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Abstract

Artificial Intelligence (AI) has demonstrated significant potential in healthcare,
particularly in disease diagnosis. Recent progress in Medical Large Vision-
Language Models (Med-LVLMs) has opened up new possibilities for interactive
diagnostic tools. However, these models often suffer from factual hallucination.
Fine-tuning and retrieval-augmented generation (RAG) have emerged as methods
to address these issues. However, the amount of high-quality data and distribution
shifts between training data and deployment data limit the application of fine-
tuning methods. Although RAG is effective, existing RAG-based approaches are
not sufficiently general to different medical domains and can potentially cause
misalignment issues, both between modalities and between the model and the
ground truth. In this paper, we propose a versatile multimodal RAG system,
MMed-RAG, designed to enhance the factuality of Med-LVLMs. Our approach
introduces a domain-aware retrieval mechanism, an adaptive retrieved contexts
selection, and a provable RAG-based preference fine-tuning strategy. These in-
novations make the RAG process sufficiently general and reliable, significantly
improving alignment when introducing retrieved contexts. Experimental results
across five medical datasets (involving radiology, ophthalmology, pathology) on
medical VQA and report generation demonstrate that MMed-RAG can achieve an
average improvement of 43.8% in the factual accuracy of Med-LVLMs.

1 Introduction

Artificial Intelligence (AI) has already transformed healthcare and still has a lot of potential for
further advancements [34, 38, 43, 37]. Recently, Medical Large Vision-Language Models (Med-
LVLMs) have shown great promise for intelligent diagnosis [16, 22, 46, 39]. Despite this potential,
current Med-LVLMs still face significant reliability issues, particularly their tendency to generate
non-factual medical responses [41, 28], making them unreliable in medical applications.

Recently, researchers focus on the factuality of Med-LVLMs through various techniques, including
fine-tuning [16, 22, 35, 46] and retrieval-augmented generation (RAG) [42, 10, 31]. Fine-tuning
is a direct method to improve model performance, but it faces several limitations in the medical
field. First, there is a lack of sufficient high-quality labeled data for fine-tuning in the medical
domain. Additionally, a distribution gap often exists between the training data and the test data [29],
leading to significantly worse model performance during deployment. Hence, RAG has emerged
as an alternative by providing external references, enhancing the factuality of Med-LVLMs [40].
However, despite its advantages, current RAG implementations in Med-LVLMs have significant
limitations. First, these methods tend to be dataset-specific, reducing their generalizability across
various medical domains. Second, these models are facing misalignment issues that lead to factuality
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Figure 1: Overview of MMed-RAG, a versatile factual multimodal RAG system designed to enhance
the reliability of Med-LVLMs.

problems. This misalignment may arise from the impact of adding RAG on the original models’
cross-modality alignment, as well as on the overall alignment between the model and ground truth.

To address these challenges, we propose a versatile factual Multimodal Medical RAG system called
MMed-RAG. Specifically, MMed-RAG first introduces a domain-aware retrieval mechanism, de-
signed to handle different domains of medical images more effectively. Here, we design a domain
identification module to adaptively select a corresponding retrieval model given the input medical
image. Secondly, we include a adaptive calibration approach for selecting the number of retrieved
contexts. Lastly, MMed-RAG incorporates RAG-based preference fine-tuning to enhance cross-
modality alignment and overall alignment with ground truth. The preference pairs are designed to
achieve two goals: first, to improve cross-modality alignment by encouraging the model to avoid
generating responses without utilizing input medical images, even the responses are correct; sec-
ond, to improve overall alignment by encouraging the model to understand retrieved contexts when
unsure, while avoiding interference from irrelevant retrieved information.

The primary contribution of this paper is MMed-RAG, a versatile multimodal RAG system designed
specifically for Med-LVLMs to generate more factual responses. Under mild assumptions, our the-
oretical analysis demonstrates that MMed-RAG mitigates both cross-modality misalignment and
overall misalignment with ground truth. Furthermore, empirical results on five medical multimodal
datasets, covering three medical image modalities (radiology, pathology, and ophthalmology), show
that MMed-RAG significantly improves the factual accuracy of Med-LVLMs.

2 MMed-RAG: A Versatile Medical RAG System

2.1 Domain-Aware Retrieval Mechanism

In MMed-RAG, we introduce a domain-aware retrieval mechanism to efficiently handle medical
images from different sources (e.g., radiology, pathology, ophthalmology). Specifically, we first
employ a domain identification module that assigns a domain label to each input medical image. To
achieve this, we create a small dataset with medical images as inputs and their corresponding domain
labels as outputs, using this dataset to fine-tune the BiomedCLIP model [45] to improve its domain
awareness. Formally, for a given medical image xv , we predict its domain d = F(xv). Based on
the assigned domain label d, the image xv is fed into the corresponding multimodal retriever Rd(·)
for knowledge retrieval.

Here, each multimodal retriever Rd(·) for each domain d is trained through contrastive learning [26].
Specifically, the visual and textual information Ximg, Xtxt are processed by their corresponding
encoders Eimg(·), Etxt(·) to generate textual and visual embeddings Vtxt = Etxt(Xtxt), Vimg =
Eimg(Ximg). Contrastive learning loss is then applied to maximize the similarity between text
and image embeddings representing the same example, while minimizing the similarity between
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embeddings representing different examples, as defined below:

L =
Limg + Ltxt

2
,where Limg = − 1

N

N∑
i=1

log
exp(Si,i)∑N
j=1 exp(Si,j)

,Ltxt = −
1

N

N∑
i=1

log
exp(Si,i)∑N
j=1 exp(Sj,i)

,

(1)
where S ∈ RN×N represents the similarity matrix between image and text modalities, calculated
as: S =

Vimg

|Vimg| · (
Vtxt

|Vtxt| )
T , where each element Si,j represents the similarity between the image

representation of example i and the text representation of example j.

