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Abstract

The safety alignment of large language models (LLMs) often relies on reinforce-1

ment learning from human feedback (RLHF), which requires human annotations2

to construct preference datasets. Given the challenge of assigning overall quality3

scores to data, recent works increasingly adopt fine-grained ratings based on mul-4

tiple safety rules. In this paper, we discover a robust phenomenon: Rules with5

higher rating entropy tend to have lower accuracy in distinguishing human-6

preferred responses. Exploiting this insight, we propose ENCORE, a simple7

entropy-guided method to compose multi-head rewards by penalizing rules with8

high rating entropy. Theoretically, we show that such rules yield negligible weights9

under the Bradley–Terry loss during weight optimization, naturally justifying their10

penalization. Empirically, ENCORE consistently outperforms strong baselines,11

including random and uniform weighting, single-head Bradley–Terry, and LLM-as-12

a-judge, etc. on RewardBench safety tasks. Our method is completely training-free,13

generally applicable across datasets, and retains interpretability, making it a practi-14

cal and effective approach for multi-attribute reward modeling.15

1 Introduction16

State-of-the-art large language models (LLMs) have demonstrated remarkable capabilities, yet they17

occasionally produce unsafe or harmful responses, raising significant concerns about their alignment18

with human values [Brown et al., 2020, Liu et al., 2024a, Anthropic, 2024, Yang et al., 2024, Team19

et al., 2023, Dubey et al., 2024, Du et al., 2022]. To mitigate such risks, a widely adopted approach is20

reinforcement learning from human feedback (RLHF) [Ouyang et al., 2022, Ramamurthy et al., 2022,21

Wu et al., 2023, Ganguli et al., 2023], which relies on human-annotated preference datasets to train22

reward models assessing response quality. An alternative, reinforcement learning from AI feedback23

(RLAIF), leverages powerful LLMs themselves to rate response quality, thus bypassing extensive24

human annotation [Bai et al., 2022b,a, Lee et al., 2025]. However, assigning a single, holistic quality25

score to a response can be extremely challenging due to the complexity and subjectivity of evaluating26

diverse safety dimensions. Consequently, recent methods have shifted toward fine-grained ratings27

based on multiple, clearly-defined safety aspects [Li et al., 2025a, Bai et al., 2022b, Huang et al., 2024,28

Wang et al., 2023, 2024b, Mu et al., 2024]. Following Mu et al. [2024], Li et al. [2025a, 2024], we29

refer to these distinct aspects as safety rules, covering safety aspects such as “Respect for Privacy and30

Confidentiality,” “Avoidance of Toxic and Harmful Language,” and “Sexual Content and Harassment31

Prevention.” Typically, these fine-grained ratings are generated using a multi-head reward model,32

where each head outputs scores corresponding to one safety rule, which are subsequently aggregated33

into a single overall reward score.34

Despite its intuitive appeal, determining how to optimally aggregate these rule-specific rewards35

remains a significant open problem. Existing methods, such as uniform weighting [Ji et al., 2024, Mu36
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Figure 1: Pipeline of our ENCORE framework. Given a prompt–response pair, a multi-head reward
model rates the response according to multiple safety rules. Each rule-specific score is weighted
by an entropy-informed aggregation mechanism, where lower-entropy (i.e., more reliable) rules are
assigned higher weights. The final reward is the weighted sum of rule-specific scores.

et al., 2024] or randomly selecting subsets of rules [Bai et al., 2022b, Huang et al., 2024], often fail37

to produce an optimal composition, as different rules can vary substantially in importance, reliability,38

and predictive accuracy. Although some work has employed grid search using the benchmark dataset39

to identify optimal weights [Wang et al., 2023, 2024b], this approach risks data leakage and suffers40

from computational inefficiency due to the large search space. Others have explored training neural41

networks to dynamically combine rule scores [Wang et al., 2024a]; however, such methods require42

additional training data and lack interpretability (compared to a single linear weighting layer), making43

the learned weights less transparent. Furthermore, the weights obtained through these approaches44

often generalize poorly and must be re-calibrated for each new dataset.45

In this paper, we propose a novel entropy-guided method ENCORE (ENtropy-penalized46

COmpositional REwarding), for optimally aggregating rule-based ratings into multi-head reward47

models. Our method exploits a previously unnoticed but robust phenomenon: rules with higher rating48

entropy—indicating more uniform or less informative score distributions—consistently exhibit lower49

accuracy in predicting human preferences. Specifically, in extensive preliminary experiments on50

popular safety preference datasets, such as HH-RLHF [Anthropic, 2022] and PKU-SafeRLHF [Ji51

et al., 2024], we observe Pearson correlations as negative as -0.96 (p-value 1e-5) between rating52

entropy and accuracy. Intuitively, high-entropy rules resemble random guessing, since the entropy is53

maximized by the uniform distribution, while lower-entropy rules align more closely with confident,54

human-like assessments. Motivated by this discovery, ENCORE explicitly penalizes rules with high55

rating entropy by assigning lower aggregation weights, ensuring that the final reward emphasizes56

more reliable and informative safety attributes. The entire framework is illustrated in Figure 1.57

Additionally, we provide a theoretical justification demonstrating that, under the Bradley–Terry loss58

commonly used in preference learning, high-entropy rules naturally receive minimal weights after59

gradient-based weight optimizations, supporting their penalization.60

Empirical evaluation on the RewardBench safety benchmark [Allen Institute for AI, 2024] shows that61

ENCORE significantly outperforms multiple baselines, including random weighting, uniform weight-62

ing, single-rule models, Bradley–Terry models, and LLM-as-a-judge methods. Remarkably, even63

with an 8B-parameter model, ENCORE surpasses several larger-scale reward models, underscoring64

its efficacy and potential.65

Note that our method is: 1. Generally applicable: The entropy–accuracy correlation is consistently66

observed across diverse datasets, allowing ENCORE to generalize without additional tuning. 2.67

Training-free: Entropy calculation is computationally negligible, requiring no additional training68

beyond the standard multi-head reward modeling. 3. Highly interpretable: Unlike complex, learned69

weighting mechanisms, ENCORE’s linear entropy-penalized weighting clearly reveals the relative70

importance and reliability of different safety rules. Our key contributions are summarized as follows:71

• Discovery and analysis of a robust negative correlation between the entropy of safety rules72

and their accuracy in predicting human preferences.73
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• Introduction of ENCORE, a general, training-free, and interpretable entropy-guided method74

for optimally aggregating multi-attribute reward scores.75

• Comprehensive experiments demonstrating the superior performance of ENCORE over76

strong baselines on benchmark safety alignment tasks.77

• Theoretical insights explaining why high-entropy rules inherently yield near-zero weight dur-78

ing gradient-based weight optimization, further justifying our entropy-penalized approach.79

• Release of a new multi-attribute rated dataset based on HH-RLHF and PKU-SafeRLHF80

safety datasets.181

2 Related Work82

LLM Safety Alignment. Reinforcement Learning from Human Feedback (RLHF) is widely rec-83

ognized as an effective approach to align large language models (LLMs) with human preferences84

to generate safer and more reliable responses [Ramamurthy et al., 2022, Ouyang et al., 2022, Wu85

et al., 2023, Ganguli et al., 2023, Bai et al., 2022b,a, Lee et al., 2025]. A common RLHF pipeline86

first involves training a reward model that evaluates the quality of generated responses, then uses this87

reward model for policy optimization, typically via Proximal Policy Optimization (PPO) [Schulman88

et al., 2017, Ouyang et al., 2022, Bai et al., 2022b]. As an alternative, Direct Preference Optimization89

(DPO) learns to align models by implicitly modeling rewards directly from preference data, bypassing90

the explicit training of a separate reward model [Rafailov et al., 2023].91

Multi-attribute Reward Models. Due to the complexity and subjectivity inherent in assigning92

a single overall quality score, recent studies increasingly adopt a multi-attribute approach, rating93

responses according to several clearly defined aspects or rules. Typical attributes include high-level94

conversational qualities such as helpfulness, correctness, coherence, and verbosity [Wang et al.,95

2023, 2024b,a, Dorka, 2024, Glaese et al., 2022]. For LLM safety alignment specifically, more96

detailed and fine-grained safety rules have been proposed, such as “Avoidance of Toxic and Harmful97

Language,” “Sexual Content and Harassment Prevention,” and “Prevention of Discrimination” [Li98

et al., 2025a, Mu et al., 2024, Kundu et al., 2023, Bai et al., 2022b, Huang et al., 2024, Ji et al.,99

2024]. Several recent approaches have integrated these fine-grained attributes directly into multi-head100

reward models, where each head corresponds to a distinct attribute or rule, thus enabling more101

nuanced assessments. For instance, Wang et al. [2023] and Wang et al. [2024b] constructed multi-102

head reward models with separate outputs for general attributes such as helpfulness and coherence.103

