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Abstract

KL-regularized reinforcement learning from expert demonstrations has proved
successful in improving the sample efficiency of deep reinforcement learning al-
gorithms, allowing them to be applied to challenging physical real-world tasks.
However, we show that KL-regularized reinforcement learning with behavioral
reference policies derived from expert demonstrations can suffer from patholog-
ical training dynamics that can lead to slow, unstable, and suboptimal online
learning. We show empirically that the pathology occurs for commonly chosen
behavioral policy classes and demonstrate its impact on sample efficiency and
online policy performance. Finally, we show that the pathology can be remedied by
non-parametric behavioral reference policies and that this allows KL-regularized
reinforcement learning to significantly outperform state-of-the-art approaches on a
variety of challenging locomotion and dexterous hand manipulation tasks.

1 Introduction

Reinforcement learning (RL) [15, 24, 46, 47] is a powerful paradigm for learning complex behaviors.
Unfortunately, many modern reinforcement learning algorithms require agents to carry out millions
of interactions with their environment to learn desirable behaviors, making them of limited use
for a wide range of practical applications that cannot be simulated [8, 28]. This limitation has
motivated the study of algorithms that can incorporate pre-collected offline data into the training
process either fully offline or with online exploration to improve sample efficiency, performance, and
reliability [2, 6, 16, 23, 52, 53]. An important and well-motivated subset of these methods consists of
approaches for efficiently incorporating expert demonstrations into the learning process [5, 11, 18, 42].

Reinforcement learning with Kullback-Leibler (KL) regularization is a particularly successful ap-
proach for doing so [3, 27, 29, 31, 44, 51]. In KL-regularized reinforcement learning, the standard
reinforcement learning objective is augmented by a Kullback-Leibler divergence term that penal-
izes dissimilarity between the online policy and a behavioral reference policy derived from expert
demonstrations. The resulting regularized objective pulls the agent’s online policy towards the
behavioral reference policy while also allowing it to improve upon the behavioral reference policy by
exploring and interacting with the environment. Recent advances that leverage explicit or implicit
KL-regularized objectives, such as BRAC [51], ABM [44], and AWAC [27], have shown that KL-
regularized reinforcement learning from expert demonstrations is able to significantly improve the
sample efficiency of online training and reliably solve challenging environments previously unsolved
by standard deep reinforcement learning algorithms.
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Figure 1: Predictive variances of non-parametric and parametric behavioral policies on a low dimen-
sional representation (the first two principal components) of a 39-dimensional dexterous hand manipula-
tion state space (see “door-binary-v0” in Figure 5). Left: Parametric neural network Gaussian behavioral
policy πψ(· | s) = N (µψ(s),σ

2
ψ(s)). Right: Non-parametric Gaussian process posterior behavioral policy

πGP(· | s,D0) = GP(µ0(s),Σ0(s, s
′)). Expert trajectories D used to train the behavioral policies are shown

in black. The GP predictive variance is well-calibrated: It is small near the expert trajectories and large in other
parts of the state space. In contrast, the neural network predictive variance is poorly calibrated: It is relatively
small on the expert trajectories, and collapses to near zero elsewhere. Note the significant difference in scales.

Contributions. In this paper, we show that despite some empirical success, KL-regularized rein-
forcement learning from expert demonstrations can suffer from previously unrecognized pathologies
that lead to instability and sub-optimality in online learning. To summarize, our core contributions
are as follows:
• We illustrate empirically that commonly used classes of parametric behavioral policies experi-

ence a collapse in predictive variance about states away from the expert demonstrations.
• We demonstrate theoretically and empirically that KL-regularized reinforcement learning al-

gorithms can suffer from pathological training dynamics in online learning when regularized
against behavioral policies that exhibit such a collapse in predictive variance.
• We show that the pathology can be remedied by non-parametric behavioral policies, whose

predictive variances are well-calibrated and guaranteed not to collapse about previously unseen
states, and that fixing the pathology results in online policies that significantly outperform state-
of-the-art approaches on a range of challenging locomotion and dexterous hand manipulation
tasks.