Finally, for the input image xt, after feeding into the corresponding multimodal retriever Rd(·), the
multimodal retriever will retrieves the top-k most similar reports for the image. These retrieved re-
ports xr = Rd(xv) are then provided to the Med-LVLM M(·) as references to guide the generation.
2.2 Adaptive Retrieved Context Selection

Figure 2: Relations between se-
lected contexts and similarity score.

Following the domain-aware retrieval mechanism, the next
step is to determine the optimal amount of context to retrieve.
Retrieving too much or too little information can result in
hallucinations [42]. Current RAG methods applied to Med-
LVLMs generally rely on empirical results or fixed values
based on validation sets to select the optimal value of the
number of retrieved contexts k [42, 10, 31]. However, the
distribution of similarity scores varies depending on the com-
plexity of the image and its alignment with the textual information from the data source. These
fixed-k methods do not guarantee optimal performance on target data, as they overlook the similar-
ity scores generated during the retrieval process. To address this, we propose an adaptive method
that dynamically selects k based on the similarity scores of the retrieved contexts. Specifically, the
retrieved information is denoted as xr(k) = Rd(xv; k), where k represents the number of retrieved
contexts, and the corresponding similarity scores are denoted as Sk. For simplicity, when there is no
ambiguity, we will refer to xr(k) as xr.

As illustrated in Figure 2, our method is based on a key observation: the similarity scores (CLIP
score in this case) between retrieved contexts often exhibit a sharp decline after a certain number of
results (nearly top-9 in this case). This suggests that lower-quality information can still be included
among the top-k retrieved contexts when using a fixed-k strategy, especially in cases where the fixed
value of k is too large. These lower-quality retrievals introduce noise and irrelevant information,
which can significantly impair the model’s ability to generate factual and coherent responses. To
mitigate this issue, we draw inspiration from the Gap statistic method used in clustering [36] and
extend this concept to RAG for Med-LVLMs. Specifically, after retrieving the top-k contexts, we
perform an additional round of k optimization by analyzing the similarity ratios between consecutive
retrievals. These similarity ratios are denoted as ui = log(Si/Si+1) for 0 < i ≤ k, where Si

represents the similarity score of the i-th retrieved context. When ui exceeds a predefined threshold
γ, this indicates a substantial drop in relevance, suggesting that the remaining retrievals are less
likely to contribute preferredly to the model’s output. At this point i, we truncate k, effectively
discarding the less relevant retrievals that follow. This adaptive truncation mechanism ensures that
only the most relevant contexts are retained for generating the final response, reducing the risk of
hallucination and improving the factual accuracy of the outputs.

Although the threshold γ is fixed, this approach provides a adaptive way to balance the bias and
variance in retrieved contexts. By adapting to the characteristics of each input xv , our method
enhances the robustness of the retrieval process and ensures that the selection of k is tailored to the
specific data at hand, thereby improving overall performance across diverse contexts and tasks.

2.3 RAG-based Preference Fine-Tuning

To address cross-modality misalignment and the overall misalignment introduced by incorporating
retrieved knowledge, as shown in Algorithm 1, we propose a RAG-based preference fine-tuning
(RAG-PT) approach to fine-tune the target Med-LVLM M(·). Specifically, RAG-PT constructs two
types of preference pairs designed to mitigate both categories of misalignment.

Preference Pairs for Cross-Modality Alignment. We first construct preference pairs aimed at
improving cross-modality alignment. In this dataset, we select samples fromD = {x(i)

v , x
(i)
t , y(i)}Ni=1,
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where xv , xt, and y represent the input medical image, clinical query, and ground-truth answer,
respectively. For simplicity, we omit the sample index (i) in the following sections. A model’s
correct response using retrieved knowledge, i.e., M(xv, xt + xr) = y, is considered a preferred
response pi, where xr is the retrieved information. A dispreferred response ni is selected from cases
where the model makes a correct inference based on an unrelated image, i.e., M(x∗

v, xt) ̸= y, but
M(x∗

v, xt + xr) = y, reflecting the model’s reliance on the retrieved knowledge. The unrelated
images x∗

v are generated through a two-step process: first, we use the retriever to select an image x′
v

with the lowest similarity to the target image; then, we introduce diffusion noise into the selected
unrelated image. We define the noise step as s, and the noised image at step s is expressed as:

x∗
v =

√
ξs · x′

v +
√
1− ξs · ϵ, (2)

where ξ̄s =
∏s

i=0 ξi and ξs ∈ (0, 1) is a hyperparameter. The preference pairs constructed in
this stage are denoted as Dcm. By comparing the preferred and dispreferred responses in Dcm, we
encourage the model to prioritize the input medical image when generating responses.

Preference Pairs for Overall Alignment. Second, we construct preference pairs to improve overall
alignment, focusing on enhancing the model’s ability to effectively leverage retrieved knowledge
when generating responses. The preference pairs in this stage are constructed from two subsets.
The first subset, D1

oa, is designed to strengthen the model’s comprehension and reasoning abilities
regarding the retrieved knowledge. Preferred responses are selected where the model correctly an-
swers based on both the original image and the retrieved information, i.e., M(xv, xt + xr) = y,
while dispreferred responses represent cases where the model answers incorrectly based on the im-
age without using retrieval, i.e., M(xv, xt) ̸= y. Comparing these preferred and dispreferred re-
sponses enhances the model’s understanding of the retrieved information and improves the overall
effectiveness of RAG. In the second subset, D2

oa, the goal is to mitigate interference from the re-
trieved knowledge. Preferred responses are selected where the model correctly answers based solely
on the original image without using retrieved knowledge, i.e., M(xv, xt) = y, while dispreferred
responses occur when the model answers incorrectly using both the image and retrieved informa-
tion, i.e., M(xv, xt + xr) ̸= y. This helps the model learn when to rely on its internal knowledge
versus retrieved knowledge. Finally, we combine the first and second subsets to form the second set
of preference pairs, Doa = D1

oa ∪ D2
oa.

