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ABSTRACT

The ability to detect anomaly has long been recognized as an inherent human abil-
ity, yet to date, practical AI solutions to mimic such capability have been lacking.
This lack of progress can be attributed to several factors. To begin with, the dis-
tribution of “abnormalities” is intractable. Anything outside of a given normal
population is by definition an anomaly. This explains why a large volume of work
in this area has been dedicated to modeling the normal distribution of a given task
followed by detecting deviations from it. This direction is however unsatisfying as
it would require modeling the normal distribution of every task that comes along,
which includes tedious data collection. In this paper, we report our work aiming
to handle these issues. To deal with the intractability of abnormal distribution, we
leverage Energy Based Model (EBM). EBMs learn to associates low energies to
correct values and higher energies to incorrect values. As its core, the EBM em-
ploys Langevin Dynamics (LD) in generating these incorrect samples based on an
iterative optimization procedure, alleviating the intractable problem of modeling
the world of anomalies. Then, in order to avoid training an anomaly detector for
every task, we utilize an adaptive sparse coding layer. Our intention is to design a
plug and play feature that can be used to quickly update what is normal during in-
ference time. Lastly, to avoid tedious data collection, this mentioned update of the
sparse coding layer needs to be achievable with just a few shots. Here, we employ
a meta learning scheme that simulates such a few shot setting during training. We
support our findings with strong empirical evidence.

1 INTRODUCTION

Anomaly detection is an important area of study in the field of artificial intelligence. It has found
utility in computer vision applications such as industrial inspection (Bergmann et al., 2019) and
video surveillance (Liu et al., 2018; Zhao et al., 2011; Nguyen & Meunier, 2019), in the context
of abuse prevention such as misinformation, fraud and network intrusion detection (Zhang et al.,
2019; Bolton & Hand, 2002; Mukherjee et al., 1994), and others such as system health monitoring
and fault detection (Bao et al., 2019; Purarjomandlangrudi et al., 2014). In this paper, we propose
an approach for detecting anomaly in images, where we have carefully designed steps to handle
some of the bigger issues that have prevented the deployment of image anomaly detection in the
real-world.

Image anomaly detection can generally be defined as the identification of abnormalities in a given
image. An exact definition of abnormality in this case is elusive because abnormality can be derived
from any unknown distribution outside of a normal population. Many studies have hence focused
on modeling the normal population instead of learning irregularities, where the goal is to capture
the shared concept among all of the normal data as one or several reference models. This process
usually will require investing significant efforts in curating a large enough set of normal samples for
each task, after which anomaly is detected as deviations from the reference model(s) (An & Cho,
2015; Xu et al., 2018). Recent work from (Sheynin et al., 2021) provides algorithms that utilize
only a few normal samples to train models from scratch. However, the models still have to be
provisioned for each new task, which requires considerable human efforts and expertise, and thus
lack the fast deployment criterion that is often time critical for real-world applications. In view of
these challenges, our goals for this work are threefold. We are interested in designing an anomaly
detection system that is capable of: (G1) modeling the normal population while at the same time has
a principled approach towards modeling the abnormalities; (G2) quickly adapting to a new task at
inference time; and (G3) requiring only a few normal shots to update itself to the new task at hand.
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For (G1), we introduce the class of Energy Based Model (EBM), which is an important family of
generative models (Zhao et al., 2016; Du & Mordatch, 2019; Xie et al., 2016). EBMs have been
shown to demonstrate superior capability on modeling data density and localizing anomaly (Genc
et al., 2021). For our purpose, the EBM we adopted learn to assign low energy to normal samples
but high energy to abnormal samples. More importantly, the abnormal samples are generated with
a procedure known as Langevin Dynamics (LD) (Welling & Teh, 2011), which, in its original form,
starts with a noise image (see App. Fig C) and gradually samples from the distribution along the
direction of lower energy. This lends itself gracefully to utilizing the generated intermediate samples
as negative/abnormal. The LD procedure is then coupled with a contrastive divergence loss (Hinton,
2002) that aims to maximize the energy differences between the normal and abnormal samples.

To achieve (G2), we propose an adaptive sparse coding layer that is attached to the deep feature ex-
tractor in the EBM. The deep features are projected into a set of feature vectors along the spatial axes,
after which each vector is forwarded to the sparse coding layer, where the dictionary is constructed
with the features of a few normal samples of the given task. In essence, the input representation has
been decomposed into a linear combination of normal features with the sparsity constraint imposed.
The final energy score is measured by the distance between the original and the reconstructed fea-
tures (after the sparse coding layer). Under this scheme, the dictionary for a particular task is not
obtained by learning, but instead is constructed by the feature representations of a few normal sam-
ples during inference. As a result, this simple “plug-and-play” trick allows the model to be adapted
to novel tasks promptly without re-training. Further, we expect that the dictionary, which is formed
by normal features, will not be able to explain the abnormal samples well, causing relatively high
reconstruction error that lends itself for subsequent detection. As a bonus, a backward pass from the
reconstruction error to the image is also additionally useful for localizing the abnormal regions.