The left panel of Figure 1 shows an example of the collapse in predictive variance away from the
expert trajectories in parametric behavioral policies. In contrast, the right panel of Figure 1 shows
the predictive variance of a non-parametric behavioral policy, which—unlike in the case of the
parametric policy—increases off the expert trajectories. By avoiding the pathology, we obtain a
stable and reliable approach to sample-efficient reinforcement learning, applicable to a wide range of
reinforcement learning algorithms that leverage KL-regularized objectives.2

2 Background

We consider the standard reinforcement learning setting where an agent interacts with a discounted
Markov Decision Process (MDP) [46] given by a 5-tuple (S,A, p, r, γ), where S and A are the state
and action spaces, p(· | st,at) are the transition dynamics, r(st,at) is the reward function, and γ is
a discount factor. ρπ(τt) denotes the state–action trajectory distribution from time t induced by a
policy π(· | st). The discounted return from time step t is given by R(τt) =

∑∞
k=t γ

kr(sk,ak) for
t ∈ N0. The standard reinforcement learning objective to be maximized is the expected discounted
return Jπ(τ0) = Eρπ(τ0)[R(τ0)] under the policy trajectory distribution.

2.1 Improving and Accelerating Online Training via Behavioral Cloning

We consider settings where we have a set of expert demonstrations without reward,
D0 = {(sn,an)}Nn=1 = {S̄, Ā}, which we would like to use to speed up and improve online learn-

2Code and visualizations of our results can be found at https://sites.google.com/view/nppac.
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ing [5, 42]. A standard approach for turning expert trajectories into a policy is behavioral cloning [1, 4]
which involves learning a mapping from states in the expert demonstrations to their corresponding
actions, that is, π0 : S → A. As such, behavioral cloning does not assume or require access to a
reward function and only involves learning a mapping from states to action in a supervised fashion.

Since expert demonstrations are costly to obtain and often only available in small number, behavioral
cloning alone is typically insufficient for agents to learn good policies in complex environments
and has to be complemented by a method that enables the learner to build on the cloned behavior
by interacting with the environment. A particularly successful and popular class of algorithms
used for incorporating behavioral policies into online training is KL-regularized reinforcement
learning [10, 37, 43, 48].

2.2 KL-Regularized Objectives in Reinforcement Learning

KL-regularized reinforcement learning modifies the standard reinforcement learning objective by
augmenting the return with a negative KL divergence term from the learned policy π to a reference
policy π0, given a temperature parameter α. The resulting discounted return from time step t ∈ N0 is
then given by

R̃(τt) =

∞∑
k=t

γk
[
r(sk,ak)− αDKL(π(· | sk) ‖ π0(· | sk))

]
(1)

and the reinforcement learning objective becomes J̃π(τ0) = Eρπ(τ0)[R̃(τ0)]. When the reference
policy π0 is given by a uniform distribution, we recover the entropy-regularized reinforcement
learning objective used in Soft Actor–Critic (SAC) [13] up to an additive constant.

Under a uniform reference policy π0, the resulting objective encourages exploration, while also
choosing high-reward actions. In contrast, when π0 is non-uniform, the agent is discouraged to
explore areas of the state space S where the variance of π0(· | s) is low (i.e., more certain) and
encouraged to explore areas of the state space where the variance of π0(· | s) is high. The KL-
regularized reinforcement learning objective can be optimized via policy–gradient and actor–critic
algorithms.

2.3 KL-Regularized Actor–Critic

An optimal policy π that maximizes the expected KL-augmented discounted return J̃π can be learned
by directly optimizing the policy gradient ∇πJ̃π. However, this policy gradient estimator exhibits
high variance, which can lead to unstable learning. Actor–critic algorithms [7, 17, 32, 38] attempt to
reduce this variance by making use of the state value function V π(st) = Eρπ(τt)[R̃(τt) | st] or the
state–action value function Qπ(st,at) = Eρπ(τt)[R̃(τt) | st,at] to stabilize training.

Given a reference policy π0(at | st), the state value function can be shown to satisfy the modified
Bellman equation

V π(st) =̇ Eat∼π(·|st)[Q
π(st,at)]− αDKL

(
π(· | st) ||π0(· | st)

)
with a recursively defined Q-function

Qπ(st,at) =̇ r(st,at) + γ Est+1∼p(·|st,at)[V
π(st+1)].