Finally, we merge the first and second preference set and denote the preference dataset as Dpt =

Dcm ∪ Doa = {x(i), y
(i)
w,o, y

(i)
l,o}

N
i=1, where y

(i)
w,o, y

(i)
l,o are represented as preferred and dispreferred

responses, respectively. Based on the curated preferences, we fine-tune Med-LVLM using direct
preference optimization [27] with the following loss:

Lpt = −E(x,yw,o,yl,o)∼D

[
log σ

(
α log

πθ(yw,o|x)
πo(yw,o|x) − α log

πθ(yl,o|x)
πo(yl,o|x)

)]
. (3)

3 Experiment

3.1 Experimental Setups

Baseline Methods. We compare MMed-RAG with two types of LVLM hallucination mitigation
methods that show promising results in natural image understanding. 1) Decoding-based methods,
including Greedy Decoding, Beam Search [32], DoLa [6], OPERA [11], VCD [15]. 2) Multi-
modal RAG-based methods, including MedDr [10], FactMM-RAG [31], RULE [42]. Furthermore,
we compare the performance with other open-source Med-LVLMs, including Med-Flamingo [22],
MedVInT [46], RadFM [39].

Evaluation Datasets. We utilize five medical vision-language datasets for medical VQA and report
generation tasks, i.e., MIMIC-CXR [13], IU-Xray [7], Harvard-FairVLMed [21], PMC-OA [18] (we
only select the pathology part) and Quilt-1M [12]. These datasets cover radiology, ophthalmology,
and pathology. The detailed dataset descriptions are provided in the Appendix A.2.

Evaluation Metrics. We use Accuracy, F1 Score and AUROC for evaluating medical VQA task,
and BLEU Score [24], ROUGE-L [17] and METEOR [3] for evaluating report generation task.

3.2 Main Results

Comparison with Baselines. We compare MMed-RAG with baseline methods on medical VQA
and report generation tasks, with the results presented in Table 1 and Table 11, respectively. Overall,
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Table 1: Model performance (%) of different methods based on LLaVA-Med-1.5 on medical VQA
task. Notably, we report the accuracy, F1 score and AUROC. The best results and second best results
are highlighted in red and blue , respectively.

Models Radiology Ophthalmology Pathology

IU-Xray MIMIC-CXR Harvard-FairVLMed Quilt-1M PMC-OA (Pathology)

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

LLaVA-Med-1.5 75.47 64.04 67.46 75.79 80.49 68.84 63.03 74.11 63.05 62.80 72.90 60.03 59.28 71.98 54.19

+ Greedy 76.88 65.59 68.74 78.32 86.75 71.13 82.54 85.98 70.09 64.72 70.12 58.75 58.61 70.42 53.10
+ Beam Search 76.91 66.06 68.77 81.56 86.36 73.79 80.93 88.08 68.94 63.52 69.33 57.65 56.29 69.84 52.89
+ DoLa 78.00 66.75 72.19 81.35 85.73 72.73 76.87 85.53 67.10 63.47 69.10 57.58 57.71 70.27 52.95
+ OPERA 70.59 61.54 63.22 69.34 76.66 62.46 71.41 81.37 65.59 60.51 66.32 54.79 55.32 68.30 51.86
+ VCD 68.99 54.35 61.08 70.89 75.57 64.61 65.88 77.20 64.16 61.43 67.39 55.72 55.10 67.94 51.62

+ MedDr 83.33 67.80 77.15 55.16 56.18 58.47 70.17 80.72 64.15 68.15 73.23 67.01 59.97 69.19 57.01
+ FactMM-RAG 84.51 68.51 77.07 77.58 81.86 70.09 83.67 87.21 72.20 69.25 73.62 68.15 60.49 69.38 57.31
+ RULE 87.84 78.00 85.78 83.92 87.49 83.44 87.12 92.89 77.08 68.97 73.80 68.13 61.41 70.36 58.91

MMed-RAG 89.54 80.72 87.13 83.57 88.49 85.08 87.94 92.78 80.81 72.95 76.35 72.25 64.54 73.09 61.42

MMed-RAG outperforms all baselines across nearly all metrics and datasets. Specifically, MMed-
RAG demonstrates a significant performance boost, improving by 18.5% and 69.1% over the orig-
inal Med-LVLM in medical VQA and report generation tasks, respectively. When compared to
baseline methods, MMed-RAG surpasses decoding-based approaches, achieving improvements of
11.5% and 44.2% in the two tasks. Furthermore, recent RAG-based methods show substantial im-
provements over earlier techniques, yet our approach still outperforms RAG-based baselines by
2.8% and 16.1% in the medical VQA and report generation tasks, respectively. This indicates that
MMed-RAG effectively mitigates misalignment issues introduced by RAG.

3.3 Analysis Table 2: Ablation results on two datasets
covering different domains. RG: report gen-
eration, FairVLMed: Harvard-FairVLMed.

Model IU-Xray FairVLMed
VQA RG VQA RG

LLaVA-Med-1.5 68.99 10.04 66.63 13.41
+DR 77.12 13.23 72.69 15.89
+RCS 79.56 17.92 75.74 17.22
+RAG-PT (Ours) 85.80 29.80 87.18 20.42

Ablation Studies. We conduct a series of ablation
experiments to evaluate the impact of each compo-
nent in MMed-RAG. The results for both medical
VQA and report generation tasks on the IU-Xray and
Harvard-FairVLMed datasets are summarized in Ta-
ble 2. According to the results, we can see that: (1)
The domain-aware retrieval mechanism (DR) sig-
nificantly improves the factuality of Med-LVLM,
with an average performance increase of 17.9% and
16.1% on the IU-Xray and FairVLMed datasets, respectively. Here, the retrieved knowledge aids
the model in generating more factual responses. (2) Building on this, the introduction of adaptive re-
trieval context selection (RCS) further filters out unreliable retrieved contexts, yielding an additional
performance boost of 19.3% and 6.3% on the IU-Xray and FairVLMed datasets. (3) The inclusion of
RAG-based preference fine-tuning (RAG-PT) enhances the model’s understanding of the retrieved
knowledge, leading to substantial performance gains of 37.1% and 16.9% on the respective datasets.
This demonstrates that RAG-PT effectively addresses misalignment issues.
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A Experiment

A.1 Experimental Setup

A.1.1 Data Statistics

The data quantities used in this study are presented in Table 3, Table 4 and Table 5. We clarify that
for training the retriever, the data refers to the number of image-text pairs, while for fine-tuning,
it refers to the number of QA items. The “All” category represents the total amount of data used
to construct the preference dataset for RAG-PT. The training of RAG-PT includes three types of
samples: (a) clean samples with originally correct answers that remain correct even after adding
noise to the images, (b) clean image samples with originally incorrect answers that become correct,
and (c) clean image samples with originally correct answers that become incorrect.

