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ABSTRACT

Iterative methods for computing matrix functions have been extensively studied
and their convergence speed can be significantly improved with the right tuning of
parameters and by mixing different iteration types Higham & Schreiber (1990).
Hand-tuning the design options for optimal performance can be cumbersome,
especially in modern computing environments: numerous different classical it-
erations and their variants exist, each with non-trivial per-step cost and tuning
parameters. To this end, we propose MatRL – a reinforcement learning based
framework that automatically discovers iterative algorithms for computing ma-
trix functions. The key idea is to treat algorithm design as a sequential decision-
making process. Monte-Carlo tree search is then used to plan a hybrid sequence
of matrix iterations and step sizes, tailored to a specific input matrix distribution
and computing environment. Moreover, we also show that the learned algorithms
provably generalize to sufficiently large matrices drawn from the same distribu-
tion. Finally, we corroborate our theoretical results with numerical experiments
demonstrating that MatRL produces algorithms that outperform various baselines
in the literature.

1 INTRODUCTION

Matrix functions are everywhere - ranging from classical applications in control theory Denman
& Beavers Jr (1976), high-dimensional ODEs Higham (2008), theoretical particle physics Chen &
Chow (2014), Lin et al. (2009), Markov models Waugh & Abel (1967), to some recent applica-
tions in machine learning, e.g. covariance pooling Li et al. (2018), Wang et al. (2020), Song et al.
(2021), graph signal processing Defferrard et al. (2016), Maskey et al. (2023), contrastive learning
Richemond et al. (2023), and optimizer design Gupta et al. (2018), Jordan et al. (2024), Ahn & Xu
(2025). For more applications see Higham (2008) and references therein. It isn’t a surprise that
computing matrix functions in a fast, precise, and stable manner has received numerous attention
and many have tried to develop better algorithms with guarantees that it will work in some sense.

Iterative algorithms to compute matrix functions are particularly attractive in modern applications
as they can avoid computing the matrix function directly using the singular value decomposition
(SVD). Further, termination criteria can be chosen based on the needs of the application, which can
lead to faster and more stable algorithms. Additionally, these algorithms are differentiable, leading
to potential applications in auto-differentiation based settings Song et al. (2022). From an algorithm
design perspective, it would be ideal to find an algorithm that is computationally efficient, numeri-
cally stable and has faster convergence guarantees. One can imagine using different iterations from
different algorithms at each step (e.g. mixing the algorithms) and specifically tuning the parameters
jointly to accelerate the algorithm. However, due to the large search space (see Section 2.1 and refer-
ences therein to see a vast array of existing iterative algorithms) and highly sensitive and non-trivial
per iteration costs in modern computing environments, handcrafting the ideal algorithm is tedious
and impractical.

A motivating experiment is presented in Table 1. In single precision, the cost of computing a
4096×4096 inverse is roughly five times that of a matrix multiply on both CPU and GPU. However,
switching to double precision more than halves this ratio – dropping to about 2.9 on CPU and 1.7 on
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Table 1: Computation times for matrix inverse and multiplication (4096× 4096) on CPU and GPU
in single (float32) and double (float64) precision. The right-most column shows the ratio of inverse
time to matmul time. All computations done using PyTorch on an RTX A6000 GPU.

Device Precision Inverse (ms) MatMul (ms) Inv : MatMul ratio

CPU float32 251.2± 8.7 48.8± 1.8 5.15
float64 356.6±16.3 122.9± 4.6 2.90

GPU float32 28.3± 0.5 5.6± 0.1 5.05
float64 423.9± 6.9 252.6± 6.4 1.68

GPU – because matrix multiplies become comparatively more expensive. This pronounced change
in relative costs with precision underscores the need for automatic algorithm discovery, as the opti-
mal sequence of matrix iterations will depend sensitively on both hardware and numerical precision.
Besides the change in relative speeds, the gains from switching to GPU turns into a slowdown with
double precision for both inverse and matmuls. This is due to the significantly lower emphasis on
high precision compute capability in modern GPUs.

We propose an automated solution based on Monte-Carlo tree search to decide which combination
of iterations and parameters one should use given a desiderata of the user. Our solution assumes that
the matrix of interest is sampled repeatedly from a certain symmetric random matrix distribution,
and we want to find a good algorithm for that matrix distribution. The main idea is that iterative
algorithms can be understood as a sequential decision-making process: at each step, one should
choose which iteration to use and which parameters to use in that iteration. This corresponds to
choosing actions in decision making, where the choice leads to the next step. At each step we get a
certain reward signal based on the given desiderata, so that we can evaluate whether the action was
worth it or not. Finding a good algorithm mounts to finding a good planning strategy for the given
environment. Specifically,

• We propose MatRL (Algorithm 1), an automated algorithm searching scheme based on Monte-
Carlo tree search.

• The algorithms we find are faster than existing baselines, and even faster than implementations in
torch.linalg. Moreover, the found algorithms differ with problem sizes, computation environment,
and precision (Section 5.1), meaning that MatRL adapts to different enviroments with ease.

• We have a guarantee using random matrix theory that the found algorithm will generalize to dif-
ferent matrices drawn from the same distribution (Section 4), and matrices drawn from the distri-
bution with identical limiting eigenvalues.

The paper is organized as the following: in Section 2 we discuss relevant background on iterative
matrix function computation algorithms, Monte-Carlo tree search and learning algorithms via RL.
Next we describe our environment in Section 3 by describing how the states, actions, state transition,
and reward signals are defined. In Section 4, we provide the generalization guarantee stemming
from limiting distribution of the spectrum. We show experimental results in Section 5 showing the
performance and adaptivity of MatRL, and conclude the paper in Section 6.

2 BACKGROUND

2.1 ITERATIVE METHODS TO COMPUTE MATRIX FUNCTIONS

The basic idea of obtaining an iteration to compute matrix functions is using Newton’s method
Higham (2008). For instance, say we want to compute the matrix square root. We would like to
compute the root of the function f(X) = X2 −A, hence Newton’s method can be written as

Xk+1 = Xk − f ′(Xk)
−1f(Xk) = Xk −

1

2
X−1

k (X2
k −A) =

1

2
(Xk +X−1

k A). (1)

Newton’s method uses a first-order approximation of f at Xk: we may use higher order approxi-
mations to obtain Chebyshev method Li et al. (2011) or Halley’s method Nakatsukasa et al. (2010),
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Guo (2010). These higher-order methods converge cubically with appropriate initialization, but
each iteration is slower than Newton’s method. We could also use inverse-free methods such as
Newton-Schulz and its variants Higham (2008), Higham (1997), which approximates X−1

k with a
polynomial of Xk.

Appropriate scaling and shifting of the spectrum to yield faster convergence has been a popular
idea Nakatsukasa et al. (2010), Byers & Xu (2008), Byers (1987), Chen & Chow (2014), Iannazzo
(2003), Hoskins & Walton (1979), Pan & Schreiber (1991). The intuition is that by introducing
additional parameters and solving an optimization problem on the spectrum, we can find a sequence
of optimized parameters that depend on the spectrum of A, the matrix that we would like to compute
matrix function. For instance, Chen & Chow (2014) finds a cubic function h : [0, 1] → [0, 1]
that maximizes h′(0) to find better scaling of Newton-Schulz iteration. One drawback of these
approaches is that in many cases we need to compute smallest / largest eigenvalues of the matrix
Byers & Xu (2008), Chen & Chow (2014), Pan & Schreiber (1991), Nakatsukasa et al. (2010),
Hoskins & Walton (1979), which may be expensive to compute. In this case we use approximations
of the smallest eigenvalue, such as 1/∥A−1∥F . Another drawback is that each new scaling scheme
needs a complicated mathematical derivation and proof.