Towards (G3), we utilize meta learning (Vilalta & Drissi, 2002; Finn et al., 2017) to simulate the
scenario of being given a new task with a few normal shots to update the dictionary, followed by
training the EBM. This is accomplished by episodic training, where in each episode the model is
adapted to a held back task that is given a few normal samples. To accelerate the EBM training, we
introduce “learning from inpainting”, a simple yet effective strategy for synthesizing hard abnormal
samples quicker by starting the LD procedure with a synthesized image that is simply a normal
sample with a noise patch injected as opposed to a noise image that is traditionally what is used.

We show the proposed framework is able to efficiently adapt to a novel task (e.g., a new object
category or scenes from a new camera) with a few normal samples on both industrial inspection and
video surveillance tasks. We provide both qualitative and quantitative results to demonstrate that
our method outperforms other adaptive frameworks and is comparable to methods that rely on large
amount of normal samples.

2 BACKGROUNDS

We briefly introduce two key ingredients of the proposed method: EBMs and sparse coding.

Energy-based Model In EBMs, the goal is to learn an energy function Eθ(x) : Rd → R which
parametrizes the data density pθ(x) as:

pθ(x) =
exp(−Eθ(x))∫
x
exp(−Eθ(x))

, (1)

where θ is the parameter of the energy function and Zθ =
∫
x
exp(−Eθ(x)) is the partition function.

Approximating the true data distribution pdata(x) is equivalent to minimizing the expected negative
log-likelihood function over the data distribution, defined by the loss function:

LML = Ex∼pdata(x)[− log pθ(x)] = Ex∼pdata(x)[Eθ(x) + logZθ]. (2)

As the computation of LML involves an intractable term Zθ, the common practice is to represent the
gradient of LML as,

∇θLML = Ex+∼pdata(x)[∇θEθ(x+)] − Ex−∼pθ(x)[∇θEθ(x−)]. (3)

This objective is commonly referred to as the contrastive divergence (Hinton, 2002), which decreases
the energy of positive data samples x+ from the true distribution (normal samples in our use case)
and increases the energy of negative samples x− from the model pθ (synthesized abnormal samples).
In practice, the synthesized negative samples are achieved through Langevin dynamics (Welling &
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Teh, 2011), which samples along the direction of decreasing energy score, typically starting from a
given noise image:

x̃k = x̃k−1 − β

2
∇xEθ(x̃

k−1) + ωk, ωk ∼ N (0, βI), (4)

where β is the step size. The synthesizing ability of EBMs enables generating abnormal samples
to help in learning a more accurate data density, and is often touted as the one of the advantages of
using an EBM.

Sparse coding. Approximating a signal z ∈ Rd with the sparse linear combination over a dictionary
D ∈ Rd×k can be expressed as:

min
α

1

2
||z−Dα||22 + λ||α||1, (5)

where α is the sparse coefficients, with its sparsity (l1 norm) and λ is the weight of the sparsity
constraint. Dα is a sparse approximation to the original signal z. In practice, finding the dictionary
atoms and the sparse coefficients is usually formulated as an optimization problem.

In this paper, we adopt Iterative Soft Thresholding Continuation (ISTC) (Jiao et al., 2017) to convert
this optimization problem into linear operations with a non-linear shrinkage function, which allows
sparse coding to be seamlessly integrated into the deep neural networks. To compute a sparse coef-
ficient α, ISTC performs iterations of gradient steps on reconstruction ||z −Dα||2 and a proximal
projection step to increase coefficient sparsity.

Formally, initializing the coefficients at the first step α0 with all zeros, each step of ISTC refines the
sparse code with descending values of λ from λmax to λ?: each step of ISTC is expressed as:

αn+1 = σ(αn + D>(z−Dαn), λn), with λn = λmax
λmax

λ?

−n/N
, (6)

where σ(·, ·) here is a shrinkage function that truncates small values (lower than λ) of the coefficients
to 0 to enforce sparsity, and can be easily implemented by a customized ReLU activation function:

σ(z, λ) = sgn(z)(max(|z| − λ, 0)) = sgn(z)ReLU(|z| − λ). (7)

3 PROPOSED METHOD

The objective of our proposed method, when given an input image or video frame, is to output an
anomaly score indicating how likely this input deviates from the normal, and additionally, a pixel
map grounding abnormal regions. In this section, we describe the proposed fast adaptive anomaly
detection framework in details. In Section 3.1, we introduce the adaptive EBM which consists of a
deep feature extractor followed by an adaptive sparse coding layer. From there, we further show that
utilizing larger receptive field in the sparse coding could improve training robustness (Section 3.1.1),
and applying smoothed shrinkage functions could help speed up convergence (Section 3.1.2). In Sec-
tion 3.2, we describe the episodic training regime on various anomaly detection tasks that mimics
few-shot adaptation in the meta-testing stage while learning common knowledge across tasks. Fi-
nally, Instead of synthesizing negative samples (anomaly) directly from noise, we introduce a simple
but effective “learning from inpainting” operation to accelerate the training in Section 3.3.