Table 3: Data statistics for medical VQA task. "Train (DR)" refers to the number of image-text pairs
for retriever training, "All (RAG-PT)" refers to the total data for RAG-PT, and "Train (RAG-PT)-
a/b/c" refer to the respective subsets for RAG-PT training.

Dataset Train (DR) All (RAG-PT) Train (RAG-PT)-a Train (RAG-PT)-b Train (RAG-PT)-c

Ophthalomology 7000 3247 1082 1030 1135
Radiology 4034 4836 1612 1989 1235
Pathology 5000 1990 663 523 804

Table 4: Data statistics for report generation. "Train (DR)" refers to the number of image-text pairs
for retriever training, "All (RAG-PT)" refers to the total data for RAG-PT, and "Train (RAG-PT)-
a/b/c" refer to the respective sample categories for RAG-PT training.

Dataset Train (R) All (RAG-PT) Train (RAG-PT)-a Train (RAG-PT)-b Train (RAG-PT)-c

Ophthalmology 7000 3247 142 78 207
Radiology 4034 4836 233 126 342

Table 5: Data statistics for various datasets. The rows represent the number of images and QA pairs
for each dataset.

Harvard-FairVLMed IU-Xray MIMIC-CXR PMC-OA Quilt-1M

# Images 713 589 700 530 559
# QA Items 4285 2573 3470 3124 1994

A.1.2 Hyperparameter Settings

Following the settings of CLIP [26], we adopt the same architecture and hyperparameters for the
vision and text encoders. The vision encoder is a ResNet-50 [9], and the text encoder is a bio-
bert-based model [2]. We use the AdamW optimizer with a learning rate of 10−4 and a batch size
of 512. The model is trained for 360 epochs. For the first phase, we trained for 3 epochs, and
for the second phase, the training was conducted for 1 epoch. Training for 20 hours on one A100
80G GPU. For the RAG-PT phase, we adjust the diffusion noise level, symbolized by ξ through a
specific formula: ξ = Sigmoid(lt)× (0.5× 10−2 − 10−5) + 10−5, where ϵ is drawn from a normal
distribution. The reports available for retrieval are from the training set of the corresponding dataset.
In our experiments, we apply cross-validation to tune all hyperparameters with grid search. All the
experiments are implemented on PyTorch 2.1.2 using four NVIDIA RTX A6000 GPUs. It takes
roughly 3 and 4 hours for fine-tuning CLIP and LLaVA-Med-1.5 7B, respectively.

A.2 Evaluated Datasets

We utilize five open-source medical vision-language datasets, i.e., MIMIC-CXR [13], IU-Xray [7],
Harvard-FairVLMed [21], PMC-OA [18] and Quilt-1M [12].
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• MIMIC-CXR [13] is a large publicly available dataset of chest X-ray images in DICOM format
with associated radiology reports.

• IU-Xray [7] is a dataset that includes chest X-ray images and corresponding diagnostic reports.

• Harvard-FairVLMed [21] focuses on fairness in multimodal fundus images, containing image
and text data from various sources. It aims to evaluate bias in AI models on this multimodal data
comprising different demographics.

• PMC-OA [18] is a large-scale dataset comprising figure-caption pairs extracted from PubMed
Central. It covers 2,478,267 papers and includes a total of 12,211,907 figure-caption pairs. We
only use the pathology subset filtered by GPT-4 based on the captions.

• Quilt-1M [12] is the largest vision-language dataset in histopathology, containing 1 million
image-text pairs sourced from platforms such as YouTube, Twitter, research papers, and other
parts of the internet.

A.3 Evaluated Models

We evaluate five open-source Med-LVLMs, i.e., LLaVA-Med [16], Med-Flamingo [22], Med-
VInT [46], RadFM [39], miniGPT-Med [1]. The selected models are all at the 7B level.

• LLaVA-Med [16] is a vision-language conversational assistant, adapting the general-domain
LLaVA [20] model for the biomedical field. The model is fine-tuned using a novel curriculum
learning method, which includes two stages: aligning biomedical vocabulary with figure-caption
pairs and mastering open-ended conversational semantics. It demonstrates excellent multimodal
conversational capabilities.

• Med-Flamingo [22] is a multimodal few-shot learner designed for the medical domain. It builds
upon the OpenFlamingo, continuing pre-training with medical image-text data from publications
and textbooks. This model aims to facilitate few-shot generative medical visual question answer-
ing, enhancing clinical applications by generating relevant responses and rationales from minimal
data inputs.

• RadFM [39] serve as a versatile generalist model in radiology, distinguished by its capability to
adeptly process both 2D and 3D medical scans for a wide array of clinical tasks. It integrates
ViT as visual encoder and a perceiver module, alongside the MedLLaMA language model, to
generate sophisticated medical insights for a variety of tasks. This design allows RadFM to not
just recognize images but also to understand and generate human-like explanations.

• MedVInT [46], which stands for Medical Visual Instruction Tuning, is designed to interpret med-
ical images by answering clinically relevant questions. This model features two variants to align
visual and language understanding: MedVInT-TE and MedVInT-TD. Both MedVInT variants
connect a pre-trained vision encoder ResNet-50 adopted from PMC-CLIP [18], which processes
visual information from images. It is an advanced model that leverages a novel approach to align
visual and language understanding.