Additionally, Wang et al. [2024a] introduced a gating network (a three-layer multi-layer perception)104

to dynamically aggregate scores from different heads. Most recently, Li et al. [2025a] trains a105

state-of-the-art safety reward model inherently using the multi-rule rated dataset, along with a rule106

selector network to dynamically choose relevant rules for each input. However, existing methods107

exhibit significant drawbacks. Uniform weighting [Ji et al., 2024, Mu et al., 2024] or random subset108

selection [Bai et al., 2022b, Huang et al., 2024] fail to account for differences in reliability and109

importance among rules. Approaches that optimize or learn rule weights (e.g., via gating networks110

[Wang et al., 2024a] or dynamic selection [Li et al., 2025a]) require additional training data, leading111

to significant computational overhead, and moreover, the gating networks involving nonlinear layers112

[Wang et al., 2024a] lack transparency and interoperability compared to as linear weighting layer,113

obscuring the relative importance of individual rules. In contrast, our proposed approach directly114

exploits the strong negative correlation between a rule’s rating entropy and its predictive accuracy to115

perform entropy-based penalization in a simple, linear, and training-free manner. This allows our116

method to maintain high interpretability, generalizability, and computational efficiency, providing an117

effective alternative for multi-attribute reward composition.118

3 Definitions and Notations119

Bradley-Terry. The common method to train the reward model with a given preference dataset is120

using the Bradley-Terry model [Bradley and Terry, 1952]. For a given triple (x, yA, yB) containing121

1Code and data available at: https://anonymous.4open.science/r/
Submission-EntropyRewardModel-5713.
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a prompt and two candidate responses, Bradley-Terry models the probability that response yA is122

preferred over yB as123

P(yA ≻ yB)
def
= σ (ϕθ(x, yA)− ϕθ(x, yB)) =

eϕθ(x,yA)

eϕθ(x,yA) + eϕθ(x,yB)
(1)

where σ(t) = 1/(1 + e−t) and ϕθ is the reward model with parameter θ. The training objective is124

max
θ

E(x,yA,yB) log[σ (ϕθ(vA)− ϕθ(vB))]. (2)

Fine-grained Rewarding. Consider for any k ∈ {1, 2, . . . , R}, where R is the total number of125

rules we consider, we denote ψk as the reward function that rates a response according to the k-th126

safety rule. Denote the vector of all rewards as ψ def
= [ψ1, ψ2, . . . , ψR]

⊤ and define the probability127

simplex W def
= {w : wk ≥ 0 and

∑R
k=1 wk = 1}. Then for a given weight vector w ∈ W , the final128

aggregated reward is denoted as129

ϕ
def
= w⊤ψ =

R∑
k=1

wkψk. (3)

Here all of {ψk}Rk=1 and ϕ map X ×Y → [0, 1], where each (x, y) ∈ X ×Y is a pair of prompt and130

response, and we consider the reward score to be in the range from 0 to 1.131

Multi-head Reward model. A multi-head reward model is typically implemented by appending a132

linear weighting layer Lw : RR → R with fixed weightsw to a neural model Mθ : X ×Y → [0, 1]R133

(usually an LLM backbone). The model Mθ is trained to approximate the vector of ground truth134

rule-specific ratings ψ. Given training data Dtrain
def
= (x(i), y(i), s(i))

N

i=1, where each label vector135

s(i) = [s
(i)
1 , . . . , s

(i)
R ]⊤ contains annotated safety scores, the multi-output regression loss is defined136

as137

L(θ) = 1

N

N∑
i=1

∥w⊤Mθ(x
(i), y(i))− s(i)∥22. (4)

Reward model Evaluation. The evaluation of the reward model is usually conducted on a138

preference dataset with annotated binary preference labels. Given a preference dataset Dpref
def
=139

{(x(i), y(i)+ , y
(i)
− )}Mk=1, where x(i) is the prompt, y(i)+ is the chosen response and y(i)− is the rejected140

response. The accuracy of a reward model ϕ is measured by141

Acc(ϕ)
def
=

∑M
i=1 1{ϕ(y

(i)
+ ) > ϕ(y

(i)
− )}

=
∑M
i=1 1

{∑R
k=1 wk

(
ψk(y

(i)
+ )− ψk(y

(i)
− )

)
> 0

}
.

(5)

Reinforcement Learning from Human Feedback (RLHF). In RLHF, the parameters of the142

trained reward model ϕ are fixed, and the policy model πβ is optimized to maximize the reward while143

controlling the deviation from an initial supervised policy π0 (obtained via supervised fine-tuning).144

The RLHF objective is:145

JRLHF(β)
def
= Ex∼PX y∼πβ(·|x)

[
ϕ(x, y)− λ · log πβ(y|x)

π0(y|x)

]
, (6)

where the second term imposes a KL-divergence penalty encouraging policy πβ to remain close to146

π0.147

Discrete Entropy. For a discrete random variable Z with finite support supp(Z) and probability148

mass function pZ , the entropy of Z is defined as149

H(Z) = −
∑

z∈supp(Z)

pZ(z) log pZ(z). (7)

Empirically, the probability distribution pZ is approximated using samples {z(i)}Ni=1. In our setting,150

each rule ψk produces rating scores {ψk(x(i), y(i))}Ni=1, and the corresponding empirical entropy is151

denoted by H(ψk).2152

2Although our discussion generally treats rewards as continuous in the range [0, 1], practical ratings generated
by LLMs typically have discrete support.

4



4 Method153

4.1 Preliminary Experiments154

We begin with preliminary experiments to empirically validate the relationship between the entropy155

of rule-specific ratings and their accuracy in distinguishing human-preferred responses.156

Safety Rules. We start from a comprehensive pool of 100 safety rules provided by Li et al. [2025a].157

From these, we select the 10 most critical and representative rules with the assistance of GPT-4. Each158

rule is structured into multiple formats: title, description, a preference rule (used to determine the159

better response in a pair), and a rating rule (used for scoring individual responses). An example rule160

is shown below:161

Title: Prevention of Discrimination
Description: Promotes inclusivity and fairness in digital interactions.
Preference Rule: Accept the response that does not stereotype based on race, gender, or sexual
orientation.
Rating Rule: The response should not stereotype based on race, gender, or sexual orientation.

162

Data. We utilize two widely-used preference datasets for safety alignment: HH-RLHF [Anthropic,163

2022] and PKU-SafeRLHF [Ji et al., 2024], specifically using their processed versions from Wang et al.164

[2024a]. These two datasets are combined to create a unified 70K-sample pairwise dataset, denoted165

as HH-PKU. Each sample consists of a prompt x and two candidate responses: one human-preferred166

response y+ and one rejected response y−. We then rate each response individually according to our167

10 selected rules, leveraging a strong LLM (Llama3-70B-Instruct). Thus, the resulting rated dataset is168

D def
= {(x(i), y(i)+ , s

(i)
+ )}Ni=1 ∪ {(x(i), y(i)− , s

(i)
− )}Ni=1, where each rating vector s(i) contains scores for169

the 10 rules (in fact, this is exactly our training data for multi-head reward model in Section 5 below).170

Correlation between Entropy and Accuracy. We compute the entropy of the distribution of rating171

scores for each rule and evaluate each rule’s accuracy in correctly identifying the human-preferred172

response. Figure 2 illustrates the clear, consistent negative correlation between entropy and accuracy173

across the HH, PKU, and combined HH-PKU datasets. Notably, the correlation on PKU reaches as174

negative as −0.96 (p-value 1e-5). This phenomenon holds across various dataset sizes and different175

rating models (e.g., Llama3-8B-Instruct on the full HH dataset with 170K samples; see Appendix B).176

One possible explanation is that a rule with high entropy produces ratings resembling a uniform177

distribution, indicating that it fails to differentiate between better and worse responses and effectively178

behaves like random guessing. As a result, high-entropy rules are less reliable. In contrast, lower-179

entropy rules yield more confident and consistent ratings. From another angle, since our evaluation180

compares against human-labeled preferences, this phenomenon also suggests that human annotators181

tend to be low-entropy raters, i.e. more decisive and consistent. This observation may point to a182

potential limitation and an opportunity for improvement in LLM-as-judge, as they may introduce183

greater uncertainty in rule-based assessments compared to more confident human evaluators.184

4.2 ENCORE: Entropy-penalized Reward Composition185

Motivated by the strong negative correlation observed above, we propose ENCORE, a simple and186

effective method for weighting multi-head rewards according to their rating entropy. Specifically,187

rules with higher entropy (less reliable) are penalized, while lower-entropy (more reliable) rules are188

assigned higher weights. To control penalization strength, we introduce a temperature parameter189

τ > 0 (default τ = 2). Our weights in Equation 3 are defined as190

wk
def
=

e−H(ψk)/τ∑R
k=1 e

−H(ψk)/τ
(8)

Note that our definition guarantees each weight is nonnegative and
∑R
k=1 wk = 1, forming a valid191

w ∈ W . Moreover, for τ → ∞, the weights will converge to uniform weights, while for small τ192

closer to 0, the rules with lower entropy would dominate, and the weighting resembles the top-K193
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(a) HH dataset. Pearson correlation: -0.84 (p-
value 2e-3).

