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Abstract

The safety alignment of large language models (LLMs) often relies on reinforce-
ment learning from human feedback (RLHF), which requires human annotations
to construct preference datasets. Given the challenge of assigning overall quality
scores to data, recent works increasingly adopt fine-grained ratings based on mul-
tiple safety rules. In this paper, we discover a robust phenomenon: Rules with
higher rating entropy tend to have lower accuracy in distinguishing human-
preferred responses. Exploiting this insight, we propose ENCORE, a simple
entropy-guided method to compose multi-head rewards by penalizing rules with
high rating entropy. Theoretically, we show that such rules yield negligible weights
under the Bradley—Terry loss during weight optimization, naturally justifying their
penalization. Empirically, ENCORE consistently outperforms strong baselines,
including random and uniform weighting, single-head Bradley—Terry, and LLM-as-
a-judge, etc. on RewardBench safety tasks. Our method is completely training-free,
generally applicable across datasets, and retains interpretability, making it a practi-
cal and effective approach for multi-attribute reward modeling.

1 Introduction

State-of-the-art large language models (LLMs) have demonstrated remarkable capabilities, yet they
occasionally produce unsafe or harmful responses, raising significant concerns about their alignment
with human values [Brown et al., |[2020, |L1iu et al.| 2024a, |Anthropic, [2024} |Yang et al., 2024} Team
et al.,[2023| Dubey et al.|[2024} Du et al., |2022]. To mitigate such risks, a widely adopted approach is
reinforcement learning from human feedback (RLHF) [Ouyang et al.,2022| Ramamurthy et al.| [2022]
Wu et al.} 2023] |Ganguli et al.,[2023]], which relies on human-annotated preference datasets to train
reward models assessing response quality. An alternative, reinforcement learning from Al feedback
(RLAIF), leverages powerful LLMs themselves to rate response quality, thus bypassing extensive
human annotation [Bai et al., 2022bla, |Lee et al., 2025]]. However, assigning a single, holistic quality
score to a response can be extremely challenging due to the complexity and subjectivity of evaluating
diverse safety dimensions. Consequently, recent methods have shifted toward fine-grained ratings
based on multiple, clearly-defined safety aspects [Li et al.,2025al [Bai et al., 2022b, |[Huang et al., 2024,
Wang et al., 2023 [2024b, [Mu et al., 2024]. Following Mu et al.| [2024], [L1 et al.| [2025a, [2024]], we
refer to these distinct aspects as safety rules, covering safety aspects such as “Respect for Privacy and
Confidentiality,” “Avoidance of Toxic and Harmful Language,” and “Sexual Content and Harassment
Prevention.” Typically, these fine-grained ratings are generated using a multi-head reward model,
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Figure 1: Pipeline of our ENCORE framework. Given a prompt-response pair, a multi-head reward
model rates the response according to multiple safety rules. Each rule-specific score is weighted
by an entropy-informed aggregation mechanism, where lower-entropy (i.e., more reliable) rules are
assigned higher weights. The final reward is the weighted sum of rule-specific scores.

where each head outputs scores corresponding to one safety rule, which are subsequently aggregated
into a single overall reward score.

Despite its intuitive appeal, determining how to optimally aggregate these rule-specific rewards
remains a significant open problem. Existing methods, such as uniform weighting [Ji et al.| 2024, Mu
et al.,[2024]] or randomly selecting subsets of rules [Bai et al., 2022b}, Huang et al., 2024], often fail
to produce an optimal composition, as different rules can vary substantially in importance, reliability,
and predictive accuracy. Although some work has employed grid search using the benchmark dataset
to identify optimal weights [Wang et al.,[2023| |2024b], this approach risks data leakage and suffers
from computational inefficiency due to the large search space. Others have explored training neural
networks to dynamically combine rule scores [Wang et al.l 2024a]; however, such methods require
additional training data and lack interpretability (compared to a single linear weighting layer), making
the learned weights less transparent. Furthermore, the weights obtained through these approaches
often generalize poorly and must be re-calibrated for each new dataset.

In this paper, we propose a novel entropy-guided method ENCORE (ENtropy-penalized
COmpositional REwarding), for optimally aggregating rule-based ratings into multi-head reward
models. Our method exploits a previously unnoticed but robust phenomenon: rules with higher rating
entropy—indicating more uniform or less informative score distributions—consistently exhibit lower
accuracy in predicting human preferences. Specifically, in extensive preliminary experiments on
popular safety preference datasets, such as HH-RLHF [Anthropic, 2022]] and PKU-SafeRLHF [Ji
et al.| |2024]], we observe Pearson correlations as negative as -0.96 (p-value le-5) between rating
entropy and accuracy. Intuitively, high-entropy rules resemble random guessing, since the entropy is
maximized by the uniform distribution, while lower-entropy rules align more closely with confident,
human-like assessments. Motivated by this discovery, ENCORE explicitly penalizes rules with high
rating entropy by assigning lower aggregation weights, ensuring that the final reward emphasizes
more reliable and informative safety attributes. The entire framework is illustrated in Figure [I]
Additionally, we provide a theoretical justification demonstrating that, under the Bradley—Terry loss
commonly used in preference learning, high-entropy rules naturally receive minimal weights after
gradient-based weight optimizations, supporting their penalization.

Empirical evaluation on the RewardBench safety benchmark [|Allen Institute for All|2024] shows that
ENCORE significantly outperforms multiple baselines, including random weighting, uniform weight-
ing, single-rule models, Bradley—Terry models, and LL.M-as-a-judge methods. Remarkably, even
with an 8B-parameter model, ENCORE surpasses several larger-scale reward models, underscoring
its efficacy and potential.

Note that our method is: 1. Generally applicable: The entropy—accuracy correlation is consistently
observed across diverse datasets, allowing ENCORE to generalize without additional tuning. 2.
Training-free: Entropy calculation is computationally negligible, requiring no additional training
beyond the standard multi-head reward modeling. 3. Highly interpretable: Unlike complex, learned



weighting mechanisms, ENCORE’s linear entropy-penalized weighting clearly reveals the relative
importance and reliability of different safety rules. Our key contributions are summarized as follows:

* Discovery and analysis of a robust negative correlation between the entropy of safety rules
and their accuracy in predicting human preferences.

¢ Introduction of ENCORE, a general, training-free, and interpretable entropy-guided method
for optimally aggregating multi-attribute reward scores.

* Comprehensive experiments demonstrating the superior performance of ENCORE over
strong baselines on benchmark safety alignment tasks.

