Top-1 classification accuracies of linear classifiers for representations trained with various
datasets and objective functions. Note: for Barlow Twins on ImageNet-100 we report the result
from da Costa et al. (2022) which uses a ResNet-18 backbone, as we were unable to obtain better
performance. For MMCR on ImageNet-100 we tested both 2 views (matched to baselines) and 4
views, results are formatted (2-view)/(4-view)

Method CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Barlow Twins (our repro.) 90.91 67.91 89.96 80.38∗

SimCLR (our repro.) 92.22 70.04 91.11 79.64
Implicit MMCR (ours) 93.53 69.87 90.62 81.52/82.88

MMCR (λ = 0.01) 93.39 70.94 90.77 81.28/82.56

Baseline Models We chose SimCLR (Chen et al., 2020) and Barlow Twins (Zbontar et al., 2021) for
primary comparisons with our model. These methods are recent, simple to implement, and achieve
performance comparable to state of the art for self-supervised learning on the Imagenet-1k dataset.

3.3 PERFORMANCE

Figure 2 details the evolution of the representation during the course of training. The centroid
nuclear norm (Fig. 2b) increases steadily as the centroids become increasingly orthogonal to each
other (Fig. 2c) and grow in norm (Fig. 2d). The compression of individual augmentation manifolds
is reflected in Fig. 2a. The downstream classification accuracies are reported in Table 1. Subsequent
analyses are carried out on the CIFAR-10 dataset using the implicit MMCR model as it achieved the
highest performance.

Figure 2: Evolution of various metrics during training. Geometric measures are evaluated on a
set of 200 manifolds, each defined by an image drawn from the CIFAR-10 dataset, along with 16
augmentations. Shaded regions indicate a 95% confidence interval around the mean.

3.4 REPRESENTATION GEOMETRIC ANALYSIS

In figure 3 we show that our representation, which is optimized using an objective that assumes ellip-
tical manifold geometry, nevertheless yields representations with high mean field manifold capacity
(relative to baseline methods). For completeness we also analyzed the geometries of class mani-
folds, whose points are the representations of different examples from the same class. This analysis
provided further evidence that learning to maximize augmentation manifold capacity compresses
and separates class manifolds, leading to a useful representation. Interestingly MMCRs seem to
use a different strategy than the baseline methods to increase the capacity, namely MMCRs product
class/augmentation manifolds with larger radii, but lower dimensionality (Fig. 3)

3.5 EMERGENCE OF NEURAL MANIFOLDS VIA GRADIENT COHERENCE

We hypothesize the class separability in MMCRs arises because augmentation manifolds corre-
sponding to examples from the same class are optimally compressed by more similar transforma-
tions than those stemming from distinct classes. To investigate this empirically, we evaluate the
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Figure 3: Mean Field Manifold Capacity Analysis. The shared x-axis of all plots is the representa-
tional hierarchy, the leftmost entries represent the inputs (pixels) and the rightmost the output of the
encoder/learned representation. The top row shows the manifold radius, the middle the dimensional-
ity, and the bottom the resultant capacity. Shaded regions indicate a 95% confidence interval around
the mean (analysis was conducted with 5 different random samples from the dataset, see A.4).

gradient of the objective function for inputs belonging to the same class. We can then check whether
gradients obtained from (distinct) batches of the same class are more similar to each other than those
obtained from different classes, which would suggest that the strategy for compressing augmenta-
tion manifolds from the same class are relatively similar to each other. Figure 4 demonstrates that
this is the case: within class gradient coherence, as measured by cosine similarity, is consistently
higher than across class coherence across both training epochs and model hierarchy.

Figure 4: Gradient cosine similarity for pairs of single-class batches. We plot the mean pairwise
similarity for pairs of gradients for for different subsets of the model parameters (all parameters,
and the first and last linear operators) obtained from single-class-batches coming from the same or
distinct classes over the course of training. To the left is a visualization of the fact that single-class
gradients flow backward through the model in more similar directions.

3.6 MANIFOLD SUBSPACE ALIGNMENT

Within-class gradient coherence constitutes a plausible mechanistic explanation for the emergence of
class separability, but it does not explain why members of the same class share similar compression
strategies. To begin answering this question we examine the geometric properties of augmentation
manifolds in the pixel domain. Here we observe small but measurable differences between the
distributions of within-class similarity and across-class similarity, as demonstrated in the top row of
figure 5. The subtle difference in the geometric properties of augmentation manifolds in the pixel
domain in turn leads to the increased gradient coherence observed above, which over training leads
to a representation that rearranges and reshapes augmentation manifolds from the same class in a
similar fashion (bottom row of figure 5), thus allowing for the linear separation of classes. Not only
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are centroids of same-class-manifolds in more similar regions of the representation space than those
coming from distinct classes (Fig 5 third column bottom row) but additionally same-class-manifolds
have more similar shapes to each other (Fig 5 bottom row columns 1 and 2).