• miniGPT-Med [1] is a vision-language model derived from large-scale language models and
tailored for radiology diagnosis applications. It handles various medical vision-language task
using distinct task identifiers, demonstrating advanced performance in disease grounding, medical
report generation, and medical VQA.

A.4 Overview of the Baselines

We compare MMed-RAG with two types of LVLM hallucination mitigation methods that show
promising results in natural image understanding. 1) Decoding-based methods, including Greedy
Decoding, Beam Search [32], DoLa [6], OPERA [11], VCD [15]. These methods manipulate the
logits of the model’s output tokens to enhance factual accuracy. 2) Multimodal RAG-based methods,
including MedDr [10], FactMM-RAG [31], RULE [42].

• Greedy decoding involves selecting the most probable next token at each step of generation.
While it is efficient and straightforward, it can lead to suboptimal outcomes by getting stuck in
repetitive or less creative patterns.
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Instruction [Round1]
You are a professional medical expert. I will provide you with some medical reports. Please
generate some questions with answers (the answer should be yes or no) based on the provided
report. The subject of the questions should be the medical image or patient, not the report.
Below are the given report:
[REPORT]
Instruction [Round2]
Please double-check the questions and answers, including how the questions are asked and
whether the answers are correct. You should only generate the questions with answers and no
other unnecessary information.
Below are the given report and QA pairs in round1:
[REPORT]
[QA PAIRS R1]

Table 6: The instruction to GPT-4 for generating QA pairs.

• Beam search [32] expands on greedy decoding by maintaining multiple candidate sequences (or
"beams") at each step, allowing for a broader exploration of possible outputs. This approach bal-
ances quality and diversity by selecting the top-k sequences based on their probabilities, resulting
in more coherent and creative text generation compared to greedy decoding.

• DoLa [6] derives the next-token distribution by contrasting the logits projected from later layers
against those from earlier layers, leveraging the fact that factual knowledge in LLMs is typically
localized within specific transformer layers.

• OPERA [11] is a LVLMs decoding method based on an Over-trust Penalty and a Retrospection-
Allocation strategy The key insight is that hallucinations are closely tied to knowledge aggregation
patterns in the self-attention matrix, where MLLMs tend to focus on summary tokens, neglecting
image tokens and resulting in content hallucination.

• VCD [15] is a decoding method that tackles the object hallucination issue in LVLMs. It con-
trasts output distributions derived from original and distorted visual inputs to calibrate the model’s
output without the usage of external tools, reducing the the over-reliance on statistical bias and
unimodal priors.

• MedDr [10] is a healthcare foundation model built upon generated diagnosis-based datasets,
demonstrating advanced capabilities in various data modalities. Meddr also integrates a retrieval-
augmented medical diagnosis strategy during inferencing to enhance factual accuracy.

• FactMM-RAG [31] is a fact-aware multimodal retrieval-augmented pipeline for radiology report
generation. It utilize RadGraph to annotate chest radiograph reports and mine clinically relevant
pairs to train a universal multimodal retriever.

• RULE [42] is an advanced medical retrieval-augmented generation strategy designed to enhance
the factuality of Med-LVLMs. First, it introduces a robust strategy for controlling factuality risk
through the calibrated selection of retrieved contexts. Second, RULE develops a preference opti-
mization strategy to balance Med-LVLMs’ intrinsic knowledge and the retrieved information.

A.5 Prompts

We convert the medical reports into a series of closed-ended questions with yes or no answers. To
ensure the quality of the VQA data, we perform a round of self-checks using GPT-4 [23]. Finally,
we conduct an round of manual filtering to remove questions with obvious issues or those related to
multiple images or patient histories. The prompt templates used are shown in Table 6.

A.6 Additional Results

Generalization on Different Backbones. To demonstrate the compatibility of our approach across
different backbone models, we apply it to LLaVA-Med-1.0. As shown in Table 7, our method
delivers an average improvement of 40.3% over the original LLaVA-Med-1.0, further highlighting
its effectiveness in enhancing RAG performance and its adaptability to various backbones. MMed-
RAG can be transferred to different Med-LVLMs, yielding consistent improvements across various
domains, demonstrating the compatibility of our method.
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Table 7: Performance on different backbones.
Model IU-Xray FairVLMed

VQA RG VQA RG

LLaVA-Med-1.0 61.73 8.74 59.54 10.59
+MMed-RAG 80.32 22.63 78.49 15.88

Table 8: Model performance (%) of different Med-LVLMs based on LLaVA-Med-1.5 on medical
VQA task.

Models Radiology Ophthalmology Pathology
IU-Xray MIMIC-CXR Harvard-FairVLMed Quilt-1M PMC-OA (Pathology)

LLaVA-Med-1.5 75.47 75.79 63.03 62.80 59.28
MMed-RAG 89.54 83.57 87.94 72.95 64.54

Med-Flamingo 26.74 61.27 42.06 27.11 32.62
MedVInT 73.34 66.06 35.92 26.81 27.77
RadFM 26.67 69.30 52.47 27.02 25.12
miniGPT-Med 54.87 53.92 66.73 26.82 27.03

Detailed Results of Other Med-LVLMs. As shown in Table 8, we illustrate the detailed perfor-
mance simply shown in Table 9.

Comparison with Other Med-LVLMs. To provide a comprehensive comparison, we evaluate
MMed-RAG against other open-source Med-LVLMs to demonstrate the superiority of our approach.
We assess the performance of these models across different medical image modalities, reporting
the average results for medical VQA and report generation tasks in Table 9 (see Appendix A.6
for detailed results). Our findings show that MMed-RAG significantly outperforms Med-LVLMs
pre-trained on large-scale datasets across various domains. This reinforces the generalizability and
effectiveness of our approach across diverse image domains and medical multimodal tasks.

Impact of the Preference Data in RAG-PT. To better understand how RAG-PT mitigates the mis-
alignment issue and improves performance, we conducted a detailed study on the training prefer-
ence data composition of RAG-PT. As described in Section 2.3, the RAG-PT data is designed to
address both cross-modality alignment and overall alignment objectives, with the latter focusing on
enhanced understanding of retrieved knowledge and minimizing retrieval interference. The detailed
experimental results in Table 10 demonstrate that the preference data tailored for different alignment
objectives positively impacts the model’s performance, showing the effectiveness of RAG-PT.