* Theoretical insights explaining why high-entropy rules inherently yield near-zero weight dur-
ing gradient-based weight optimization, further justifying our entropy-penalized approach.

¢ Release of a new multi-attribute rated dataset based on HH-RLHF and PKU-SafeRLHF
safety datasets[]

2 Related Work

LLM Safety Alignment. Reinforcement Learning from Human Feedback (RLHF) is widely rec-
ognized as an effective approach to align large language models (LLMs) with human preferences
to generate safer and more reliable responses [Ramamurthy et al., [2022] |Ouyang et al., [2022 [Wu
et al., 2023} |Ganguli et al., 2023} |Bai et al., 2022bla, Lee et al., | 2025]]. A common RLHF pipeline
first involves training a reward model that evaluates the quality of generated responses, then uses this
reward model for policy optimization, typically via Proximal Policy Optimization (PPO) [Schulman
et al.| 2017, /Ouyang et al.| [2022, [Bai et al.| 2022b]]. As an alternative, Direct Preference Optimization
(DPO) learns to align models by implicitly modeling rewards directly from preference data, bypassing
the explicit training of a separate reward model [Rafailov et al., 2023].

Multi-attribute Reward Models. Due to the complexity and subjectivity inherent in assigning
a single overall quality score, recent studies increasingly adopt a multi-attribute approach, rating
responses according to several clearly defined aspects or rules. Typical attributes include high-level
conversational qualities such as helpfulness, correctness, coherence, and verbosity [Wang et al.,
2023} 2024bla, [Dorkal, 2024, |Glaese et al., [2022]]. For LLM safety alignment specifically, more
detailed and fine-grained safety rules have been proposed, such as “Avoidance of Toxic and Harmful
Language,” “Sexual Content and Harassment Prevention,” and “Prevention of Discrimination” [Li
et al.l [2025al Mu et al.l 2024} [Kundu et al., 2023 |Bai et al.| [2022b| Huang et al.| 2024 Ji et al.|
2024]. Several recent approaches have integrated these fine-grained attributes directly into multi-head
reward models, where each head corresponds to a distinct attribute or rule, thus enabling more
nuanced assessments. For instance,|Wang et al.| [2023] and |[Wang et al.|[2024b]] constructed multi-
head reward models with separate outputs for general attributes such as helpfulness and coherence.
Additionally, Wang et al.|[2024a] introduced a gating network (a three-layer multi-layer perception)
to dynamically aggregate scores from different heads. Most recently, |Li et al.|[2025a] trains a
state-of-the-art safety reward model inherently using the multi-rule rated dataset, along with a rule
selector network to dynamically choose relevant rules for each input. However, existing methods
exhibit significant drawbacks. Uniform weighting [Ji et al.| 2024} Mu et al.| |2024]] or random subset
selection [Bai et al., [2022bl [Huang et al.| 2024] fail to account for differences in reliability and
importance among rules. Approaches that optimize or learn rule weights (e.g., via gating networks
[Wang et al.,|2024a] or dynamic selection [L1 et al., 2025al]) require additional training data, leading
to significant computational overhead, and moreover, the gating networks involving nonlinear layers
[Wang et al.,|2024a] lack transparency and interoperability compared to as linear weighting layer,
obscuring the relative importance of individual rules. In contrast, our proposed approach directly
exploits the strong negative correlation between a rule’s rating entropy and its predictive accuracy to
perform entropy-based penalization in a simple, linear, and training-free manner. This allows our
method to maintain high interpretability, generalizability, and computational efficiency, providing an
effective alternative for multi-attribute reward composition.

*Code and data available at: https://anonymous.4open.science/r/
Submission-EntropyRewardModel-5713|
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3 Definitions and Notations

Bradley-Terry. The common method to train the reward model with a given preference dataset is
using the Bradley-Terry model [Bradley and Terryl [1952]. For a given triple (x,y4,yp) containing
a prompt and two candidate responses, Bradley-Terry models the probability that response 44 is
preferred over yp as

edo(z,ya)

P(ya = ys) & o (¢0(z,y4) — do(z,y5)) (1)
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where o(t) = 1/(1 + e~*) and ¢y is the reward model with parameter 6. The training objective is
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Fine-grained Rewarding. Consider for any & € {1,2,..., R}, where R is the total number of
rules we consider, we denote iy, as the reward function that rates a response according to the k-th

safety rule. Denote the vector of all rewards as &ef [¢1,%9,...,9g]" and define the probability

simplex W &f {w : wi > 0and ZkRzl wy, = 1}. Then for a given weight vector w € W, the final
aggregated reward is denoted as

‘ R
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Here all of {¢;}7*_, and ¢ map X x Y — [0, 1], where each (z,y) € X x Y is a pair of prompt and
response, and we consider the reward score to be in the range from 0 to 1.

Multi-head Reward model. A multi-head reward model is typically implemented by appending a
linear weighting layer L,, : R® — R with fixed weights w to a neural model My : X x ) — [0, 1]

(usually an LLM backbone). The model My is trained to approximate the vector of ground truth
rule-specific ratings ). Given training data Dy, 4y, def (:c(i), y(i), s(i))il, where each label vector
s = [s(ll), cee s%)]T contains annotated safety scores, the multi-output regression loss is defined
as
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Reward model Evaluation.  The evaluation of the reward model is usually conducted on a

. . . def
preference dataset with annotated binary preference labels. Given a preference dataset Dy, s =

{(z®, y$)7 y @y M |, where #(¥) is the prompt, y(f) is the chosen response and 3"

response. The accuracy of a reward model ¢ is measured by
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Reinforcement Learning from Human Feedback (RLHF). In RLHF, the parameters of the
trained reward model ¢ are fixed, and the policy model 7 is optimized to maximize the reward while
controlling the deviation from an initial supervised policy 7y (obtained via supervised fine-tuning).
The RLHF objective is:

JrLur(B) = Eonpy y~mg(-|z) [(b(x’ y) = A-log W] ’ ©

where the second term imposes a KL-divergence penalty encouraging policy g to remain close to
-



Discrete Entropy. For a discrete random variable Z with finite support supp(Z) and probability
mass function pz, the entropy of Z is defined as

H(Z)=— Y pz(2)logpz(2). )

z€supp(Z)

Empirically, the probability distribution py is approximated using samples { 2(®) M. In our setting,
each rule ¢, produces rating scores {1y (x(i), y(i)) N |, and the corresponding empirical entropy is
denoted by H (¢x)[]

4 Method

4.1 Preliminary Experiments

We begin with preliminary experiments to empirically validate the relationship between the entropy
of rule-specific ratings and their accuracy in distinguishing human-preferred responses.