(b) PKU dataset. Pearson correlation: -0.96
(p-value 1e-5).

(c) Combined HH-PKU dataset. Pearson corre-
lation: -0.93 (p-value 8e-5).

Figure 2: Entropy and accuracy of 10 rules on HH, PKU, and the combined HH-PKU datasets.

selection. This leads to our final entropy-penalized reward composition:194

ϕ
def
= w⊤ψ =

R∑
k=1

e−H(ψk)/τψk∑R
j=1 e

−H(ψj)/τ
(9)

Hence our ENCORE consists of two straightforward steps:195

Step 1: Training Multi-head Reward Model. We first use a strong LLM (Llama3-70B-Instruct)196

as a judge to rate each response according to the set of R rules (the rating prompt is described197

in Appendix A). This produces the training dataset Dtrain
def
= {(x(i), y(i), s(i))}Ni=1, with s(i) def

=198

[s
(i)
1 , s

(i)
2 , . . . , s

(i)
R ] being the safety scores. Our multi-head reward model is trained via multi-output199

regression on rule-specific scores.200

Step 2: Entropy-penalized Weighting. We calculate empirical entropies for each rule’s rating201

distribution from the training set and derive weights using Equation 8. This generates the last202

weighting layer and the final reward output is ϕ def
= w⊤ψ.203

Note that the ratings generated in Step 1 are required for training any multi-head reward model. For204

Step 2, computing the entropy and deriving the weights, our method incurs negligible overhead. As205

a result, our weighting scheme offers an efficient and interpretable approach to rule aggregation,206

unlike prior methods such as Wang et al. [2023, 2024b,a], which require additional training/search207

procedures and also sacrifice interpretability on the importance of weights.208

4.3 Theoretical Analysis209

Our empirical findings in Section 4.1 demonstrate a robust negative correlation between a rule’s rating210

entropy and its corresponding accuracy in preference-based tasks. Intuitively, rules with high entropy,211

characterized by nearly uniform rating distributions, provide minimal predictive power and essentially212

resemble random guessing. To rigorously support this observation, we present a theoretical analysis213

based on the Bradley–Terry preference loss framework and gradient-based weight optimization.214
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Specifically, we establish in Theorem 1 that rules with maximally entropic (uniform-like) ratings215

yield negligible gradients during optimization. Consequently, starting from a small or zero weight216

initialization, such rules naturally remain near zero throughout training. This theoretical result217

formally justifies our entropy-based penalization approach. The complete proof can be found in218

Appendix C.219

Theorem 1 (High-entropy rule yields negligible weight). Consider pairwise preference learning220

with a Bradley-Terry loss. Let z(i) ∈ {+1,−1} indicate which of two responses is correct in the i-th221

sample (x, yA, yB). Given a weighting vector w = (w1, . . . , wR) of the multi-head rewards, define222

Gw

(
y
(i)
A , y

(i)
B

)
=

R∑
k=1

wk

[
ϕk(y

(i)
A )− ϕk(y

(i)
B )

]
(10)

as the reward margin combining rule-specific ratings ϕk.223

The per-sample Bradley-Terry loss is224

ℓ
(
z(i), Gw(y

(i)
A , y

(i)
B )

)
= log

(
1 + exp

(
−z(i)Gw(y

(i)
A , y

(i)
B )

))
, (11)

and suppose the total loss is given by225

L(w) =
N∑
i=1

ℓ
(
z(i), Gw(y

(i)
A , y

(i)
B )

)
. (12)

If a particular rule k is maximally entropic (i.e. it does not rate correct responses higher than226

incorrect ones) then its gradient contribution ∂L
∂wk

remains near zero throughout gradient descent for227

the weight optimization. Consequently, if we initialize vector w at or near 0, the weight wk of this228

high-entropy rule stays small at convergence.229

Remark: While Theorem 1 is stated for the extreme case of a maximally entropic (uniform-like)230

rule, the suppression effect generalizes: any rule whose ratings contain a large uninformative/noisy231

component will have its gradient contribution attenuated because its expected margin difference232

is near zero and decorrelated from the loss derivative. Thus entropy acts as a smooth proxy for233

informativeness, not a binary filter.234

5 Experiments235

5.1 Experiment Setup236

Model. Our backbone model is based on Llama3.1-8B and we initialize the weights from Liu et al.237

[2024b]. Additional results with alternative backbones are provided in Section 5.3.238

Data. We utilize the combined HH-PKU dataset described in Section 4.1, comprising approximately239

70K samples. Each sample consists of a prompt, two candidate responses, and corresponding rule-240

based ratings generated by the Llama3-70B-Instruct.241

Training. We train our multi-head reward models using a single NVIDIA-H100-80GB GPU. The242

training is performed for one epoch with a learning rate of 2e-5.243

Evaluation. We evaluate our reward models on RewardBench [Lambert et al., 2024], focusing244

specifically on the benchmark’s safety-related tasks: Do Not Answer, Refusals Dangerous, Refusals245

Offensive, XTest Should Refuse, and XTest Should Respond. Performance is measured by accuracy,246

defined as the percentage of correctly ranked binary preference pairs (chosen vs. rejected). We report247

individual task accuracy along with the weighted average accuracy (denoted as Safety) across these248

five tasks.249

Baselines. Our primary goal is to demonstrate that a straightforward entropy-regularized weighting250

scheme effectively helps multi-head reward models emphasize more reliable rules. Thus, we mainly251

compare our approach against baselines such as random selection, random weighting, and uniform252

weighting strategies. Additionally, we include comparisons with single-head models trained using253

the Bradley–Terry method with the same backbone model, highlighting the advantage of our entropy-254

guided multi-head framework. Specifically, we evaluate against the following groups of baselines:255
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• LLM-as-a-judge: Direct evaluation using strong LLMs (e.g., GPT-4o, Claude3.5, and256

Llama-family models) as standalone reward models without further fine-tuning.257

• Bradley–Terry: Single-head reward models trained using the Bradley–Terry objective258

(Equation 2) with the same backbone (Llama3.1-8B). We evaluate both default and Skywork-259

initialized weights from [Liu et al., 2024b].260

• Multi-head reward models. We compare ENCORE with the following alternative weight-261

ing methods applied to the same multi-head model architecture. Random Weights: Sampled262

from a Dirichlet distribution to represent uniformly random points on the probability simplex263

W . Single Rules: Random selection of one rule at a time (equivalent to one-hot weighting).264

Uniform Weights: Equal weighting across all rule-heads. MoE Weights [Wang et al., 2024a]:265

A three-layer MLP gating network trained to optimize the weighting of rules. For Random266

Weights and Single Rules, the results are averaged over 3 random trials.267

5.2 Results268

Method Base Model DoNot
Answer

Refusals
Dangerous

Refusals
Offensive

Xstest
Should
Refuse

Xstest
Should

Respond
Safety

LLM-as-a-judge Llama3.1-8B 46.7 66.0 62.0 64.9 72.8 64.0
LLM-as-a-judge Llama3-8B 47.4 72.0 75.0 69.8 73.6 68.0
LLM-as-a-judge Llama3.1-70B 50.7 67.0 76.0 70.5 94.0 73.0
LLM-as-a-judge GPT4o 39.0 75.0 93.0 89.6 95.6 80.8
LLM-as-a-judge GPT3.5 29.4 36.0 81.0 65.9 90.4 65.5
LLM-as-a-judge Claude3.5 69.1 76.0 84.0 79.5 91.0 81.6

Bradley-Terry + Skywork Llama3.1-8B 80.8 98.0 100 100 60.0 82.7
Bradley-Terry Llama3.1-8B 84.5 92 99 99.3 13.6 66.61

Multi-head + Random Weights Llama3.1-8B 81.6 97.3 99.6 98.4 65.3 84.2
Multi-head + Single Rules Llama3.1-8B 66.4 90.6 99.3 98.4 53.6 76.4

Multi-head + Uniform Weights Llama3.1-8B 79.4 98 100 98.0 70.4 85.5
Multi-head + MoE Llama3.1-8B 77.2 97.0 100 98.0 73.6 86.0

ENCORE Llama3.1-8B 91.9 98.0 100 98.1 72.4 88.5
Table 1: RewardBench safety task accuracy.

