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Abstract

We present elliptical processes—a family of non-parametric probabilistic models that sub-
sumes the Gaussian processes and the Student’s t processes. This generalization includes
a range of new heavy-tailed behaviors while retaining computational tractability. The el-
liptical processes are based on a representation of elliptical distributions as a continuous
mixture of Gaussian distributions. We parameterize this mixture distribution as a spline
normalizing flow, which we train using variational inference. The proposed form of the
variational posterior enables a sparse variational elliptical process applicable to large-scale
problems. We highlight advantages compared to a Gaussian process through regression and
classification experiments. Elliptical processes can replace Gaussian processes in several set-
tings, including cases where the likelihood is non-Gaussian or when accurate tail modeling
is essential.

1 Introduction
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Figure 1: Posterior distributions of an elliptical
process and a Gaussian process with equal kernel
hyperparameters and covariance. The shaded areas
are confidence intervals of the posterior processes.
The elliptical confidence regions are wider due to
the process’ heavier tail, which makes the confi-
dence region similar to the Gaussian’s close to the
mean and allows samples further out the tail.

Systems for autonomous decision-making are increas-
ingly dependent on predictive models. To ensure safety
and reliability, it is essential that these models capture
uncertainty and risk accurately. Gaussian processes
(GPs) offer a framework for probabilistic modeling that
is widely used partly because it provides uncertainty es-
timates. However, these estimates are only reliable to
the extent that the model is correctly specified, i.e.,
that the assumptions of Gaussianity hold true. On the
contrary, heavy-tailed data arise in many real-world ap-
plications, including finance (Mandelbrot, 1963), signal
processing (Zoubir et al., 2012), and geostatistics (Dig-
gle et al., 1998). We use a combination of normalizing
flows and modern variational inference techniques to
extend the modeling capabilities of GPs to the more
general class of elliptical processes (EPs).

Elliptical processes. The elliptical processes sub-
sume the Gaussian process and the Student’s t process
(Rasmussen & Williams, 2006; Shah et al., 2014). It is
based on the elliptical distribution—a scale-mixture of
Gaussian distributions attractive mainly because it can
describe heavy-tailed distributions while retaining most
of the Gaussian distribution’s computational tractabil-
ity (Fang et al., 1990). We use a normalizing flow (Pa-
pamakarios et al., 2021) to model the continuous scale-
mixture, which provides an added flexibility that can
benefit a range of applications. We explore the use of
elliptical processes as both a prior (over functions) and
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a likelihood, as well as the combination thereof. We also explore using EPs as a variational posterior that
can adapt its shape to match complex posterior distributions.

Variational inference. Variational inference is a tool for approximate inference that uses optimization
to find a member of a predefined family of distributions that is close to the target distribution (Wainwright
et al., 2008; Blei et al., 2017). Significant advances in the last decade have made variational inference the
method of choice for scalable approximate inference in complex parametric models (Ranganath et al., 2014;
Hoffman et al., 2013; Kingma & Welling, 2013; Rezende et al., 2014).

It is thus not surprising that the quest for more expressive and scalable variations of Gaussian processes has
gone hand-in-hand with the developments in variational inference. For instance, sparse GPs use variational
inference to select inducing points to approximate the prior (Titsias, 2009). Inducing points is a common
building block in deep probabilistic models such as deep Gaussian processes (Damianou & Lawrence, 2013;
Salimbeni et al., 2019) and can also be applied in Bayesian neural networks (Maroñas et al., 2021; Ober
& Aitchison, 2021). Similarly, the combination of inducing points and variational inference enables scal-
able approximate inference in models with non-Gaussian likelihoods (Hensman et al., 2013), such as when
performing GP classification (Hensman et al., 2015; Wilson et al., 2016).
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Figure 2: Left: A contour plot of an elliptical two-
dimensional, correlated distribution with zero means.
The name derives from its elliptical level sets. Right:
Three examples of one-dimensional elliptical distributions
with zero means and varying tail-heaviness. Elliptical dis-
tributions are symmetric around the mean E[X] = µ.

However, the closeness of the variational dis-
tribution to the target distribution is bounded
by the flexibility of the variational distribution.
Consequently, the success of deep (neural net-
work) models has inspired various suggestions on
flexible yet tractable variational distributions, of-
ten based on parameterized transformations of
a simple base distribution (Tran et al., 2016).
In particular, models using a composition of in-
vertible transformations, known as normalizing
flows, have been especially popular (Rezende &
Mohamed, 2015; Papamakarios et al., 2021).

Our contributions. We propose an adap-
tation of elliptical distributions and processes
in the same spirit as modern Gaussian pro-
cesses. Constructing elliptical distributions
based on a normalizing flow provides a high de-
gree of flexibility without sacrificing computa-
tional tractability. This makes it possible to sidestep the “curse of Gaussianity”, and adapt to heavy-tailed
behavior when called for. We thus foresee many synergies between EPs and recently developed GP meth-
ods. We make a first exploration of these, and simultaneously demonstrate the versatility of the elliptical
process as a model for the prior and/or the likelihood, or as the variational posterior. In more detail, our
contributions are:

• a construction of the elliptical process and the elliptical likelihood as a continuous scale-mixture of
Gaussian processes parameterized by a normalizing flow;

• a variational approximation that can either learn an elliptical likelihood or handle known non-
Gaussian likelihoods, such as in classification problems;

• formulating a sparse variational approximation for large-scale problems;

• describing extensions to heteroscedastic data.

2



Under review as submission to TMLR

2 Background

This section provides the necessary background on elliptical distributions, elliptical processes, and normal-
izing flow models. Throughout, we consider the regression problem, where we are given a set of N scalar
observations, y = [y1, · · · , yN ]⊤, at the locations [x1, · · · , xN ]⊤, where xn is D-dimensional. The measure-
ment yn is assumed to be a noisy measurement, such that,

yn = f(xn) + ϵn, (1)

where ϵn is zero mean, i.i.d., noise. The task is to infer the underlying function, f : RD → R.

2.1 Elliptical distributions

The elliptical process is based on elliptical distributions (Figure 2), which include Gaussian distributions as
well as more heavy-tailed distributions, such as the Student’s t distribution and the Cauchy distribution.

The probability density of a random variable Y ∈ RN that follows the elliptical distribution can be expressed
as,

p(u; η) = cN,η|Σ|−1/2gN (u; η), (2)

where u := (y − µ)TΣ−1(y − µ) is the squared Mahalanobis distance, µ is the location vector, Σ is the
non-negative definite scale matrix, and cN,η is a normalization constant. The density generator gN (u; η) is a
non-negative function with finite integral parameterized by η, which determines the shape of the distribution.

Elliptical distributions are consistent, i.e., closed under marginalization, if and only if p(u; η) is a scale-
mixture of Gaussian distributions (Kano, 1994). The density can be expressed as

p(u; η) = |Σ|− 1
2

∫ ∞

0

(
1

2πξ

) N
2

e− u
2ξ p(ξ; ηξ)dξ, (3)

using a mixing variable ξ ∼ p(ξ; ηξ). Any mixing distribution p(ξ; ηξ) that is strictly positive can be used
to define a consistent elliptical process. In particular, we recover the Gaussian distribution if the mixing
distribution is a Dirac delta function and the Student’s t distribution if it is a scaled inverse chi-square
distribution. For more information on the elliptical distribution, see Appendix A.