How Effective is MMed-RAG in Mitigating Misalignment Issues? To gain a more intuitive un-
derstanding of the effectiveness of MMed-RAG in addressing misalignment issues: 1) we calculate
the proportion of errors caused by RAG and compare it to the proportion after incorporating MMed-
RAG. 2) We visualize the attention maps of image and text tokens with and without RAG-PT. First,
as mentioned in Section 2.3, the model may directly copy reference information, referred to as
Copy-Reference (CR) rate. After applying MMed-RAG, as shown in Figure 3, the CR rate drops to
28.19%. Additionally, the proportion of errors affected by RAG interference, referred to as Over-
Reliance (OR) rate, which is initially 43.31%, decreased to 8.38% after incorporating MMed-RAG.
Furthermore, as shown in Figure 4, the original Med-LVLM tends to rely more heavily on text while
ignoring visual information. When retrieval information is introduced, the original Med-LVLM fo-
cused more on the retrieved answers, even if the content is incorrect. After RAG-PT, the model
significantly increases its attention to visual information and reduces the interference of RAG, thus
better aligning the model’s knowledge with the fundamental facts.

B Related Work

Factuality in Med-LVLMs. The rapid advancements in Large Vision-Language Models
(LVLMs) [19, 20] are beginning to influence the field of medical image analysis. Several Med-
LVLMs [16, 22, 46, 39], have emerged, showing remarkable performance across different medical
imaging modalities. Despite these advances, Med-LVLMs continue to present notable factual hallu-
cination [41, 28], generating textual outputs that contradict medical visual information. This raises
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Table 9: Performance comparison with several Med-LVLMs. Rad: Radiology, Opt: Ophthalomol-
ogy, Pat: Pathology. Model Rad Opt Pat

Med-Flamingo 27.42 22.50 29.11
MedVInT 33.17 29.40 25.33
RadFM 35.82 27.07 24.82
miniGPT-Med 36.66 25.28 23.16
MMed-RAG 56.94 56.38 54.10

Table 10: Performance using RAG-PT based on subsets of preference data.
Model IU-Xray FairVLMed

VQA RG VQA RG

LLaVA-Med-1.5 68.99 10.04 66.63 13.41
+RAG-PT 1 80.19 19.38 79.42 18.37
+RAG-PT 2 80.27 20.16 79.35 18.66
+RAG-PT 3 81.30 19.43 80.07 18.92

concerns about potential misdiagnoses or overlooked conditions. Recently, benchmarks have been
developed to assess the accuracy of Med-LVLMs in tasks such as visual question answering (VQA)
and report generation [41, 28]. However, research aimed at enhancing the factual accuracy of Med-
LVLMs remains relatively unexplored.

Retrieval Augmented Generation in Med-LVLMs. Retrieval-Augmented Generation (RAG) has
proven to be a powerful technique for enhancing factual accuracy in language modeling [8, 40, 4,
25, 30]. In the biomedical domain, RAG leverages external knowledge to guide the generation of
Med-LVLMs, offering clear advantages in tasks such as medical VQA and report generation [44, 14,
33, 10, 31]. However, these works mainly focus on enhancing the relevance of the retrieved contexts
without considering the model’s understanding of retrieved knowledge. Recently, RULE [42] is
proposed to use preference fine-tuning to reduce the model’s over-reliance on retrieved contexts.
However, it still overlooks misalignment issues caused by RAG, as well as the generalizability of
the retriever given the diverse domains of input images. In response, we propose MMed-RAG
to mitigate these risks, enhancing the factuality of Med-LVLMs by addressing these overlooked
factors. This can lead to a better cross-modality and overall alignment to enhance the understanding
of retrieved knowledge and visual information, ensuring more consistent and reliable performance
across tasks.

C Preliminaries

In this section, we will provide a brief overview of Med-LVLMs and preference optimization.

Medical Large Vision Language Models. Med-LVLMs bridge LLMs with medical visual mod-
ules, allowing the model to take medical image xv and clinical query xt as input x, and autoregres-
sively predict the probability distribution of the next token. The text output is denoted as y.

Preference Optimization. Preference optimization has achieved remarkable results in LLM align-
ment. Give an input x, a language model policy πθ can produce a conditional distribution πθ(y | x)
with y as the output text response. The recently popular DPO [27] utilizes preference data achieve

Figure 3: Alignment analysis with and without RAG. OR: Over-Reliance; CR: Copy-Reference.
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Algorithm 1: Versatile Multimodal RAG System (MMed-RAG)

Input: D = {x(i)
v , x

(i)
t , y(i)}Ni=1: Dataset; πθ: Parameters of the Med-LVLM; Med-LVLM:M(·, ·);

Domain Identification: F(·); Retriever: R(·); Noisy Function: I(·).
Output: πref: Parameters of the reference model.

1 ▷ Training Stage
2 Initialize Dcm with an empty set
3 foreach (xv, xt, y) ∈ D do
4 Generate retrieved contexts with an assigned domain label xr ←RF(xv)(xv)
5 Generate the noisy image x∗

v ← I(xv)
6 ▷ Cross-Modality Alignment
7 ifM(xv, (xt, xr)) = y andM(x∗

v, (xt, xr)) = y then
8 Select the preferred response yw,o1 ← y, dispreferred response yl,o1 ←M(x∗

v, (xt, xr))
9 Put {(xv, xt), yw,o1, yl,o1} into Dcm

10 ▷ Overall Alignment
11 Initialize D1

oa and D2
oa with empty set

12 ifM(xv, (xt, xr)) = y andM(xv, xt) ̸= y then
13 Select the preferred response yw,o2 ← y, dispreferred response yl,o2 ←M(xv, xt)