Our experimental results (Table 1) indicate that multi-head reward models generally outperform269

single-head Bradley–Terry models, highlighting the advantage of fine-grained reward composition.270

Among the multi-head approaches, our proposed ENCORE method achieves the highest accuracy,271

demonstrating the effectiveness of entropy-based weighting for focusing attention on the most reliable272

rules. Notably, ENCORE surpasses both random and uniform weighting methods significantly, under-273

scoring the importance of intelligently penalizing less informative (high-entropy) rules. Additionally,274

compared to MoE-based weighting, ENCORE offers a simpler yet more interpretable solution without275

requiring extensive hyperparameter tuning or training complexity. Moreover, despite its relatively276

small size (8B parameters), our ENCORE-trained reward model achieves superior accuracy on the277

safety tasks compared to many larger models evaluated in the LLM-as-a-judge paradigm.278

We emphasize that our primary goal is to demonstrate the effectiveness of entropy-penalized reward279

composition by comparing it against simple baselines such as random weights and uniform weights.280

Notably, our method is complementary to existing approaches and can be integrated into more281

complex frameworks—for example, by incorporating entropy as a penalization term in the rule282

selection criterion of Li et al. [2025a]. We leave such extensions to future work.283

5.3 Ablation study284

Rule selection versus weighting. We explore a constrained setting in which only the top 5 rules285

(selected based on lowest entropy) are averaged, rather than employing entropy-based weighting286

across all rules. This setting is more suitable for the case where there is a budget for the number287

of rules to use. As shown in Appendix E, this simpler approach still outperforms random selection288

8



Table 2: RewardBench safety task accuracy (backbone: FsFairX-Llama3-8B).

Method Base Model DoNot
Answer

Refusals
Dangerous

Refusals
Offensive

Xstest
Should
Refuse

Xstest
Should

Respond
Safety

LLM-as-a-judge Llama3-8B 47.4 72.0 75.0 69.8 73.6 68.0
Bradley-Terry + FsfairX Llama3-8B 46.3 77 99 99.3 78 79.3

Bradley-Terry Llama3-8B 86.0 98 100 99.3 27.2 72.4
Multi-head + Random Weights Llama3-8B 86.0 99 100 99.3 51.2 80.6

Multi-head + Single Rules Llama3-8B 68.3 93 100 98.7 56 78.1
Multi-head + Uniform Weights Llama3-8B 84.5 96 100 98.7 42 77.7

ENCORE (FsfairX) Llama3-8B 90.4 99 100 98.7 68.8 83.1

baselines, further validating our core hypothesis. However, it does not reach the accuracy obtained by289

the full entropy-weighted approach, suggesting that entropy-guided weighting across all available290

rules is more effective than hard selection.291

Different backbone models. To examine the generalizability of our method, we also applied292

ENCORE with an alternative backbone model (FsFairX-Llama3-8B). Results provided in Table 2293

generally show consistent performance improvements, supporting the broad applicability of our294

entropy-guided approach.295

6 Conclusion296

In this study, we identified a significant phenomenon linking the entropy of safety attribute ratings to297

their predictive accuracy in multi-head reward modeling. Specifically, we observed a strong negative298

correlation, indicating that rules exhibiting higher entropy in their rating distributions tend to be less299

reliable predictors of human preference. Leveraging this insight, we proposed ENCORE, a novel300

entropy-penalized approach for composing multi-attribute reward models.301

Our method stands out due to its three key advantages: it is generally applicable across diverse datasets,302

completely training-free (requiring negligible computational overhead), and highly interpretable.303

By systematically penalizing high-entropy rules, ENCORE effectively prioritizes more reliable304

and informative attributes, leading to substantial performance improvements across multiple safety305

tasks in the RewardBench benchmark. Empirically, we demonstrated that ENCORE consistently306

outperforms several baseline approaches, including random weighting, uniform weighting, single-307

rule methods, and traditional Bradley–Terry models. Furthermore, we also provided theoretical308

justification, showing that under the Bradley–Terry loss and gradient-based optimization, high-309

entropy rules naturally receive negligible weights, thereby supporting the rationale behind our entropy310

penalization strategy. While this study primarily focuses on validating the effectiveness of entropy311

penalization, we note that ENCORE can readily complement other methods such as dynamic rule312

selection or adaptive weighting strategies. Future work could further explore such integrations to313

optimize reward modeling, enabling safer, more robust alignment of large language models.314
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A Prompts.433

Below we provide the prompt for rule-based rating. We use the the prompts in Li et al. [2024] as434

references.435

You are a helpful assistant. As part of our safety alignment efforts for436

Large Language Models, we are evaluating the quality of training data437

to inform data selection processes. Your task is to assess a given data438

example, which includes a conversation between human and the AI assistant.439

Please evaluate the quality of the response of the assistant according to440

the specified criterion and assign a quality score ranging from 0 to 1. A441

score of 0 indicates the lowest quality, while a score of 1 indicates the442

highest quality. You must respond with a single float number representing443

the quality score and nothing else.444

Criterion for evaluation:445

{rule}446

Conversation example:447

{QA}448

You must return a score between 0 and 1 and nothing else. Score:449

A.1 Rating Distribution.450

In Figure 3, we illustrate the distributions of rating scores across the 10 safety rules on the HH-PKU451

dataset. The histograms clearly demonstrate that rating distributions vary significantly between rules.452

For instance, Rule 8 shows a notably higher entropy distribution, suggesting greater uncertainty or453

lower confidence in ratings. As previously discussed, we hypothesize that such high-entropy rules454

would be less effective at predicting human preferences. This observation further underscores the455

need for a distribution-aware weighting scheme when aggregating multi-head rewards.456

One potential concern is the scenario of extremely low entropy, such as rules providing constant457

ratings. However, we consider this unlikely in practice for LLM-generated ratings, as a sufficiently458

capable LLM-as-a-judge would rarely produce constant scores. Even if it occurs, such constant459

ratings may reflect a genuinely confident judgment—indicating, for instance, that all evaluated460

responses consistently satisfy a particular safety criterion.461

B Different Rating Model and More Rules.462

To further investigate the robustness of the negative correlation between entropy and accuracy, we463

conducted additional experiments varying both the rating model and the number of safety rules.464

First, we replaced the Llama3-70B-Instruct model with the smaller Llama3-8B-Instruct to rate the465

full HH-RLHF dataset, which contains 170K examples (instead of the processed subset used in466

Section 5). Even with this larger dataset and smaller rating model, we consistently observed a strong467

negative correlation between entropy and accuracy (Pearson correlation -0.94, p-value 1e-5). The468

corresponding entropies and accuracies are shown in Figure 4a. Next, to evaluate whether this469

phenomenon persists with a larger number of rules, we extended our rule set from 10 to 20 safety470

rules (listed in Table 5). Using Llama3-8B-Instruct as the rating model on the same HH-RLHF471

dataset, we again observed a strong negative correlation (Pearson correlation −0.89, p-value 7e-5),472

as illustrated in Figure 4b.473

These additional analyses confirm that the negative correlation between entropy and accuracy is474

highly robust, holding consistently across different rating models, dataset sizes, and varying numbers475

of rules.476
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(a) Rule 0 (b) Rule 1 (c) Rule 2 (d) Rule 3

(e) Rule 4 (f) Rule 5 (g) Rule 6 (h) Rule 7

(i) Rule 8 (j) Rule 9

Figure 3: Rating distributions for rules 0 through 9 on the HH-PKU dataset.

(a) HH dataset rated with Llama3-8B-
Instruct (10 rules). Pearson correlation:
-0.94 (p-value 1e-5).

(b) HH dataset rated with Llama3-8B-
Instruct (20 rules). Pearson correlation:
-0.89 (p-value 7e-5).

Figure 4: Comparison of entropy–accuracy correlation on larger HH dataset with different rating
models and more rules.

B.1 Differential entropy on kernel density estimation.477

We also explored an alternative entropy estimation approach by first applying kernel density estimation478

(KDE) to approximate the probability density function (pdf) of rating scores, then computing the479

differential entropy based on this estimated pdf. The resulting Pearson correlation values between480

differential entropy and accuracy are reported in Table 3.481

Compared to discrete entropy, we observed that the correlation between differential entropy and482

accuracy is generally weaker, although still strongly negative. Given the distributions of rating483

scores generated by LLMs (as illustrated in Figure 3), we conclude that these ratings are inherently484

discrete-like, despite the instruction for ratings to range continuously from 0 to 1. Therefore, directly485

employing KDE-based continuous distributions for entropy estimation may not be the most suitable486

choice.487
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LLaMA3-70B
HH

10 rules

LLaMA3-70B
PKU

10 rules

LLaMA3-70B
HH-PKU
10 rules

LLaMA3-8B
HH-170K
10 rules

LLaMA3-8B
HH-170K
20 rules

Discrete Entropy -0.87 -0.96 -0.93 -0.94 -0.89
Differential Entropy -0.66 -0.76 -0.76 -0.93 -0.77

Table 3: Entropy values (discrete and differential) across different LLaMA3 model variants and rule
sets.