Figure 5: The distributions of various similarity metrics for augmentation manifolds from either
the same and distinct classes. In the top row we consider augmentation manifolds in the pixel
domain, and in the bottom row we observe how these distributions are transformed by the learned
representation. To the left a schematic shows details the exemplar-augmentation manifold-class
manifold structure of the learned representation.

We next ask how the representation learned according to the MMCR objective differs from those
optimized for other self supervised loss functions. While MMCR encourages centroids to be as close
to orthogonal to each other, the InfoNCE loss employed in Chen et al. (2020) benefits when negative
pairs are as dissimilar as possible, which is achieved when the two points lie in opposite regions of
the same subspace rather than in distinct subspaces. The Barlow Twins (Zbontar et al., 2021) loss is
not an explicit function of feature vector similarities, but instead encourages individual features to be
correlated across the batch dimension and distinct features to be uncorrelated. In 6 we demonstrate
that these intuitions are borne out empirically: the MMCR representation produces augmentation
manifold centroids that are significantly less similar to each other than the two baseline methods.

Figure 6: Centroid similarities for models trained according to different SSL objectives. The left
panel shows the distribution of centroid cosine similarities for augmentation manifolds for examples
of the same class, while the right shows the same distribution for examples from distinct classes.

3.7 ADVERSARIAL ROBUSTNESS

Previous works that used similar geometrically motivated loss functions such as the orthogonal
low-rank embedding (Lezama et al., 2018) and maximal coding rate reduction Yu et al. (2020) have
reported the resulting representations have increased inter-class margins and are more robust to label
noise. We therefore tested whether the increased tendency to orthogonalize in MMCR models leads
to any benefit in terms of adversarial robustness. In 7 we show that the MMCR model (and attached
classifier) is indeed more robust than either Barlow Twins or SimCLR trained models against PGD
attacks with a range of strengths (Madry et al., 2018). We found similar results using the stronger
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Figure 7: Adversarial Robustness of
SSL Models under PGD Attack. For
each of the three SSL models with
trained classifiers, we apply Projected
Gradient Descent (PGD) with ℓ∞-norm
perturbation under 50 attack iterations.
Inputs were scaled such that their stan-
dard deviation was 1.0, so we report the
raw attack strengths on the x-axis. Ad-
ditional details can be found in A.7

AutoAttack protocol (Croce & Hein, 2020), see A.7. Note that Barlow Twins models seem to be
more robust than those arising from SimCLR. We speculate that this is a result of the decorrelation
(rather than anti-correlation) encouraged by the Barlow Twins objective.

4 DISCUSSION

Previous work has proposed manifold capacity theory as a means of understanding the performance
of deep neural networks trained using traditional supervised methods (Cohen et al., 2020). Given that
manifold capacity theory is particularly well suited for analyzing high dimensional feature spaces,
while many SSL methods are motivated by information criterion, we wondered whether manifold
capacity could serve as a useful objective function. By approximating the manifold geometries as
elliptical, which significantly reduces the computation required to calculate the geometric properties
that dictate capacity, we were able to achieve exactly this. Although representational manifold ge-
ometries are generally not elliptical, we have demonstrated that this approximation can nonetheless
produce a useful learning signal, and leads to networks with high manifold capacity (Fig. 3). Nev-
ertheless, it would be interesting to consider other reductions of the mean field manifold capacity
theory that can capture non-elliptical structure of individual manifolds, perhaps by computing higher
order statistics of constituent points.

We demonstrate the utility of our approach by applying the method to three small datasets of un-
labeled images and demonstrating that the resulting representations can yield similar downstream
task performance to two baselines. Furthermore we conducted a gradient based analysis to begin to
understand why the self-supervised learning signal is capable of producing useful representations.
Finally, motivated by an empirical exploration of the geometrical differences between the represen-
tations produced by the three considered methods, we demonstrate that MMCRs can offer improved
robustness to adversarial attacks.