Instead of directly optimizing the objective function J̃π via the policy gradient, actor–critic methods
alternate between policy evaluation and policy improvement [7, 13]:

Policy Evaluation. During the policy evaluation step, Qπθ (s,a), parameterized by parameters θ, is
trained by minimizing the Bellman residual

JQ(θ) =̇ E(st,at)∼D

[
(Qθ(st,at)− (r(st,at) + γEst+1∼p(·|st,at)[Vθ̄(st+1)]))2

]
, (2)

where D is a replay buffer and θ̄ is a stabilizing moving average of parameters.

Policy Improvement. In the policy improvement step, the policy πφ, parameterized by parameters
φ, is updated towards the exponential of the KL-augmented Q-function,

Jπ(φ) =̇ Est∼D [αDKL(πφ(· | st) ‖ π0(· | st))]− Est∼D
[
Eat∼πφ(·|st) [Qθ(st,at)]

]
, (3)

with states sampled from a replay buffer D and actions sampled from the parameterized online policy
πφ. The following sections will focus on the policy improvement objective and how certain types of
references policies can lead to pathologies when optimizing Jπ(φ) with respect to φ.
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3 Identifying the Pathology

In this section, we investigate the effect of KL-regularization on the training dynamics. To do
so, we first consider the properties of the KL divergence to identify a potential failure mode for
KL-regularized reinforcement learning. Next, we consider parametric Gaussian behavioral reference
policies commonly used in practice for continuous control tasks [13, 51] and show that for Gaussian
behavioral reference policies with small predictive variance, the policy improvement objective suffers
from exploding gradients with respect to the policy parameters φ. We confirm that this failure occurs
empirically and demonstrate that it results in slow, unstable, and suboptimal online learning. Lastly,
we show that various regularization techniques used for estimating behavioral policies are unable to
prevent this failure and also lead to suboptimal online policies.

3.1 When Are KL-Regularized Reinforcement Learning Objectives Meaningful?

We start by considering the properties of the KL divergence and discuss how these properties can lead
to potential failure modes in KL-regularized objectives. A well-known property of KL-regularized
objectives in the variational inference literature is the occurrence of singularities when the support of
one distribution is not contained in the support of the other.

To illustrate this problem, we consider the case of Gaussian behavioral and online policies commonly
used in practice. Mathematically, the KL divergence between two full Gaussian distributions is
always finite and well-defined. Hence, we might hope KL-regularized reinforcement learning with
Gaussian behavioral and online policies to be unaffected by the failure mode described above.
However, the support of a Gaussian online policy πφ(· | st) will not be contained in the support of
a behavioral reference policy π0(· | st) as the predictive variance σ2

0(st) tends to zero, and hence
DKL(πφ(· | st) ‖ π0(· | st)) → ∞ as σ2

0(st) → 0. In other words, as the variance of a behavioral
reference policy tends to zero and the behavioral distribution becomes degenerate, the KL divergence
blows up to infinity [25]. While in practice, Gaussian behavioral policy would not operate in the limit
of zero variance, the functional form of the KL divergence between (univariate) Gaussians,

DKL(πφ(· | st) ‖ π0(· | st)) ∝ log
σ0(st)

σφ(st)
+

σ2
φ(st) + (µφ(st)− µ0(st))

2

2σ2
0(st)

,

implies a continuous, quadratic increase in the magnitude of the divergence as σ0(st) decreases,
further exacerbated by a large difference in predictive means, |µφ(st)− µ0(st)|.
As a result, for Gaussian behavioral reference policies π0(· | st) that assign very low probability
to sets of points in sample space far away from the distribution’s mean µ0(st), computing the KL
divergence can result in divergence values so large to cause numerical instabilities and arithmetic
overflow. Hence, even for a suitably chosen behavioral reference policy class, vanishingly small
behavioral reference policy predictive variances can cause the KL divergence to ‘blow up’ and cause
numerical issues at evaluation points far away from states in the expert demonstrations.