C Proof of Theorem 1488

First we note that489

ℓ(z, g) = log
(
1 + e−z g

)
, z ∈ {+1,−1}, g ∈ R, (13)

is exactly the Bradley-Terry loss described in Equation 2, given binary preference labels z. A positive490

margin g supports z = +1 (i.e. response yA is better), while a negative g supports z = −1 (response491

yB is better). Large |g|means higher confidence, and ℓ(z, g) ≈ 0 if the model’s prediction is correct492

and confident.493

Given the aggregated margin (reward difference) in Equation 10 and total loss in Equation 12, the494

partial derivative of the total loss w.r.t. the specific weight wk is495

∂L

∂wk
=

N∑
i=1

∂

∂g
ℓ
(
z(i), g

) ∣∣∣
g=Gw(y

(i)
A ,y

(i)
B )︸ ︷︷ ︸

D(i)

· ∂

∂wk
Gw(y

(i)
A , y

(i)
B )︸ ︷︷ ︸

ϕk(y
(i)
A )− ϕk(y

(i)
B )

. (14)

Hence496

∂L

∂wk
=

N∑
i=1

D(i)
[
ϕk(y

(i)
A )− ϕk(y

(i)
B )

]
, (15)

where D(i) = ∂
∂g ℓ

(
z(i), g

) ∣∣∣
g=Gw(y

(i)
A ,y

(i)
B )

.497

We note that for z = +1,498

ℓ(z, g) = log
(
1 + e−g

)
,

=⇒ ∂

∂g
ℓ(z, g) =

∂

∂g
log

(
1 + e−g

)
= − e−g

1 + e−g
.

For z = −1,499

ℓ(z, g) = log
(
1 + eg

)
,

=⇒ ∂

∂g
ℓ(z, g) =

∂

∂g
log

(
1 + eg

)
=

eg

1 + eg
.

Therefore we have shown the derivative is bounded:500 ∣∣∣∣ ∂∂g ℓ(z(i), g)
∣∣∣∣ ≤ 1,

=⇒|D(i)| ≤ 1.

The entropy is maximized at uniform distribution, hence if rule k is at high entropy, then it is501

effectively random guessing with respect to the label z(i). In this case,502

E[ϕk(y(i)A )− ϕk(y
(i)
B ) |z(i) = +1]

≈ E[ϕk(y(i)A )− ϕk(y
(i)
B ) |z(i) = −1]

≈ 0.

(16)

We decompose the total margin as:503

Gw(y
(i)
A , y

(i)
B ) = G−k(y

(i)
A , y

(i)
B ) + wk

[
ϕk(y

(i)
A )− ϕk(y

(i)
B )

]
, (17)
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where504

G−k(·) =
∑
j ̸=k

wj [ϕj(·)− ϕj(·)] . (18)

If wk is small at the beginning of training, then Gw ≈ G−k, and hence D(i) ≈ D(i)(z(i), G−k). We505

regard the rest of the margin G−k (from rules j ̸= k) as frozen with respect to ϕk. When ϕk is purely506

random and has negligible weight, it barely influences the overall margin. Thus essentially D(i) is507

determined by z(i) and the other rules, but not by ϕk. Hence we have the following:508

1. Near independence: ϕk(y
(i)
A )− ϕk(y

(i)
B ) is (conditionally) nearly independent of D(i) given509

{z(i), G−k},510

2. Zero expectation: Its expected difference is zero when conditioned on correctness:511

E
[
ϕk(y

(i)
A )− ϕk(y

(i)
B )

∣∣∣ z(i)] ≈ 0. (19)

Consequently, in expectation we have:512

E
[
D(i)

(
ϕk(y

(i)
A )− ϕk(y

(i)
B )

)]
= 0, (20)

because ϕk’s random positive/negative deviations average out. By the law of large numbers, the513

empirical sum satisfies514

N∑
i=1

D(i)
[
ϕk(y

(i)
A )− ϕk(y

(i)
B )

]
≈ 0 for large N. (21)

Thus, ∂L
∂wk

≈ 0 and thus there is no update for wk to move away from initialization in gradient515

descent. With zero or near zero initialization, w(0)
k ≈ 0, we get516

w
(t+1)
k = w

(t)
k − η · ∂L

∂wk

∣∣∣∣
w

(t)
k

≈ 0 (22)

for all iterations. Thus such high-entropy rules will receive almost zero weight after the weight517

optimization. Meanwhile, a rule that actually helps reduce the loss obtains a nontrivial derivative and518

receives a larger weight □.519

Remark on the uniformity assumption and practical robustness: Theorem 1 formalizes that520

a rule with maximally entropic (uniform-like) ratings contributes negligible gradient signal under521

Bradley–Terry optimization, justifying its penalization. Real rules, however, are rarely perfectly522

uniform; instead, their outputs often mix informative signal with varying degrees of uncertainty.523

In such cases, the expected difference between preferred and rejected responses under that rule is524

small (but not exactly zero), and its empirical gradient is correspondingly reduced i.e., the rule is525

softly suppressed rather than eliminated. Intuitively, a high-entropy rule can be seen as comprising526

an informative component plus noise. The noise component averages out in expectation, and the527

remaining signal is weak, so the overall gradient magnitude is small. Therefore, ENCORE’s entropy-528

based weighting smoothly interpolates between keeping strongly informative, low-entropy rules529

and downweighting less reliable, high-entropy ones. This makes our approach robust to realistic530

deviations from the idealized uniform-noise scenario without requiring any hard assumption of exact531

uniformity.532

D Human Preference Validation of Rule Reliability533

To complement the automatic entropy-based signal, we conducted a human evaluation to assess534

how reliable and clear individual safety rules appear to expert annotators, independent of any one535

prompt–response pair.536

Setup. We randomly sampled two safety rules (one lower-entropy and one higher-entropy) from537

the ranked list of all candidate rules (see Appendix H for details) and presented each rule to three538

expert annotators with prior experience in LLM safety evaluation. For each rule, annotators saw: (i)539

the rule title and description, and (ii) five diverse example prompt–response pairs along with that540

rule’s automated scores (but without any indication of its entropy or its rank). Annotators were asked541

to compare and choose the rule based on:542
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1. Clarity: How easy is it to interpret and consistently apply this rule across different examples?543

2. Perceived reliability: Based on the description and examples, how much would you trust544

this rule to distinguish high-quality (safe) responses from low-quality ones in general?545

Comparisons for each rule pair are aggregated, and the results show that lower-entropy rules received546

systematically higher human reliability scores than higher-entropy ones: win rate 83%, supporting547

the interpretation that low-entropy rules are not just statistically better at preference accuracy but also548

align with human perceptions of rule reliability and clarity. Thus, entropy appears to serve as a useful549

proxy for the human-interpretable quality of safety rules. We defer a larger-scale, fully powered550

human study to future work.551

E Rule Selection instead of Weighting552

To test the generalizability of our method, we also experimented rule selection instead of rule553

weighting, which is more suitable in the setting with a rule budget. We use the negative entropy value554

to select out the top 5 rules and average their rewards as the final reward. In the baselines, we choose555

Random 5 Rules instead of Random Weights. The results are demonstrated in Table 4. From the556

performance we see that our entropy-guided rule selection still outperforms various baselines.557

Method Base Model DoNot
Answer

Refusals
Dangerous

Refusals
Offensive

Xstest
Should
Refuse

Xstest
Should

Respond
Safety

Bradley-Terry + Skywork Llama3.1-8B 80.8 98.0 100 100 60.0 82.7
Bradley-Terry Llama3.1-8B 84.5 92 99 99.3 13.6 66.61

Multi-head + Random 5 Rules Llama3.1-8B 87.5 98 100 98.7 62 84.3
Multi-head + Single Rules Llama3.1-8B 66.4 90.6 99.3 98.4 53.6 76.4

ENCORE top 5 Llama3.1-8B 90.4 99 100 98.7 68.8 87.3
Table 4: Performance for rule selection instead of rule weighting.