Naively applying Newton’s method can be unstable for computing matrix square-root and p-th root.
To ensure stability, we can introduce an auxillary variable Yk and simultaneously update Xk and Yk

Higham (1997), Iannazzo (2006). We will refer to such iterations as coupled iterations. Coupled
iterations are obtained by manipulating the formula so that we do not have A in the iteration. Going
back to Newton’s method for computing square roots in Eq. (1), we can introduce an auxillary
variable Yk = A−1Xk and initialize X0 = A, Y0 = I to obtain the coupled iteration known as
Denman-Beavers iteration Denman & Beavers Jr (1976),{

Xk+1 = 1
2 (Xk + Y −1

k )

Yk+1 = 1
2 (Yk +X−1

k ).
(2)

Using perturbation analysis, Higham (1997) shows that the iteration in Eq. (1) is unstable when the
condition number κ(A) > 9, whereas the iteration in Eq. (2) is stable.

Iterative algorithms are not limited to Newton’s method. We may have fixed-point iterations such as
Visser iteration Higham (2008), where we iteratively compute

Xk+1 = Xk + αk(A−X2
k),

to compute matrix square root. We may also use higher-order rational approximations of the function
of interest to obtain algorithms that converge in only a few steps Nakatsukasa & Freund (2016),
Gawlik (2019), and with sufficient parallelization they can be faster than existing methods.

2.2 MONTE-CARLO TREE SEARCH

Suppose we have a deterministic environment E which is defined by a 5-tuple, (S,A, T , r, t). S
denotes the set of states, A denote the set of actions that one can take in each state, T : S ×A → S
gives how state transition occurs from state s when we apply action a, r : S × A → R gives the
amount of reward one gets when we do action a at state s, and t : S → {0, 1} denotes whether the
state is terminal or not. Monte-carlo tree search enables us to find the optimal policy Browne et al.
(2012) π : S → A that decides which action to take at each state to maximize the reward over the
trajectory that π generates.

The basic idea is to traverse over the “search tree” in an asymmetric manner, using the current value
estimation of each state. Each node of the search tree has a corresponding state s, its value estimation
Vs, and visit count Ns. The algorithm is consisted of four steps, the selection step, the expansion
step, the simulation step, and the backpropagation step.

During the selection step, the algorithm starts at the root node s0 and selects the next node to visit
using VT (s,a) and NT (s,a). One widely-used method is using the upper confidence bounds for trees
(UCT) Kocsis & Szepesvári (2006). At node s, the UCT is defined by

VT (s,a) + C

√
log(Ns)

NT (s,a)
,
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where C determines the exploration-exploitation tradeoff. The algorithm selects the next state
T (s, a) that maximizes UCT, and such selection continues until the algorithm meets a node of
which not all child nodes have been visited.

In the expansion step, the algorithm adds a child node that has not been visited to the search tree.

In the simulation step, the algorithm starts from the added node in the expansion step and uses a
default policy to generate a trajectory until they meet a termination criterion. The default policy can
either be a random policy or handcrafted heuristics Chaslot et al. (2008).

Finally, in the backpropagation step, each value estimation Vs on the trajectory is updated.

Monte-Carlo tree search gained its popularity to obtain strategies for games such as Tictactoe Ve-
ness et al. (2011) or Go Silver et al. (2017), Hoock et al. (2010), as well as real-time stategic games
Soemers (2014). Not only that, the algorithm was also applied to combinatorial optimization prob-
lems Sabharwal et al. (2012), Rimmel et al. (2011), symbolic regression Kamienny et al. (2023),
and complex scheduling problems Chaslot et al. (2006), Matsumoto et al. (2010), Li et al. (2021) -
which is most relevant to our work.

2.3 AUTOMATED ALGORITHM DISCOVERY

We are not the first to discover algorithms using ideas from sequential decision-making. RL-based
approaches which parametrize the policy as a neural network have proven to be successful: Li &
Malik (2017) learns to optimize neural networks using an RL framework. In their framework, the
states consist of past variables xi, past gradients ∇f(xi), and past objectives f(xi), and the policy
aims to learn appropriate ∆x. Fawzi et al. (2022) used reinforcement learning to find faster matrix
multiplication algorithms, and Mankowitz et al. (2023) finds faster sorting algorithms. Khodak et al.
(2024) has a similar flavor with our work, where they use contextual bandits to optimize relaxation
parameters in symmetric success-over-relaxation.

3 MATRL: ITERATIVE MATRIX FUNCTION ALGORITHM SEARCH VIA RL

3.1 OBJECTIVE

Let A ∼ D, where D is a symmetric random matrix distribution defined in Rn×n and f : R → R
is the function that we would like to compute. We follow the definition of matrix functions in
Higham (2008). For a symmetric matrix A, when we diagonalize A = UDUT for an orthogo-
nal matrix U , f(A) = Uf(D)UT where f(D) applies f to the diagonal entries of D. Denote
f1(X,Y,A, a1), f2(X,Y,A, a2), · · · fm(X,Y,A, am) as m choices of iterations that we can use,
aj ∈ Rnj as tunable parameters for each fj , and Tj the wall-clock time needed to run fj . We use
two variables (X,Y ) as input to accomodate coupled iterations, and Y is not used for iterations that
are not coupled. For instance, for f =

√
·, f1(X,Y, a1) can be the scaled Denman-Beavers iteration

f1(X,Y,A, a1) =
(1
2
(a11X + (a12Y )−1),

1

2
(a12Y + (a11X)−1)

)
,

whereas f2(X,Y,A, a2) can be the scaled Visser iteration

f2(X,Y, a2) =
(
a21X + a22(A−X2), Y

)
. (3)

Here, nj denotes the number of tunable parameters in iteration fj . Also, assume the error tolerance
ϵtol is given.

Now, we specify the class of matrix iterations and the custom loss function L : Rn×n×Rn×n → R
that determines the termination condition. For this we define congruence invariant matrix functions.
Definition 1. (Congruence Invariant Diagonal Preserving) Let f : (Rn×n)k →
Rm×m a matrix function that takes k matrices as input and outputs a matrix. If
f(QX1Q

T , QX2Q
T , · · ·QXkQ

T ) = Qf(X1, X2, · · ·Xk)Q
T for all orthogonal Q, f is congruent

invariant. If f(X1, X2, · · · , Xk) is diagonal for diagonal X1, X2, · · ·Xk, f is diagonal preserving.
For functions that take matrix tuple as an input and outputs a matrix tuple, F : (Rn×n)k →
(Rm×m)l, we call F congruent invariant diagonal preserving if F = (f1, f2, · · · fl) and all fi
are congruent invariant and diagonal preserving for i ∈ [l].
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We limit the matrix iterations and the loss function to be congruent invariant functions, regarding
A also as an input. For instance, the Newton-Schulz iteration to compute matrix inverse Pan &
Schreiber (1991) Xk+1 = 2Xk − XkAXk, f(X,A) = 2X − XAX is a congruence invariant
function and the iteration falls into our framework. Such limitation will enable us to understand
actions and losses as functions of the spectrum of X,Y , and A, and as we will see in the next
section, it will enable us to see the whole environment only as a function of the spectrum.

Our objective is given a sample A from D, finding a sequence of iterations and coefficients
ft1(·, at1), ft2(·, at2), · · · ftN (·, atN ) that is a solution to

max
N,ti∈[m],ati

∈Rni , i∈[N ]
−

N∑
i=1

Tti subject to L(XN+1, A) ≤ ϵtol, (4)

where X0 = A, Y0 = I or X0 = I, Y0 = A depending on f , (Xk+1, Yk+1) = ftk(Xk, Yk, atk) and
N is also optimized. Note that similar ideas have also appeared in optimal control Evans (1983) in
the context of minimum-time control problems.

The optimal solution of Eq. (4) naturally corresponds to finding the optimal iterative algorithm

Xk+1, Yk+1 ← ftk(Xk, Yk, atk), k ∈ [N ].

that arrives as L(X,A) ≤ ϵtol as fast as it can.

3.2 THE ENVIRONMENT

Here we elaborate how we formulate the problem in Eq. (4) to a sequential decision-making problem
by describing E = (S,A, T , r, t), the 5-tuple specified in Section 2.2.