Additionally, we leveraged manifold capacity analysis in its full generality to gain insight into the
geometry of the MMCR. Intriguingly, our method produces augmentation and class manifolds with
lower dimensionality but larger radius than either Barlow Twins or SimCLR (Fig. 3). Future work
will seek to understand why this is the case, but more generally this suggests that capacity anal-
ysis can be a fruitful way to understand the different encoding strategies encouraged by various
SSL paradigms. Another factor that distinguishs MMCRs from other models is a tendency to or-
thogonalize augmentation manifold centroids and thus form a representation that is globally high
dimensional. Given that the recent observations that the representations in visual cortex and high
performing models of visual cortex are surprisingly high dimensional (Stringer et al., 2019; El-
moznino & Bonner, 2022), it may be interesting to test how well MMCRs predict neural activity.

In this study, we introduced one specific model of learning using metrics based on a specific theory
of representations: self-supervised learning via maximizing neural manifold capacity. More broadly,
this work demonstrates the efficacy of a learning objective solely based on representations (rather
than relying on classifiers), and motivates new directions of research where representation-level
phenomena in neurobiology inform the design choice in neural networks. With recent trends in
neuroscience focused on representation geometric observations in neural data, we hope that this
work lays foundations for future studies in learning based on representation geometries informed by
new discoveries in neuroscience.
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A APPENDIX

A.1 PYTORCH STYLE PSEUDOCODE FOR MMCR

1 # h: encoder
2 # g: projection head
3 # B: batch size
4 # K: number of augmentations
5 # D: projector output dimensionality
6 #
7 # lmbda: trade-off parameter
8 for x in loader:
9 # K randomly augmented views

10 x = multi_augment(x) # B x K x H x W
11

12 # push through encoder and projector
13 z = g(h(x)) # B x K x D
14

15 # project onto unitsphere
16 z = normalize(z, dim=-1)
17

18 # calculate centroids (mean over augmentation axis)
19 c = z.mean(dim=1) # B x D
20

21 # calculate singular values
22 U_z, S_z, V_z = svd(z) # batch svd
23 U_c, S_c, V_c = svd(c)
24

25 # calculate loss
26 loss = -1.0 * sum(S_c) + lmbda * sum(S_z) / B
27

28 # backward pass and optimization step
29 loss.backward()
30 optim.step()

A.2 MEAN FIELD THEORY MANIFOLD CAPACITY BACKGROUND INFORMATION

Mean Field Theory Recall the problem setting for manifold capacity analysis: given a set of P
manifolds embedded in a feature space of dimensionality D, each assigned a random binary class
label Chung et al. (2018). Manifold capacity theory is concerned with the question: what is the
largest value of P

D such that there exists (with high probability) a hyperplane separating the two
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classes? In the thermodynamic limit, where P,D → ∞ but P
D remains finite, the inverse capacity

can be written exactly,

α−1
M = ET⃗ [F (T⃗ )] (5)

where, F (T⃗ ) = minV⃗

{
∥V⃗ − T⃗∥2 | gS(V⃗ ) ≥ 0

}
, S is the set defining the manifold geometry (i.e.

the set of vectors S⃗ that are points on an individual manifold), T⃗ are random vectors drawn from
a white multivariate Gaussian distribution, and gS(V⃗ ) = minS⃗{V⃗ · S⃗ | S⃗ ∈ S}, is the concave
support function.

The KKT equations for this convex optimization problem are:

V⃗ − T⃗ − λS̃(T⃗ ) = 0

λ ≥ 0

gS(V⃗ )− κ ≥ 0

λ
[
gS(V⃗ )− κ

]
= 0.

(6)

, where S̃(T⃗ ) is a subgradient of the support function. When the support function is differentiable,
the subgradient is unique and equal to the gradient,

S̃(T⃗ ) = ∇gS(V⃗ ) = argmin
S⃗∈S

V⃗ · S⃗ (7)

S̃(T⃗ ) is the unique point in the convex hull of S that satisfies the first KKT equation, and is called
the “anchor point” for S induced by the random vector T⃗ .

Equivalent Interpretation of Anchor Points For a given dichotomy (random binary class labelling)
the weight vector of the maximum margin separating hyperplane can be decomposed into a sum of
at most P vectors, with each manifold contributing a single vector, which lies within the convex
hull of the manifold. The position of said point point is a function of the manifolds position relative
to all of the other manifolds in the space and depends on the particular set of random labels. Thus
there exists a distribution of separating-hyperplane-determining-points for each individual manifold.
Using the “cavity” method it can be shown that these points are none other than the anchor points
that are involved in solving the optimization problem described above Gerl & Krey (1994).

Numerical Solution To solve the mean field equations numerically, one samples several random
Gaussian vectors T⃗ , and then for each T⃗ , V⃗ and S⃗ are determined by solving the quadratic program-
ming program given above. The capacity is then estimated as the mean value of F or the samples
T⃗ .