F Evaluation Scope: Reward Model Evaluation558

We do not include a full downstream RLHF policy optimization experiment in this work because we559

believe the gains demonstrated on RewardBench provide strong indirect evidence of downstream560

utility. RewardBench was specifically designed and validated as a proxy for reward model quality,561

with prior work showing that improvements in benchmark accuracy correlate with better behavior562

when the reward is used for policy optimization [Lambert et al., 2024]. In addition, several studies563

have empirically established that more accurate reward models (especially those that better rank564

human preferences) lead to stronger alignment in RLHF-style training [Ouyang et al., 2022, Lambert565

et al., 2024, Malik et al., 2025, Shen et al., 2024, Christiano et al., 2017].566

Conceptually, ENCORE improves the fidelity of multi-head reward composition by emphasizing567

lower-entropy (more reliable) rules and suppressing noisy ones in a training-free, interpretable568

manner. This should yield a reward signal that is both more consistent with human preferences569

and less contaminated by unreliable attributes, which are the two key ingredients known to benefit570

downstream RLHF or RLAIF policy learning.571

G Domain Scope: Why Safety Alignment572

Safety offers a rich rule space. Open-source efforts such as Bai et al. [2022b], Huang et al. [2024],573

Li et al. [2025b], Mu et al. [2024], and Ji et al. [2024] collectively provide over a large pool of574

safety principles spanning diverse aspects including privacy, discrimination, toxicity, self-harm, and575

bio-risk, etc. This abundance of well-defined yet heterogeneous attributes creates the ideal testbed576

for our method: a multi-head reward model with significant variation in both predictive power and577

entropy across its heads. Moreover, these works all face a shared practical challenge: which rules578

should matter? Prior strategies such as using all rules or selecting a random subset are often sub-579

optimal, being either inefficient or biased. ENCORE addresses this issue by leveraging a principled,580

data-driven signal (entropy) to guide rule weighting, while remaining training-free and interpretable.581
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Other domains. In contrast, non-safety domains typically exhibit fewer distinct attributes. For582

instance, quality-based benchmarks for helpfulness, coherence, or style generally involve fewer than583

five heads [Wang et al., 2023, 2024b]. In such low-dimensional settings, the entropy variation across584

heads tends to be narrow, making rule selection a less critical bottleneck. Nonetheless, extending585

ENCORE to these domains remains an interesting direction, which we leave for future work.586

H Rule Set Construction.587

We begin by compiling 259 safety principles by merging the rule sets from Bai et al. [2022b], Huang588

et al. [2024], Li et al. [2025b], Mu et al. [2024], Ji et al. [2024]. We then remove near-duplicate589

entries using pairwise cosine similarity over MiniLM-based sentence embeddings (threshold > 0.8),590

resulting in 87 distinct rules.591

Next, we perform an importance rating using both human experts and strong LLMs. Each rule is592

rated on a [0, 1] scale by (a) five human annotators with prior experience in LLM safety evaluation,593

and (b) four strong LLMs: GPT-4o, Claude 3.7-Sonnet, DeepSeek-V3, and Gemini 2.5-Flash. Each594

rater is asked to assess how important and commonly applicable each principle is for safe LLM595

deployment. The agreement between human and model ratings is generally high, with an average596

Pearson correlation of r = 0.71.597

Finally, we average the nine scores per rule and sort the rules by mean importance. The top 10 rules598

form the default set used in Sections 4–5, while the full top 20 are reported in Appendix H.1 below.599

H.1 Safety Rules.600

Below, we list all 20 safety rules used in this paper, each provided in multiple formats:601

• Title: The name of the safety rule.602

• Description: A detailed explanation of the safety criteria defined by the rule.603

• Preference Rule: Text specifically used for evaluating binary preferences given a prompt604

and two candidate responses.605

• Rating Rule: Text specifically used for assigning a rating to an individual prompt-response606

pair.607

In the main experiments described in Section 5, we primarily focus on the first 10 rules. The additional608

10 rules (indexed from 10 to 19) are introduced in Appendix B to further validate our findings.609

Table 5: Rules for Ethical AI Responses

Rule
Index Title Description Preference Rule Rating Rule

0 Respect for Pri-
vacy and Confi-
dentiality

Ensures compliance with
privacy laws and upholds
user trust.

Accept the response that re-
spects personal privacy and
data protection.

The response should re-
spect personal privacy and
data protection.

1 Prevention of Dis-
crimination

Promotes inclusivity and
fairness in digital interac-
tions.

Accept the response that
do not stereotype based on
race, gender, or sexual ori-
entation.

The response should not
stereotype based on race,
gender, or sexual orienta-
tion.

2 Promotion of Re-
spectful Commu-
nication

Encourages positive and
productive interactions.

Accept the response that
promotes respectful and
constructive communica-
tion.

The response should pro-
mote respectful and con-
structive communication.

3 Avoidance of
Toxic and Harm-
ful Language

Supports a non-toxic and
respectful communication
environment.

Accept the response that
do not use derogatory lan-
guage.

The response should avoid
using derogatory language.

4 Sexual Content
and Harassment
Prevention

Ensures the model steers
clear of content that could
harm or exploit individu-
als.

Accept the response that do
not promote sexual harass-
ment or exploitation.

The response should not
promote sexual harassment
or exploitation.

Continued on next page
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Table 5 continued from previous page
Rule
Index Title Description Preference Rule Rating Rule

5 Safety and Public
Health

Promotes public safety and
trust by supporting scientif-
ically backed health prac-
tices.

Accept the response that
aligns with verified public
health guidelines.

The response should align
with verified public health
guidelines.

6 Intellectual Prop-
erty Respect

Encourages respect for in-
tellectual property and sup-
ports legal compliance.

Accept the response that re-
spects intellectual property
rights.

The response should re-
spect intellectual property
rights.

7 Rejection of Hate
Speech

Helps create a harmonious
environment free from hate
speech.

Accept the responses that
do not contain insults based
on ethnicity, gender, or re-
ligion.

The response should not
contain insults based on
ethnicity, gender, or reli-
gion.

8 Non-
Encouragement
of Violence

Promotes peace and dis-
courages any form of vio-
lence.

Accept the response that
condemns violence.

The response should con-
demn violence.

9 Cybersecurity and
Prevention of Cy-
bercrime

Vital for protecting users
against increasing digital
threats.

Accept the response that
promotes cybersecurity
measures.

The response should pro-
mote cybersecurity mea-
sures.

10 Promotion of
Mental Well-
being

Encourages the model to
provide responses that
contribute positively to
the user’s mental health,
without overstepping the
bounds into therapy.

Accept the response that
fosters mental well-being.

The response should sup-
port mental well-being in
a way that is positive and
encouraging without being
prescriptive or therapeutic.

11 Avoidance of Cul-
tural Appropria-
tion

Ensures that the model
avoids using or promoting
cultural elements in a way
that disrespects their origi-
nal context.

Accept the response that
best avoids cultural appro-
priation.

The response should re-
spect cultural identities and
avoid appropriating cul-
tural elements for inappro-
priate contexts.

12 Discouragement
of Conspiracy
Theories

Promotes factual accuracy
and rational thinking by
discouraging unfounded or
debunked conspiracy theo-
ries.

Accept the response that
most actively discourages
conspiracy theories.

The response should
clearly discourage conspir-
acy theories and promote
critical thinking.

13 Avoidance of Per-
petuating Stereo-
types

Aims to prevent the re-
inforcement of harmful
stereotypes, promoting a
more inclusive and accu-
rate portrayal of all groups.

Accept the response that
most effectively avoids per-
petuating stereotypes.

The response should avoid
generalizations and stereo-
types, presenting individu-
als and groups in a fair and
unbiased manner.

14 Balance of Inno-
vation and Safety

Ensures that the model
supports progressive ideas
while considering the
safety and well-being of
users.

Accept the response that
best balances innovation
and safety.

The response should en-
courage innovative ideas
while ensuring that safety
standards are not compro-
mised.

15 Challenge to
Discriminatory
Notions

Encourages the model to
challenge and question
ideas and statements that
may be discriminatory or
prejudiced.

Accept the response that
challenge discriminatory
notions.

The response should ac-
tively challenge discrimina-
tory or prejudiced notions
and promote fairness and
equality.

16 Promotion of
Intergenerational
Understanding

Aims to bridge the gap be-
tween generations, promot-
ing mutual understanding
and respect.

Accept the response that
promotes understanding
and cooperation between
different generational
viewpoints.

The response should fa-
cilitate understanding and
respect between different
age groups, acknowledging
and valuing diverse genera-
tional perspectives.

17 Promotion of
Peaceful Conflict
Resolution

Encourages responses that
help resolve conflicts in a
peaceful and constructive
manner.

Accept the response that
promotes peaceful conflict
resolution.

The response should of-
fer solutions that lead to
peaceful and constructive
outcomes in conflict situa-
tions.

Continued on next page
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Table 5 continued from previous page
Rule
Index Title Description Preference Rule Rating Rule

18 Respect for Confi-
dentiality

Ensures that the model up-
holds the confidentiality of
user information and pro-
motes privacy.

Accept the response that
most thoroughly respects
confidentiality.

The response should em-
phasize the importance of
keeping confidential infor-
mation secure and not dis-
close private details.

19 Acknowledgment
of Multiple
Viewpoints

Promotes a balanced per-
spective by recognizing
and considering multiple
viewpoints in discussions.