3.1 ADAPTIVE ENERGY-BASED MODEL

An EBM is a form of generative model and it is widely used for modeling data density and sampling.
While there has been recent work (Genc et al., 2021) applying EBM to anomaly detection, it still
requires re-training for each new task. To efficiently adapt the EBM to novel tasks, we introduce an
adaptive sparse coding layer which is conditioned on the dictionary constructed by the features of
normal samples. Specifically, as illustrated in Fig 1, given an input image, x ∈ R3×h×w, we first
obtain the corresponding feature z ∈ Rd×h′×w′ from the deep feature extractor Ψ with parameters
θ, so that z = Ψ(x; θ). All feature vectors along spatial axes of z are then sparsely decomposed
through the sparse coding layer over a task-specific dictionary D ∈ Rd×Kh′w′ , which contains the
features of K normal samples of the current task as shown in the Fig 1(a). Each feature vector
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Figure 1: Overview of the inference stage on a new task. (a) Adapting the task-specific dictionary
with K normal samples. (b) Sparse coding with three iterations as Eqn.6 shows. We also show a
backward pass from the reconstruction error to localize the abnormal regions

of the normal sample feature is then directly used as an atom in the task dictionary. The decom-
posed coefficients are α = S(z;D), where α ∈ RKh′w′×h′×w′ and S denotes the iterative sparse
decomposition process of (6). By multiplying the coefficient α with the dictionary D, we obtain
the reconstructed features z′ = Dα. The sparsity regularization to α is important, as it encourages
input features to be reconstructed by simple combinations of dictionary atoms (normal features),
so that it would be difficult for features of abnormal samples to be well-approximated, therefore
producing higher reconstruction errors that make it conducive for detecting anomalies. From here,
the final energy score is formulated as the mean squared error (MSE) between the original and the
reconstructed features:

Eθ(x;D) = MSE(z, z′) = ||Ψ(x; θ)−DS
(
Ψ(x; θ);D

)
||2. (8)

In effect, Eqn. 8 depicts a conditional EBM, which is conditioned on the task-specific D formed by
normal features. In the following sections, we will discuss how to make the training of this adaptive
structure more robust.

3.1.1 SPARSE CODING WITH RECEPTIVE FIELD.

As discussed in Section 3.1, the input feature z is represented as h′ × w′ of d-dim feature vectors
and they are treated independently while passing through the sparse coding layer. The region of the
input image that affects one feature vector is determined by the receptive field of the feature extractor.
The trade-off is that a small receptive field may not capture enough contextual information, while
applying a large receptive field would make feature maps spatially coarse and make it hard to spot
small anomaly regions. To solve this dilemma, instead of carefully tuning the receptive field of each
layer of the feature extractor, we introduce a simple yet effective technique of applying the receptive
field on the sparse coding layer. Specifically, as Fig 2 shows, rather than performing sparse coding
to each individual d-dim feature vectors, we apply it on d × l × l volumes centered around each
feature vector, where l is the receptive field. This is equivalent to applying a l × l, sliding window
on spatial axes of the feature map and can be easily implemented by image to column (Im2Col)
operation. Then we flatten the feature volumes into dl2-dim vectors and adjust the shape of the
dictionary accordingly. In this way, we are able to capture contextual information without needing
to carefully tune the architecture of the feature extractor and we show in the later experiments that
this technique improves the robustness of the network on different types of objects.

3.1.2 SHRINKAGE FUNCTION

The effectiveness of training the EBM for localizing anomaly regions heavily depends on the gra-
dient propagation from later to earlier layers. It is shown in (Du et al., 2021) that smooth activation
functions like Swish Ramachandran et al. (2017) could be beneficial here. Notably, the gradients of
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Figure 2: Illustration of sparse coding layer with l× l recep-
tive filed.
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Figure 3: Shrinkage functions.

the dictionary D are determined by the sparse coding coefficients α as shown in Eqn. 6. However,
the sparsity constraint of α would turn off the gradient computation of many elements in D and this
could be detrimental during the early stage of the training. To alleviate the sparse gradient issue,
we replace the RELU-like shrinkage function in Eqn. 7 with its smoothed counterparts by introduc-
ing the Sigmoid based shrinkage functions (SigShrink). The SigShink is originally proposed for
non-parametric signal estimation in Atto et al. (2008), and can be defined as:

στ (z, λ) =
z

1 + exp(−τ(|z| − λ))
, (9)

where τ is the hyperparameter of smoothness. We present visualizations of the hard shrinkage
function Eqn. 7 and SigShrink with different values of τ in Fig 3. Comparing to the hard shrinkage
function which truncates small values into zeros, the SigShrink with a large τ can sharply force
small values to near-zeros. Therefore, the SigShrink will guarantee non-zero gradients everywhere.

3.2 EPISODIC TRAINING

To train the proposed adaptive EBM, we perform episodic training that is widely adopted by meta-
learning based few-shot learning tasks Finn et al. (2017); Snell et al. (2017). Following the termi-
nology of few-shot learning, in each training episode, the model is adapted and tested with a task
sampled from the underlying task distribution. Specifically, the model is adapted to a support set of
the given task, then a query set with ground truth labels is applied to evaluate the adaptation, which
is used to update the model parameters accordingly. As shown in Fig 4, the support set contains K
normal samples {xk}Kk=1 of the current task, where K is usually a small number. The feature repre-
sentations zk = Ψ(xk; θ) of these normal samples are plugged into the dictionary Di ∈ Rd×Kh′w′