2.2 Elliptical processes

The elliptical process is defined analogously to a Gaussian process as:

Definition 1 An elliptical process (EP) is a collection of random variables such that every finite subset has
a consistent elliptical distribution, where the scale matrix is given by a covariance kernel.

This means that an EP is specified by a mean function µ(x), a scale matrix (a kernel) k(x, x′) and the
mixing distribution p(ξ; ηξ). Since the EP is built upon consistent elliptical distributions, it is closed under
marginalization. The marginal mean µ is the same as the mean for the Gaussian distribution, and the
covariance is Cov[Y ] = E [ξ] Σ where Y is an elliptical random variable, Σ is the covariance for a Gaussian
distribution and ξ is the mixing variable.

Formally a stochastic process {Xt : t ∈ T} on a probability space (Ω, F , P ) consists of random maps
Xt : ω → St, t ∈ T , for measurable spaces (St, St), t ∈ T (Bhattacharya & Waymire, 2007). We focus
on the setting where S = R and the index set T is a subset of RN , in particular, the half-line [0, ∞).
Due to Kolmogorov’s extension theorem, we may construct the EP from the family of finite-dimensional,
consistent, elliptical distributions, which is due to the restriction to S = R (which is a Polish space) and
Kano’s characterization above.
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Figure 3: Graphical models of (a) the elliptical likeli-
hood, (b) the EP-prior, and (c) the EP with indepen-
dent elliptical noise, where ω is sampled from the likeli-
hood mixing distribution p(ω; ηω).

Identifiability. When using the GP for regres-
sion or classification, we usually assume that the
data originate from a single sample path, which is
a single sample from the GP. An elliptical process,
on the other hand, can be viewed as a hierarchical
model, constructed by first sampling ξ ∼ p(ξ; ηξ)
and then f ∼ GP(f ; µ, Kξ). This structure im-
plies that it is not possible to infer the mixing
distribution p(ξ; ηξ) from a single path. In other
words, the identification condition for the mixing
distribution p(ξ; ηξ) is to have draws from multi-
ple paths.

Prediction. To use the EP for predictions, we
need the conditional mean and covariance of the
corresponding elliptical distribution. The condi-
tional distribution is guaranteed to be a consistent
elliptical distribution but not necessarily the same as the original one—the shape depends on the training
samples. (Recall that consistency only concerns the marginal distribution.) The conditional distribution
can be derived analytically (see Appendix B), but we will instead solve it by approximating the poste-
rior p(ξ| y; ηξ) with a variational distribution q(ξ; φξ). The approximate inference framework also lets us
incorporate (non-Gaussian) noise according to the graphical models in Figure 3.

We aim to model mixing distributions that can capture any shape of the elliptical noise in the data. To this
end, we use normalizing flows, a class of methods for learning complex probability distributions.

2.3 Flow based models

Normalizing flows are a family of generative models that map simple distributions to complex ones through
a series of learned transformations (Papamakarios et al., 2021). Suppose we have a random variable x
that follows an unknown probability distribution px(x). Then, the main idea of a normalizing flow is to
express x as a transformation Tγ of a variable z with a known simple probability distribution pz(z). The
transformation Tγ has to be bijective, and it can have learnable parameters γ. Both T and its inverse have
to be differentiable. A change of variables obtains the probability density of x:

px(x) = pz(z)
∣∣∣∣det

(
∂Tγ(z)

∂z

)∣∣∣∣−1
. (4)

We focus on one-dimensional flows since we are interested in modeling the mixing distribution. In particular,
we use linear rational spline flows (Dolatabadi et al., 2020; Durkan et al., 2019), wherein the mapping Tγ is
an elementwise, monotonic linear rational spline: a piecewise function where each piece is a linear rational
function. The parameters are the number of pieces (bins) and the knot locations.

3 Method

We propose the variational EP with elliptical noise, where the variational EP can learn any consistent ellip-
tical process, and the elliptical noise can capture any consistent elliptical noise. The key idea is to model the
mixing distributions with a normalizing flow. The joint probability distribution of the model (see Figure 3c) is

p(y, f , ω, ξ; η) = p(f |ξ; ηf )p(ξ; ηξ)︸ ︷︷ ︸
prior

N∏
i=1

p(yi|fi, ω)p(ω; ηω)︸ ︷︷ ︸
likelihood

. (5)

Here, p(f |ξ; ηf ) ∼ N (0, Kξ) is a regular EP prior with the covariance kernel K containing the parameters
ηf , p(ξ; ηξ) is the process mixing distribution and p(ω; ηω) is the noise mixing distribution.
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To learn the mixing distributions p(ξ; ηξ) and p(ω; ηω) by gradient-based optimization, they need to be
differentiable with respect to the parameters ηξ and ηω in addition to being flexible and computationally
efficient to evaluate and sample from. Based on these criteria, a spline flow (Section 2.3) is a natural fit.
We construct the mixing distributions by transforming a sample from a standard normal distribution with a
spline flow. The output of the spline flow is then projected onto the positive real axis using a differentiable
function such as Softplus or Sigmoid.

In the following sections, we detail the construction of the model and show how to train it using variational
inference. For clarity, we describe the likelihood first before combining it with the prior and describing a
(computationally efficient) sparse approximation.

3.1 Likelihood

By definition, the likelihood (Figure 3a) describes the measurement noise ϵn (Equation (1). The probability
distribution of the independent elliptical likelihood is,

p(ϵn; σ, ηω) =
∫

N (ϵn; 0, σ2ω)p(ω; ηω)dω, (6)

where σ can be set to unity without loss of generality. In other words, the likelihood is a continuous mixture
of Gaussian distributions where, e.g., ϵn follows a Student’s t distribution if ω is scaled inverse chi-squared
distributed.

Parameterization. We parameterize p(ω; ηω) as a spline flow,

p(ω; ηω) = p(ζ)
∣∣∣∣∂T (ζ; ηω)

∂ζ

∣∣∣∣−1
, (7)

although it could, in principle, be any positive, finite probability distribution. Here, p(ζ) ∼ N (0, 1) is
the base distribution and ω = T (ζ ; ηω) represents the spline flow transformation followed by a Softplus
transformation to guarantee positivity of ω. The flexibility of this flow-based construction lets us capture
a broad range of elliptical likelihoods, but we could also specify an appropriate likelihood ourselves. For
instance, using a categorical likelihood enables EP classification; see Section 4.4.

Training objective. Now, suppose that we observe N independent and identically distributed residuals
ϵn = yn − fn between the observations y and some function, f . We are primarily interested in estimating
the noise for the purpose of “denoising” the measurements. Hence, we fit an elliptical distribution to the
residuals by maximizing the (log) marginal likelihood with respect to the parameters ηω, that is

log p(ϵ; ηω) =
N∑

n=1
log

∫
N (ϵn; 0, ω) p(ω; ηω)dω. (8)

For general mixing distributions, this integral lacks a closed-form expression, but since it is one-dimensional
we can approximate it efficiently by numerical integration (for example, using the trapezoidal rule).