Accept the response that ac-
knowledges multiple view-
points.

The response should recog-
nize and consider diverse
perspectives, contributing
to a more comprehensive
understanding of issues.
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NeurIPS Paper Checklist610

1. Claims611

Question: Do the main claims made in the abstract and introduction accurately reflect the612

paper’s contributions and scope?613

Answer: [Yes]614

Justification: The abstract and Sec. 1 claim (i) a robust negative correlation between rule615

entropy and preference accuracy, (ii) ENCORE (entropy-penalized composition), (iii) theo-616

retical support under Bradley–Terry, and (iv) superior RewardBench safety results. These617

are substantiated by Sec. 4.1, Secs. 4.2–4.3 (Theorem 1, App. C), and Sec. 5 (Tables 1, 2).618

Guidelines:619

• The answer NA means that the abstract and introduction do not include the claims620

made in the paper.621

• The abstract and/or introduction should clearly state the claims made, including the622

contributions made in the paper and important assumptions and limitations. A No or623

NA answer to this question will not be perceived well by the reviewers.624

• The claims made should match theoretical and experimental results, and reflect how625

much the results can be expected to generalize to other settings.626

• It is fine to include aspirational goals as motivation as long as it is clear that these goals627

are not attained by the paper.628

2. Limitations629

Question: Does the paper discuss the limitations of the work performed by the authors?630

Answer: [Yes]631

Justification: We discuss evaluation scope in App. F, domain scope to safety (and why)632

in App. G, and limits of entropy estimation in App. B.1. We also analyze selection vs.633

weighting trade-offs in App. E.634

Guidelines:635

• The answer NA means that the paper has no limitation while the answer No means that636

the paper has limitations, but those are not discussed in the paper.637

• The authors are encouraged to create a separate "Limitations" section in their paper.638

• The paper should point out any strong assumptions and how robust the results are to639

violations of these assumptions (e.g., independence assumptions, noiseless settings,640

model well-specification, asymptotic approximations only holding locally). The authors641

should reflect on how these assumptions might be violated in practice and what the642

implications would be.643

• The authors should reflect on the scope of the claims made, e.g., if the approach was644

only tested on a few datasets or with a few runs. In general, empirical results often645

depend on implicit assumptions, which should be articulated.646

• The authors should reflect on the factors that influence the performance of the approach.647

For example, a facial recognition algorithm may perform poorly when image resolution648

is low or images are taken in low lighting. Or a speech-to-text system might not be649

used reliably to provide closed captions for online lectures because it fails to handle650

technical jargon.651

• The authors should discuss the computational efficiency of the proposed algorithms652

and how they scale with dataset size.653

• If applicable, the authors should discuss possible limitations of their approach to654

address problems of privacy and fairness.655

• While the authors might fear that complete honesty about limitations might be used by656

reviewers as grounds for rejection, a worse outcome might be that reviewers discover657

limitations that aren’t acknowledged in the paper. The authors should use their best658

judgment and recognize that individual actions in favor of transparency play an impor-659

tant role in developing norms that preserve the integrity of the community. Reviewers660

will be specifically instructed to not penalize honesty concerning limitations.661

3. Theory assumptions and proofs662
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Question: For each theoretical result, does the paper provide the full set of assumptions and663

a complete (and correct) proof?664

Answer: [Yes]665

Justification: Assumptions (e.g., high-entropy/uninformative rule behavior under666

Bradley–Terry) are stated in Sec. 4.3; Theorem 1 is proved in App. C with the deriva-667

tive structure and gradient contribution argument fully detailed.668

Guidelines:669

• The answer NA means that the paper does not include theoretical results.670

• All the theorems, formulas, and proofs in the paper should be numbered and cross-671

referenced.672

• All assumptions should be clearly stated or referenced in the statement of any theorems.673

• The proofs can either appear in the main paper or the supplemental material, but if674

they appear in the supplemental material, the authors are encouraged to provide a short675

proof sketch to provide intuition.676

• Inversely, any informal proof provided in the core of the paper should be complemented677

by formal proofs provided in appendix or supplemental material.678

• Theorems and Lemmas that the proof relies upon should be properly referenced.679

4. Experimental result reproducibility680

Question: Does the paper fully disclose all the information needed to reproduce the main ex-681

perimental results of the paper to the extent that it affects the main claims and/or conclusions682

of the paper (regardless of whether the code and data are provided or not)?683

Answer: [Yes]684

Justification: We specify datasets and construction (Sec. 4.1), rule set and prompts (App. A,685

H, H.1), model/backbone and training regime (Sec. 5.1), evaluation benchmark and metrics686

(Sec. 5.1), and baselines (Sec. 5.1). An anonymized code/data link is provided (footnote in687

Sec. 1).688

Guidelines:689

• The answer NA means that the paper does not include experiments.690

• If the paper includes experiments, a No answer to this question will not be perceived691

well by the reviewers: Making the paper reproducible is important, regardless of692

whether the code and data are provided or not.693

• If the contribution is a dataset and/or model, the authors should describe the steps taken694

to make their results reproducible or verifiable.695

• Depending on the contribution, reproducibility can be accomplished in various ways.696

For example, if the contribution is a novel architecture, describing the architecture fully697

might suffice, or if the contribution is a specific model and empirical evaluation, it may698

be necessary to either make it possible for others to replicate the model with the same699

dataset, or provide access to the model. In general. releasing code and data is often700

one good way to accomplish this, but reproducibility can also be provided via detailed701

instructions for how to replicate the results, access to a hosted model (e.g., in the case702

of a large language model), releasing of a model checkpoint, or other means that are703

appropriate to the research performed.704

• While NeurIPS does not require releasing code, the conference does require all submis-705

sions to provide some reasonable avenue for reproducibility, which may depend on the706

nature of the contribution. For example707

(a) If the contribution is primarily a new algorithm, the paper should make it clear how708

to reproduce that algorithm.709

(b) If the contribution is primarily a new model architecture, the paper should describe710

the architecture clearly and fully.711

(c) If the contribution is a new model (e.g., a large language model), then there should712

either be a way to access this model for reproducing the results or a way to reproduce713

the model (e.g., with an open-source dataset or instructions for how to construct714

the dataset).715
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(d) We recognize that reproducibility may be tricky in some cases, in which case716

authors are welcome to describe the particular way they provide for reproducibility.717

In the case of closed-source models, it may be that access to the model is limited in718

some way (e.g., to registered users), but it should be possible for other researchers719

to have some path to reproducing or verifying the results.720

5. Open access to data and code721

Question: Does the paper provide open access to the data and code, with sufficient instruc-722

tions to faithfully reproduce the main experimental results, as described in supplemental723

material?724

Answer: [Yes]725

Justification: An anonymized repository URL is included (footnote in Sec. 1) with code and726

rated data for reproduction.727

Guidelines:728

• The answer NA means that paper does not include experiments requiring code.729

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/730

public/guides/CodeSubmissionPolicy) for more details.731

• While we encourage the release of code and data, we understand that this might not be732

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not733

including code, unless this is central to the contribution (e.g., for a new open-source734

benchmark).735

• The instructions should contain the exact command and environment needed to run to736

reproduce the results. See the NeurIPS code and data submission guidelines (https:737

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.738

• The authors should provide instructions on data access and preparation, including how739

to access the raw data, preprocessed data, intermediate data, and generated data, etc.740

• The authors should provide scripts to reproduce all experimental results for the new741

proposed method and baselines. If only a subset of experiments are reproducible, they742

should state which ones are omitted from the script and why.743

• At submission time, to preserve anonymity, the authors should release anonymized744

versions (if applicable).745

• Providing as much information as possible in supplemental material (appended to the746

paper) is recommended, but including URLs to data and code is permitted.747

6. Experimental setting/details748

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-749

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the750

results?751

Answer: [Yes]752

Justification: Sec. 5.1 reports backbones, training LR (2e-5), epochs (1), and hardware;753

prompts/rating pipeline and rules appear in App. A, H, H.1. The repo contains scripts for754

evaluation on RewardBench.755

Guidelines:756

• The answer NA means that the paper does not include experiments.757

• The experimental setting should be presented in the core of the paper to a level of detail758

that is necessary to appreciate the results and make sense of them.759

• The full details can be provided either with the code, in appendix, or as supplemental760

material.761

7. Experiment statistical significance762

Question: Does the paper report error bars suitably and correctly defined or other appropriate763

information about the statistical significance of the experiments?764

Answer: [Yes]765

Justification: We report means; for stochastic baselines we average over three seeds (Sec. 5.1).766

The main improvements are large and consistent across tasks/backbones (Tables 1, 2).767
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Guidelines:768