corresponding to the i-th task during the i-th episode to adapt the dictionary to the normal samples of
the task. After that, the adapted model is measured by a query set consisting of M normal samples
{x̂m}Mm=1 andM abnormal samples {x̂′m}Mm=1. Note that there is no actual abnormal samples given
during training, instead, they are iteratively sampled from the EBM and we will discuss the initial-
ization and sampling of these synthetic samples in details in Section 3.3. Recall that the training
of EBM with contrastive divergence described in Eqn. 3 requires the estimation of energy scores of
both positive samples from the true data distribution and negative samples sampled from the model
distribution. The positive energy can be estimated empirically with normal samples from the query
set. The negative energy can be estimated by performing the MCMC-based (Markov Chain Monte
Carlo) sampling technique (Neal et al., 2011; Welling & Teh, 2011), typically Langevin Dynamics
as described in Eqn. 4. Denoting the output of Langevin dynamics (sampled abnormal samples) with
the initialization x̂′m as LD(x̂′m), we now have the empirical estimation of the contrastive divergence
of the i-th episode as:

Lcd =
1

m

M∑
m=1

[
Eθ(xm;Di)− Eθ(LD

(
x̂′m);Di

)]
. (10)

With the energy score equivalent to the feature reconstruction error in Eqn. 8, minimizing Lcd en-
courages normal features to be well-reconstructed by a sparse linear combination of dictionary atoms
while the features from abnormal samples tend to produce relatively higher reconstruction errors so
that they can be easily spotted.
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Figure 4: Illustration of episodic training and (a) “learning by inpainting”.

3.3 SYNTHESIZING NEGATIVE SAMPLES

Typical EBM training with contrastive divergence conducts negative sampling from the modeled
density using techniques such as Langevin Dynamics, which applies gradient descent to a noise ini-
tialization (App. Fig C) with small step size and large number of steps Du & Mordatch (2019). Such
negative sampling steps can be costly and we argue that it is unnecessary in our case. Instead, we
introduce a new strategy of “learning by inpainting”. Starting from a positive query sample x̂m, we
synthesize the corresponding negative sample x̂′m by randomly placing a small uniform noise patch
on the image. The Langevin Dynamics procedure is then initialized with the resulting image instead
of a noise image. As the Langevin Dynamics proceeds, synthesized abnormal samples LD(x̂′m) are
inpainted along the direction of “normal”, x̂m, and we introduce the following reconstruction loss:

Lrec = MSE(LD(x̂′m), x̂m). (11)

The gradient map from Lrec reveals anomaly regions, which helps with localization. We show in
Fig 4(a) that, starting from a synthesized abnormal sample, only 5 steps of Langevin dynamic would
be sufficient to make it visually close to the corresponding normal sample during training, serving as
“hard negatives” that further facilitates the learning. The final loss of the episodic training is simply:

L = η0Lrec + η1Lcd, (12)

where η0 and η1 are hyperparameters balancing two loss terms.

4 RELATED WORK

4.1 ANOMALY DETECTION

Sparse coding. Early efforts on adopting sparse coding in anomaly detection are based on opti-
mization (with L1 penalty) (Lu et al., 2013; Zhao et al., 2011). Recent advances on iterative sparse
thresholding algorithms (Daubechies et al., 2004; Jiao et al., 2017) allow seamless integration of
online sparse coding with deep neural networks, and (Luo et al., 2017) formulates the sparse coding
as stack RNNs for video anomaly detection.

Generative models. Generative models are widely utilized in anomaly detection due to the capa-
bility in modeling the density of desired data distribution. Early efforts on variational autoencoders
(VAE) based methods (An & Cho, 2015; Xu et al., 2018) are arguably having hard time calibrat-
ing uncertainties in novel samples (Nalisnick et al., 2018), accurately localizing abnormal regions
through reconstruction errors (Dehaene et al., 2020). Recent efforts have explored variant generative
architectures like energy-based models (EBM) (Genc et al., 2021), GANs (Sheynin et al., 2021), and
combining VAE with EBM (Dehaene et al., 2020). Various methods also exploit intra-image struc-
tures (Cohen & Hoshen, 2020; Bergmann et al., 2018), cross-frame consistency (Lu et al., 2019),
and motion-appearance consistency in videos (Nguyen & Meunier, 2019) while detecting anomaly.
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Input GT Prediction

Figure 5: Visualizations of local-
ized anomaly by our method.