The simplest way to define the state and action variables is by setting each state as a tuple (X,Y ) that
corresponds to the matrices (Xk, Yk), and setting each action as a nj + 1 - tuple (j, k1, k2, · · · knj

),
where j ∈ [m] denotes the iteration fj and k1, k2, · · · knj

denotes the parameters for fj . The state
transition T simply becomes

T (X,Y, j, k1, k2, · · · knj ) = fj(X,Y, k).

At each transition, we get rewarded by −Tj , the negative time needed to run the iteration. The
terminal state is when L(X,A) ≤ ϵtol. Our environment stems from this basic formulation, but we
have important implementation details that we elaborate below.

Spectrum as state variables Having matrices each state can consume a lot of memory, and state
transition may be slow. Instead, we use (s1, s2), where s1, s2 ∈ Rn corresponds to the eigenvalues
of X,Y . Such parametrization is justified by the fact that both the transition fk(X,Y,A, a) =
(X ′, Y ′) and the termination criteria L can be expressed only using the spectrum for our iterations
of interest.

The core intuition is that when we write A = UDAU
T , if X = UDXUT and Y = UDY U

T for
the same U and diagonal DA, DX , DY , the next states X ′, Y ′ are similar to A. Moreover, we can
see that the spectrum of X ′, Y ′ only depends on the spectrum of X,Y and A. Induction finishes
the proof. The similarity result and the congruent invariance of L shows that the termination criteria
only depends on the spectrurm. We defer the proof to Section A.

Decoupled actions We have nj + 1 tuple of possible actions each state. As they are continuous
variables, the possible action space at the step becomes huge. To mitigate this, we decouple the state
transition T into nj + 1 stages: at stage 1, 2, · · ·nj , only parameters k1, · · · knj−1 are chosen. At
state nj + 1, we get rewarded by −Tj , choose next iteration, and state transition happens.

Dealing with coupled iterations For computing matrix roots, some iterations are coupled (e.g.,
Denman-Beavers), while others like the scaled Visser iteration are not, making it challenging to mix
them directly. Applying uncoupled iterations alone can break essential relationships (e.g., YkX

−1
k =

A for Denman-Beavers), potentially leading to incorrect results. To address this, we propose either
augmenting uncoupled steps with coupled ones or tracking a boolean flag IsCoupled that governs
when and how to restore consistency between variables before proceeding. See Section C for a
detailed explanation.
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3.3 THE SEARCHING STRATEGY

Here we describe the details of Monte-Carlo tree search in the predescribed environment E . Let’s
note n, v : S → N the number of child nodes and visit count of that node, respectively. If all parame-
ters j, k1, · · · knj

are chosen and the state is ready for state transition, we call the state transitionable.
We use progressive widening Couëtoux et al. (2011) to deal with the continuous parameter space:
during the selection stage, if the node is transitionable and hasn’t visited all possible children, or the
number of child nodes n(s) ≤ Cv(s)α for some hyperparameters C,α, we go to the expansion step.
If not, we choose the next node with UCT Kocsis & Szepesvári (2006). In the expansion stage, we
add a child node. Choosing the iteration is discrete and we choose them depending on IsCoupled
flag. To choose the parameters, we first sample randomly for E steps, then jitter around the best
parameter found. In the rollout stage, we have predetermined baseline algorithms and run one of
them to estimate the value of the state. At last, we backpropagate by using the Bellman equation

Vs = max
a∈A

VT (s,a) + r(s, a).

Our search method is summarized in Algorithm 1. Details on the parameters for each experiment
and a thorough description of Algorithm 1 can be found in Section C.

Algorithm 1 MatRL: Monte-Carlo Tree Search for Algorithm Discovery

Input: C,α, ϵtol, E, T,RolloutList,L, A ∼ D
Initialize c, n, t, cp← 0, V ← −INF, cp[sroot]← 1, bestpath, bestrollout← 0 // Each correspond
to number of children, visit count, Transitionable, IsCoupled, and value estimation.
for i = 1 to T do
s← sroot
while Expandable(s) == False and L(s) ≤ ϵtol do

// Expandable if s is transitionable and has a child node yet visited, or c(s) ≤ Cn(s)α

s← BestUCB(s)
end while
s← ExpandNode(s) // Here we expand after we look at cp(s)
r ← SampleRolloutList() // Here we sample from RolloutList, the baselines selected for
rollout. If the baseline is coupled but cp(s) = False, we attach an additional coupling step at
the front
s← r(s)
bestpath, bestrollout← backpropagate(s) // Here we use bellman equation. If V (sroot) was
updated, update bestpath and bestrollout

end for
return bestpath ⊕ bestrollout

4 RANDOM MATRICES AND GENERALIZATION GUARANTEES

The objective in Eq. (4) aims to find the optimal algorithm for a given matrix A sampled from
D. Here we show that under certain assumptions, the found iterative algorithm has a sense of
generalization capability to a different matrix distribution D′ with the same limiting distribution.
Two main ideas for the proof is: first, the loss curve only depends on the spectrum. Second, if the
limiting distributions are identical for D and D′, the sampled matrices’ spectrum will be similar
if the matrix is sufficiently large. Hence, the loss curve will be similar for two matrices X ∼ D,
Y ∼ D′ for sufficiently large matrices, and if the algorithm works well for X , it will work well for
Y . The specific guarantee that we have is in Proposition 1. The proof is deferred to Section A.
Proposition 1. (Generalization of the discovered algorithm) Say we have a sequence of symmetric
random matrix distributions Pm,Qm defined in Rm×m, and denote random matrices sampled from
Pm, Qm as X,Y . Let the empirical eigenvalue value distribution of X ∼ Pm, Y ∼ Qm be
µm(X), νm(Y ), and their support be Sm, S′

m, respectively. Now, suppose
(i) (Identical limiting distribution)

P(µm(X)⇒ µ∗) = P(νm(Y )⇒ µ∗) = 1,

i.e. both µm(X) and νm(Y ) converges weakly to a common distribution µ∗ with probability 1.
(ii) (Interval support of the limiting distribution) The support of µ∗ is an interval [a, b].

6
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(iii) (Convergence of support) We have

lim
m→∞

P(Sm ⊆ [a− ϵ, b+ ϵ]) = lim
m→∞

P(S′
m ⊆ [a− ϵ, b+ ϵ]) = 1,

for all ϵ > 0.
With the assumptions above, let f be the matrix function we would like to compute, f∗

k the step k
transformation of eigenvalues of the algorithm found by Algorithm 1, and L : R × R → R be the
loss. Assume f, f∗

k , L are continuous in [a− ϵ0, b+ ϵ0] for some ϵ0 > 0. Write the empirical loss of
the random matrix X as

Lk(X) =
1

m

m∑
i=1

L(f(λi), f
∗
k (λi)),

where λi are eigenvalues of X .
Then, there exists Mϵ,δ such that

m ≥Mϵ,δ ⇒ PX∼Pm,Y∼Qm [|Lk(X)− Lk(Y )| < ϵ] ≥ 1− δ.

Essentially, Proposition 1 states that if we find an algorithm {f∗
k (X,Y, ak)}Nk=1 using Algorithm 1

and it works well for a certain matrix A, as the loss value Lk(X) and Lk(Y ) are similar for suffi-
ciently large m, it will work well for any matrix within the same distribution, and also generalize to
distributions with the same limiting distribution if m is sufficiently large.

5 EXPERIMENTS

5.1 DISCOVERED ALGORITHMS

Different matrix functions Here we show loss curves of two different matrix functions, sign(A)

and A1/2. Results for inverse and A1/3 can be found in Section D. Wishart denotes A = X⊤X
3d +ϵstbI

where X ∈ Rd/4×d, Xij ∼ N (0, 1) i.i.d.. ϵstb = 1e − 3 exists for numerical stability. ”Hessian of
Quartic” is the indefinite Hessian of a d-dimensional quartic

∑
i z

4
i /4− z2i /4 evaluated at a random

point z ∼ N (0, Id). The loss function for matrix sign was ∥X2− I∥F /∥A∥F , and the loss function
for matrix square root was ∥X2 −A∥F /∥A∥F . For a complete list of baselines, see Section B.