14 Put {(xv, xt), yw,o2, yl,o2} into D1
oa

15 ifM(xv, xt) = y andM(xv, (xt, xr)) ̸= y then
16 Select the preferred response yw,o3 ← y, dispreferred response yl,o3 ←M(xv, (xt, xr))

17 Put {(xv, xt), yw,o3, yl,o3} into D2
oa

18 Dpt = Dcm ∪ Doa, Doa = D1
oa ∪ D2

oa

19 foreach ((xv, xt), yw,o, yl,o) ∈ Dpt do
20 Compute the losses Lpt following (3) and update πref
21 ▷ Inference Stage
22 foreach test sample (xv, xt) do
23 Select top-k retrieved contexts with an assigned domain label xr ←RF(xv)(xv)
24 Get the predictions of the model w/ RAG-PT p←M(xv, (xt, xr))

objective alignment in LLMs. The preference data is defined as D = {x(i), y
(i)
w , y

(i)
l }

N
i=1, where y

(i)
w

and y
(i)
l represent preferred and dispreferred responses given an input prompt x. The probably of

obtaining each preference pair is p(yw ≻ yl) = σ(r(x, yw) − r(x, yl)), where σ(·) is the sigmoid
function. In DPO, the optimization can be formulated as classification loss over the preference data
as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
α log πθ(yw|x)

πref(yw|x) − α log πθ(yl|x)
πref(yl|x)

)]
. (4)

where πθ represents the reference policy, which is the LLM fine-tuned through supervised learning.

D Theoretical Analysis
In this section, we provide a theoretical analysis of the model obtained from equation 3 and examine
how the image input and retrieved context influences the model. Recall that xv, y, xt, xr denotes
input medical image, groundtruth answer, question, and retrieved information, respectively.
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Table 11: Model performance (%) of different methods based on LLaVA-Med-1.5 on report gener-
ation task. Notably, we report the average BLEU, ROUGE-L, METEOR.

Models Radiology Ophthalmology

IU-Xray MIMIC-CXR Harvard-FairVLMed

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

LLaVA-Med-1.5 9.64 12.26 8.21 12.11 13.05 11.16 18.11 11.36 10.75

+ Greedy 11.47 15.38 12.69 16.63 14.26 14.19 17.98 11.49 13.77
+ Beam Search 12.10 16.21 13.17 16.97 14.74 14.43 18.37 12.62 14.50
+ DoLa 11.79 15.82 12.72 17.11 14.89 14.81 18.26 12.51 14.51
+ OPERA 10.66 14.70 12.01 15.40 12.52 13.72 16.59 11.47 13.63
+ VCD 10.42 14.14 11.59 15.18 12.30 13.38 16.73 11.38 13.89

+ MedDr 12.37 16.45 13.50 18.59 15.72 16.77 19.82 13.72 15.40
+ FactMM-RAG 14.70 18.05 15.92 18.71 15.84 16.82 20.82 14.17 15.31
+ RULE 27.53 23.16 27.99 18.61 15.96 17.42 22.35 14.93 17.74

MMed-RAG 31.38 25.59 32.43 23.25 12.34 20.47 24.82 16.59 19.85

D.1 The Improvement on Cross-Modality Alignment

We first consider the loss for cross-modality alignment,

Lcm = −E(x,yw,o,yl,o)∼Dcm

[
log σ

(
α log

πθ(yw,o|x)
πo(yw,o|x) − α log

πθ(yl,o|x)
πo(yl,o|x)

)]
. (5)

where (xw, yw,o) ∼ qw(xw, yw,o|xt, xr) and (xl, yl,o) ∼ ql(xl, yl,o|xt, xr) represent distributions
of the preferred responses and dispreferred responses on Dcm, respectively. Let x denote (xv, xr, xt)
Define the weight of xv with respect to log πθ(y|x) as

wt(xv, πθ) :=y∼πθ(·|x)

[
∂

∂xv
log πθ(y|x)

]2

(6)

Definition D.1 describes how log πθ(y|x) changes with respect to xv , and the weight is always
non-dispreferred. We demonstrate that this is a reasonable definition through Lemma D.1. For
linear model y = θ1xv + θ2xt + ϵ such that ϵ ∼ N(0, 1), wt(xv, πθ) = θ21

Let h(x, y), abbreviate as h, be

h :=

[∑
y

πo(y|x)
(
qw(y|x)
ql(y|x)

) 1
α

]−1 (
qw(y|x)
ql(y|x)

) 1
α

(7)

Assume that wt(xv, πo) < c2, where

c =

√∥∥∥∥√πo(y|x) ·
∂

∂xv
h

∥∥∥∥2

2

+

∫ (
∂

∂xv
h

)2
πo(y|x)

h
dy −

∥∥∥∥√πo(y|x) ·
∂

∂xv
h

∥∥∥∥
2

(8)

Assumption D.1 requires that xv has a small weight in log πo(y|x). A model πo(y|x) independent of
xv could satisfy Assumption D.1. In this case, the reference model generates answers without using
information from the image. Suppose that Assumption D.1 holds, cross-modality loss increase the
weight of xv .

wt(xv, πθ) > wt(xv, πo) (9)

Theorem D.1 indicates that when the weight of xv is too small in the initial model πo(y|x), the
cross-modality loss function adjusts the model to place greater emphasis on images, informed by
the retrieved data. Intuitively, for any sample (x, y), generating unrelated images causes the policy
to rely less on images. By using samples from this distribution as negative samples, the new model
diverges from the initial model, increasing its reliance on images.