One way to address this failure mode may be to lower-bound the output of the variance network
(e.g., by adding a small constant bias). However, placing a floor on the predictive variance of the
behavioral reference policy is not sufficient to encourage effective learning. While it would prevent
the KL divergence from blowing up, it would also lead to poor gradient signals, as well-calibrated
predictive variance estimates that increase on states far away from the expert trajectories are necessary
to keep the KL penalty from pulling the predictive mean of the online policy towards poor behavioral
reference policy predictive means on states off the expert trajectories. Another possible solution could
be to use heavy-tailed behavioral reference policies distributions, for example, Laplace distributions,
to avoid pathological training dynamics. However, in Appendix B.3 we show that Laplace behavioral
reference policies also suffer from pathological training dynamics, albeit less severely.

In the following sections, we explain how an explosion in DKL(πφ(· | st) ‖ π0(· | st)) caused by small
σ2

0(st) affects the gradients of Jπ(φ) in KL-regularized RL and discuss of how and why σ2
0(st) may

tend to zero in practice.

3.2 Exploding Gradients in KL-Regularized Reinforcement Learning Objectives

To understand how small predictive variances in behavioral reference policies can affect—and possibly
destabilize—online training in KL-regularized RL, we consider the contribution of the behavioral
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reference policy’s variance to the gradient of the policy objective in Equation (3). Compared to
entropy-regularized actor–critic methods (SAC, Haarnoja et al. [13]), which implicitly regularize
against a uniform policy, the gradient estimator ∇̂φJπ(φ) in KL-regularized RL gains an extra scaling
term ∇at log π0(at | st), the gradient of the prior log-density evaluated actions at ∼ πφ(· | s):
Proposition 1 (Exploding Gradients in KL-Regularized RL). Let π0(· | s) be a Gaussian behavioral
reference policy with mean µ0(st) and variance σ2

0(st), and let πφ(· | s) be an online policy with
reparameterization at = fφ(εt; st) and random vector εt. The gradient of the policy loss with respect
to the online policy’s parameters φ is then given by

∇̂φJπ(φ) =
(
α∇at log πφ(at | st)− α∇at log π0(at | st)
−∇atQ(st,at)

)
∇φfφ(εt; st) + α∇φ log πφ(at | st)

(4)

with ∇at log π0(at | st) = −at−µ0(st)
σ2

0(st)
. For fixed |at − µ0(st)|, ∇at log π0(at|st) grows as

O(σ−2
0 (st)); thus,

| ∇̂φJπ(φ) | → ∞ as σ2
0(st)→ 0 whenever ∇φfφ(εt; st) 6= 0.

Proof. See Appendix A.1.

This result formalizes the intuition presented in Section 3.1 that a behavioral reference policy with a
sufficiently small predictive variance may cause KL-regularized reinforcement learning to suffer from
pathological training dynamics in gradient-based optimization. The smaller the behavioral reference
policy’s predictive variance, the more sensitive the policy objective’s gradients will be to differences
in the means of the online and behavioral reference policies. As a result, for behavioral reference
policies with small predictive variance, the KL divergence will heavily penalize online policies whose
predictive means diverge from the predictive means of the behavioral policy—even in regions of the
state space away from the expert trajectory where the behavioral policy’s mean prediction is poor.

3.3 Predictive Uncertainty Collapse Under Parametric Policies

The most commonly used method for estimating behavioral policies is maximum likelihood estima-
tion (MLE) [44, 51], where we seek π0 =̇ πψ? with ψ? =̇ arg maxψ

{
E(s,a)∼D0

[log πψ(a | s)]
}

for a parametric behavioral policy πψ. In practice, πψ is often assumed to be Gaussian,
πψ(· | s) = N (µψ(s),σ2

ψ(s)), with µψ(s) and σ2
ψ(s) parameterized by a neural network.

While maximizing the likelihood of the expert trajectories under the behavioral policy is a sensible
choice for behavioral cloning, the limited capacity of the neural network parameterization can
produce unwanted behaviors in the resulting policy. The maximum likelihood objective ensures that
the behavioral policy’s predictive mean reflects the expert’s actions and the predictive variance the
(aleatoric) uncertainty inherent in the expert trajectories.

However, the maximum likelihood objective encourages parametric policies to use their model
capacity toward fitting the expert demonstrations and reflecting the aleatoric uncertainty in the data.
As a result, for states off the expert trajectories, the policy can become degenerate and collapse to
point predictions instead of providing meaningful predictive variance estimates that reflect that the
behavioral policy ought to be highly uncertain about its predictions in previously unseen regions
of the state space. Similar behaviors are well-known in parametric probabilistic models and well-
documented in the approximate Bayesian inference literature [33, 39].