Ultimately, we arrive at the likelihood

p(y|f) =
N∏

n=1

∫
N (yn; fn, ω) p(ω; ηω)dω. (9)

3.2 Prior

Recall that our main objective is to infer the latent function f∗ = f(x∗) at arbitrary locations x∗ ∈ RD

given a finite set of noisy observations y. In probabilistic machine learning, the mapping y 7→ f∗ is often
defined by the posterior predictive distribution

p(f∗|y) =
∫

p(f∗|f)p(f |y)df , (10)
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which turns modeling into a search for suitable choices of p(f∗|f) and p(f |y). Accordingly, the noise
estimation described in the previous section is only done in pursuit of this higher purpose.

Sparse formulation. For an elliptical process (EP) we can rewrite the posterior predictive distribution
as

p(f∗|y) =
∫

p(f∗|f , ξ) p(f , u, ξ|y)dfdu dξ, (11)

where we are marginalizing not only over the mixing variable ξ and the function values f (at the given inputs
x) but also over the function values u at the, so called, M inducing inputs Xu. Introducing inducing points
lets us derive a sparse variational EP—a computationally scalable version of the EP similar to the sparse
variational GP (Titsias, 2009).

The need for approximation arises because of the intractable second factor, p(f , u, ξ|y), in (11). (The first
factor, p(f∗|f , ξ), is simply a Normal distribution.) We summarize the sparse variational EP below and refer
to Appendices D and E for additional details.

Variational approximation. We make the variational ansatz p(f , u, ξ|y) ≈ p(f |u, ξ)q(u|ξ) q(ξ), and
parameterize this variational posterior as an elliptical distribution. We do so for two reasons: first, this
makes the variational posterior similar to the true posterior, and second, we can then use the conditional
distribution to make predictions. In full detail, we factorize the posterior as

q(f , u, ξ; φ) = p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ), (12)

where φ = (φf , φu, φξ) are the variational parameters, q(u|ξ; φu) = N (m, Sξ) is a Gaussian distribution
with variational parameters m and S, and the mixing distribution ξ ∼ q(ξ; φξ). Again, q(ξ; φξ) could be
any positive finite distribution, but we parameterize it with a spline flow.

Note that, because of the conditioning on ξ, the first two factors in (12) are a Gaussian conjugate pair in u.
Thus, marginalization over u results in a Gaussian distribution, for which the marginals of fn only depend
on the corresponding input xn (Salimbeni et al., 2019):

q(fn|ξ; φ) = N (fn|µf (xn), σf (xn)ξ), (13)

where

µf (xn) = k⊤
unK−1

uum, (14)
σf (xn) = knn − k⊤

un

(
K−1

uu − K−1
uuSK−1

uu

)
kun, (15)

and knn = k(xn, xn), kun = k(Xu, xn), and Kuu = k(Xu, Xu).

Predictions on unseen data points, x∗, are then computed according to (see Appendix E)

p(f∗|y; x∗) = Eq(ξ; φξ) [N (f∗|µf (x∗), σf (x∗)ξ)] . (16)

For training, we use variational inference (VI), i.e., maximizing the evidence lower bound (ELBO) to indi-
rectly maximize the marginal likelihood. We train the model using stochastic gradient descent and black-box
variational inference (Bingham et al., 2019; Wingate & Weber, 2013; Ranganath et al., 2014).

VI training. The marginal likelihood is

p(y; ηf , ηu, ηξ) =
∫

p(y, f , u, ξ; ηf , ηu, ηξ)dfdudξ =
∫

p(y|f)p(f |u, ξ; ηf )p(u, ξ|; ηu, ηξ)dfdudξ. (17)

This integral is intractable since p(ξ; ηξ) is parameterized by a spline flow. To overcome this we approximate
the marginal likelihood with the ELBO

LELBO(ηf , ηu, ηξ, φf , φu, φξ) = Eq(f ,ξ; φ) [ log p(y|f)] − DKL (q(u, ξ; φ) || p(u, ξ; η))

=
N∑

n=1
Eq(fn,ξ; φ) [log p(yn|fn)] − DKL (q(u, ξ; φ) || p(u, ξ; η)) .

(18)
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Figure 4: The posterior predictive distribution when using a GP with elliptical noise modeled by a spline
flow. Each row represents a synthetic dataset with a different noise. The top row adds Gaussian noise
ω ∼ δ(ω − 0.04) the second adds Student’s t noise ω ∼Scale-Inv-χ2(ν = 4), and the third adds Cauchy noise
ω ∼Scale-Inv-χ2(ν = 1). The shaded areas show the latent function posterior f∗ and the noisy posterior y∗

90% credibility areas. The histograms show the learned and the true noise mixing distribution.

Had the likelihood been Gaussian, the expectation Eq(fn,ξ; φ) [log p(yn|fn; ηf )] could have been computed
analytically. In our case, however, it is elliptical, and we use a Monte Carlo estimate instead. Inserting the
elliptical likelihood (9) from the previous section gives

L(η, φ) =
N∑

n=1
Eq(fn,ξ; φ) [log (N (yn; fn, ω) p(ω, ηω))] − DKL (q(u, ξ; φ)||p(u, ξ; η)) . (19)

3.3 Extension to heteroscedastic noise

We now extend the elliptical likelihood to capture heteroscedastic (input-dependent) noise. The main idea
is to let the parameters ηω of the likelihood’s mixing distribution depend on the input location.

In heteroscedastic regression, the noise depends on the input location xn. For example, heteroscedastic
elliptical noise can be useful in a time series where the noise variance and tail-heaviness change over time.
Examples of this can be found in statistical finance (Liu et al., 2020) and robotics (Kersting et al., 2007). To
model this, we use a neural network gγω with parameters γω to represent the mapping from input location
to spline flow parameters, xn

gγω7−−→ ηωn .

7
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We train the model by maximizing the log-likelihood

L(γω) =
N∑

n=1
log

∫
p(yn|fn, ω)p(ω; ηωn = gγω (xn))dω. (20)

Additional information, such as time of the day or season for time series data, can be incorporated by simply
passing it as extra inputs to the neural network gγω .

4 Experiments

0 1 2 3 4
x

3

2

1

0

1

2

3

f(x
)

True func
Pred mean

(a)

0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Learned p( )
True p( )

(b)

0 1 2 3 4
x

3

2

1

0

1

2

3

f(x
)

(c)

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Learned p( )
True p( )

(d)

Figure 5: The predictive posterior after training on a
small synthetic dataset. The shaded areas show the 95 %
credibility area of the latent function posterior f∗ and
the noisy posterior y∗ when using (top row) a GP with
elliptical noise modeled by a spline flow and a (bottom
row) a GP with Gaussian noise. The histograms show
the learned and the true noise mixing distribution.

We examined the variational elliptical processes
using four different experiments. In the first
experiment, we investigated how well the el-
liptical likelihood (Section 3.1) recovers known
elliptical noise in synthetic data. In the second
experiment, we demonstrated the use of the
heteroscedastic EP on a synthetic dataset. We
evaluated regression performance on seven stan-
dard benchmarks in the third experiment where
we compared the sparse and the heteroscedastic
EP formulations with both sparse GP (SVGP)
(Hensman et al., 2013) and full GP baselines.
Finally, in the fourth experiment, we examined
if using an EP is beneficial in classification tasks.