The time vs loss curves for different matrix functions can be found in Fig. 1. One thing to notice is
that for matrix sign function, the algorithm found by MatRL is strictly better than torch.linalg.eigh,
and for matrix square root the algorithm returns an approximation within much smaller wall clock
time. Depending on applications where exact matrix function is not neceessary, using algorithms
found by MatRL can be an appealing choice.

Figure 1: Time versus loss curve for matrix sign and square root. Each iterative algorithms are
plotted as baselines, and the wall-clock time to run torch.linalg.eigh is also reported. For matrix sign
we have a clear benefit. For matrix square root the found algorithm sacrifices accuracy for time.

The algorithm in Fig. 1, right is described in Algorithm 2. Here we see a tendancy that during the
early iterations, the algorithm prefers Visser iteration, whereas for latter steps the algorithm prefers
coupled Newton-Schulz iteration. An intuition for such mixed iteration is as follows: when we see

7
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the loss curve, we can notice that the Visser iteration converges fast at first, but it quickly stabilizes
and becomes very slow. Hence MatRL learns to use the cheap iterations at first to find a good initial
start for NewtonSchulz, and run NewtonSchulz from that initial parameter for faster convergence.

Algorithm 2 Iterative SQRT for Wishart on GPU with d = 5000

Input: A
Initialize X0 = A, Y0 = I
Set a← [0.766, 1.876, 4.251, 0.924, 1], b← [2.930, 0.819, 3.223, 0.460, 0.877],
// rounded off to three digits
for i = 1 to 5 do
Xi = ai−1Xi−1 + bi−1(A−X2

i−1)
Yi = ai−1Yi−1 + bi−1(I − Yi−1Xi−1)

end for
for i = 6 to 8 do
Xi = 0.5(3I −Xi−1Yi−1)Xi−1

Yi = 0.5Yi−1(3I −Xi−1Yi−1)
end for
return X8

Different setups yields different algorithms The mixing tendency appears for different matrix
functions as well. Preference for a certain iteration over another emerges from two axes, the time it
takes for an iteration and how effectively the iteration decreases the loss. Recalling the motivating
example in Table 1, different computing environments, e.g. hardware (CPU/GPU), precision (Sin-
gle/Double), or even the size of the matrix can decide the best algorithm. Here we only demonstrate
how precision can change optimal algorithms. A full list of different setups and found algorithms
are in Section D.

Algorithm 3 SIGN on GPU (FLOAT)

1: Input: A
2: Initialize X0 = A
3: a← [35.536]
4: b← [0.094, 1.607, 1.439, 1.191, 1.029, 1]
5: for i = 1 to 1 do
6: Xi = 0.5(ai−1Xi−1 + (ai−1Xi−1)

−1)
7: end for
8: for i = 2 to 7 do
9: Xi = 1.5(bi−2Xi−1)− 0.5(bi−2Xi−1)

3

10: end for
11: return X7

Algorithm 4 SIGN on GPU (DOUBLE)

1: Input: A
2: Initialize X0 = A
3: a ← [22.055, 0.244, 0.590, 0.938, 0.998, 1]

4: for i = 1 to 6 do
5: Xi = 0.5(ai−1Xi−1 + (ai−1Xi−1)

−1)
6: end for
7: return X6

When the precision is double, the relative runtime ratio between inverse and matrix multiplication is
not as high as that of single precision. Hence, the model prefers Newton’s method more for double
precision case, and Algorithm 4 only consists of Newton’s iteration whereas Algorithm 3 contains
initial Newton’s iterations and latter NewtonSchulz iterations.

5.2 GENERALIZATION

In this section we verify the generalization guarantee that we had in Proposition 1. We test the
algorithm learned in Algorithm 2 to a different matrix distribution with the same limiting spectrum,
where each entries of X are sampled i.i.d. from Unif[−

√
3,
√
3] instead of N (0, 1). We denote

the distribution as WishartUnif. In this case, the two spectrum converges to the same spectrum in
distribution due to Marchenko-Pastur (Fig. 2a).

Due to Proposition 1, we expect the learned algorithm in Algorithm 2 to work as well for matrices
sampled from WishartUnif. Fig. 2b indeed shows that it is true: when we compare the plot in Fig. 1

8
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(a) Same limiting eigenvalue distribution (b) Testing Algorithm 2 on a different distribution

Figure 2: How generalization guarantee in Proposition 1 works. Here we have two different random
matrix distributions with the same limiting spectrum. Even though they are sampled from different
distributions, the limiting spectrum coincide and the learned algorithm generalizes.

and Fig. 2b, the two curves look almost identical - meaning the loss curve for two tests coincide,
and generalization indeed happened.

5.3 A REAL WORLD EXAMPLE: CIFAR-10 AND ZCA WHITENING

A common application of computing matrix square roots, and inverse-square, roots is ZCA whiten-
ing of images Bell & Sejnowski (1997). The ZCA whitening, also known as Mahalanobis whiten-
ing, decorrelates (or whitens) data samples using the inverse-square root of an empirical covariance
matrix. We apply MatRL to learn an algorithm to compute square roots and inverse-square roots
simultaneously using coupled iterations on empirical covariances of CIFAR-10 Krizhevsky et al.
(2009) images. Specifically, the random input matrix is Σ̂ = 1

n (X −µ)T (X −µ) where X ∈ Rn×d

is a random batch of n CIFAR-10 images, µ is the average of n images, followed by normalizing by
the Frobenius norm and adding ϵstbI (ϵstb = 1e−3). The algorithm discovered by MatRL converges
significantly faster (∼ 1.94x) than baselines in terms of wall-clock time, see Table 2 for the mean of
the wall-clock time of 10 repeated runs. For a visual representation of the result see Section D.

Table 2: Time to reach 1e-4 relative error (in seconds) on CIFAR-10 ZCA whitening.

MatRL (Ours) DB Scaled DB torch.eigh Newton

0.0551 0.1571 0.1791 0.1071 N/A

6 CONCLUSION

In this paper we propose MatRL, an MCTS-based automated solution to find iterative algorithms
for matrix function computation. We showed that we can generate an algorithm specifically tailored
for a specific input matrix distribution and compute environment, and the found algorithm is guar-
anteed to generalize to different matrix distributions with the same limiting spectrum under certain
assumptions. We verify our findings with experiments, showing MatRL found algorithms that are
faster than existing baselines and competitive to standard torch library.

Our work has many future directions. One direction is overcoming the current limitations of our
work, e.g. extending the result to rectangular and sparse matrices. Another interesting direction is
not fixing the matrix iterations beforehand, but making the RL agent discover novel iterations that
can ensure stability, such as the Denman-Beavers iteration. At last, automatic discovery of optimal
parameters of optimization algorithms such as Muon Jordan et al. (2024) with a different reward
(e.g. validation error) could be an interesting direction.

ETHICAL STATEMENT
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REPRODUCIBILITY STATEMENT

Also, the experimental results given in Section 5 and Section C are reproducible by running the code
in the supplementary material.
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Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nicolas Bon-
nard. Continuous upper confidence trees. In Learning and Intelligent Optimization: 5th Interna-
tional Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pp. 433–445.
Springer, 2011.
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A TECHNICAL PROOFS

We first show that the environment can be parametrized by the spectrum.

Proposition A.2. Let {fk(X,Y,A)}mk=1 is a set of congruence invariant diagonal preserving matrix
functions that take X,Y,A as input and outputs (X ′, Y ′),L(X,A) be a congruence invariant matrix
function that takes X,A as input and outputs a scalar, and X0, Y0, {Xk}m+1

k=1 satisfy

(X0, Y0) = (A, I) or (I, A)

and
(Xk+1, Yk+1) = fk(Xk, Yk, A), k ∈ [m].

At last, write A = UDAU
T . Then, the following properties hold:

i) Xk, Yk ∼ A for all k ∈ [m+ 1].
ii) Write Xk = UPkU

T , Yk = UQkU
T . Then, Pk+1, Qk+1 depends only on Pk, Qk and DA.

iii) The loss L(Xk, A) only depends on Pk, DA.