0 2 4 6 8 10
Epochs

10−3

10−1

σ
2 ψ
(s

)

Validation Variance

Validation Log-Likelihood
0

2

log
π
ψ (Ā
|
S̄

)

Figure 2: Collapse in the predictive variance (in blue)
of a Gaussian behavioral policy parameterized by a neu-
ral network when training via maximum likelihood es-
timation. Lines and shaded regions denote means and
standard deviations over five random seeds, respectively.

Figure 1 demonstrates the collapse in predic-
tive variance under maximum likelihood estima-
tion in a low-dimensional representation of the
“door-binary-v0” dexterous hand manipulation
environment. It shows that while the predictive
variance is small close to the expert trajectories
(depicted as black lines), it rapidly decreases
further away from them. Examples of variance
collapse in other environments are presented
in Appendix B.6. Figure 2 shows that the predic-
tive variance off the expert trajectories consis-
tently decreases during training. As shown in Proposition 1, such a collapse in predictive variance can
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Figure 3: Ablation study showing the effect of predictive variance collapse on the performance of KL-regularized
RL on MuJoCo environments. The plots show the average return of the learned policy, the magnitude of the
KL penalty, and the magnitude of the average absolute gradients of the policy loss during online training. The
lighter the shading, the lower the behavioral policy’s predictive variance.

result in pathological training dynamics in KL-regularized online learning—steering the online policy
towards suboptimal trajectories in regions of the state space far away from the expert demonstrations
and deteriorating performance.

Effect of regularization on uncertainty collapse. To prevent a collapse in the behavioral policy’s
predictive variance, prior work proposed adding entropy or Tikhonov regularization to the MLE
objective [51]. However, doing so does not succeed in preventing a collapse in predictive variance off
the expert demonstration trajectories, as we show in Appendix A.3. Deep ensembles [20], whose
predictive mean and variance are computed from the predictive means and variances of multiple
Gaussian neural networks, are a widely used method for uncertainty quantification in regression
settings. However, model ensembling can be costly and unreliable, as it requires training multiple
neural networks from scratch and does not guarantee well-calibrated uncertainty estimates [39, 49].
We provide visualizations in Appendix B.5 which show that ensembling multiple neural network
policies does not fully prevent a collapse in predictive variance.

3.4 Empirical Confirmation of Uncertainty Collapse

To confirm Proposition 1 empirically and assess the effect of the collapse in predictive variance on
the performance of KL-regularized RL, we perform an ablation study where we fix the predictive
mean function of a behavioral policy to a mean function that attains 60% of the optimal performance
and vary the magnitude of the policy’s predictive variance. Specifically, we set the behavioral
policy’s predictive variance to different constant values in the set {1× 10−3, 5× 10−3, 1× 10−2}
(following a similar implementation in Nair et al. [27]).3 The results of this experiment are shown
in Figure 3, which shows the average returns, the KL divergence, and the average absolute gradients
of the policy loss over training. The plots confirm that as the predictive variance of the offline
behavioral policy tends to zero, the KL terms and average policy gradient magnitude explode as
implied by Proposition 1, leading to unstable training and a collapse or dampening in average returns.

In other words, even for behavioral policies with accurate predictive means, smaller predictive vari-
ances slow down or even entirely prevent learning good behavioral policies. This observation confirms
that the pathology identified in Proposition 1 occurs in practice and that it can have a significant
impact on KL-regularized RL from expert demonstrations, calling into question the usefulness of KL
regularization as a means for accelerating and improving online training. In Appendix B.1, we show
that an analogous relationship exists for the gradients of the Q-function loss.

3We attempted to use smaller values, but the gradients grew too large and caused arithmetic overflow.

6



4 Fixing the Pathology

In order to address the collapse in predictive uncertainty for behavioral policies parameterized by a
neural network trained via MLE, we specify a non-parametric behavioral policy whose predictive
variance is guaranteed not to collapse about previously unseen states. Noting that KL-regularized RL
with a behavioral policy can be viewed as approximate Bayesian inference with an empirical prior
policy [13, 21, 40], we propose Non-Parametric Prior Actor–Critic (N-PPAC), an off-policy temporal
difference algorithm for improved, accelerated, and stable online learning with behavioral policies.