Implementation. The mixing distribution
of the variational EP used a quadratic rational
spline flow, where we transformed the likelihood
flow p(ω) using Softplus and the posterior flow
p(ξ) using arctan to ensure that they were posi-
tive (remember that a mixing distribution must
be positive, see Equation 3). We used a squared
exponential kernel with independent length scales
in all experiments. See Appendix F for further
implementation details. Code for reproducing
the experiments will be published on GitHub if
the paper is accepted, with a link added here.

4.1 Noise identification

To examine how well the elliptical likelihood, described in Section 3.1, captures different types of elliptical
noise, we created three synthetic datasets with the same latent function, fn = sin(3xn)/2, sampled inde-
pendently at N = 200 locations xn ∼ U(−2, 2). Further, each dataset was contaminated with independent
elliptical noise ϵn that was added to the latent function, yn = fn + ϵn. The added noise varied for the three
datasets. The first was Gaussian distributed which is the same as ω being Delta distributed, ω ∼ δ(ω−0.04).
The second was Student’s t which means that ω follows the scaled inverse chi-squared distribution, ω ∼Scale-
Inv-χ2(ν = 4). The third was Cauchy distributed, ω ∼Scale-Inv-χ2(ν = 1). We trained a sparse variational
GP for each dataset with an elliptical likelihood.

Figure 4 illustrates the results from the experiments. The histograms in the right column compare the
learned mixing distribution p(ω; ηω) to the true mixing distribution (the red curve) from which the noise
ϵn originated. The learned distributions follow the shape of the true mixing distribution reasonably well,
considering the small number of samples, indicating that we can learn the correct likelihood regardless of
the noise variance. Furthermore, if the noise is actually Gaussian, as at x = −0.7, then so is the learned
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Figure 6: The results from training a GP with heteroscedastic elliptical noise on a synthetic dataset. The
top row shows the posterior distribution where the shaded areas are the 95 % credibility areas of the latent
posterior f∗ and the noisy posterior y∗. The histograms in the middle row show the noise mixing distributions
at the different x-values indicated by the vertical dashed lines in the top plot. The bottom row shows the
mixing distribution used when creating the synthetic data.

likelihood. The left column shows the predictive posterior of the final models, demonstrating that the models
managed to learn suitable kernel parameters jointly with the likelihood.

Robust regression on synthetic data. An elliptical likelihood is better at handling outliers and non-
Gaussian noise than a Gaussian likelihood because it can better match the whole distribution of the noise
rather than just a single variance. This is shown in Figure 5, where a GP with an elliptical and a Gaussian
likelihood were trained on a small synthetic dataset with additive Student’s t noise, with η = 4. The
Gaussian likelihood approximates the mixing distribution with a single variance at approximately 0.4, while
the elliptical likelihood fits the entire mixing distribution. As a result, the GP with the Gaussian likelihood
needs to use a shorter length scale to compensate for the thin tail of the likelihood. In contrast, the GP with
the elliptical likelihood can focus on the slower variations, thus producing a better fit to data.

4.2 Elliptic heteroskedastic noise

In this experiment, we aimed to exemplify the benefits of using heteroscedastic elliptical noise as described
in Section 3.3. To this end, we created the synthetic dataset shown in Figure 6. It consisted of 150 samples
generated by adding heteroscedastic noise to the function f(xn) = sin(5xn) + xn, where xn ∼ U(0, 4).
Specifically, we added Student’s t noise, ϵ(xn) ∼ St (ν(xn), σ(xn)), where the noise scale followed ν(x) =
25 − 11|x + 1|0.9, and the standard deviation by σ(x) = 0.5|x + 1|1.6 + 0.001. We used a variational sparse
GP with heteroscedastic noise as described in Section 3.3.

The experimental results, depicted in Figure 6, show that, qualitatively, even though the rapid change in the
noise distribution and the low number of training samples, the model captures the varying noise in terms of
the scale and the increasing heaviness of the tail. Remember that a single spike in the mixing distribution,
as at x = 0.7, indicates that the noise is Gaussian, and the wider the mixing distribution is, as at x = 0.7,
the heavier-tailed the noise is. When the synthetic data has Gaussian noise, then so has also the learned
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Figure 7: Predictive negative log-likelihood (LL) (top) and mean-squared error (MSE) (bottom) on held-
out test data from the regression benchmarks (smaller is better). We show the average of the ten splits as a
dot and the standard deviation as a line. The models with bold fonts are our models. Note that the spread
of the error varies between the datasets. For example, the MSE error for the Bike dataset is low for all six
models. Overall, the EP posterior outperforms the GP posterior, regarding the log-likelihood, for the five
larger datasets .

Table 1: The different types of models we trained on the regression datasets.

NAME APPROXIMATION LOSS LIKELIHOOD POSTERIOR
Exact GP Exact Marginal likelihood Gaussian Gaussian
SVGP Variational ELBO Gaussian Gaussian
EP-GP Variational ELBO Elliptic Gaussian
EP-EP Variational ELBO Elliptic Elliptic
Het-GP Variational ELBO Gaussian Gaussian
Het-EP Variational ELBO Elliptic Gaussian

elliptical noise. Similarly, when the synthetic noise is heavier-tailed, so is the learned mixing distribution.
This indicates that this model could be helpful for data with varying elliptical noise.

4.3 Regression

We conducted experiments on seven datasets from the UCI repository (Dua & Graff, 2017) to study the
impact of the elliptical noise, elliptical posterior, and heteroscedastic noise. We used various regression
models based on a Gaussian Process (GP) prior; see Table 1 for a summary. As baselines, we compare with
the sparse variational GP model of Hensman et al. (2013), which we call SVGP, and an exact GP.

Models evaluated. We used a GP model with elliptical noise (EP−GP) to compare its performance to the
traditional GP model with Gaussian noise. Theoretically, an elliptical posterior should result from combining
a Gaussian prior and an elliptical likelihood, but in this case, we approximated the posterior with a Gaussian.
We also included a model that used an elliptical posterior (EP − EP) to explore the potential benefits of
using the theoretically more accurate elliptical posterior. Additionally, we tested a heteroscedastic elliptical
noise model (Het-EP) and a heteroscedastic Gaussian noise model (Het-GP) to compare their performance.
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The difference between these two is that in Het-GP the neural network only predicts the noise variance,
whereas the Het-EP model predicts the 26 parameters corresponding to nine bins of the spline flow.

First, we summarize the results in Figure 7, and then we discuss the results of each method in more detail.
The figure displays the mean and standard deviation of ten randomly chosen training, validation, and test
data splits. The training procedure for all models optimizes —directly or indirectly—the log-likelihood.
Therefore, the most relevant figure of merit is the negative test log-likelihood (LL), shown in the top row of
Figure 7. We stress that log-likelihood is more critical than MSE because mean-squared error (MSE) does
not consider the predictive variance. However, we show the MSE on held-out test sets in the bottom row for
completeness. Additional details on the experiments can be found in Appendix G.

GP baseline. To assess the quality of the approximations introduced, we first establish an exact GP
baseline that made predictions without any approximation. We trained the GP hyperparameters using L-
BFGS and early stopping on a validation dataset. For this to be feasible on large datasets, we used the
Blackbox Matrix-Matrix multiplication inference procedure (Gardner et al., 2018; Wang et al., 2019). In the
following sections, we discuss each method in detail.