Proof. i) We prove by induction.
If k = 0, we know that X0, Y0 = A, I or I, A hence they are similar with A.
Say Xt, Yt are similar with A. Then Xt = UD1U

T , Yt = UD2U
T for diagonal D1, D2. Now we

can see that

ft(Xt, Yt, A) = ft(UD1U
T , UD2U

T , UDAU
T ) = Uft(D1, D2, DA)U

T = (UD′
1U

T , UD′
2U

T ),

for some diagonal D′
1, D

′
2. The second equality comes from congruent invariance, and the third

equality follows from diagonal preservence. Hence, Xt+1 = UD′
1U

T and Xt+1 and A are similar,
Yt+1 = UD′

2U
T and Yt+1 and A are also similar.

ii) From the proof of i) we know that ft(D1, D2, DA) = (D′
1, D

′
2), where D1, D2, DA, D

′
1, D

′
2 are

the spectrum of Xt, Yt, A,Xt+1, Yt+1, respectively.
iii) We know Xk and A are similar. Let Xk = UPkU

T and A = UDAU
T . L(UPkU

T , UDAU
T ) =

L(Pk, DA) by congruent invariance.

Next we show that all iterations that we deal with in the paper is congruent invariant diagonal pre-
serving. See Section B.5 and Table 7 for the iterations of interest.

Lemma A.1. Assume f(X1, X2, · · ·Xk), g(X1, X2, · · ·Xk) are congruent invariant diagonal pre-
serving. Then, f + g, fg, f−1 are all congruent invariant diagonal preserving.

Proof. Diagonal preserving is simple, as sum, multiple, inverse of diagonal matrices are diagonal.
Let’s show congruence invariance.

f(QX1Q
T , · · ·QXkQ

T ) + g(QX1Q
T , · · ·QXkQ

T ) = Qf(X1, · · ·Xk)Q
T +Qg(X1, · · ·Xk)Q

T

and

Qf(X1, · · ·Xk)Q
T +Qg(X1, · · ·Xk)Q

T = Q(f(X1, · · ·Xk) + g(X1, · · ·Xk))Q
T .

f(QX1Q
T , · · ·QXkQ

T )g(QX1Q
T , · · ·QXkQ

T ) = Qf(X1, · · ·Xk)Q
TQg(X1, · · ·Xk)Q

T

and
Qf(X1, · · ·Xk)Q

TQg(X1, · · ·Xk)Q
T = Q(f(X1, · · ·Xk)g(X1, · · ·Xk))Q

T .

f(QX1Q
T , · · · , QXkQ

T )−1 = (Qf(X1, · · ·Xk)Q
T )−1 = Qf(X1, · · ·Xk)

−1QT .

Proposition A.3. Say f(X1, X2, · · ·Xk) is a rational function of X1, · · ·Xk, i.e.
f(X1, X2, · · ·Xk) = P (X1, · · ·Xk)Q(X1, · · ·Xk)

−1 for polynomials P,Q. Then f is con-
gruent invariant diagonal preserving.

Proof. We know that P,Q, and hence PQ−1 is congruent invariant diagonal preserving from lemma
1.
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As all iterations in Table 7 or Section B.5 are rational functions, the iterations of interest are congru-
ent invariant diagonal preserving.

At last we show Proposition 1: our found algorithm will generalize to the matrices drawn from the
distribution with the same limiting eigenvalue spectrum.
Proposition A.4. (Generalization of the discovered algorithm, Proposition 1 of the main paper)
Say we have a sequence of symmetric random matrix distributions Pm,Qm defined in Rm×m, and
denote random matrices sampled from Pm, Qm as X,Y . Let the empirical eigenvalue value distri-
bution of X ∼ Pm, Y ∼ Qm be µm(X), νm(Y ), and their support be Sm, S′

m, respectively. Now,
suppose
(i) (Identical limiting distribution)

P(µm(X)⇒ µ∗) = P(νm(Y )⇒ µ∗) = 1,

i.e. both µm(X) and νm(Y ) converges weakly to a common distribution µ∗ with probability 1.
(ii) (Interval support of the limiting distribution) The support of µ∗ is an interval [a, b].
(iii) (Convergence of support) We have

lim
m→∞

P(Sm ⊆ [a− ϵ, b+ ϵ]) = lim
m→∞

P(S′
m ⊆ [a− ϵ, b+ ϵ]) = 1,

for all ϵ > 0.
With the assumptions above, let f be the matrix function we would like to compute, f∗

k the step k
transformation of eigenvalues of the algorithm found by Algorithm 1, and L be the loss. Assume
f, f∗

k , L are continuous in [a − ϵ0, b+ ϵ0] for some ϵ0 > 0. Write the empirical loss of the random
matrix X as

Lk(X) =
1

m

m∑
i=1

L(f(λi), f
∗
k (λi)),

where λi are eigenvalues of X .
Then, there exists Mϵ,δ such that

m ≥Mϵ,δ ⇒ PX∼Pm,Y∼Qm
[|Lk(X)− Lk(Y )| < ϵ] ≥ 1− δ.

Proof. We write

L∗ =

∫
L(f(σ), fk(σ))dµ

∗(σ).

We would like to show that for sufficiently large m, |Lk(X)− L∗| < ϵ/2 with high probability. As
P(µm(X)⇒ µ∗) = 1, we know that with probability 1,

lim
m→∞

∫
fdµm(X) =

∫
fdµ∗

for all continuous bounded f . We shall extend L(f(x), fk(x)) in a way that it is continuous bounded
in R and the “difference” is small.
First, we know that L(f(x), fk(x)) is continuous in [a− ϵ0, b+ ϵ0]. Say

A = max
x∈[a−ϵ0,b+ϵ0],y∈[a,b]

|L((f(x), fk(x))|+ |L((f(y), fk(y))|.

Now, choose ϵ′ = min{ϵ0, ϵ/8A} (when A = 0 we just have ϵ′ = ϵ0). With the chosen ϵ′, define L̃
as

L̃(x) =


L(f(x), fk(x)) if x ∈ [a, b]

(x− a+ ϵ′)L(f(a),fk(a))
ϵ′ if x ∈ [a− ϵ′, a]

(−x+ b+ ϵ′)L(f(b),fk(b))
ϵ′ if x ∈ [b, b+ ϵ′]

0 if x ∈ (−∞, a− ϵ′], [b+ ϵ′,∞),

which is a bounded continuous function in R. At last, choose M1 sufficiently large so that m ≥M1

implies

|
∫

L̃dµm(X)−
∫

L̃dµ∗| < ϵ/4

with probability at least 1− δ/4 and

P(Sm ⊆ [a− ϵ′, b+ ϵ′]) ≥ 1− δ/4.
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Such m exists because of assumptions (i) and (iii). Now, we know that

Lk(X) =

∫
L(f(x), fk(x))µm(X).

Moreover, the function |L̃(x)− L(f(x), fk(x))| ≤ A for x ∈ Sm. This is because

|L̃(x)| ≤ max
x∈[a,b]

|L(f(x), fk(x))|, Sm ⊆ [a− ϵ′, b+ ϵ′] ⊆ [a− ϵ0, b+ ϵ0].

As L̃(x)− L(f(x), fk(x)) = 0 for x ∈ [a, b], the value

|
∫

L̃dµm(X)−
∫

L(f(x), fk(x))dµm(X)| ≤ 2ϵ′A ≤ ϵ/4

with probability at least 1− δ/2. Hence, when m ≥M1,

|Lk(X)−
∫

L̃dµ∗| = |Lk(X)− L∗| < ϵ/2

with probability at least 1 − δ/2. We can do the same argument for Y to find M2. Take Mϵ,δ =
max{M1,M2}. Using union bound, we can see the probability that both |Lk(X)− L∗| < ϵ/2 and
|Lk(Y ) − L∗| < ϵ/2 happens is at least 1 − δ. Hence, PX∼Pm,Y∼Qm [|Lk(X) − Lk(Y )| < ϵ] ≥
1− δ.
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B LIST OF USED MATRIX ITERATIONS

We first present a table that shows different types of baseline algorithms used in the paper with
references.