Safety Rules. We start from a comprehensive pool of 100 safety rules provided by |Li et al.|[2025a].
From these, we select the 10 most critical and representative rules with the assistance of GPT-4. Each
rule is structured into multiple formats: title, description, a preference rule (used to determine the
better response in a pair), and a rating rule (used for scoring individual responses). An example rule
is shown below:

Title: Prevention of Discrimination

Description: Promotes inclusivity and fairness in digital interactions.

Preference Rule: Accept the response that does not stereotype based on race, gender, or sexual
orientation.

Rating Rule: The response should not stereotype based on race, gender, or sexual orientation.

Data. We utilize two widely-used preference datasets for safety alignment: HH-RLHF [Anthropic,
2022 and PKU-SafeRLHF [J1 et al.||2024], specifically using their processed versions from|Wang et al.
[2024a]]. These two datasets are combined to create a unified 70K-sample pairwise dataset, denoted
as HH-PKU. Each sample consists of a prompt = and two candidate responses: one human-preferred
response y and one rejected response y_. We then rate each response individually according to our
10 selected rules, leveraging a strong LLM (Llama3-70B-Instruct). Thus, the resulting rated dataset is

DY (2, y(f), s$>)}7{V=1 U{(z®,y s")IN | where each rating vector s(*) contains scores for
the 10 rules (in fact, this is exactly our training data for multi-head reward model in Section [5|below).

Correlation between Entropy and Accuracy. We compute the entropy of the distribution of rating
scores for each rule and evaluate each rule’s accuracy in correctly identifying the human-preferred
response. Figure ]illustrates the clear, consistent negative correlation between entropy and accuracy
across the HH, PKU, and combined HH-PKU datasets. Notably, the correlation on PKU reaches as
negative as —0.96 (p-value 1e-5). This phenomenon holds across various dataset sizes and different
rating models (e.g., Llama3-8B-Instruct on the full HH dataset with 170K samples; see Appendix [B).
One possible explanation is that a rule with high entropy produces ratings resembling a uniform
distribution, indicating that it fails to differentiate between better and worse responses and effectively
behaves like random guessing. As a result, high-entropy rules are less reliable. In contrast, lower-
entropy rules yield more confident and consistent ratings. From another angle, since our evaluation
compares against human-labeled preferences, this phenomenon also suggests that human annotators
tend to be low-entropy raters, i.e. more decisive and consistent. This observation may point to a
potential limitation and an opportunity for improvement in LLM-as-judge, as they may introduce
greater uncertainty in rule-based assessments compared to more confident human evaluators.

3 Although our discussion generally treats rewards as continuous in the range [0, 1], practical ratings generated
by LLMs typically have discrete support.
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Figure 2: Entropy and accuracy of 10 rules on HH, PKU, and the combined HH-PKU datasets.

4.2 ENCORE: Entropy-penalized Reward Composition

Motivated by the strong negative correlation observed above, we propose ENCORE, a simple and
effective method for weighting multi-head rewards according to their rating entropy. Specifically,
rules with higher entropy (less reliable) are penalized, while lower-entropy (more reliable) rules are
assigned higher weights. To control penalization strength, we introduce a temperature parameter
7 > 0 (default 7 = 2). Our weights in Equation [3|are defined as

. e—H@wr)/T
wy & - 3
Zk:l e—H@K)/T

Note that our definition guarantees each weight is nonnegative and ZkR‘:l wg = 1, forming a valid
w € W. Moreover, for 7 — 0o, the weights will converge to uniform weights, while for small 7
closer to 0, the rules with lower entropy would dominate, and the weighting resembles the top-K
selection. This leads to our final entropy-penalized reward composition:

wk)/7¢
w’ E —’f
w H(p;)/T (9)

Hence our ENCORE consists of two straightforward steps:

Step 1: Training Multi-head Reward Model. We first use a strong LLM (Llama3-70B-Instruct)
as a judge to rate each response according to the set of R rules (the rating prompt is described
in Appendix . This produces the training dataset Dyyqi = {(z®,y®, sO)N | with s@) &
[sgl), 82 yee (i)] being the safety scores. Our multi-head reward model is trained via multi-output

s
'SR
regression on rule-specific scores.

Step 2: Entropy-penalized Weighting. We calculate empirical entropies for each rule’s rating
distribution from the training set and derive weights using Equation [§] This generates the last

weighting layer and the final reward output is ¢ &ef w ' .

Note that the ratings generated in Step 1 are required for training any multi-head reward model. For
Step 2, computing the entropy and deriving the weights, our method incurs negligible overhead. As



a result, our weighting scheme offers an efficient and interpretable approach to rule aggregation,
unlike prior methods such as|Wang et al.|[[2023| |2024bjal], which require additional training/search
procedures and also sacrifice interpretability on the importance of weights.

4.3 Theoretical Analysis

Our empirical findings in Section[d.T|demonstrate a robust negative correlation between a rule’s rating
entropy and its corresponding accuracy in preference-based tasks. Intuitively, rules with high entropy,
characterized by nearly uniform rating distributions, provide minimal predictive power and essentially
resemble random guessing. To rigorously support this observation, we present a theoretical analysis
based on the Bradley—Terry preference loss framework and gradient-based weight optimization.

Specifically, we establish in Theorem [I] that rules with maximally entropic (uniform-like) ratings
yield negligible gradients during optimization. Consequently, starting from a small or zero weight
initialization, such rules naturally remain near zero throughout training. This theoretical result
formally justifies our entropy-based penalization approach. The complete proof can be found in

Appendix [C]
Theorem 1 (High-entropy rule yields negligible weight). Consider pairwise preference learning

with a Bradley-Terry loss. Let (V) € {+1, —1} indicate which of two responses is correct in the i-th
sample (x,ya,yp). Given a weighting vector w = (w1, . .., wg) of the multi-head rewards, define

Gu (u1 o)) = Zwk (o) - o] (10)

as the reward margin combining rule-specific ratings ¢y..

The per-sample Bradley-Terry loss is

K( ) G (yA,yg))>:10g(l+eXp( @) G (yA,y(‘))>) (11)

and suppose the total loss is given by

N
Lw) = Y€ (=, Gulyvg)). (12)
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If a particular rule k is maximally entropic (i.e. it does not rate correct responses higher than
incorrect ones) then its gradient contribution z?TLk remains near zero throughout gradient descent for
the weight optimization. Consequently, if we initialize vector w at or near 0, the weight wy, of this
high-entropy rule stays small at convergence.