Variational GP approximation. First, we compare the exact GP baseline with its variational approx-
imation, i.e., SVGP. First, consider the results on MPG and Concrete, where SVGP did not make use of
inducing points due to the small sample size. Consequently, SVGP ’s worse performance on Concrete is only
due to the change of inference method. For the other datasets, we investigated the effect of the number of
inducing points on the predictive log-likelihood; see Figure 9 of Appendix H. The dependence is very similar
for all methods. In particular, the performance saturates at roughly 500 inducing points on all datasets
except Kin40k, which continues to improve. However, the relative performance of the different methods on
Kin40k is fairly stable.

Elliptical likelihood. Next, we consider whether it is advantageous to use an elliptical likelihood instead
of a Gaussian. To this end, we compare the performance of SVGP and EP-GP, which only differ in this
respect. The results show that switching to an elliptical likelihood improves the log-likelihood on most
datasets, as would be expected theoretically.

Elliptical posterior. We now compare EP-GP to EP-EP to analyze the potential benefit of having an
elliptical posterior. On three of the datasets (Bike, Kin40k, and Protein), which are all relatively large, the
elliptical posterior produces a clear improvement in log-likelihood. In contrast, on the other datasets, it is
similar, possibly because the posterior is well-approximated by a Gaussian. Regardless, we conclude that,
when using an elliptical likelihood, an elliptical posterior is preferable over a Gaussian one.

Heteroscedastic models. Is there an additional benefit of having heteroscedastic noise? On the two
smallest datasets (MPG and Concrete), the answer is clearly no: the heteroscedastic models perform worse
than SVGP and EP-GP in terms of both log-likelihood and mean-squared error, indicating potential over-
fitting and that regularization may be warranted. (Note that the most relevant comparisons are Het-GP vs.
SVGP and Het-EP vs. EP-GP.)

On the remaining datasets, however, the heteroscedastic models clearly outperform SVGP and EP-GP in
terms of log-likelihood. On the other hand, they perform poorly in terms of mean-squared error; in fact,
worse than SVGP on all datasets. Hypothetically, this is because the heteroscedastic models attribute too
much variation to the likelihood, thus sacrificing the mean-function prediction. This could potentially be
mitigated by decoupling the mean and the covariance models (Salimbeni et al., 2018; Jankowiak et al., 2020).
Another option would be to increase the weight of the KL-divergence term in the ELBO (Higgins et al., 2017).
We expect such improvements to be more critical for the Het-EP model, which has a more flexible likelihood
than Het-GP. Still, Het-EP already performs slightly better than Het-GP on the three largest datasets. Note,
however, the EP-EP model often achieves both a log-likelihood similar to the heteroscedastic models and a
mean-squared error similar to SVGP.
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Computational considerations. Empirically, we found that replacing the Gaussian likelihood with the
elliptical likelihood had a minor impact on the computational demand. Further changing to an elliptical
posterior increased the computational time per iteration, but a faster convergence partially compensated for
this. Finally, modeling heteroscedastic noise with a neural network adds significant complexity, but this was
offset by running it on GPU.

Prediction accuracy. In summary, the results show that an elliptical likelihood results in better or equal
predictive log-likelihoods than a Gaussian likelihood. However, the advantage is less significant on small
datasets. Similarly, the more flexible elliptical posterior tends to produce better results. However, when
looking at the mean-squared error (MSE), the exact GP outperforms the other models. Thus, if predictive
performance is the main objective, an exact GP (or, even better, a neural network) may be the best choice.
However, the well-known scalability issues of exact GP clearly limit its applicability. In such scenarios, our
results suggest that EP-EP is a better choice than SVGP.

4.4 Binary classification
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Figure 8: The classification AUC (Area Under the Curve) and ac-
curacy score from the ten-fold cross-validation (higher is better).
We show the average of the ten splits as a dot and the stan-
dard deviation as a line. Especially we observe that the EP prior
and posterior improves the results when the number of inducing
points is low.

To evaluate the EP on classification
tasks, we perform variational EP and GP
classification by simply replacing the like-
lihood with a binary one. To derive the
expectation in Equation 18 we first sam-
ple fn ∼ N (fn|µf (xn, σf (xn)ξ) and then
derive the likelihood as Ber(Sigmoid(fi)).

This realization is interesting since we do
not have a likelihood that captures the
noise in the data; instead, the process
itself has to do it. Therefore, we can
indicate the value of the elliptical pro-
cess itself without the elliptical noise. We
compare two variational EP models with
a variational GP model. We compare
both non-sparse models and sparse mod-
els with 20 inducing points. The two EPs
differ in the prior mixing distributions
where the first model has a GP prior and
a EP posterior. For the second model,
we replace the GP prior to an elliptical
one. We can see the trainable prior mixing distribution as using a continuously scaled mixture of Gaussian
processes, which can be more expressive than a single GP.

To evaluate the models, we performed a ton-fold cross-validation where We trained the models on three
classification datasets, described in Appendix I. Figure 8 presents the results from ten folds. From the area
under the curve (AUC) score, we see that the EP prior separates the two classes better, especially using the
sparse models. The variational elliptical distribution mainly contributes to the higher AUC score. Training
the mixing distribution of the EP prior did not improve the score.

5 Related work

In general, attempts at modeling heavy-tailed stochastic processes modify either the likelihood or the stochas-
tic process prior—rarely both. Approximate inference is typically needed when going beyond Gaussian
likelihoods (Neal, 1997; Jylänki et al., 2011), e.g., for robust regression, but approximations that preserve
analytical tractability have been proposed (Shah et al., 2014).
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Ma et al. (2019) describes a class of stochastic processes where the finite-dimensional distributions are only
defined implicitly as a parameterized transformation of some base distribution, thereby generalizing earlier
work on warped Gaussian processes (Snelson et al., 2004; Rios & Tobar, 2019). However, the price of this
generality is that standard variational inference is no longer possible. Based on an assumption of a Gaussian
likelihood, they describe an alternative based on the wake-sleep algorithm by Hinton et al. (1995).

Other attempts at creating more expressive GP priors include Maroñas et al. (2021), who used a GP in
combination with a normalizing flow, and Luo & Sun (2017), who used a discrete mixture of Gaussian
processes. Similar ideas combining mixtures and normalizing flows have also been proposed to create
more expressive likelihoods (Abdelhamed et al., 2019; Daemi et al., 2019; Winkler et al., 2019; Rivero &
Dvorkin, 2020) and variational posteriors (Nguyen & Bonilla, 2014). Non-stationary extensions of Gaussian
processes, such as when modeling heteroscedastic noise, are rare, but the mixture model of Li et al. (2021)
and the variational model of Lázaro-Gredilla & Titsias (2011) are two examples.

In the statistics literature, it is well-known that the elliptical processes can be defined as scale-mixtures of
Gaussian processes (Huang & Cambanis, 1979; O’Hagan, 1991; O’Hagan et al., 1999). However, unlike in
machine learning, little emphasis is placed on building the models from data (i.e., training). These models
have found applications in environmental statistics because of the field’s inherent interest in modeling spatial
extremes (Davison et al., 2012). Like us, several works take the mixing distribution as the starting point and
make localized predictions of quantiles (Maume-Deschamps et al., 2017) or other tail-risk measures (Opitz,
2016).