Category AE (SSIM) AE (MSE) AnoGAN VE-VAE MAML-AE Ours

Carpet 0.69 0.38 0.34 0.1 0.20 0.28
0.87 0.59 0.54 0.78 0.68 0.83

Grid 0.88 0.83 0.04 0.02 0.01 0.12
0.94 0.90 0.58 0.73 0.53 0.81

Leather 0.71 0.67 0.34 0.74 0.12 0.42
0.78 0.75 0.64 0.87 0.77 0.98

Tile 0.04 0.23 0.08 0.14 0.14 0.28
0.59 0.51 0.50 0.93 0.52 0.81

Wood 0.36 0.29 0.14 0.47 0.11 0.23
0.73 0.73 0.62 0.91 0.68 0.78

Bottle 0.15 0.22 0.05 0.07 0.02 0.23
0.93 0.86 0.86 0.78 0.56 0.82

Cable 0.01 0.05 0.01 0.18 0.04 0.24
0.82 0.86 0.78 0.90 0.74 0.87

Capsule 0.09 0.11 0.04 0.11 0.03 0.12
0.94 0.88 0.84 0.74 0.68 0.90

Hazelnut 0.00 0.41 0.02 0.44 0.11 0.40
0.97 0.95 0.87 0.98 0.72 0.94

Metal nut 0.01 0.26 0.00 0.49 0.10 0.39
0.89 0.86 0.76 0.94 0.78 0.87

Pill 0.07 025 0.17 0.18 0.10 0.22
0.91 0.85 0.87 0.83 0.62 0.88

Screw 0.03 0.34 0.01 0.17 0.02 0.17
0.96 0.96 0.80 0.97 0.55 0.83

Toothbrush 0.08 0.51 0.07 0.14 0.06 0.23
0.92 0.93 0.90 0.94 0.80 0.82

Transistor 0.01 0.22 0.08 0.30 0.02 0.26
0.90 0.86 0.80 0.93 0.76 0.85

zipper 0.10 0.13 0.01 0.06 0.04 0.12
0.88 0.77 0.78 0.78 0.68 0.82

Table 1: Numerical evaluation of anomaly localization on
MVTec-AD. We report both mIoU (top rows) and AUC-ROC
(bottom rows) values. Col 2-5 are fully supervised methods
trained with massive normal samples.

4.2 FEW-SHOT LEARNING

Few-shot learning is extensively explored in classification tasks. Proposed methods are based on
optimization (Finn et al., 2017; Rusu et al., 2019; Finn et al., 2018; Yoon et al., 2018; Ravi &
Larochelle, 2016), learning metric (Snell et al., 2017; Vinyals et al., 2016) and parameter prediction
(Gordon et al., 2018; Qiao et al., 2018; Gidaris & Komodakis, 2019). These technologies are further
applied in other tasks like image generation (Clouâtre & Demers, 2019; Liu et al., 2019) and out-of-
distribution detection (Sehwag et al., 2021).

5 EXPERIMENTS

In this section, we conduct evaluation on the industrial inspection task with the benchmark MVTec-
AD dataset Bergmann et al. (2019) (Section 5.1). Even though our proposed framework is image-
based, we further demonstrate it’s efficacy on the video anomaly detection task in Section 5.2. In
Section 5.3, we show ablations and insights relating to the adaptive sparse coding components. We
also show additional ablations on robustness to pose variations (e.g. rotation) while applying few-
shot adaptation (App. B.1) and comparing with naive background subtraction to detect anomaly
(App. B.2).We provide implementation details in App. A.

5.1 INDUSTRIAL INSPECTION

The goal of this anomaly detection task is to predict whether a manufactured component contains any
defects. The MVTec-AD dataset includes 15 categories of object. To demonstrate the fast adaptation
capability of the proposed method, we adopt a leave-one-out training strategy. Specifically, samples
of each target category are reserved for testing only, and the episodic training is performed on the
remaining categories. During the training stage, the model will not see any samples from the target
category. During testing, we first adapt the model to the target category with 10 randomly selected
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Input GT Prediction

Figure 6: Visualizations of anomaly local-
ization with video anomaly detection.

Target datasets Methods 1-shot 5-shot 10-shot

UCSD Ped 1

r-GAN Pre-train 73.10 73.10 73.10
r-GAN Fine-tune 76.99 77.85 78.23
r-GAN MAML 80.60 81.42 82.38

MAML-AE 64.12 66.88 67.34
Ours 77.42 78.12 78.65

UCSD Ped 2

r-GAN Pre-train 81.95 81.95 81.95
r-GAN Fine-tune 85.64 89.66 91.11
r-GAN MAML 91.19 91.80 92.80

MAML-AE 78.24 82.04 83.30
Ours 91.22 92.00 92.45

CUHK Avenue

r-GAN Pre-train 71.43 71.43 71.43
r-GAN Fine-tune 75.43 76.52 77.77
r-GAN MAML 76.58 77.10 78.79

MAML-AE 68.72 69.67 70.01
Ours 80.68 83.41 84.46

Sh-Tech

r-GAN Pre-train 70.11 70.11 70.11
r-GAN Fine-tune 71.61 70.47 71.59
r-GAN MAML 74.51 75.28 77.36

MAML-AE 66.62 67.12 68.04
Ours 75.32 79.64 81.28

Table 2: Frame-level AUC-ROC for the video anomaly
detection tasks.

normal samples, then measure the performance with the entire testing set. We run the test 5 times,
each time the model is adapted to random sets of 10 normal samples from the target category. The
final result is the average of the 5 runs. Following common practice (Bergmann et al., 2019; Liu
et al., 2020), we report the performance of pixel-wise anomaly localization with AUC-ROC and
mIoU (mean intersection over union). IoU is the area of overlap between the predicted map and the
ground truth divided by the area of union between these two.