Manifold Geometries The way the capacity varies in terms of the statistics of the anchor points can
be simplified by introducing two key quantities, the manifold radius RM and manifold dimension-
ality RM :

R2
M = ET⃗ [||S̃(T⃗ )||

2]

DM = ET⃗ [T⃗ · Ŝ(T⃗ )]
(8)

where Ŝ(T⃗ ) is a unit-vector in the direction of the anchor point S̃. In particular as discussed in the
main text, the manifold capacity can be approximated by ϕ(RM

√
DM ) where ϕ is a monotonically

decreasing function.

Elliptical Geometries In the case where the manifolds exhibit elliptical symmetries, the manifold
radius and dimensionality can be written in terms of the eigenvalues of the covariance matrix of the
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anchor points:

R2
M =

∑
i

λ2
i

DM =
(
∑

i λi)
2∑

i λ
2
i

(9)

So, in this case RM is the total variability of the anchor points, and DM is a generalized participation
ratio of the anchor point covariance, a well known soft measure of dimensionality.

A.3 ADDITIONAL PRE-TRAINING INFORMATION

Settings for CIFAR/STL-10 We take the parameters of each augmentation directly from Zbontar
et al. (2021), but for these lower resolution images we omitted Gaussian blurring and solarization
augmentations. All models were trained for 500 epochs using the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 1e−3 and weight decay of 1e−6. For all three methods we used a one
hidden layer MLP with hidden dimension of 512 and output dimension of 128 for the projector head
g. We swept batch size for each method and chose the one that resulted in the highest downstream
task performance. For both SimCLR and Barlow Twins we found that a batch size of 128 was
optimal (among 32, 64, 128, 256, and 512) for all 3 datasets. For MMCR there is a trade-off between
batch size and the number of augmentations used, and the optimal value of that trade-off is highly
dataset dependent. For CIFAR-10 and CIFAR-100 we used batch size of 32 and 40 views, and for
STL-10 we used a batch of 64 with 20 views For Barlow Twins we used λ = 1

128 which normalizes
for the number of elements in the on-diagonal and off-diagonal terms in the loss. For SimCLR
we used the recommended setting of τ = 0.5. The overall performance of both baseline methods
(and likely MMCR as well) could be increased with a more thorough hyperparameter search and by
employing methodology that more closely matches the original works. For example, both methods
would likely benefit from the combination of larger batch size, the use of the LARS optimizer
(which is designed for large batch optimization), a learning rate scheduler consisting of linear warm-
up followed by cosine annealing, longer training, and the use of more diverse augmentations (i.e.
including solarization and gaussian blur). Additionally Barlow Twins reports that the representation
can benefit from using a much larger projector network than we use. Because our goal was primarily
to demonstrate that MMCR can produce representations that are comparable to these baselines rather
than to produce state-of-the-art results on small scale datasets we opted for simplifications wherever
possible (using off the shelf Adam for optimization with a fixed learning rate, and fixing architectural
hyperparameters like the projector dimensionality).

Settings for ImageNet-100 For ImageNet we more closely match the pre-training procedures of
previous works. We use a batch size of 2048 and a smaller number of views for MMCR (4), and
also use the full suite of augmentations from Zbontar et al. (2021). For the sake of efficiency we train
for a reduced number of epochs (200). For MMCR and SimCLR we modified the projector hidden
dimensionality to be 4096 for the projector head, following the original work Chen et al. (2020). For
Barlow Twins we used the recommended 2-layer MLP with hidden and output dimensions of 8192,
and set λ = 5e − 3, however these hyperparameters were optimal for the full ImageNet dataset,
and not neccesarrily for ImageNet-100. We were unable to achieve better downstream performance
using a ResNet-50 backbone than what has previously been reported in the literature for this dataset
with a ResNet-18 backbone, therefore we report the ResNet-18 performance reported in (da Costa
et al., 2022). For SimCLR we use τ = 0.1 which is the recommended setting for larger batch sizes.