6 Conclusions

The Gaussian distribution is the default choice in statistical modeling for good reasons. Even so, far from
everything is Gaussian—casually pretending it is, comes at a risk. The elliptical distribution offers a com-
putationally tractable alternative that can capture heavy-tailed distributions. The same reasoning applies
when comparing the Gaussian process to the elliptical process. A sensible approach in many applications
would be to start from the weaker assumptions of the elliptical process and let the data decide whether the
evidence supports gaussianity.

We constructed the elliptical process as a scale mixture of Gaussian distributions. By parameterizing the
mixing distribution using a normalizing flow, we showed how a corresponding elliptical process could be
trained using variational inference. The variational approximation we propose enables us to capture heavy-
tailed posteriors and makes it straightforward to create a sparse variational elliptical process that scales to
large datasets.

We performed both experiments on regression and classification. In particular, we investigated the benefits
of various combinations of elliptical posterior and elliptical likelihood and their heteroscedastic counterparts.
We concluded that using an elliptical likelihood and an elliptical posterior often achieves a better log-
likelihood and similar mean-squared error as the sparse variational GP.

The added flexibility of the elliptical processes could benefit a range of classical and new applications.
However, advanced statistical models are not a cure-all, and one needs to avoid overreliance on such models,
especially in safety-critical applications.
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A The elliptical distribution

The Gaussian distribution—the basic building block of Gaussian processes—has several attractive properties
that we wish the elliptical process to inherit, namely (i) closure under marginalization, (ii) closure under
conditioning, and (iii) straightforward sampling. This leads us to consider the family of consistent elliptical
distributions. Following Kano (1994), we say that a family of elliptical distributions {p(u(yN ); η) | N ∈ N}
is consistent if and only if ∫ ∞

−∞
p (u(yN+1); η) dyN+1 = p (u(yN ); η) . (21)

In other words, a consistent elliptical distribution is closed under marginalization.

Far from all elliptical distributions are consistent, but the complete characterization of those that are is
provided by the following theorem (Kano, 1994).

Theorem 1 An elliptical distribution is consistent if and only if it originates from the integral

p(u; η) = |Σ|− 1
2

∫ ∞

0

(
1

ξ2π

) N
2

e
−u
2ξ p(ξ; ηξ)dξ, (22)

where ξ is a mixing variable with the corresponding, strictly positive finite, mixing distribution p(ξ; η), that
is independent of N .

This shows that consistent elliptical distributions p(u; η) are scale-mixtures of Gaussian distributions, with
a mixing variable ξ ∼ p(ξ; η). Note that any mixing distribution fulfilling Theorem 1 can be used to define a
consistent elliptical process. We recover the Gaussian distribution if the mixing distribution is a Dirac delta
function and the Student’s t distribution if it is a scaled inverse chi-square distribution.

If p(u; η) is a scale-mixture of normal distributions, it has the stochastic representation

Y | ξ ∼ N (µ, Σξ), ξ ∼ p(ξ; η). (23)

By using the following representation of the elliptical distribution,

Y = µ + Σ1/2Zξ1/2, (24)

where Z follows the standard normal distribution, we get the mean

E[Y ] = µ + Σ1/2E [Z] E[ξ1/2] = µ (25)

and the covariance

Cov(Y ) = E
[
(Y )µ)(Y − µ)⊤]

= E
[
(Σ1/2Z

√
ξ)(Σ1/2Z

√
ξ)⊤

]
= E

[
ξΣ1/2ZZ⊤(Σ1/2)⊤

]
= E [ξ] Σ. (26)

The variance is a scale factor of the scale matrix Σ. To get the variance we have to derive E [ξ]. Note that
if ξ follows the scaled inverse chi-square distribution, E[ξ] = ν/(ν − 2). We recognize form the Student’s t
distribution, where Cov(Y ) = ν/(ν − 2)Σ.

B Conditional distribution

To use the EP for predictions, we need the conditional mean and covariance of the corresponding elliptical
distribution, which are derived next. We partition the data as y = [y1, y2], where y1 is the N1 observed
data points, y2 is the N2 data points to predict, and N1 + N2 = N . We have the following result:
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Proposition 1 If the data y = [y1, y2] originate from the consistent elliptical distribution in (3), the con-
ditional distribution originates from the distribution

py2|u1(y2) = cN1,η∣∣Σ22|1
∣∣ 1

2 (2π)
N2

2

∫ ∞

0
ξ− n

2 e−(u2|1+u1) 1
2ξ p(ξ; η)dξ (27)

with the conditional mean E[y2|y1] = µ2|1 and the conditional covariance

Cov[Y2|Y1 = y2] = E[ξ̂]Σ22|1, ξ̂ ∼ ξ|y1, (28)

where u1 = (y1 − µ1)⊤Σ−1
11 (y1 − µ1), u2|1 = (y2 − µ2|1)⊤Σ−1

22|1(y2 − µ2|1), and cN1,η is a normalization
constant. The conditional scale matrix Σ22|1 and the conditional mean vector µ2|1 are the same as the mean
and the covariance matrix for a Gaussian distribution. The proof is derived in Appendix B.

The conditional distribution is guaranteed to be a consistent elliptical distribution but not necessarily the
same as the original one—the shape depends on the training samples. (Recall that consistency only concerns
the marginal distribution.) To prove Proposition 1, we partition the data y as [y1, y2], so n1 data points
belong to y1, n2 data points belong to y2 and n1 + n2 = n.

Proof of proposition 1. The joint distribution of [y1, y2] is p(y1, y2|ξ)p(ξ; η) and the conditional distri-
bution of y2, given y1 is p(y2|y1, ξ)p(ξ|y1M ; η).

For a given ξ, p(y2|y1, ξ) is the conditional normal distribution and so

p(y2|y1, ξ) ∼ N (µ2|1, Σ22|1ξ̂), ξ̂ ∼ p(ξ|y1; η) (29)

where,

µ2|1 = µ2 + Σ21Σ−1
11 (y1 − µ1) (30)

Σ22|1 = Σ22 − Σ21Σ−1
11 Σ21, (31)

the same as for the conditional Gaussian distribution. We obtain the conditional distribution p(ξ|y1; η) by
remembering that

p(y1|ξ) ∼ N (µ1, Σ11ξ). (32)
Using Bayes’ Theorem we get

p(ξ|y1; η) ∝ p(y1|ξ)p(ξ; η)

∝ |Σ11ξ|−1/2 exp
{

−u1

2ξ

}
p(ξ; η)

∝ ξ−N1/2 exp
{

−ξ
u1

2

}
p(ξ; η). (33)

Recall that u1 = (y − µ1)⊤Σ−1
11 (y − µ1)). We normalize the distribution by

c−1
N1,η =

∫ ∞

0
ξ−N1/2 exp

{
−u1

2ξ

}
p(ξ; η)dξ (34)

The conditional mixing distribution is

p(ξ|y1; η) = cN1,ηξ−N1/2 exp
{

−u1

2ξ

}
p(ξ; η) (35)

The conditional distribution of y2 given y1 is derived by using the consistency formula

p(y2|y1) = 1
|Σ22|1|1/2(2π)N2/2

∫ ∞

0
ξ−N2/2 exp −

u2|1

2ξ
p(ξ|y1)dξ, (36)

where u2|1 = (y2 − µ2|1)⊤Σ−1
22|1(y2 − µ2|1). Using (35) we get

p(y2|y1) = cN1,η

|Σ22|1|1/2(2π)N2/2

∫ ∞

0
ξ−n/2e−(u2|1+u1)/(2ξ)p(ξ; η)dξ (37)
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C Derivation of the confidence regions of the elliptical process

We derive the confidence region of the elliptical process, by using Monte Carlo approximation of the integral,
as

p(−zσ < x < zσ) = 1
σ

√
2π

∫ zσ

−zσ

∫ ∞

0
ξ−1/2e−x2/(ξ2σ2)p(ξ)dξdx (38)

= 1
σ

√
2π

∫ zσ

−zσ

1
m

m∑
i=1

ξ
−1/2
i e−x2/(2ξiσ2)dx (39)

= 1
σm

√
2π

m∑
i=1

ξ
−1/2
i

∫ zσ

−zσ

e−x2/(2ξiσ2)dx (40)

= 2
m

√
π

m∑
i=1

∫ z√
2ξi

0
e−u2

du (41)

= 1
m

m∑
i=1

erf
(

z√
2ξi

)
(42)

For every mixing distribution we can derive the confidence of the prediction. It is the number of samples m
we take that decides the accuracy of the confidence.