To the best of our knowledge, no existing methods feature fast adaptation like ours. We first show
the performance of fully supervised methods, which train each category with normal samples from
scratch, as the “upper-bounds”. Specifically, (Bergmann et al., 2018; 2019) trains auto-encoders
(AE) on massive number of normal samples and measure the reconstruction errors during the in-
ference; AnoGAN (Schlegl et al., 2017) adopts a generative adversarial network (GAN) to learn
a manifold of normal; VE-VAE (Liu et al., 2020) presents a visually explainable variational auto-
encode through gradient-based attention. Furthermore, we create a strong baseline by applying
model-agnostic meta-learning (Finn et al., 2017) on an AE (denoted as MAML-AE, detailed in App.
Sec. A.3). Numerical results of pixel-wise anomaly localization are in Table 1. Note that all results
of our methods are obtained without any data augmentation. Our proposed method outperforms
MAML-AE by a large margin and is competitive with the “upper-bounds”. We show the localized
anomaly regions from our method in Fig 5. Additional visualizations are in the App. Fig A.

5.2 VIDEO SURVEILLANCE

In video anomaly detection, a common goal is to detect abnormal events captured by surveillance
cameras (e.g., a motorcycle on the sidewalk). A model trained on videos from one camera might not
generalize well on other cameras due to different locations / mounting heights / lightning conditions,
and it is not feasible to train one model for every new camera in practice. The ability to quickly adapt
to new scenes is a significant contribution to the task of video surveillance. We are only aware of the
work in (Lu et al., 2020) (r-GAN) that has such adaptation capability. Specifically, the model adapts
to a new scene using gradient descent with several beginning frames of a query video, after which
a GAN is applied to generate future frames. Anomaly is then detected via the discrepancy between
predicted future frames and the original frames.

We follow the same evaluation regime as r-GAN by training with normal samples in all 13 scenes
from SH-Tech Liu et al. (2018) and testing on UCSD Pedestrian 1, UCSD Pedestrian 2 (Mahadevan
et al., 2010), and CUHK Avenue Lu et al. (2013). Note that since our method is image-based, it
predicts the video frames independently without leveraging any temporal information as in r-GAN.
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Figure 7: Loss curves with smooth
(SigShrink) and non-smooth (hard-
shrink RELU-like) shrinkage func-
tions.

Category Leather Grid Hazelnut Cable Pill

l = 1 0.41 0.98 0.11 0.80 0.36 0.91 0.21 0.85 0.10 0.85
l = 3 0.42 0.98 0.12 0.81 0.40 0.94 0.24 0.87 0.22 0.88

Table 3: Comparison of different sparse coding receptive fields.
We report both mIoU (left) and AUC-ROC (right) values.

Category Leather Hazelnut Cable

Ours 0.42 0.98 1.6e-4 0.40 0.94 2.4e-4 0.24 0.87 2.0e-4
No sparsity 0.32 0.90 0.9e-4 0.24 0.80 1.7e-4 0.12 0.68 1.5e-4

Table 4: Performance w/ and w/o sparsity constraint. From left to
right: mIoU; AUC-ROC; the difference of averaged reconstruc-
tion errors between abnormal/normal samples.

In each episode, we adapt our model with a support set containing a few normal frames randomly
sampled from the target scenes. In Table 2, we compare our method against r-GAN pre-trained on
SH-Tech only (r-GAN Pre-train), fine-tuned on target datasets (r-GAN Fine-tune), and with one step
gradient descent with meta-learning (r-GAN MAML). We also show the performance of MAML-AE
as a baseline for image-based meta-learning method. In the last section of Table 2, we present intra-
dataset results as well by training with 6 scenes of SH-Tech and testing on remaining 7. We follow
common evaluation protocol and measure the frame-level AUC-ROC. Without leveraging temporal
information and performing re-training (gradient descent), our method achieves comparable results
to r-GAN MAML and outperforms image-based meta-learning method by a large margin.

5.3 ABLATION STUDIES

Sparse coding receptive fields. To evaluate the effectiveness of using large receptive fields in the
sparse coding layer, we conduct additional experiments on the MVTec-AD dataset, and select 5
representative categories with different levels of difficulties to present the comparisons with l = 1
and l = 3 (Sec. 3.1.1) in Table 3. Sparse coding with large receptive field clearly benefits more
complex structural objects (hazelnut, cable, and capsule), while the improvements are limited for
the texture objects (leather and grid), where contextual regularization is intuitively less important.
Shrinkage functions. To show the benefits of smooth shrinkage function, we plot the loss curves
of models trained with smooth SigShrink (Eqn. 9) and non-smooth RELU-like shrinkage (Eqn. 7)
functions in Fig 7. The model with smooth shrinkage function converges notably faster in the early
training stage and achieves lower loss.
Sparsity constraint. As discussed in Section 3.1, we impose sparsity constraint to the feature de-
composition in the adaptive sparse coding layer, in order to prevent abnormal features from being
well-approximated by the linear combinations of normal features, so that the reconstruction errors
are effective for detecting anomaly. To validate this, we conduct experiments by removing the
shrinkage function σ in the sparse coding stage (Eqn. 6). We show comparison in Table 4 with
mIoU, AUC-ROC, and the difference of averaged reconstruction errors between abnormal and nor-
mal samples. Without sparsity, the performance drops dramatically, and reconstruction errors of
normal and abnormal samples become closer.