4.1 Non-Parametric Gaussian Processes Behavioral Policies

Gaussian processes (GPs) [36] are models over functions defined by a mean m(·) and covariance
function k(·, ·). When defined in terms of a non-parametric covariance function, that is, a covariance
function constructed from infinitely many basis functions, we obtain a non-degenerate GP, which has
sufficient capacity to prevent a collapse in predictive uncertainty away from the training data. Unlike
parametric models, whose capacity is limited by their parameterization, a non-parametric model’s
capacity increases with the amount of training data.

Considering a non-parametric GP behavioral policy, π0(· | s), with

A | s ∼ π0(· | s) = GP
(
m(s), k(s, s′)

)
, (5)

we can obtain a non-degenerate posterior distribution over actions conditioned on the offline data
D0 = {S̄, Ā} with actions sampled according to the

A | s,D0 ∼ π0(· | s,D0) = GP
(
µ0(s),Σ0(s, s′)

)
, (6)

with

µ(s)=m(s) + k(s, S̄)k(S̄, S̄)−1(Ā−m(Ā)) and Σ(s, s′)=k(s, s′) + k(s, S̄)k(S̄, S̄)−1k(S̄, s′).

To obtain this posterior distribution, we perform exact Bayesian inference, which naively scales as
O(N3) in the number of training points N , but Wang et al. [50] show that exact inference in GP
regression can be scaled to N > 1, 000, 000. Since expert demonstrations usually contain less than
100k datapoints, non-parametric GP behavioral policies are applicable to a wide array of real-world
tasks. For an empirical evaluation of the time complexity of using a GP prior, see Section 5.5.

Figure 1 confirms that the non-parametric GP’s predictive variance is well-calibrated: It is small in
magnitude in regions of the state space near the expert trajectories and large in magnitude in other
regions of the state space. While actor–critic algorithms like SAC implicitly use a uniform prior to
explore the state space, using a behavioral policy with a well-calibrated predictive variance has the
benefit that in regions of the state space close to the expert demonstrations the online policy learns to
match the expert, while elsewhere the predictive variance increases and encourages exploration.

Algorithmic details. In our experiments, we use a KL-regularized objective with a standard actor–
critic implementation and Double DQN [14]. Pseudocode is provided in (Appendix C.1).

5 Empirical Evaluation

We carry out a comparative empirical evaluation of our proposed approach vis-à-vis related methods
that integrate offline data into online training. We provide a detailed description of the algorithms we
compare against in Appendix A.4. We perform experiments on the MuJoCo benchmark suite and the
substantially more challenging dexterous hand manipulation suite with sparse rewards.

We show that KL-regularized RL with a non-parametric behavioral reference policy can rapidly learn
to solve difficult high-dimensional continuous control problems given only a small set of expert
demonstrations and (often significantly) outperforms state-of-the-art methods, including ones that
use offline reward information—which our approach does not require. Furthermore, we demonstrate
that the GP behavioral policy’s predictive variance is crucial for KL-regularized objectives to learn
good online policies from expert demonstrations. Finally, we perform ablation studies that illustrate
that non-parametric GP behavioral reference policies also outperform parametric behavioral reference
policies with improved uncertainty quantification, such as deep ensembles and Bayesian neural
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KL-based methods (dashed lines), Bottom: Non-KL-based methods (dash-dotted lines). Both top and bottom
plots include N-PPAC (blue). BRAC uses the same actor–critic algorithm as N-PPAC, but uses a parametric
behavioral policy, and results in slower learning and worse final performance.

networks (BNNs) with Monte Carlo dropout, and that the difference between non-parametric and
parametric models is exacerbated the fewer expert demonstrations are available. We use the expert
data from Nair et al. [27], every experiment uses six random seeds, and we use a fixed KL-temperature
for each environment class. For further implementation details, see Appendix C.2.

5.1 Environments

MuJoCo locomotion tasks. We evaluate N-PPAC on three representative tasks: “Ant-v2”,
“HalfCheetah-v2”, and “Walker2d-v2”. For each task, we use 15 demonstration trajectories col-
lected by a pre-trained expert, each containing 1,000 steps. The behavioral policy is specified as the
posterior distribution of a GP with a squared exponential kernel, which is well-suited for modeling
smooth functions.