A.4 DETAILS OF REPRESENTATIONAL ANALYSES

Manifold Capacity Analysis For each pre-trained model, we extract layer activations across the
ResNet hierarchy after a forward pass of a set of images. For class manifold analysis, the set of
images contain 10 classes, where each class has 100 examples. Augmentation manifolds instead
have 100 exemplars with 100 examples each. Following Cohen et al. (2020), we take activations
from all convolutional layers in ResNet-50 after a ReLU non-linearity. The specific extracted layers
highlighted in bold fonts are given by Table 2. The final analysis results are averaged over five data
samplings with different random seeds and random projections of intermediate features to lower-
dimension spaces (default 5000 dimensions).
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Table 2: A Total of 18 Extracted ResNet-50 Layers (in Bold) for MFTMA Analysis

Layer Type Conv2d Size (H × W × C)

pixel Input None

conv1

[Conv2d
BatchNorm
ReLU

]
× 1 [7× 7× 64]× 1

conv2 x

[Conv2d
BatchNorm

]
× 3

ReLU

× 3

[
1× 1× 64
3× 3× 64
1× 1× 256

]
× 3

conv3 x

[Conv2d
BatchNorm

]
× 3

ReLU

× 4

[
1× 1× 128
3× 3× 128
1× 1× 512

]
× 4

conv4 x

[Conv2d
BatchNorm

]
× 3

ReLU

× 6

[
1× 1× 256
3× 3× 256
1× 1× 1024

]
× 6

conv5 x

[Conv2d
BatchNorm

]
× 3

ReLU

× 3

[
1× 1× 512
3× 3× 512
1× 1× 2048

]
× 3

Gradient Coherence Analysis In Fig 4, for each of the classes of CIFAR-10, we generate 100
batches of 32 augmentation manifolds of samples from a specific class (with 40 augmentations
each). We then measure the gradient of the loss function for each batch during different stages of
training, and compute the cosine similarity between every pair of gradients. Across all stages of
training the mean cosine similarity between gradients generated from batches of the same class is
larger than those from distinct classes (left column). This observation remains true when isolating
the gradients of parameters from different stages of in the resnet-50 hierarchy (center and right
columns, respectively).

Manifold Subspace Alignment For Fig. 5 we generated 100 samples from the augmentation man-
fiolds of 500 images in the CIFAR-10 dataset. We then measure the mean subspsace angle (left
column), fraction of shared variance (middle column) and centroid cosine similarity between each
pair of manifolds. The same procedure was used for generating the data for 6.

A.5 IMPLICIT MMCR EFFECTIVELY REDUCES AUGMENTATION MANIFOLD NUCLEAR
NORM

To test whether or not implicit manifold compression actually reduces the mean augmentation man-
ifold nuclear norm, we can vary the value of λ. Below we see the evolution of bother terms of the
loss for several different values of lambda during training on CIFAR-10. For these experiments the
batch size was 64 and the number of augmentations per image was 4.0. As shown in 8, the level of
compression of individual manifolds is nearly the same across all values of the tradeoff parameter
tested.

A.6 CLASSIFICATION EVALUATION PROCEDURE

During pre-training all models were monitored with a k-nearest neighbor classifier (k=200) and
checkpointed every 5 epochs. After pre-training, we trained linear classifiers on all checkpoints
whose monitor accuracy was within 1% of the highest observed accuracy, and select the model that
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Figure 8: Validation loss values for different values of λ

achieves the highest linear classification accuracy. Linear classifiers were trained using the Adam
optimizer with batch size of 1024 and an initial learning rate of 0.1, which decayed according to a
cosine scheduler over the course of 50 epochs. For the linear classifier training, at train time we use
the same set of augmentations as during unsupervised pretraining, at test time we only use center
cropping and random horizontal flipping.

A.7 ADDITIONAL DETAILS FOR ADVERSARIAL ROBUSTNESS ANALYSES

In Figure 7, we choose 50 iterations for the PGD ℓ∞-norm since it guarantees a robust accuracy
value not far away from asymptotically larger PGD attack iterations (Madry et al., 2018; Croce &
Hein, 2020). In our experiment, we have shown that the PGD attack indeed converges in a similar
fashion (See Figure 9). However, the robust accuracy for MMCR tends to converge at larger PGD
attack iterations.

Figure 9: Convergence for different settings of adversarial attack strengths

We therefore also analyzed the robust accuracies for the three SSL methods with varying iterations
across all epsilon attack strength. Figure 10 shows MMCR exhibits a significantly higher robust
accuracy compared to Barlow-Twins and SimCLR in the low iterations regime.

Aside from the standard PGD adversarial attack, we also tested three SSL methods under the Au-
toAttack protocol. The ℓ∞-norm AutoAttack accuracy is given by Table 3.
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Figure 10: PGD ℓ∞-norm attack with varying iterations.

Table 3: AutoAttack ℓ∞-norm Robust Accuracy

Method Clean Accuracy Eps = 40/255 Eps = 160/255

Barlow Twins (our repro.) 90.91 74.55 31.53
SimCLR (our repro.) 92.22 72.48 26.37

Implicit MMCR (ours) 93.53 75.88 32.47
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