6 CONCLUSION

In this paper, we introduced a novel framework for anomaly detection and localization that allows
fast adaptation to new tasks. We formulated our model as an energy based model with an adap-
tive sparse coding layer, of which the dictionary is directly formed by normal features of a target
task. We adopted episodic meta-learning to extract common knowledge across tasks, which has the
effect of enabling few shots adaptation. We further introduced smooth shrinkage functions, sparse
coding with large receptive fields, and learning by inpainting to improve and accelerate the EBM
training. It’s worthy to note that when evaluating our method’s performance on industrial inspection
and video anomaly detection, our method is comparable and even boasts better performance than
methods trained with a large amount of normal samples. Through this work, we hope to have made
a significant contribution to the important problem of anomaly detection by shedding light on our
findings that anomaly detection can indeed be generalized to new tasks.
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APPENDIX

A IMPLEMENTATION DETAILS

We adopt a residual network (ResNet) He et al. (2016) based feature extractor, with ELU as the
activation function. Following (Du et al., 2021), we adopt Group Normalization for better stability
of the network. The detailed network construction is shown in Table A.

ResNet-10

Output size Layers

224×224×3 Input images

56×56×32 Conv(7×7, stride=2), GroupNorm, ELU, AveragePool(3×3, stride=2)

56×56×32
[Conv (3×3), GroupNorm, ELU] × 2,

Skip connect Conv (1×1, stride=2), GroupNorm

28×28×64
Conv (3×3, stride=2), GroupNorm, ELU,

Conv (3×3), BatchNorm, ELU
Skip connect Conv (1×1, stride=2), GroupNorm

14×14×128
Conv (3×3, stride=2), GroupNorm, ELU,

Conv (3×3), GroupNorm, ELU
Skip connect Conv (1×1, stride=2), GroupNorm

7×7×256
Conv (3×3, stride=2), GroupNorm, ELU,

Conv (3×3), GroupNorm, ELU
Skip connect Conv (1×1, stride=2), GroupNorm

7×7×256 Conv (1×1, stride=2), GroupNorm, Tanh

Table A: The architectures of feature extractor.

A.1 INDUSTRIAL INSPECTION

We adopt the “leave-one-out” training strategy for obtaining the results on each of the categories of
MVTec-AD. All experiments are performed with the same settings and hyperparameters. We resize
all images to 128 × 128, and do not perform any data augmentation. We adopt a simple reduced-
sized ResNet as the feature extractor as shown in Table A. Following (Du et al., 2021), we adopt
group normalization (denoted as GroupNorm) instead of batch normalization, and use Exponential
Linear Unit (ELU) as the activation function. We empirically observed that using Tanh as the final
activation function can remarkably improve the numerical stability of the sparse coding stage as the
magnitude of the feature values is effectively bounded by the final activation function.

We adopt Adam as the optimizer, with a consistent learning rate of 1e-4. We do not apply any net
regularization methods like dropout or weight decay in training. The weights of reconstruction η0
and contrastive divergence η1 are set to 1.0 and 0.25, respectively. Each training batch contains
4 randomly sampled training tasks with 10 query (M = 10) for each task. All training can be
conducted on a single NVIDIA Tesla A100 GPU.

We perform 8 steps of sparse coding in the adaptive sparse coding layer, with an initial λmax = 0.3
and a final λ? = 0.05. We perform 5 steps of Langevin dynamics with a step size of β = 1.0
to synthesize negative samples, which we show in the examples of Figure 4 and Figure C to be
sufficient for producing hard negative samples.

A.2 VIDEO ANOMALY DETECTION

We resize each frame to 240× 320. No data augmentation is performed. All other hyperparameters
equal to those applied in industrial inspection experiments.

A.3 MAML-AE

We adopt a full-convolutional auto-encoder network to construct the MAML-AE. A 10 layer ResNet
(He et al., 2016) as the encoder, and consecutive transpose-convolutional layers with batch normal-
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ization and RELU activation function as the decoder to recover the feature resolution. The hyperpa-
rameters of the episodic training of MAML AE are exactly the same with those of our methods. We
perform 5 steps of gradient descent as the inner-loop adaption.

We directly use the energy score in (Eqn. 8) as the anomaly score. When evaluating AUC-ROC and
mIoU, we obtain the normalized energy score for each sample by directly performing an uniformed
normalization to the scores of all samples in test set.

A.4 INITIALIZING NEGATIVE SAMPLE

In the synthesis of negative samples, we randomly place at most three random patches to each normal
image. Each patch is created by one of the following:

• Random uniform: A random patch with the values of each pixel sampled from a uniform
distribution. The minimum and maximum values of the uniform distribution is equal to
those of the pixel values of the images.

• Random consistent: A random patch with consistent pixel values sampled from a uniform
distribution. The minimum and maximum values of the uniform distribution is equal to
those of the pixel values of the images.

• Random copy-paste: A random patch randomly cropped from the same image.

• Random blurring: Applying Gaussian blurring to a random patch of the normal image.

Denoting U(a, b) as an uniform distribution with minimum and maximum values of a and b, re-
spectively, the relative size of the random patch w.r.t. the original image is randomly sampled from
U(0.0025, 0.025), and the aspect ratio is randomly sampled from U(0.01, 100.0). See Fig. B for il-
lustrations of synthesized negative samples and the corresponding generative sequences of Langevin
dynamics.