D Details on the non sparse variational elliptical process

For a Gaussian process, the posterior of the latent variables f is

p(f |y) ∝ p(y|f)p(f). (43)

Here, the prior p(f |X) ∼ N (0, K), is a Gaussian process with kernel K and the likelihood p(y|f) ∼
N (f , σ2I) is Gaussian. The posterior derives to

p(f |y) ∼ N
(

f |K
(
K + σ2I

)−1
y,

(
K−1 + σ−2I

)−1
)

(44)

and the predictive distribution of an arbitrary input location x∗ is

p(f∗|y) =
∫

p(f∗|f)p(f |y)df , (45)

where p(f∗|f , x, x∗) is the conditional distribution, which is again Gaussian with

N
(
f∗|k⊤

∗ (k + σ2I)−1y, k∗∗ − k⊤
∗ (K + σ2I)−1k∗

)
. (46)

Going back to the elliptical process, we want to derive the predictive distribution. The problem, though,
is that the posterior is now intractable. In order to get a tractable posterior, we train the model using
variational inference, where we approximate the intractable posterior with a tractable one,

p(f , ξ|y; η) ≈ q(f , ξ; φ) = q(f |ξ; φf )q(ξ; φξ). (47)

Here, q(f |ξ; φf ) ∼ N (mf , Sf ξ), where mf and Sf are variational parameters, and q(ξ; φξ) is parameterized
with any positive distribution such as a normalizing flow. We use this approximation when we derive the
predictive distribution

p(f∗|y) =
∫

p(f∗|f , ξ; η)p(f , ξ|y; η)dfdξ (48)

=
∫

p(f∗|f , ξ; ηf )p(f , ξ|y; η)dfdξ (49)

≈
∫

p(f∗|f , ξ; ηf )q(f |ξ; φf )q(ξ; φξ)dfdξ. (50)

(51)
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By first taking a look at the prior distribution p(f∗, f |ξ) when ξ is constant,[
f∗

f

]
ξ ∼ N

(
0,

[
k∗∗ k⊤

∗
k∗ K

]
ξ

)
, (52)

we arrive at the conditional distribution

p(f∗|f , ξ; η) = N
(
k⊤

∗ K−1f ,
(
k∗∗ − k⊤

∗ K−1k∗
)

ξ
)

. (53)

We use this expression together with the variational approximation to derive the posterior predictive distri-
bution,

p(f∗|y) =
∫

p(f∗|f , ξ; η)q(f |ξ; φf )q(ξ; φξ)dfdξ (54)

= Eq(ξ; φξ)

[∫
p(f∗|f , ξ)q(f |ξ; φf )df

]
(55)

= Eq(ξ; φξ)

[∫
N

(
f∗|k⊤

∗ K−1f , (k∗∗ − k⊤
∗ K−1k∗)ξ

)
N (f |m, Sξ) df

]
(56)

= Eq(ξ; φξ) [N (f∗|µf (x∗), σf (x∗)ξ)] , (57)

where

µf (x∗) = k⊤
∗ K−1m, (58)

σf (x∗) = k∗∗ − k⊤
∗

(
K−1 − K−1SK−1)

k∗ (59)

We get the variance by E[ξ]σf (x∗).

Optimizing the ELBO We train the model by optimizing the evidence lower bound (ELBO) given by

LELBO(ηf , ηξ, φf , φξ) = Eq(f ,ξ; φ) [ log p(y|f)] − DKL (q(f , ξ; φ) || p(f , ξ; η)) . (60)

E Details on the sparse elliptical processes

With the variational inference framework, we create a sparse version of the model∫
p(f , u, ξ; η)dξ =

∫
p(f |u, ξ; ηf )p(u|ξ; ηu)p(ξ; ηξ)dξ, (61)

where u are outputs of the elliptical process located at the inducing inputs xu. We approximate the
posterior with

p(f , u, ξ|y; η) ≈ p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ). (62)

The posterior predictive distribution is then given by

p(f∗|y) =
∫

p(f∗|f , u, ξ; η)p(f , u, ξ|y; η)dfdudξ

≈
∫

p(f∗|f , u, ξ; η)p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ)dfdudξ

=
∫ [∫

p(f∗|f , u, ξ; η)p(f |u, ξ; ηf )df

]
q(u|ξ; φu)q(ξ; φξ)dudξ. (63)

We can simplify the inner expression by using the fact that the elliptical distribution is consistent,∫
p(f∗|f , u, ξ; η)p(f |u, ξ; η)df =

∫
p(f∗, f |u, ξ; η)df = p(f∗|u, ξ; η). (64)
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Hence, Equation (63) is simplifies to

p(f∗|y) =
∫

p(f∗|u, ξ; η)q(u|ξ; φu)q(ξ; φξ)dudξ, (65)

where q(u|ξ; φu) = N (mu, Suξ) with the variational parameters mu and Su, and ξ is parameterized, e.g.,
by a normalizing flow

Finally, we obtain the posterior p(f∗|x∗) = Eq(ξ;φξ) [N (fn|µf (x∗), σf (x∗))] where

µf (xn) = k⊤
n K−1

uum (66)
σf (xn) = knn − k⊤

n

(
K−1

uu − K−1
uuSK−1

uu

)
kn. (67)

Here kn = k(xn, Xu), knn = k(xn, xn), and Kuu = k(Xu, Xu).

F Implementation: variational inference

We used the Pyro library (Bingham et al., 2019), a universal probabilistic programming language (PPL)
written in Python and supported by PyTorch on the backend.

In Pyro, we trained a model with variational inference (Kingma & Welling, 2013) by creating "stochas-
tic functions" called model and a guide, where the model samples from the prior latent distributions
p(f , ξ, ω; η), and the observed distribution p(y|f , ω), and the guide samples the approximate posterior
q(f |ξ; φf )q(ξ; φξ. We then trained the model by maximizing the evidence lower bound (ELBO), where we
simultaneously optimized the model parameters η and the variational parameters φ. (See more details here,
https://pyro.ai/examples/svi_part_i.html.)

To implement the model in Pyro, we created the guide and the model (see Algorithm 1) by building upon the
already implemented variational Gaussian process. We used the guide and the model to derive the ELBO,
which we then optimized with stochastic gradient descent using the Adam optimizer (Kingma & Ba, 2015).