Dexterous hand manipulation tasks. Real-world robot learning is a setting where human demon-
stration data is readily available, and many deep RL approaches fail to learn efficiently. We study
this setting in a suite of challenging dexterous manipulation tasks [35] using a 28-DoF five-fingered
simulated ADROIT hand. The tasks simulate challenges common to real-world settings with high-
dimensional action spaces, complex physics, and a large number of intermittent contact forces. We
consider two tasks in particular: in-hand rotation of a pen to match a target and opening a door by un-
latching and pulling a handle. We use binary rewards for task completion, which is significantly more
challenging than the original setting considered in Rajeswaran et al. [35]. 25 expert demonstrations
were provided for each task, each consisting of 200 environment steps which are not fully optimal
but do successfully solve the task. The behavioral policy is specified as the posterior distribution of a
GP with a Matérn kernel, which is more suitable for modeling non-smooth data.

5.2 Results

On MuJoCo environments, KL-regularized RL with a non-parametric behavioral policy consistently
outperforms all related methods across all three tasks, successfully accelerating learning from offline
data, as shown in Figure 4. Most notably, it outperforms methods such as AWAC [27]—the previous
state-of-the-art—which attempts to eschew the problem of learning behavioral policies but instead
uses an implicit constraint. Our approach, N-PPAC, exhibits an increase in stability and higher returns
compared to comparable methods such as ABM and BRAC that explicitly regularize the online policy
against a parametric behavioral policy and plateau at suboptimal performance levels as they are being
forced to copy poor actions from the behavioral policy away from the expert data. In contrast, using a
non-parametric behavioral policy allows us to avoid such undesirable behavior.

On dexterous hand manipulation environments, KL-regularized RL with a non-parametric behavioral
policy performs on par or outperforms all related methods on both tasks, as shown in Figure 5. Most
notably, on the door opening task, it achieves a stable success rate of 90% within only 100,000
environment interactions For comparison, AWAC requires 4× as many environment interactions to
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Figure 5: Left & Center: Comparison of N-PPAC (ours) vs. previous baselines on dexterous hand manipulation
tasks. Top: KL-based methods (dashes), Bottom: Non-KL-based methods (dots and dashes). Both top and
bottom plots include N-PPAC (blue). Right: The pen-binary-v0 (top) and door-binary-v0 (bottom) environments.

achieve the same performance and is significantly less stable, while most other methods fail to learn
any meaningful behaviors.

Alternative divergence metrics underperform KL-regularization. KL-regularized RL with a
non-parametric behavioral policy consistently outperforms methods that use alternative divergence
metrics, as shown in the bottom plots of Figures 4 and 5.

5.3 Can the Pathology Be Fixed by Improved Parametric Uncertainty Quantification?

0K 50K 100K 150K 200K
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Variance Type

Nonparametric GP (Exact Posterior)

Parametric Gaussian NN (Ensemble)

Parametric Gaussian NN (MC-D BNN)

Parametric Gaussian NN (MLE + Entropy)

Parametric Gaussian NN (MLE)

Figure 6: Post-online training success rates with
different behavioral policy variance functions.

To assess whether the success of non-parametric be-
havioral reference policies is due to their predictive
variance estimates—as suggested by Proposition 1—
or due to better generalization from their predictive
means, we perform an ablation study on the predictive
variance of the behavioral policy. To isolate the effect
of the predictive variance on optimization, we perform
online training using behavioral policies with differ-
ent predictive variance functions (parametric and non-
parametric) and identical mean functions, which we set
to be the predictive mean of the GP posterior (which
achieves a success rate of ~80%). If the pathology iden-
tified in Proposition 1 can be remedied by commonly
used parametric uncertainty quantification methods, we
would expect the parametric and non-parametric behav-
ioral policy variance functions to result in similar on-
line policy success rates. We consider the challenging
“door-binary-v0” environment for this ablation study.

Parametric uncertainty quantification is insufficient. Figure 5 shows that parametric variance
functions result in online policies that only achieve success rates of up to 20% and eventually
deteriorate, whereas the non-parametric variance yields an online policy that achieves a success rate
of nearly 100%. This finding shows that commonly used uncertainty quantification methods, such
as deep ensembles or BNNs with Monte Carlo dropout, do not generate sufficiently well-calibrated
uncertainty estimates to remedy the pathology, and better methods may be needed [9, 39, 41].