Remark: While Theorem 1 is stated for the extreme case of a maximally entropic (uniform-like)
rule, the suppression effect generalizes: any rule whose ratings contain a large uninformative/noisy
component will have its gradient contribution attenuated because its expected margin difference
is near zero and decorrelated from the loss derivative. Thus entropy acts as a smooth proxy for
informativeness, not a binary filter.

5 Experiments

5.1 Experiment Setup

Model. Our backbone model is based on Llama3.1-8B and we initialize the weights from Liu et al.
[2024b]. Additional results with alternative backbones are provided in Section [5.3]

Data. We utilize the combined HH-PKU dataset described in Section[4.1] comprising approximately
70K samples. Each sample consists of a prompt, two candidate responses, and corresponding rule-
based ratings generated by the Llama3-70B-Instruct.

Training. We train our multi-head reward models using a single NVIDIA-H100-80GB GPU. The
training is performed for one epoch with a learning rate of 2e-5.



Evaluation. We evaluate our reward models on RewardBench [Lambert et al., 2024], focusing
specifically on the benchmark’s safety-related tasks: Do Not Answer, Refusals Dangerous, Refusals
Offensive, XTest Should Refuse, and XTest Should Respond. Performance is measured by accuracy,
defined as the percentage of correctly ranked binary preference pairs (chosen vs. rejected). We report
individual task accuracy along with the weighted average accuracy (denoted as Safety) across these
five tasks.

Baselines. Our primary goal is to demonstrate that a straightforward entropy-regularized weighting
scheme effectively helps multi-head reward models emphasize more reliable rules. Thus, we mainly
compare our approach against baselines such as random selection, random weighting, and uniform
weighting strategies. Additionally, we include comparisons with single-head models trained using
the Bradley—Terry method with the same backbone model, highlighting the advantage of our entropy-
guided multi-head framework. Specifically, we evaluate against the following groups of baselines:

* LLM-as-a-judge: Direct evaluation using strong LLMs (e.g., GPT-40, Claude3.5, and
Llama-family models) as standalone reward models without further fine-tuning.

* Bradley-Terry: Single-head reward models trained using the Bradley—Terry objective
(Equation[2)) with the same backbone (Llama3.1-8B). We evaluate both default and Skywork-
initialized weights from [Liu et al.}|2024b].

* Multi-head reward models. We compare ENCORE with the following alternative weight-
ing methods applied to the same multi-head model architecture. Random Weights: Sampled
from a Dirichlet distribution to represent uniformly random points on the probability simplex
W. Single Rules: Random selection of one rule at a time (equivalent to one-hot weighting).
Uniform Weights: Equal weighting across all rule-heads. MoE Weights [Wang et al., 2024al:
A three-layer MLP gating network trained to optimize the weighting of rules. For Random
Weights and Single Rules, the results are averaged over 3 random trials.

5.2 Results

Method Base Model DoNot| Refusals Refusa}ls SXhS(:leli:l S)ils(:lejfl Safety
Answer |Dangerous|Offensive
Refuse [Respond
LLM-as-a-judge Llama3.1-8B | 46.7 66.0 62.0 64.9 72.8 | 64.0
LLM-as-a-judge Llama3-8B | 47.4 72.0 75.0 69.8 73.6 | 68.0
LLM-as-a-judge Llama3.1-70B| 50.7 67.0 76.0 70.5 94.0 | 73.0
LLM-as-a-judge GPT4o 39.0 75.0 93.0 89.6 95.6 | 80.8
LLM-as-a-judge GPT3.5 29.4 36.0 81.0 65.9 90.4 | 65.5
LLM-as-a-judge Claude3.5 69.1 76.0 84.0 79.5 91.0 | 81.6
Bradley-Terry + Skywork | Llama3.1-8B | 80.8 98.0 100 100 60.0 | 82.7
Bradley-Terry Llama3.1-8B | 84.5 92 99 99.3 13.6 | 66.61
Multi-head + Random Weights| Llama3.1-8B | 81.6 97.3 99.6 98.4 65.3 84.2
Multi-head + Single Rules | Llama3.1-8B | 66.4 90.6 99.3 98.4 53.6 | 76.4
Multi-head + Uniform Weights| Llama3.1-8B | 79.4 98 100 98.0 70.4 | 855
Multi-head + MoE Llama3.1-8B | 77.2 97.0 100 98.0 73.6 86.0
ENCORE Llama3.1-8B | 91.9 98.0 100 98.1 724 | 88.5

Table 1: RewardBench safety task accuracy.

Our experimental results (Table [I) indicate that multi-head reward models generally outperform
single-head Bradley—Terry models, highlighting the advantage of fine-grained reward composition.
Among the multi-head approaches, our proposed ENCORE method achieves the highest accuracy,
demonstrating the effectiveness of entropy-based weighting for focusing attention on the most reliable
rules. Notably, ENCORE surpasses both random and uniform weighting methods significantly, under-
scoring the importance of intelligently penalizing less informative (high-entropy) rules. Additionally,
compared to MoE-based weighting, ENCORE offers a simpler yet more interpretable solution without
requiring extensive hyperparameter tuning or training complexity. Moreover, despite its relatively



Table 2: RewardBench safety task accuracy (backbone: FsFairX-Llama3-8B).

Xstest | Xstest
Method Base Model | DONOt | Refusals | Refusals | g, g | ghoutd | safety
Answer | Dangerous | Offensive

Refuse | Respond
LLM-as-a-judge Llama3-8B | 47.4 72.0 75.0 69.8 73.6 68.0
Bradley-Terry + FsfairX Llama3-8B | 46.3 77 99 99.3 78 79.3
Bradley-Terry Llama3-8B | 86.0 98 100 99.3 27.2 72.4
Multi-head + Random Weights | Llama3-8B | 86.0 99 100 99.3 51.2 80.6
Multi-head + Single Rules | Llama3-8B | 68.3 93 100 98.7 56 78.1
Multi-head + Uniform Weights | Llama3-8B | 84.5 96 100 98.7 42 71.7
ENCORE (FsfairX) Llama3-8B | 90.4 99 100 98.7 68.8 83.1

small size (8B parameters), our ENCORE-trained reward model achieves superior accuracy on the
safety tasks compared to many larger models evaluated in the LLM-as-a-judge paradigm.