Algorithm 1 PyTorch implementation of the variational sparse elliptical process (VI-EP-EP).
1: procedure model(X, y)
2: Sample ξ = from p(ξ; ηξ)( Normalizing flow )
3: Sample u from N (0, ξKuu)) ▷ Take a sample from the latent u and ξ

4: Derive the variational posterior
N∏

n=1
q(fn|ξ; φ) = N (µf (xn), σf (xn)ξ). ▷ During training ξ is sampled from

the posterior/guide.
5: Take a Monte-Carlo sample f̂n from each q(fn|ξ; φ)
6: For or each yn approximate ℓyn = log

∫
N (yn|fn, ω) p(ω; ηω)dω using the trapezoid rule.

7: Get the log probability of y by
∑N

n=1 ℓyn .
8: end procedure
9: procedure guide

10: Sample ξ = from q(ξ; φξ)( Normalizing flow )
11: Sample u, from N (m, Sξ))
12: end procedure

G Regression experiment setup

In the regression experiments in Section 4.3, we ran all experiments using the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 0.01. For the full GP, we used the L-BFGS optimizer to train the
hyperparameters. Here, we, in the same way as for the other models, used early stopping on a validation
dataset, which operated by saving the model with the lowest validation log predictive likelihood.

For all experiments, we created ten random train/val/test splits with the proportions 0.6/0.2/0.2, except
for the two smallest datasets (mpg and concrete), where we neglected the validation dataset and used a
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train/test proportions of 0.7/0.3. For the test set evaluation, we used the model with the highest predictive
probability on the validation set. For the large datasets (n > 1000), we used 500 inducing points. We did
not use a sparse version of the model for the small datasets but instead used Xu = Xtrain and kept them
fixed during the training. We run the optimizer for the large dataset for 500 epochs and the small dataset
for 2000 epochs.

Elliptical process setup. The likelihood mixing distribution uses a spline flow with nine bins and Softplus
as its output transformation. The elliptic posterior mixing distribution uses a spline flow with five bins and a
Sigmoid output transformation. The reason we use a Sigmoid for the posterior is that we want to regularize
it more since we hypothesize it is more difficult to learn.

For the heteroscedastic noise models, we used two-layer neural networks with hidden dimensions of 128. For
the elliptical noise, we learned a spline flow with nine bins which results in 26 hyperparameters to learn
while for the heteroscedastic Gaussian likelihood we learned the variance solely.

H Results

The regression results from Figure 7 are presented in Tables 2 and 3. Figure 9 presents the outcome for
different numbers of inducing points. We see that the results have stabilized for almost all datasets at 500
inducing points. We also notice that the relative log-likelihood between the models stays constant after
400-500 inducing points.

Table 2: Predictive mean squared error (MSE) on the hold-out sets from the experiments. We show the
average of the ten random splits and one standard deviation in parenthesis.

MPG CONCRETE ELEVATORS BIKE CALIFORNIA KIN40K PROTEIN

Het-EP 0.144 (0.018) 0.127 (0.014) 0.149 (0.005) 0.018 (0.002) 0.223 (0.012) 0.141 (0.008) 0.531 (0.009)
Het-GP 0.142 (0.020) 0.178 (0.022) 0.148 (0.005) 0.020 (0.002) 0.230 (0.011) 0.112 (0.007) 0.508 (0.007)
EP-EP 0.122 (0.027) 0.176 (0.022) 0.145 (0.005) 0.007 (0.001) 0.223 (0.012) 0.042 (0.002) 0.433 (0.008)
EP-GP 0.121 (0.026) 0.128 (0.013) 0.145 (0.005) 0.011 (0.001) 0.226 (0.013) 0.056 (0.003) 0.481 (0.007)
SVGP 0.122 (0.018) 0.128 (0.011) 0.143 (0.004) 0.007 (0.001) 0.219 (0.012) 0.047 (0.001) 0.477 (0.007)
Exact GP 0.135 (0.135) 0.103 (0.103) 0.134 (0.134) 0.002 (0.002) 0.134 (0.134) 0.006 (0.000) 0.357 (0.006)

Table 3: Negative log likelihood (Neg LL) on the hold-out test sets from the experiments. We show the
average of the ten random splits and one standard deviation in parenthesis.

MPG CONCRETE ELEVATORS BIKE CALIFORNIA KIN40K PROTEIN

Het-EP 0.463 (0.089) 0.332 (0.033) 0.400 (0.018) -1.327 (0.020) 0.506 (0.022) -0.397 (0.012) 0.921 (0.017)
Het-GP 0.530 (0.155) 0.456 (0.074) 0.399 (0.017) -1.532 (0.047) 0.376 (0.021) -0.316 (0.010) 0.986 (0.013)
EP-EP 0.266 (0.074) 0.443 (0.083) 0.425 (0.015) -1.406 (0.028) 0.506 (0.022) -0.246 (0.020) 0.976 (0.008)
EP-GP 0.268 (0.071) 0.344 (0.031) 0.427 (0.014) -1.304 (0.023) 0.515 (0.021) -0.053 (0.049) 1.056 (0.006)
SVGP 0.352 (0.062) 0.382 (0.030) 0.446 (0.013) -0.865 (0.016) 0.649 (0.022) -0.028 (0.004) 1.056 (0.006)
Exact GP 0.387 (0.387) 0.206 (0.206) 0.463 (0.463) -1.103 (-1.103) 0.463 (0.463) -0.166 (0.097) 0.970 (0.005)

I Datasets

Bike dataset (Fanaee-T & Gama, 2014) is obtained from bike sharing data, especially it contains the
hourly and daily count of rental bikes between the years 2011 and 2012 with the corresponding weather and
seasonal information.

Elevators dataset (Dua & Graff, 2017) is obtained from the task of controlling a F16 aircraft, and the
objective is related to an action taken on the elevators of the aircraft according to the status attributes of
the airplane.

Physicochemical properties of protein tertiary structure dataset The data set is taken from CASP
5-9. There are 45730 decoys and sizes varying from 0 to 21 Armstrong.
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Figure 9: The train and validation negative log-likelihood for the datasets using a varying number of inducing
points.

California housing dataset was originally published by Pace & Barry (1997). There are 20 640 samples
and 9 feature variables in this dataset. The targets are the prices of houses in the California area.

The Concrete dataset (Yeh, 1998) has 8 input variables and 1030 observations. The target variables are
the concrete compressive strength.

Auto MPG dataset (Alcalá-Fdez et al., 2011) originally from the StatLib library which is maintained at
Carnegie Mellon University. The data concerns city-cycle fuel consumption in miles per gallon and consists
of 392 samples with five features each.

Pima Indians Diabetes Database (Smith et al., 1988) originally from the National Institute of Diabetes
and Digestive and Kidney Diseases. The objective of the dataset is to predict diagnostically whether or not a
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patient has diabetes based on certain diagnostic measurements included in the dataset. The dataset consists
of 768 samples with eight attributes.

The Cleveland Heart Disease dataset consists of 13 input variables and 270 samples. The target
classifies whether a person is suffering from heart disease or not.

The Mammography Mass dataset predicts the severity (benign or malignant) of a mammography mass
lesion from BI-RADS attributes and the patient’s age. This dataset consists of 961 with six attributes.
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