B ADDITIONAL ABLATIONS

B.1 ROBUSTNESS TO POSE VARIATIONS

To validate the robustness of our method to pose variations, we perform additional experiments with
pose variations and provide the quantitative comparisons in Table B. We report results by performing
random ±90o rotation to samples during testing stage when adapting the trained model to novel
categories. We observe that the textures categories (leather and grid) are robust to any pose variations
in both the query and support samples. For the hazelnut category, where there are intrinsically
significant pose variations across samples, performing any new rotations does not influence the
results. On the other hand, for the pill category, where all samples are aligned horizontally (see
examples in Appendix, Figure A), performing rotation to only query samples results in performance
drop. Performing rotation to both query and support samples help to recover the performance. The
above results suggest the robustness of our methods under the condition of sufficient sample diversity
in the support set.

Category Leather Grid Hazelnut Cable Pill

Original 0.42 0.98 0.12 0.81 0.40 0.94 0.24 0.87 0.22 0.88
Rotate query 0.41 0.98 0.12 0.80 0.40 0.94 0.21 0.82 0.10 0.71

Rotate query and support 0.42 0.98 0.11 0.81 0.40 0.94 0.23 0.85 0.19 0.86

Table B: Robustness to pose variations. We report both mIoU (left) and AUC-ROC (right) values.

B.2 COMPARISON TO IMAGE DIFFERENCING

Image differencing and its variances are an intuitive approach for detecting image anomaly. We per-
form image differencing and background subtraction on the industrial inspection and video anomaly
detection task, respectively, and report performance in Table C. Our method demonstrates clear
advantages.
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Category Leather Hazelnut Cable UCSD Ped1 UCSD Ped2 CUHK

Image differencing 0.02 0.57 0.12 0.77 0.07 0.65 65.34 59.03 57.12
Ours 0.42 0.98 0.40 0.94 0.24 0.87 77.42 91.22 75.32

Table C: Comparing with image differencing. We report mIoU (left) and AUC-ROC (right) for
industrial inspection task and AUC-ROC for video anomaly detection task.

B.3 ROBUSTNESS AGAINST CONTAMINATED TRAINING DATA

While it is a common practice among machine learning practitioners to assume clean training data,
this may not be true in real world applications. In this section, we evaluate the robustness of our
method against contaminated training data by inserting certain amount of abnormal samples. As
shown in Table D, we progressively contaminate the normal training data by increasing the amount
of abnormal data from 1% to 10%. Our proposed method is in general robust to data contamination,
where contamination under 5% only decreases the performance slightly. The network is still able to
perform decently in the extreme case of 10% contamination.

Contamination Leather Grid Hazelnut Cable Pill

0% 0.42 0.98 0.12 0.81 0.40 0.94 0.24 0.87 0.22 0.88
1% 0.42 0.98 0.11 0.80 0.40 0.94 0.23 0.86 0.21 0.88
2% 0.41 0.98 0.11 0.80 0.40 0.93 0.23 0.84 0.21 0.87
5% 0.40 0.96 0.11 0.78 0.39 0.93 0.22 0.84 0.20 0.87

10% 0.38 0.95 0.10 0.76 0.37 0.90 0.21 0.82 0.19 0.85

Table D: Performance evaluation against data contamination. We contaminate the normal training
data by inserting increasing percentages of abnormal data.

B.4 LEVERAGING TEMPORAL INFORMATION

An EBM is agnostic to the underlying backbone network architecture, therefore it is straightforward
to incorporate temporal information into the image-based anomaly detection framework described in
Section 5.2. We replace the 2D convolutions in the first four layers with 3D convolutions, and have
the model accepts a 5-frame input instead. Without heavy tuning, we report 5-shot performance on
both ’1 frame’ (original, without temporal) and ’5 frames’ (with temporal) in Table E. The results
show that when temporal information is added, it leads to further improvements.

Category UCSD Ped1 UCSD Ped2 CUHK Sh-Tech

1 frame 78.12 92.00 83.41 79.64
5 frames 79.06 91.94 84.27 80.80

Table E: Performance comparisons with temporal information incorporated.

C QUALITATIVE RESULTS

We present in Figure 1 additional anomaly localization results of categories with different anomalies
in the MVTec-AD dataset.

D ADDITIONAL FIGURES

Common practice of sampling from EBMs is computationally costly, requiring as many as 50 steps
of Langevin Dynamics when initialized with full noise, instead of a synthesized negative sample as
shown in Fig. B. Some examples are provided in Fig. C.
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Input GT Prediction Input GT Prediction Input GT Prediction

Figure A: Visualizations of anomaly localization on industrial inspection data. All results are ob-
tained by adapting the model using 10 normal samples only.
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Normal sample Synthesized negative Step 1 Step 2 Step 3 Step 4 Step 5

Figure B: Sampling outputs after a few steps of Langevin Dynamics starting from each synthesized
negative sample. 5 steps of Langevin dynamics are sufficient to quickly generate hard negative
samples with minor artifacts.

Figure C: Figure from (Zhao et al., 2020). Generated sequences from the process of Langevin
Dynamics. Initialization from noise usually requires around 50 steps to synthesize the images with
desired quality (images are shown every 5 steps).
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