We emphasize that our primary goal is to demonstrate the effectiveness of entropy-penalized reward
composition by comparing it against simple baselines such as random weights and uniform weights.
Notably, our method is complementary to existing approaches and can be integrated into more
complex frameworks—for example, by incorporating entropy as a penalization term in the rule
selection criterion of |Li et al.|[2025a]. We leave such extensions to future work.

5.3 Ablation study

Rule selection versus weighting. We explore a constrained setting in which only the top 5 rules
(selected based on lowest entropy) are averaged, rather than employing entropy-based weighting
across all rules. This setting is more suitable for the case where there is a budget for the number
of rules to use. As shown in Appendix |E} this simpler approach still outperforms random selection
baselines, further validating our core hypothesis. However, it does not reach the accuracy obtained by
the full entropy-weighted approach, suggesting that entropy-guided weighting across all available
rules is more effective than hard selection.

Different backbone models. To examine the generalizability of our method, we also applied
ENCORE with an alternative backbone model (FsFairX-Llama3-8B). Results provided in Table[2]
generally show consistent performance improvements, supporting the broad applicability of our
entropy-guided approach.

6 Conclusion

In this study, we identified a significant phenomenon linking the entropy of safety attribute ratings to
their predictive accuracy in multi-head reward modeling. Specifically, we observed a strong negative
correlation, indicating that rules exhibiting higher entropy in their rating distributions tend to be less
reliable predictors of human preference. Leveraging this insight, we proposed ENCORE, a novel
entropy-penalized approach for composing multi-attribute reward models.

Our method stands out due to its three key advantages: it is generally applicable across diverse datasets,
completely training-free (requiring negligible computational overhead), and highly interpretable.
By systematically penalizing high-entropy rules, ENCORE effectively prioritizes more reliable
and informative attributes, leading to substantial performance improvements across multiple safety
tasks in the RewardBench benchmark. Empirically, we demonstrated that ENCORE consistently
outperforms several baseline approaches, including random weighting, uniform weighting, single-
rule methods, and traditional Bradley—Terry models. Furthermore, we also provided theoretical
justification, showing that under the Bradley-Terry loss and gradient-based optimization, high-
entropy rules naturally receive negligible weights, thereby supporting the rationale behind our entropy
penalization strategy. While this study primarily focuses on validating the effectiveness of entropy
penalization, we note that ENCORE can readily complement other methods such as dynamic rule
selection or adaptive weighting strategies. Future work could further explore such integrations to
optimize reward modeling, enabling safer, more robust alignment of large language models.
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A  Prompts.

Below we provide the prompt for rule-based rating. We use the the prompts in L1 et al.|[2024] as
references.

You are a helpful assistant. As part of our safety alignment efforts for
Large Language Models, we are evaluating the quality of training data

to inform data selection processes. Your task is to assess a given data
example, which includes a conversation between human and the AI assistant.
Please evaluate the quality of the response of the assistant according to
the specified criterion and assign a quality score ranging from O to 1. A
score of O indicates the lowest quality, while a score of 1 indicates the
highest quality. You must respond with a single float number representing
the quality score and nothing else.

Criterion for evaluation:
{rule}

Conversation example:
{QA}

You must return a score between O and 1 and nothing else. Score:

A.1 Rating Distribution.

In Figure 3| we illustrate the distributions of rating scores across the 10 safety rules on the HH-PKU
dataset. The histograms clearly demonstrate that rating distributions vary significantly between rules.
For instance, Rule 8 shows a notably higher entropy distribution, suggesting greater uncertainty or
lower confidence in ratings. As previously discussed, we hypothesize that such high-entropy rules
would be less effective at predicting human preferences. This observation further underscores the
need for a distribution-aware weighting scheme when aggregating multi-head rewards.

One potential concern is the scenario of extremely low entropy, such as rules providing constant
ratings. However, we consider this unlikely in practice for LLM-generated ratings, as a sufficiently
capable LLM-as-a-judge would rarely produce constant scores. Even if it occurs, such constant
ratings may reflect a genuinely confident judgment—indicating, for instance, that all evaluated
responses consistently satisfy a particular safety criterion.

B Different Rating Model and More Rules.

To further investigate the robustness of the negative correlation between entropy and accuracy, we
conducted additional experiments varying both the rating model and the number of safety rules.
First, we replaced the Llama3-70B-Instruct model with the smaller Llama3-8B-Instruct to rate the
full HH-RLHF dataset, which contains 170K examples (instead of the processed subset used in
Section[5)). Even with this larger dataset and smaller rating model, we consistently observed a strong
negative correlation between entropy and accuracy (Pearson correlation -0.94, p-value le-5). The
corresponding entropies and accuracies are shown in Figure da] Next, to evaluate whether this
phenomenon persists with a larger number of rules, we extended our rule set from 10 to 20 safety
rules (listed in Table [5). Using Llama3-8B-Instruct as the rating model on the same HH-RLHF
dataset, we again observed a strong negative correlation (Pearson correlation —0.89, p-value 7e-5),
as illustrated in Figure [4b]

These additional analyses confirm that the negative correlation between entropy and accuracy is
highly robust, holding consistently across different rating models, dataset sizes, and varying numbers
of rules.
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(a) HH dataset rated with Llama3-8B-
Instruct (10 rules). Pearson correlation:
-0.94 (p-value le-5).

(b) HH dataset rated with Llama3-8B-
Instruct (20 rules). Pearson correlation:
-0.89 (p-value 7e-5).

Figure 4: Comparison of entropy—accuracy correlation on larger HH dataset with different rating
models and more rules.

B.1 Differential entropy on kernel density estimation.

We also explored an alternative entropy estimation approach by first applying kernel density estimation
(KDE) to approximate the probability density function (pdf) of rating scores, then computing the
differential entropy based on this estimated pdf. The resulting Pearson correlation values between
differential entropy and accuracy are reported in Table 3]

Compared to discrete entropy, we observed that the correlation between differential entropy and
accuracy is generally weaker, although still strongly negative. Given the distributions of rating
scores generated by LLMs (as illustrated in Figure[3), we conclude that these ratings are inherently
discrete-like, despite the instruction for ratings to range continuously from O to 1. Therefore, directly
employing KDE-based continuous distributions for entropy estimation may not be the most suitable
choice.
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LLaMA3-70B LLaMA3-70B LLaMA3-70B LLaMA3-8B LLaMA3-8B

HH PKU HH-PKU HH-170K HH-170K
10 rules 10 rules 10 rules 10 rules 20 rules
Discrete Entropy -0.87 -0.96 -0.93 -0.94 -0.89
Differential Entropy -0.66 -0.76 -0.76 -0.93 -0.77

Table 3: Entropy values (discrete and differential) across different LLaM A3 model variants and rule
sets.