Lower-bounding the predictive variance does not remedy the pathology. The predictive variance
of all MLE-based and ensemble behavioral reference policies in all experiments are bounded away
from zero at a minimum value of ≈ 10−2. Hence, setting a floor on the variance is not sufficient to
prevent pathological training dynamics. This result further demonstrates the importance of accurate
predictive variance estimation in allowing the online policy to match expert actions in regions of the
state space with low behavioral policy predictive variance and explore elsewhere.
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5.4 Can a Single Expert Demonstration Be Sufficient to Accelerate Online Training?
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Figure 7: Returns during online training with different behav-
ioral policies and varying amounts of expert demonstration data on
“HalfCheetah-v2”.

To assess the usefulness of non-
parametric behavioral reference poli-
cies in settings where only few ex-
pert demonstrations are available, we
investigate whether the difference in
performance between online policies
trained with non-parametric and para-
metric behavioral reference policies,
respectively, is exacerbated the fewer
expert demonstrations are available.
To answer this question, we consider
the “HalfCheetah-v2” environment
and compare online policies trained
with different behavioral reference
policies—non-parametric GPs, deep ensembles, and BNNs with Monte Carlo dropout—estimated
either from 15 expert demonstrations (i.e., 15 state–action trajectories, containing 15,000 samples) or
from a single expert demonstration (i.e., a single state–action trajectory, containing 1,000 samples).

A single expert demonstration is sufficient for non-parametric behavioral reference policies.
Figure 7 shows the returns for online policies trained with behavioral reference policies estimated
from the full dataset (top plot) and from only a single expert state–action trajectory (bottom plot).
On the full dataset, we find that all three methods are competitive and improve on the prior state-
of-the-art but that the GP behavioral policy leads to the highest return. Remarkably, non-parametric
GP behavioral policies perform just as well with only a single expert demonstration as with all
15 (i.e., with 1,000 data points, instead of 15,000 data points). These results further emphasizes
the usefulness of non-parametric behavioral policies when accelerating online training with expert
demonstrations—even when only very few expert demonstrations are available.

5.5 Are Non-Parametric GP Behavioral Reference Policies Too Computationally Expensive?

Table 1 presents the time complexity of KL-regularized RL under non-parametric GP and parametric
neural network behavioral reference policies, as measured by the average time elapsed per epoch on
the “door-binary-v0” and “HalfCheetah-v2” environments. One epoch of online training on “door-
binary-v0” and “HalfCheetah-v2” requires computing the KL divergence over 1,000 mini-batches
of size 256 and 1,024, respectively. The time complexity of evaluating the log-density of a GP
behavioral reference policy—needed for computing gradients of the KL divergence during online
training—scales quadratically in the number of training data points and linearly in the dimensionality
of the state and action space, respectively. As can be seen in Table 1, non-parametric GP behavioral
reference policies only lead to a modest increase in the time needed to complete one epoch of training
while resulting in significantly improved performance as shown in Figures 4 and 5.

Table 1: Time per epoch under different behavioral reference policies for expert demonstration data of varying
size computed on a GeForce RTX 3080 GPU. The first and second value in each entry of the table give the time
required when using a single parametric neural network and a GP behavioral reference policy, respectively.

Dataset 1,000 Data Points 5,000 Data Points 15,000 Data Points
HalfCheetah-v2 12.00s / 16.06s 11.59s / 18.31s 12.00s / 46.54s
door-binary-v0 19.62s / 23.78s 19.62s / 33.62s -

6 Conclusion

We identified a previously unrecognized pathology in KL-regularized RL from expert demonstrations
and showed that this pathology can significantly impede and even entirely prevent online learning. To
remedy the pathology, we proposed the use of non-parametric behavioral reference policies, which
we showed can significantly accelerate and improve online learning and yield online policies that
(often significantly) outperform current state-of-the-art methods on challenging continuous control
tasks. We hope that this work will encourage further research into better model classes for deep
reinforcement learning algorithms, including and especially for reinforcement from image inputs.
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