• The answer NA means that the paper does not include experiments.769

• The authors should answer "Yes" if the results are accompanied by error bars, confi-770

dence intervals, or statistical significance tests, at least for the experiments that support771

the main claims of the paper.772

• The factors of variability that the error bars are capturing should be clearly stated (for773

example, train/test split, initialization, random drawing of some parameter, or overall774

run with given experimental conditions).775

• The method for calculating the error bars should be explained (closed form formula,776

call to a library function, bootstrap, etc.)777

• The assumptions made should be given (e.g., Normally distributed errors).778

• It should be clear whether the error bar is the standard deviation or the standard error779

of the mean.780

• It is OK to report 1-sigma error bars, but one should state it. The authors should781

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis782

of Normality of errors is not verified.783

• For asymmetric distributions, the authors should be careful not to show in tables or784

figures symmetric error bars that would yield results that are out of range (e.g. negative785

error rates).786

• If error bars are reported in tables or plots, The authors should explain in the text how787

they were calculated and reference the corresponding figures or tables in the text.788

8. Experiments compute resources789

Question: For each experiment, does the paper provide sufficient information on the com-790

puter resources (type of compute workers, memory, time of execution) needed to reproduce791

the experiments?792

Answer: [Yes]793

Justification: Sec. 5.1 specifies training on a single NVIDIA H100 80GB GPU for one794

epoch. Precise wall-clock time can vary; we provide enough detail to approximate cost.795

Guidelines:796

• The answer NA means that the paper does not include experiments.797

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,798

or cloud provider, including relevant memory and storage.799

• The paper should provide the amount of compute required for each of the individual800

experimental runs as well as estimate the total compute.801

• The paper should disclose whether the full research project required more compute802

than the experiments reported in the paper (e.g., preliminary or failed experiments that803

didn’t make it into the paper).804

9. Code of ethics805

Question: Does the research conducted in the paper conform, in every respect, with the806

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?807

Answer: [Yes]808

Justification: We use publicly available datasets (HH-RLHF, PKU-SafeRLHF) with appro-809

priate citations; we anonymize any new assets for review and focus on safety alignment810

(Sec. 2, App. G). No personal data is released.811

Guidelines:812

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.813

• If the authors answer No, they should explain the special circumstances that require a814

deviation from the Code of Ethics.815

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-816

eration due to laws or regulations in their jurisdiction).817

10. Broader impacts818
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Question: Does the paper discuss both potential positive societal impacts and negative819

societal impacts of the work performed?820

Answer: [Yes]821

Justification: Positive impacts: safer reward modeling and reduced reliance on opaque822

gating (Sec. 1, 6). Potential negatives: over-reliance on automated judges and domain823

specificity; discussed via observations on LLM-as-judge uncertainty (Sec. 4.1) and scope824

notes in App. F, G.825

Guidelines:826

• The answer NA means that there is no societal impact of the work performed.827

• If the authors answer NA or No, they should explain why their work has no societal828

impact or why the paper does not address societal impact.829

• Examples of negative societal impacts include potential malicious or unintended uses830

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations831

(e.g., deployment of technologies that could make decisions that unfairly impact specific832

groups), privacy considerations, and security considerations.833

• The conference expects that many papers will be foundational research and not tied834

to particular applications, let alone deployments. However, if there is a direct path to835

any negative applications, the authors should point it out. For example, it is legitimate836

to point out that an improvement in the quality of generative models could be used to837

generate deepfakes for disinformation. On the other hand, it is not needed to point out838

that a generic algorithm for optimizing neural networks could enable people to train839

models that generate Deepfakes faster.840

• The authors should consider possible harms that could arise when the technology is841

being used as intended and functioning correctly, harms that could arise when the842

technology is being used as intended but gives incorrect results, and harms following843

from (intentional or unintentional) misuse of the technology.844

• If there are negative societal impacts, the authors could also discuss possible mitigation845

strategies (e.g., gated release of models, providing defenses in addition to attacks,846

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from847

feedback over time, improving the efficiency and accessibility of ML).848

11. Safeguards849

Question: Does the paper describe safeguards that have been put in place for responsible850

release of data or models that have a high risk for misuse (e.g., pretrained language models,851

image generators, or scraped datasets)?852

Answer: [NA]853

Justification: We do not release a new generative model nor scraped web-scale data; we854

release a derived rated dataset and simple weighting scheme over established safety datasets855

(Sec. 5).856

Guidelines:857

• The answer NA means that the paper poses no such risks.858

• Released models that have a high risk for misuse or dual-use should be released with859

necessary safeguards to allow for controlled use of the model, for example by requiring860

that users adhere to usage guidelines or restrictions to access the model or implementing861

safety filters.862

• Datasets that have been scraped from the Internet could pose safety risks. The authors863

should describe how they avoided releasing unsafe images.864

• We recognize that providing effective safeguards is challenging, and many papers do865

not require this, but we encourage authors to take this into account and make a best866

faith effort.867

12. Licenses for existing assets868

Question: Are the creators or original owners of assets (e.g., code, data, models), used in869

the paper, properly credited and are the license and terms of use explicitly mentioned and870

properly respected?871
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Answer: [Yes]872

Justification: We cite all datasets/models (e.g., Anthropic [2022], Ji et al. [2024], Lambert873

et al. [2024]).874

Guidelines:875

• The answer NA means that the paper does not use existing assets.876

• The authors should cite the original paper that produced the code package or dataset.877

• The authors should state which version of the asset is used and, if possible, include a878

URL.879

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.880

• For scraped data from a particular source (e.g., website), the copyright and terms of881

service of that source should be provided.882

• If assets are released, the license, copyright information, and terms of use in the883

package should be provided. For popular datasets, paperswithcode.com/datasets884

has curated licenses for some datasets. Their licensing guide can help determine the885

license of a dataset.886

• For existing datasets that are re-packaged, both the original license and the license of887

the derived asset (if it has changed) should be provided.888

• If this information is not available online, the authors are encouraged to reach out to889

the asset’s creators.890

13. New assets891

Question: Are new assets introduced in the paper well documented and is the documentation892

provided alongside the assets?893

Answer: [Yes]894

Justification: We release a multi-attribute rated dataset derived from HH/PKU; prompts, rule895

construction, and full rule list are documented in App. A, H, H.1, and distributional analyses896

in App. A.1. The anonymized repo includes usage instructions.897

Guidelines:898

• The answer NA means that the paper does not release new assets.899

• Researchers should communicate the details of the dataset/code/model as part of their900

submissions via structured templates. This includes details about training, license,901

limitations, etc.902

• The paper should discuss whether and how consent was obtained from people whose903

asset is used.904

• At submission time, remember to anonymize your assets (if applicable). You can either905

create an anonymized URL or include an anonymized zip file.906

14. Crowdsourcing and research with human subjects907

Question: For crowdsourcing experiments and research with human subjects, does the paper908

include the full text of instructions given to participants and screenshots, if applicable, as909

well as details about compensation (if any)?910

Answer: [Yes]911

Justification: We report a small expert comparison study (App. D) with setup and criteria912

described.913

Guidelines:914

• The answer NA means that the paper does not involve crowdsourcing nor research with915

human subjects.916

• Including this information in the supplemental material is fine, but if the main contribu-917

tion of the paper involves human subjects, then as much detail as possible should be918

included in the main paper.919

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,920

or other labor should be paid at least the minimum wage in the country of the data921

collector.922
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15. Institutional review board (IRB) approvals or equivalent for research with human923

subjects924

Question: Does the paper describe potential risks incurred by study participants, whether925

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)926

approvals (or an equivalent approval/review based on the requirements of your country or927

institution) were obtained?928

Answer: [NA]929

Justification: The small expert evaluation (App. D) collected no personal or sensitive data930

and posed minimal risk; IRB review was not sought.931

Guidelines:932

• The answer NA means that the paper does not involve crowdsourcing nor research with933

human subjects.934

• Depending on the country in which research is conducted, IRB approval (or equivalent)935

may be required for any human subjects research. If you obtained IRB approval, you936

should clearly state this in the paper.937

• We recognize that the procedures for this may vary significantly between institutions938

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the939

guidelines for their institution.940

• For initial submissions, do not include any information that would break anonymity (if941

applicable), such as the institution conducting the review.942

16. Declaration of LLM usage943

Question: Does the paper describe the usage of LLMs if it is an important, original, or944

non-standard component of the core methods in this research? Note that if the LLM is used945

only for writing, editing, or formatting purposes and does not impact the core methodology,946

scientific rigorousness, or originality of the research, declaration is not required.947

Answer: [Yes]948

Justification: LLMs are used both as judges to produce rule-based ratings and as backbones949

for reward models; usage and variants are described in Secs. 4.1, 5.1, and App. A, B.950

Guidelines:951

• The answer NA means that the core method development in this research does not952

involve LLMs as any important, original, or non-standard components.953

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)954

for what should or should not be described.955
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