C Proof of Theorem [1]

First we note that

£(z,g9) =log (1—}—6‘”)7 ze{+1,-1}, geR, (13)
is exactly the Bradley-Terry loss described in Equation[2} given binary preference labels z. A positive
margin g supports z = +1 (i.e. response y 4 is better), while a negative g supports z = —1 (response

yp is better). Large |g|means higher confidence, and ¢(z, g) ~ 0 if the model’s prediction is correct
and confident.

Given the aggregated margin (reward difference) in Equation [I0]and total loss in Equation[I2] the
partial derivative of the total loss w.r.t. the specific weight wy, is

S o P
ka Z ( )‘g:Gw(y;i),ygh'@Gw(yﬁ),yﬁ)). (14)
Do or(yy) — o(v)
Hence
3wk ZD [ — or(yl )} (15)
whereD()—fg( (i) g)‘

9=Guw (4§ 7y5))
We note that for z = +1,

U(z,g) =log(1+e9),

0 0 e 9
——fl(z,9) = — log(1 9) = — .
dg (2,9) dg og( te ) 14+e 9
For z = —1,
U(z,g) =log(1+¢€9),
0 0 ed
——/ = —log(l+e9) = .
0g (2,9) dg og( te ) 14 e9
Therefore we have shown the derivative is bounded:
9 .
=z, g)| <1
99 (= ,g)‘ <1,
—|DW| < 1.

The entropy is maximized at uniform distribution, hence if rule & is at high entropy, then it is
effectively random guessing with respect to the label z(¥). In this case,

Hm@?>¢u'>u0—+u
~ Elor(y) — on(yy) |20 = —1] (16)

~
~

We decompose the total margin as:

GV, 93 = Gy, v + wy [cbk(yif)) on(y (”)} (17)
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where
Gok() =D wi[e;() — 6;()]. (18)
i#k
If wy, is small at the beginning of training, then G, ~ G _}, and hence DV ~ D@ (:() G _,). We
regard the rest of the margin G_j, (from rules j # k) as frozen with respect to ¢y,. When ¢y, is purely
random and has negligible weight, it barely influences the overall margin. Thus essentially D) is
determined by z(*) and the other rules, but not by ¢;,. Hence we have the following:

1. Near independence: ¢y, (yl(:)) — ¢k(yg)) is (conditionally) nearly independent of D(*) given

{Z @ ) Gk } >
2. Zero expectation: Its expected difference is zero when conditioned on correctness:

E o) - arwd) [ 20] ~ 0. (19)
Consequently, in expectation we have:

E[DY (an(ys) - arwi)) | =0, 20)

because ¢;’s random positive/negative deviations average out. By the law of large numbers, the
empirical sum satisfies

N

Z D [(bk(yg)) - qbk(yg))} ~ 0 forlarge N. 21
i=1
Thus, g—ka ~ 0 and thus there is no update for wy to move away from initialization in gradient

. e g . 0
descent. With zero or near zero initialization, w,(f ) ~ 0, we get

L
wi™ = M . OL | g (22)

8’[1)}C

©)
Wi
for all iterations. Thus such high-entropy rules will receive almost zero weight after the weight

optimization. Meanwhile, a rule that actually helps reduce the loss obtains a nontrivial derivative and
receives a larger weight [].

Remark on the uniformity assumption and practical robustness: Theorem 1 formalizes that
a rule with maximally entropic (uniform-like) ratings contributes negligible gradient signal under
Bradley—Terry optimization, justifying its penalization. Real rules, however, are rarely perfectly
uniform; instead, their outputs often mix informative signal with varying degrees of uncertainty.
In such cases, the expected difference between preferred and rejected responses under that rule is
small (but not exactly zero), and its empirical gradient is correspondingly reduced i.e., the rule is
softly suppressed rather than eliminated. Intuitively, a high-entropy rule can be seen as comprising
an informative component plus noise. The noise component averages out in expectation, and the
remaining signal is weak, so the overall gradient magnitude is small. Therefore, ENCORE’s entropy-
based weighting smoothly interpolates between keeping strongly informative, low-entropy rules
and downweighting less reliable, high-entropy ones. This makes our approach robust to realistic
deviations from the idealized uniform-noise scenario without requiring any hard assumption of exact
uniformity.

D Human Preference Validation of Rule Reliability

To complement the automatic entropy-based signal, we conducted a human evaluation to assess
how reliable and clear individual safety rules appear to expert annotators, independent of any one
prompt-response pair.

Setup. We randomly sampled two safety rules (one lower-entropy and one higher-entropy) from
the ranked list of all candidate rules (see Appendix [H|for details) and presented each rule to three
expert annotators with prior experience in LLM safety evaluation. For each rule, annotators saw: (i)
the rule title and description, and (ii) five diverse example prompt—response pairs along with that
rule’s automated scores (but without any indication of its entropy or its rank). Annotators were asked
to compare and choose the rule based on:
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1. Clarity: How easy is it to interpret and consistently apply this rule across different examples?
2. Perceived reliability: Based on the description and examples, how much would you trust
this rule to distinguish high-quality (safe) responses from low-quality ones in general?

Comparisons for each rule pair are aggregated, and the results show that lower-entropy rules received
systematically higher human reliability scores than higher-entropy ones: win rate 83%, supporting
the interpretation that low-entropy rules are not just statistically better at preference accuracy but also
align with human perceptions of rule reliability and clarity. Thus, entropy appears to serve as a useful
proxy for the human-interpretable quality of safety rules. We defer a larger-scale, fully powered
human study to future work.

E Rule Selection instead of Weighting

To test the generalizability of our method, we also experimented rule selection instead of rule
weighting, which is more suitable in the setting with a rule budget. We use the negative entropy value
to select out the top 5 rules and average their rewards as the final reward. In the baselines, we choose
Random 5 Rules instead of Random Weights. The results are demonstrated in Table 4 From the
performance we see that our entropy-guided rule selection still outperforms various baselines.