Table 3: List of baselines

Matrix function List of baselines

Inverse NS Pan & Schreiber (1991), Chebyshev Li et al. (2011)
Sign Newton Higham (2008), NS Schulz (1933), ScaledNewton Byers &

Xu (2008), ScaledNS Chen & Chow (2014), HalleyNakatsukasa et al.
(2010)

Square root DBDenman & Beavers Jr (1976), NSVHigham (1997)(2.6), Scaled
DBHigham (1997), VisserHigham (2008), NewtonHoskins & Walton
(1979)

1/3 - root Iannazzo Iannazzo (2006), Visser Higham (2008), Newton Iannazzo
(2006)(1.2)

B.1 ITERATIVE METHODS ASSOCIATED WITH INVERSE

We have two different baselines for inverse. One is Newton’s method proposed by Schulz, which is
the iteration

(InvNewton) Xk+1 = 2Xk −XkAXk.

For an appropriate initialization, the norm ∥I − AXk∥2 will converge quadratically to zero. This is
because we can write

I −AXk+1 = I − 2AXk +AXkAXk = (I −AXk)
2.

Another baseline is applying Chebyshev’s iteration to the function X−1 −A. We have

(InvChebyshev) Xk+1 = 3Xk − 3XkAXk +XkAXkAXk.

With similar logic we can obtain I − AXk+1 = (I − AXk)
3. Hence at each iteration the error

decreases cubically. The drawback is that Chebyshev’s method needs at least three matrix-matrix
multipications each iteration.

B.2 ITERATIVE METHODS ASSOCIATED WITH SIGN

The simplest method to compute matrix sign is Newton’s method, where the iteration is given as

(SignNewton) Xk+1 =
1

2
(Xk +X−1

k ).

The NewtonSchulz variant avoids computing inverse by using the iteration

Xk+1 =
1

2
(3Xk −XkX

T
k Xk),

hence for symmetric matrices

(SignNewtonSchulz) Xk+1 =
1

2
(3Xk −X3

k).

Newton’s method has scaled variants, where we do

(SignScaledNewton) Xk+1 =
1

2
(µkXk + (µkXk)

−1),

for specific µk. Our baseline is the one proposed in Byers & Xu (2008). Here µk is defined as the
following: we let a, b be constants that satisfy a ≤ σn ≤ σ1 ≤ b for the singular values of A. Then

µ0 =
1√
ab

, µ1 =

√
2√

a/b+
√
b/a

, µk =

√
2

µk−1 + µ−1
k−1

, k ≥ 2.
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a and b can be obtained by computing ∥A|2 and ∥A−1|−1
2 . NewtonSchulz method may also have

variants: a recent variant in Chen & Chow (2014) scales each Xk as

(SignScaledNewtonSchulz) Xk+1 =
3

2
ρkXk −

1

2
(ρkXk)

3,

where X0 = A/λ|max|(A), x0 = λ|min|(A)/λ|max|(A) and

ρk =

√
3

1 + x0 + x2
0

, xk+1 =
1

2
ρkxk(3− ρ2kx

2
k).

Halley’s method uses a rational approximation of sign function to compute the matrix sign. The
iteration is written as

(SignHalley) Xk+1 = Xk(akI + bkX
2
k)(I + ckX

2
k)

−1,

where default Halley’s iteration uses a = c = 3, b = 1 and the scaled Halley in Nakatsukasa et al.
(2010) uses certain optimal coefficients.

Newton variant is essentially a variant of Newton’s method where we do

(SignNewtonVariant) Xk+1 = 2Xk(I +X2
k)

−1.

This is the inverse of SignNewton, and Xk converges to sign(A)−1, which is sign(A) when A is
invertible.

B.3 ITERATIVE METHODS ASSOCIATED WITH SQUARE ROOT

The simplest method in this case is also the Newton’s method,

(SqrtNewton) Xk+1 =
1

2
(Xk +X−1

k A).

The above method can be unstable, which led to the development of coupled iterations. Denman-
Beavers iteration uses the following coupled iterationn of Xk and Yk: Denman-Beavers is initialized
with X0 = A, Y0 = I and iteratively applies

(SqrtDenmanBeavers)
{
Xk+1 = 1

2 (Xk + Y −1
k )

Yk+1 = 1
2 (Yk +X−1

k ).

Here, Xk → A1/2 and Yk → A−1/2. There is a variant of Denman-Beavers that avoids computing
matrix inverse - introduced in Higham (1997), the iteration writes

(SqrtNewtonSchulzVariant)
{
Xk+1 = 1

2 (3Xk −XkYkXk)

Yk+1 = 1
2 (3Yk − YkXkYk).

Like ScaledNewton, we have a scaled variant of Denman-Beavers. The scaling we use is a variant
of Byer’s scaling Byers (1987) introduced in Higham (1997). The iteration is given as

(SqrtScaledDenmanBeavers)


γk = |detXk detYk|−1/2n

Xk+1 = 1
2 (γkXk + (γkYk)

−1)

Yk+1 = 1
2 (γkYk + (γkXk)

−1).

The cost of computing γk is negligible when we use decomposition methods such as LU decompo-
sition or Cholesky to compute matrix inverse.

At last, there is the fixed-point iteration, which we will denote as the Visser iteration Higham (2008).
The Visser iteration is given as

(SqrtVisser) Xk+1 = Xk +
1

2
(A−X2

k).
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B.4 ITERATIVE METHODS ASSOCIATED WITH 1/3-ROOT

There are a number of stable methods to compute matrix p-th root (see Iannazzo (2006) for different
methods). We use the following method as a baseline: initialize X0 = I, Y0 = A and

(prootIannazzo)
{
Xk+1 = Xk(

2I+Yk

3 )

Yk+1 = ( 2I+Yk

3 )−3Yk

With this iteration, Xk → A1/3 and Yk → I . We have Newton’s method and Visser’s iteration as
we had for square root:

(prootNewton) Xk+1 = (2Xk +XkA
−2)/3

is the Newton’s method, and

(prootVisser) Xk+1 = Xk +
1

3
(A−X3

k)

becomes Visser’s iteration.
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B.5 SUMMARY

We present a table of the matrix functions and iterations that we used.

Table 4: Iterative methods for computing matrix inverse, sign, square root, and 1/3-root.

Method Iteration Formula

Methods for Inverse

Newton (Schulz) Xk+1 = 2Xk −XkAXk

Chebyshev Xk+1 = 3Xk − 3XkAXk +XkAXkAXk

Methods for Sign

Newton Xk+1 = 1
2 (Xk +X−1

k )

NewtonSchulz Xk+1 = 1
2 (3Xk −X3

k)

ScaledNewton Xk+1 = 1
2 (µkXk + (µkXk)

−1)

ScaledNewtonSchulz Xk+1 = 3
2ρkXk − 1

2 (ρkXk)
3

Halley Xk+1 = Xk(akI + bkX
2
k)(I + ckX

2
k)

−1

NewtonVariant Xk+1 = 2Xk(I +X2
k)

−1

Methods for SquareRoot

Newton Xk+1 = 1
2 (Xk +X−1

k A)

DenmanBeavers
{
Xk+1 = 1

2 (Xk + Y −1
k )

Yk+1 = 1
2 (Yk +X−1

k )

NewtonSchulzVariant
{
Xk+1 = 1

2 (3Xk −XkYkXk)

Yk+1 = 1
2 (3Yk − YkXkYk)

ScaledDenmanBeavers


γk = |detXk detYk|−1/2n

Xk+1 = 1
2 (γkXk + (γkYk)

−1)

Yk+1 = 1
2 (γkYk + (γkXk)

−1)

Visser Xk+1 = Xk + 1
2 (A−X2

k)

Methods for 1/3-th Root

Iannazzo

{
Xk+1 = Xk

(
2I+Yk

3

)
Yk+1 =

(
2I+Yk

3

)−3
Yk

Newton Xk+1 = 1
3 (2Xk +XkA

−2)

Visser Xk+1 = Xk + 1
3 (A−X3

k)
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C EXPERIMENTAL DETAILS

C.1 DETAILED EXPLANATION OF ALGORITHM 1

Algorithm 1 is summarized in Section 3.3. Here we explain how each subroutine Expandable,
BestUCB , ExpandNode, SampleRolloutList, and backpropagate is implemented.