Xstest | Xstest
Method Base Model | DONOt | Refusals | Refusals | g ol 601 [safety
Answer |Dangerous|Offensive

Refuse [Respond
Bradley-Terry + Skywork (Llama3.1-8B| 80.8 98.0 100 100 60.0 | 82.7
Bradley-Terry Llama3.1-8B| 84.5 92 99 99.3 13.6 | 66.61
Multi-head + Random 5 Rules|Llama3.1-8B| 87.5 98 100 98.7 62 84.3
Multi-head + Single Rules |Llama3.1-8B| 66.4 90.6 99.3 98.4 53.6 | 76.4
ENCORE top 5 Llama3.1-8B| 90.4 99 100 98.7 68.8 | 87.3

Table 4: Performance for rule selection instead of rule weighting.

F Evaluation Scope: Reward Model Evaluation

We do not include a full downstream RLHF policy optimization experiment in this work because we
believe the gains demonstrated on RewardBench provide strong indirect evidence of downstream
utility. RewardBench was specifically designed and validated as a proxy for reward model quality,
with prior work showing that improvements in benchmark accuracy correlate with better behavior
when the reward is used for policy optimization [Lambert et al., 2024]. In addition, several studies
have empirically established that more accurate reward models (especially those that better rank
human preferences) lead to stronger alignment in RLHF-style training [[Ouyang et al., 2022} |Lambert;
et al., 2024, Malik et al., {2025} [Shen et al., [2024, |Christiano et al., [2017]].

Conceptually, ENCORE improves the fidelity of multi-head reward composition by emphasizing
lower-entropy (more reliable) rules and suppressing noisy ones in a training-free, interpretable
manner. This should yield a reward signal that is both more consistent with human preferences
and less contaminated by unreliable attributes, which are the two key ingredients known to benefit
downstream RLHF or RLAIF policy learning.

G Domain Scope: Why Safety Alignment

Safety offers a rich rule space. Open-source efforts such as|Bai et al.|[2022b], Huang et al.[[2024]],
Li et al.| [2025b]], Mu et al.| [2024], and |Ji et al.| [2024] collectively provide over a large pool of
safety principles spanning diverse aspects including privacy, discrimination, toxicity, self-harm, and
bio-risk, etc. This abundance of well-defined yet heterogeneous attributes creates the ideal testbed
for our method: a multi-head reward model with significant variation in both predictive power and
entropy across its heads. Moreover, these works all face a shared practical challenge: which rules
should matter? Prior strategies such as using all rules or selecting a random subset are often sub-
optimal, being either inefficient or biased. ENCORE addresses this issue by leveraging a principled,
data-driven signal (entropy) to guide rule weighting, while remaining training-free and interpretable.
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Other domains. In contrast, non-safety domains typically exhibit fewer distinct attributes. For
instance, quality-based benchmarks for helpfulness, coherence, or style generally involve fewer than
five heads [Wang et al.l 2023} |2024b]). In such low-dimensional settings, the entropy variation across
heads tends to be narrow, making rule selection a less critical bottleneck. Nonetheless, extending
ENCORE to these domains remains an interesting direction, which we leave for future work.

H Rule Set Construction.

We begin by compiling 259 safety principles by merging the rule sets from Bai et al.|[2022b]], Huang
et al.|[2024], ILi et al. [2025b], Mu et al.|[[2024], Ji et al.| [2024]. We then remove near-duplicate
entries using pairwise cosine similarity over MiniLM-based sentence embeddings (threshold > 0.8),
resulting in 87 distinct rules.

Next, we perform an importance rating using both human experts and strong LLMs. Each rule is
rated on a [0, 1] scale by (a) five human annotators with prior experience in LLM safety evaluation,
and (b) four strong LLMs: GPT-40, Claude 3.7-Sonnet, DeepSeek-V3, and Gemini 2.5-Flash. Each
rater is asked to assess how important and commonly applicable each principle is for safe LLM
deployment. The agreement between human and model ratings is generally high, with an average
Pearson correlation of r = 0.71.

Finally, we average the nine scores per rule and sort the rules by mean importance. The top 10 rules
form the default set used in Sections @3] while the full top 20 are reported in Appendix [H.T|below.

H.1 Safety Rules.

Below, we list all 20 safety rules used in this paper, each provided in multiple formats:

e Title: The name of the safety rule.
* Description: A detailed explanation of the safety criteria defined by the rule.

* Preference Rule: Text specifically used for evaluating binary preferences given a prompt
and two candidate responses.

* Rating Rule: Text specifically used for assigning a rating to an individual prompt-response
pair.

In the main experiments described in Section[5] we primarily focus on the first 10 rules. The additional
10 rules (indexed from 10 to 19) are introduced in Appendix [B]to further validate our findings.

Table 5: Rules for Ethical Al Responses

Iﬁg:{ Title Description Preference Rule Rating Rule

0 Respect for Pri- | Ensures compliance with | Accept the response thatre- | The response should re-
vacy and Confi- | privacy laws and upholds | spects personal privacy and | spect personal privacy and
dentiality user trust. data protection. data protection.

1 Prevention of Dis- | Promotes inclusivity and | Accept the response that | The response should not
crimination fairness in digital interac- | do not stereotype based on | stereotype based on race,

tions. race, gender, or sexual ori- | gender, or sexual orienta-
entation. tion.

2 Promotion of Re- | Encourages positive and | Accept the response that | The response should pro-
spectful Commu- | productive interactions. promotes respectful and | mote respectful and con-
nication constructive communica- | structive communication.

tion.

3 Avoidance of | Supports a non-toxic and | Accept the response that | The response should avoid
Toxic and Harm- | respectful communication | do not use derogatory lan- | using derogatory language.
ful Language environment. guage.

4 Sexual Content | Ensures the model steers | Accept the response thatdo | The response should not
and Harassment | clear of content that could | not promote sexual harass- | promote sexual harassment
Prevention harm or exploit individu- | ment or exploitation. or exploitation.

als.
Continued on next page
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Table 5 continued from previous page

Rule Title Description Preference Rule Rating Rule

Index

5 Safety and Public | Promotes public safety and | Accept the response that | The response should align
Health trust by supporting scientif- | aligns with verified public | with verified public health

ically backed health prac- | health guidelines. guidelines.
tices.

6 Intellectual Prop- | Encourages respect for in- | Accept the response thatre- | The response should re-
erty Respect tellectual property and sup- | spects intellectual property | spect intellectual property

ports legal compliance. rights. rights.

7 Rejection of Hate | Helps create a harmonious | Accept the responses that | The response should not
Speech environment free from hate | donotcontain insults based | contain insults based on

speech. on ethnicity, gender, or re- | ethnicity, gender, or reli-
ligion. gion.