To begin with, we have two important flags at each state. One flag is IsTransitionable: if the iteration
type and all parameters for that iteration is fixed, we set IsTransitionable(s) = True. Else, IsTran-
sitionable(s) = False. Another flag is IsCoupled: for the root state, IsCoupled = True. If you use a
coupled iteration at a state where IsCoupled = True, IsCoupled = True at the next state also. If you
use an iteration that is not coupled, we set IsCoupled = False. When IsCoupled = True, you can do
either coupled or uncoupled iteration. When IsCoupled = False, you can either do the ”coupling”
iteration (that would be specified later for each matrix function) or an iteration that is not coupled.
Whenn you do the coupling iteration, IsCoupled = True for the next state, else IsCoupled = False. A
table that summmarizes the transition of IsCoupled is as below.

Table 5: State transition of IsCoupled

Current IsCoupled Iteration Type Next IsCoupled
True Coupled iteration True
True Uncoupled iteration False
False Coupling iteration True
False Non-coupling iteration False

Expandable(s) is a method that determines whether it is possible to expand a child node from
current node s. If IsTransitionable(s) = True, the possible choice of next action becomes a
discrete set of iterations. Hence Expandable(s) = True if IsCoupled(s) = False and number of
children of s < number of iterations that are not coupled, or IsCoupled(s) = True andd number
of children of s < number of iterations - 1. We subtract 1 because we will not expand with coupling
iteration. If IsTransitionable = False, we expand with a continuous variable hence we do
progressive widening. If number of children of s < CpwN(s)αpw where n(s) is the number of
visits for node s, we return True and else return False.

Algorithm 5 Expandable(s)

1: if IsTransitionable(s) then
2: if IsCoupled(s) = False then
3: if number of children of s < number of non-coupled iterations then
4: return True
5: else
6: return False
7: end if
8: else
9: if num children(s) < num iterations− 1 then

10: return True
11: else
12: return False
13: end if
14: end if
15: else
16: if number of children of s < Cpwn(s)

αpw then
17: return True
18: else
19: return False
20: end if
21: end if
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BestUCB(s) is simple: Choose the child node c with the maximal value of V (c)+Cucb

√
logn(s)+1

n(c) .

Algorithm 6 BestUCB(s)

1: Input: Node s with children set C(s)
2: Parameters: Exploration constant Cucb

3: best value← −∞
4: best child← null
5: for all c ∈ C(s) do
6: score← V (c) + Cucb

√
log(n(s))+1

n(c)

7: if score > best value then
8: best value← score
9: best child← c

10: end if
11: end for
12: return best child

ExpandNode(s) depends on IsTransitionable. If IsTransitionable(s) = True, sim-
ply adding a node that hasn’t been visited is enough, because the children are discrete. If
IsTransitionable(s) = False, the children can take continuous parameters. If num child(s) ≤
E for hyperparameter E, do random sampling in range [lo, hi] that is prespecified. Else, find
the child with the best value and sample near that parameter p. Specifically, with probability
0.05, sample uniformly at random from [lo, hi]. Else sample random uniform at a new interval
[lo, hi] ∩ [p − stddev scale ∗ (hi − lo)/2.0, p + stddev scale ∗ (hi − lo)/2.0]. stddev scale =
1/ log(2 + n(s)) decays logarithmically with n(s), the visit count.

Algorithm 7 ExpandNode(s)

1: if IsTransitionable(s) then
2: Add a new discrete child node to s
3: else
4: if num child(s) ≤ E then
5: Sample x ∼ U [lo, hi]
6: Add child node with parameter x
7: else
8: p← parameter of best-value child of s
9: w ← (hi− lo)/2

10: stddev scale← 1/ log(2 + n(s))
11: r ∼ U [0, 1]
12: if r < 0.05 then
13: Sample x ∼ U [lo, hi]
14: else
15: Define interval I = [lo, hi] ∩ [p− stddev scale · w, p+ stddev scale · w]
16: Sample x ∼ U [I]
17: end if
18: Add child node with parameter x
19: end if
20: end if

SampleRolloutList() samples a baseline rollout algorithm that is consisted of mutiple iterations of
well-working baselines such as scalednewton for sign or scaled Denman-Beavers for matrix square
root. If the rollout is coupled iteration but the current state is not coupled, we append the coupling
iteration at the front of rollout.

At last, Backpropogate(s) uses Bellman equation to update V (s) in the path from root to s and if
V (s0) is updated, we update bestpath and bestrollout accordingly.
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C.2 EXPERIMENTAL ENVIRONMENT

All GPU based experiments were done in NVIDIA RTX A-6000 and CPU based experiments were
done in AMD EPYC 7713 64-Core Processor. We repeated the experiments five times and picked
the best algorithm, and if the method diverged for five times we ran additional experiments to find a
good algorithm.

C.3 HYPERPARAMETERS

Here we detail the hyperparameters in Algorithm 1: this includes basic parameters such as α in
progressive widening, list of possible actions for each matrix function, and RolloutList for each
matrix function.

We set Cpw = 2, αpw = 0.3, Cucb = 5, E = 5, ϵtol = 1e− 6 and 1e− 11 for the experiments. The
loss function and RolloutList for each matrix function is as below:

Table 6: Loss function, action list, and rollout list for each matrix function

Function Loss Function ActionList RolloutList

Inv ∥AX−I∥F

∥A∥F
[Inv NS,
Inv Chebyshev]

[Inv NS,
Inv Chebyshev]

Sign ∥X2−I∥F

∥A∥F
[Sign NS,
Sign Newton,
Sign Quintic,
Sign Halley]

[Sign ScaledNS,
Sign ScaledNewton,
Sign Halley]

Sqrt ∥X2−A∥F

∥A∥F
[Sqrt DB, Sqrt NSV,
Sqrt Visser,
Sqrt VisserCoupled,
Sqrt Coupling]

[Sqrt ScaledDB,
Sqrt NSV]

Proot ∥X3−A∥F

∥A∥F
[Proot Newton,
Proot Visser,
Proot Iannazzo,
Proot Coupling]

[Proot Newton,
Proot Visser,
Proot Iannazzo]

Each iteration in ActionList is parametrized to have tunable parameters. A full table denoting how
each action is parameterized is as Table 7.

C.4 LIST OF DISTRIBUTIONS

The list of distributions we used throughout the experiments are as follows:
1. Wishart denotes A = X⊤X

3d + ϵstbI where X ∈ Rd/4×d, Xij ∼ N (0, 1) i.i.d.. ϵstb = 1e − 3
exists for numerical stability.
2. Uniform denotes A = QDQT where Q is sampled from a Haar distribution and D is a diagonal
matrix where its entries are sampled from uniform [−1, 1]. We cap the diagonal entries with absolute
value < 1e-3 to 1e-3.
3. Hessian of Quartic is the indefinite Hessian of a d-dimensional quartic

∑
i z

4
i /4−z2i /4 evaluated

at a random point z ∼ N (0, Id). We cap the eigenvalues with absolute value ¡ 1e-3 to 1e-3, and
normalize with Frobenius norm.
4. CIFAR-10 is the random input matrix is Σ̂ = 1

n (X −µ)T (X −µ) where X ∈ Rn×d is a random
batch of n flattened CIFAR-10 images and µ is the average of the n images. We normalize with the
Frobenius norm and add ϵstbI for ϵstb = 1e− 3.
5. Erdos-Renyi is the normalized graph Laplacian of a random Erdos-Renyi graph. We set p = 0.4
and d = 5000 for the experiments.
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Table 7: How actions are parametrized

Method Iteration Formula Parameter Range

Actions for Inverse

Newton (Schulz) Xk+1 = akXk − bkXkAXk ak, bk ∈ [0, 5]

Chebyshev Xk+1 = akXk − bkXkAXk + ckXkAXkAXk ak, bk, ck ∈ [0, 5]

Actions for Sign

Newton Xk+1 = 1
2 (akXk + (akXk)

−1) ak ∈ [0, 40]

NewtonSchulz Xk+1 = Xk + ak(bkXk − (bkXk)
3) ak, bk ∈ [0, 5]

Quintic Xk+1 = akXk + bkX
3
k + ckX

5
k ak, bk, ck ∈ [0, 5]

Halley Xk+1 = Xk(akI + bkX
2
k)(I + ckX

2
k)

−1 ak, bk, ck ∈ [0, 40]

Actions for SquareRoot

DenmanBeavers
{
Xk+1 = 1

2 (akXk + (bkYk)
−1)

Yk+1 = 1
2 (bkYk + (akXk)

−1)
ak, bk ∈ [0, 50]

NewtonSchulzVariant
{
Xk+1 = 1

2 (akXk − bkXkYkXk)

Yk+1 = 1
2 (akYk − bkYkXkYk)

ak, bk ∈ [0, 5]

Visser Xk+1 = akXk + bk(A−X2
k) ak, bk ∈ [0, 10]

Visser Coupled
{
Xk+1 = akXk + bk(A−X2

k)

Yk+1 = akYk + bk(I −XkYk)
ak, bk ∈ [0, 10]

Coupling Yk = XkA
−1 –

Actions for 1/3-th Root

Iannazzo

{
Xk+1 = Xk

(
akI+bkYk

3

)
Yk+1 =

(
akI+bkYk

3

)−3
Yk

ak, bk ∈ [0, 10]

Newton Xk+1 = 1
3 (akXk + bkXkA

−2) ak, bk ∈ [0, 10]

Visser Xk+1 = akXk + bk(A−X3
k) ak, bk ∈ [0, 10]

Coupling Yk = AX−3
k –
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D LIST OF ALL EXPERIMENTAL RESULTS

D.1 DIFFERENT MATRIX FUNCTIONS

Inverse We learn to compute matrix inverse for two different distributions, Wishart and Uniform.
Unfortunately, in our experiments, using Newtonschulz to compute matrix inverse was much slower
than directly using torch.linalg.inv. However for uniform distribution, we had a more precise ap-
proximation of the inverse in terms of the loss than torch.linalg.inv.

(a) Uniform distribution (b) Wishart distribution

Figure 3: Computing matrix inverse with NewtonSchulz and variants

Matrix sign We learn matrix sign for Quartic Hessian and for matrices with Uniform [-1, 1] diagonal
entries. Here d = 5000.

(a) Hessian of Quartic (b) Uniform distribution

Figure 4: Computing matrix sign with NewtonSchulz and variants

Matrix sqrt We learn matrix sqrt for CIFAR-10 and Wishart matrices with d = 5000. For CIFAR-
10, the matrix is the empirical covariance matrix added by epsilon.

(a) CIFAR-10 (b) Wishart distribution

Figure 5: Computing matrix square root with NewtonSchulz and variants
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Matrix 1/3-root We learn matrix 1/3-root for Wishart matrices and Erdos-Renyi graph. For Wishart
matrices the method is not very effective: torch.linalg.eigh can find matrix 1/3-root with better
accuracy with the same amount of time. However, for normalized graph Laplacians of Erdos-Renyi
graph, it finds a faster algorithm with almost similar accuracy.

(a) Wishart distribution (b) Normalized graph Laplacian of Erdős-Rényi

Figure 6: Examples of matrix distributions: structural or spectral views.

D.2 ALGORITHM 1 ADAPTING: SIZES, PRECISION, COMPUTE

We demonstrate that different d, precision (float or double), and compute (GPU/CPU) can lead to
different algorithms with matrix sign computation. We show both the loss curve and the found
algorithm in each case.

Different problem sizes Here we show the results to compute matrix sign on random matrices with
spectrum Unif [−1, 1]. d = 1500, 3000, 5000, 10000. One trend that we see is that for small d, we
tend to use NewtonSchulz more, whereas for larger d we tend to use Newton step more. It is related
with the relative cost between Newton step and Newtonschulz step.

(a) d = 1500 (b) d = 3000

(c) d = 5000 (d) d = 10000

Figure 7: Computing matrix sign for different matrix sizes

The found algorithms for d = 1500, 3000, 5000, 10000 are as follows.
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Algorithm 8 Iterative SIGN for Uniform on GPU with d = 1500

Input: A
Initialize X0 = A
Set a← [1.731, 1.729, 1.724, 1.712, 1.682, 1.606, 1.439, 1.190, 1.029, 1.000],
// rounded off to three digits
for i = 1 to 10 do
Xi = ai−1Xi−1 + 0.5(ai−1Xi−1 − (ai−1Xi−1)

3)
end for
return X9

Algorithm 9 Iterative SIGN for Uniform on GPU with d = 3000

Input: A
Initialize X0 = A
Set a← [2.179, 1.000], b← [1.135, 1.5, 0.5]
c← [4.308, 1.711, 1.679, 1.599, 1.424, 1.176, 1.025, 1.000],
// rounded off to three digits
X1 = a1X0 + a0(a1X0 − (a1X0)

3)
X2 = b0X1 − b1X

3
1 + b2X

5
1

for i = 3 to 10 do
Xi = 1.5(ci−3Xi−1)− 0.5(ci−3Xi−1)

3

end for

Algorithm 10 Iterative SIGN for Uniform on GPU with d = 5000

1: Input: A
2: Initialize X0 = A
3: a← [35.536]
4: b← [0.094, 1.607, 1.439, 1.191, 1.029, 1]
5: for i = 1 to 1 do
6: Xi = 0.5(ai−1Xi−1 + (ai−1Xi−1)

−1)
7: end for
8: for i = 2 to 7 do
9: Xi = 1.5(bi−2Xi−1)− 0.5(bi−2Xi−1)

3

10: end for
11: return X7

Algorithm 11 Iterative SIGN for Uniform on GPU with d = 10000

Input: A
Initialize X0 = A
Set a← [29.691, 0.243], b← [0.616, 1.104, 1.008, 1],
// rounded off to three digits
for i = 1 to 2 do
Xi = 0.5(ai−1Xi−1 + (ai−1Xi−1)

−1)
end for
for i = 3 to 6 do
Xi = bi−1Xi−1 + 0.5(bi−1Xi−1 − (bi−1Xi−1)

3)
end for
return X6

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Different precision Here we show the results to compute matrix sign on random matrices with
spectrum Unif [−1, 1] for float and double precision. For double precision when d = 5000, New-
tonSchulz becomes as expensive as Newton step whereas Newton step is more effective - hence we
use Newton until the end. For float precision the method finds a mixture of Newton and Newton-
Schulz. For double we used ϵtol = 1e− 11.

(a) Float (b) Double

Figure 8: Computing matrix sign for different precision

Algorithm 12 Iterative SIGN for Uniform on GPU with d = 5000, DOUBLE

1: Input: A
2: Initialize X0 = A
3: a← [22.055, 0.244, 0.590, 0.938, 0.998, 1]
4: for i = 1 to 6 do
5: Xi = 0.5(ai−1Xi−1 + (ai−1Xi−1)

−1)
6: end for
7: return X6

Different compute We also run MatRL on GPU and on CPU. The difference that occurs here is also
similar in vein: on a GPU, Newton step is ≈ x2.28 more costly than a Newtonschulz step, whereas
on a CPU it is≈ x1.62 more costly. This makes the algorithm found on CPU use Newton step more.

(a) GPU (NVIDIA RTX A-6000) (b) CPU (AMD EPYC 7713 64-Core Processor)

Figure 9: Computing matrix sign on different machines
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Algorithm 13 Iterative SIGN for Uniform on CPU with d = 5000

Input: A
Initialize X0 = A
Set a← [19.751, 0.205], b← [0.524, 1.161, 1.020, 1.000],
// rounded off to three digits
for i = 1 to 2 do
Xi = 0.5(ai−1Xi−1 + (ai−1Xi−1)

−1)
end for
for i = 3 to 6 do
Xi = bi−3Xi−1 + 0.5(bi−3Xi−1 − (bi−3Xi−1)

3)
end for
return X6
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