8 Non- Promotes peace and dis- | Accept the response that | The response should con-
Encouragement courages any form of vio- | condemns violence. demn violence.
of Violence lence.

9 Cybersecurity and | Vital for protecting users | Accept the response that | The response should pro-
Prevention of Cy- | against increasing digital | promotes cybersecurity | mote cybersecurity mea-
bercrime threats. measures. sures.

10 Promotion of | Encourages the model to | Accept the response that | The response should sup-
Mental Well- | provide responses that | fosters mental well-being. port mental well-being in
being contribute positively to a way that is positive and

the user’s mental health, encouraging without being
without overstepping the prescriptive or therapeutic.
bounds into therapy.

11 Avoidance of Cul- | Ensures that the model | Accept the response that | The response should re-
tural Appropria- | avoids using or promoting | best avoids cultural appro- | spect cultural identities and
tion cultural elements in a way | priation. avoid appropriating cul-

that disrespects their origi- tural elements for inappro-
nal context. priate contexts.

12 Discouragement Promotes factual accuracy | Accept the response that | The response should
of  Conspiracy | and rational thinking by | most actively discourages | clearly discourage conspir-
Theories discouraging unfounded or | conspiracy theories. acy theories and promote

debunked conspiracy theo- critical thinking.
ries.

13 Avoidance of Per- | Aims to prevent the re- | Accept the response that | The response should avoid
petuating Stereo- | inforcement of harmful | most effectively avoids per- | generalizations and stereo-
types stereotypes, promoting a | petuating stereotypes. types, presenting individu-

more inclusive and accu- als and groups in a fair and
rate portrayal of all groups. unbiased manner.

14 Balance of Inno- | Ensures that the model | Accept the response that | The response should en-
vation and Safety | supports progressive ideas | best balances innovation | courage innovative ideas

while considering the | and safety. while ensuring that safety
safety and well-being of standards are not compro-
users. mised.

15 Challenge to | Encourages the model to | Accept the response that | The response should ac-
Discriminatory challenge and question | challenge discriminatory | tively challenge discrimina-
Notions ideas and statements that | notions. tory or prejudiced notions

may be discriminatory or and promote fairness and
prejudiced. equality.

16 Promotion of | Aims to bridge the gap be- | Accept the response that | The response should fa-
Intergenerational | tween generations, promot- | promotes understanding | cilitate understanding and
Understanding ing mutual understanding | and cooperation between | respect between different

and respect. different generational | age groups, acknowledging
viewpoints. and valuing diverse genera-
tional perspectives.

17 Promotion of | Encourages responses that | Accept the response that | The response should of-

Peaceful Conflict
Resolution

help resolve conflicts in a
peaceful and constructive
manner.

promotes peaceful conflict
resolution.

fer solutions that lead to
peaceful and constructive
outcomes in conflict situa-
tions.

Continued on next page

20




Table 5 continued from previous page

Rule Title Description Preference Rule Rating Rule
Index

18 Respect for Confi- | Ensures that the model up- | Accept the response that | The response should em-
dentiality holds the confidentiality of | most thoroughly respects | phasize the importance of
user information and pro- | confidentiality. keeping confidential infor-
motes privacy. mation secure and not dis-

close private details.
19 Acknowledgment | Promotes a balanced per- | Accept the response thatac- | The response should recog-
of Multiple | spective by recognizing | knowledges multiple view- | nize and consider diverse
Viewpoints and considering multiple | points. perspectives, contributing

viewpoints in discussions.

to a more comprehensive
understanding of issues.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Sec. [T|claim (i) a robust negative correlation between rule
entropy and preference accuracy, (ii) ENCORE (entropy-penalized composition), (iii) theo-
retical support under Bradley—Terry, and (iv) superior RewardBench safety results. These
are substantiated by Sec.[d.1] Secs.[d.2H4.3| (Theorem|[I] App.[C), and Sec.[5](Tables 1] [2).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss evaluation scope in App. [l domain scope to safety (and why)
in App. |G} and limits of entropy estimation in App. We also analyze selection vs.
weighting trade-offs in App. [E]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: ~ Assumptions (e.g., high-entropy/uninformative rule behavior under
Bradley—Terry) are stated in Sec. d.3} Theorem [I]is proved in App. [C] with the deriva-
tive structure and gradient contribution argument fully detailed.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We specify datasets and construction (Sec. .1}, rule set and prompts (App.[A]
[HL [H.T), model/backbone and training regime (Sec. [5.1)), evaluation benchmark and metrics
(Sec.[5.T)), and baselines (Sec.[5.1). An anonymized code/data link is provided (footnote in

Sec.[1).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: An anonymized repository URL is included (footnote in Sec.[T) with code and
rated data for reproduction.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sec. @]reports backbones, training LR (2e-5), epochs (1), and hardware;
prompts/rating pipeline and rules appear in App.[A]l[H] [H.I] The repo contains scripts for
evaluation on RewardBench.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report means; for stochastic baselines we average over three seeds (Sec.[5.1).
The main improvements are large and consistent across tasks/backbones (Tables|[T} [2)).
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sec. [5.1] specifies training on a single NVIDIA H100 80GB GPU for one
epoch. Precise wall-clock time can vary; we provide enough detail to approximate cost.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines)?

Answer: [Yes]

Justification: We use publicly available datasets (HH-RLHF, PKU-SafeRLHF) with appro-
priate citations; we anonymize any new assets for review and focus on safety alignment
(Sec.[2l App.[G). No personal data is released.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive impacts: safer reward modeling and reduced reliance on opaque
gating (Sec. [T} [6). Potential negatives: over-reliance on automated judges and domain
specificity; discussed via observations on LLM-as-judge uncertainty (Sec.[4.T)) and scope

notes in App.[H
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release a new generative model nor scraped web-scale data; we
release a derived rated dataset and simple weighting scheme over established safety datasets

(Sec.3).

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

Answer: [Yes]

Justification: We cite all datasets/models (e.g.,|Anthropic| [2022], Ji et al.| [2024], Lambert
et al.| [2024]).

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release a multi-attribute rated dataset derived from HH/PKU; prompts, rule
construction, and full rule list are documented in App. [A] [H} [H.1] and distributional analyses
in App.[A.T] The anonymized repo includes usage instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We report a small expert comparison study (App.|D) with setup and criteria
described.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The small expert evaluation (App.[D)) collected no personal or sensitive data
and posed minimal risk; IRB review was not sought.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are used both as judges to produce rule-based ratings and as backbones
for reward models; usage and variants are described in Secs. and App.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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