D.2 The Improvement on Overall Alignment

In this section, we analyze the improvement on overall alignment. Let q1w(xv, yw,o|xt, xr) and
q1l (xv, yl,o|xt) represent distributions of the preferred responses and dispreferred responses on
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D1
oa, respectively; q2w(xv, yw,o|xt) and q2l (xv, yl,o|xt, xr) represent distributions of the preferred

responses and dispreferred responses on D2
oa, respectively. Overall loss is defined by

Loa = −E(x,yw,o,yl,o)∼Doa

[
log σ

(
α log

πθ(yw,o|x)
πo(yw,o|x) − α log

πθ(yl,o|x)
πo(yl,o|x)

)]
. (10)

Consider π as the generative distribution underlying , construction of D1
oa and D2

oa indicate that
there is a significant gap between π(y|xv, xt, xr) and π(y|xv, xt, x̃r) for xr generates true answer
while x̃r generate a false one. Assume that π(y|xx, xr, xt) : x → y is L-lipschitz continuous on
xr for all (xv, xt, y) such that |π(y|xv, xt, xr) − π(y|xv, xt, x̃r)| ≤ L · dx(xr, x̃r), where dx is
any distance metric on the text space. Based on Assumption D.2, x̃r can be viewed as being far
from the meaningful retrieved information xr, resulting in different weight in the model. Then, we
claim in the following theorem that the overall loss in equation 10 can effectively leverage retrieved
knowledge while training.

Let h1(xv, xt, xr, y), abbreviate as h1, be

h1 :=

[∑
y

πo(y|x)
(
q1w(y|xv, xt, xr) + q2w(y|xv, xt)

q1l (y|xv, xt) + q2l (y|xv, xt, xr)

) 1
α

]−1 (
q1w(y|xv, xt, xr) + q2w(y|xv, xt)

q1l (y|xv, xt) + q2l (y|xv, xt, xr)

) 1
α

(11)
Assume that wt(xr, πo) < c21 and wt(x̃r, πo) > c22, where

c1 =

√∥∥∥∥√πo ·
∂h1

∂xr

∥∥∥∥2

2

+

∫ (
∂h1

∂xr

)2
πo

h1
dy −

∥∥∥∥√πo ·
∂h1

∂xr

∥∥∥∥
2

c2 =

√∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥2

2

+

∫ (
∂h1

∂x̃r

)2
πo

h1
+

(
∂πo

∂x̃r

)2
h1

πo
dy +

∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥
2

(12)

Suppose that Assumption D.2 holds, then overall loss 10 increase the weight of xr and decrease the
weight of x̃r.

wt(xr, πθ) > wt(xr, πo), wt(x̃r, πθ) < wt(x̃r, πo) (13)

Theorem D.2 suggests that the model tend to improve the overall alignment. When x̃r generates a
false answer, the training procedure tends to reduce the reliance on x̃r, resulting in a decrease in the
weight assigned to x̃r. Conversely, if xr is helpful for generating the true answer, πθ(y|x) tend to
enhance its use of xr.

E Proofs for Theoretical Results in Section D

Here we provide proofs for the results in Section D.

E.1 Notations

Let xv, y, xt, xr be input medical image, ground-truth answer, question, and retrieved information,
respectively. Denote (xw, yw,o) ∼ qp(xw, yw,o|xt, xr) and (xl, yl,o) ∼ ql(xl, yl,o|xt, xr) as distri-
butions of the preferred responses and dispreferred responses. Let x denote (xv, xr, xt). We aim to
a fine-tune a generative model πθ(y|x, xt) through DPO loss [27]:

πθ
E(xw,xl,yw,o,yl,o)∼DU

(
α log

πθ(yw,o|x)
πo(yw,o|x)

− α log
πθ(yl,o|x)
πo(yl,o|x)

)
. (14)

where U(t) = log(1 + exp(−t)). Define the weight of xv with respect to log πθ(y|x) as

wt(xv, πθ) :=y∼πθ(·|x)

[
∂

∂xv
log πθ(y|x)

]2
(15)

E.2 Assumptions

(Large parameter space) Assume that π(xv, y|xt, xr) lies in the optimization space {πθ, θ ∈ Θ}

such that π(xv, y|xt, xr) ∝ πo(xv, y|xt, xr)
(

qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α
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Assumption E.2 requires that the parameter space sufficiently large to ensure that πθ can achieve its
global optimum, allowing us to represent the optimizer with a closed form.

Let h(x, y), abbreviate as h, be

h :=

[∑
y

πo(y|x)
(
qw(y|x)
ql(y|x)

) 1
α

]−1 (
qw(y|x)
ql(y|x)

) 1
α

(16)

Assume that wt(xv, πo) < c2, where

c =

√∥∥∥∥√πo(y|x) ·
∂

∂xv
h

∥∥∥∥2

2

+

∫ (
∂

∂xv
h

)2
πo(y|x)

h
dy −

∥∥∥∥√πo(y|x) ·
∂

∂xv
h

∥∥∥∥
2

(17)

Let h1(xv, xt, xr, y), abbreviate as h1, be

h1 :=

[∑
y

πo(y|x)
(
q1w(y|xv, xt, xr) + q2w(y|xv, xt)

q1l (y|xv, xt) + q2l (y|xv, xt, xr)

) 1
α

]−1 (
q1w(y|xv, xt, xr) + q2w(y|xv, xt)

q1l (y|xv, xt) + q2l (y|xv, xt, xr)

) 1
α

(18)
Assume that wt(xr, πo) < c21 and wt(x̃r, πo) > c22, where

c1 =

√∥∥∥∥√πo ·
∂h1

∂xr

∥∥∥∥2

2

+

∫ (
∂h1

∂xr

)2
πo

h1
dy −

∥∥∥∥√πo ·
∂h1

∂xr

∥∥∥∥
2

c2 =

√∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥2

2

+

∫ (
∂h1

∂x̃r

)2
πo

h1
+

(
∂πo

∂x̃r

)2
h1

πo
dy +

∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥
2

(19)

E.3 Proofs

Suppose that Assumption E.2 hold, optimizing equation 14 gives

πθ(y|x) ∝ πo(y|x)
(
qw(y|x)
ql(y|x)

) 1
α

(20)

Lemma E.3 indicates that the model tends to increase πo(y|x) if qw(y|x) > ql(y|x), which is more
likely to occur when (xv, y) represents a preferred sample given xt and xr. Below, we provide an
application of Lemma E.3 using a linear regression example. Lemma E.3 is proved with Lemma E.3
and Lemma E.3. (Lemma C.1 in [5]) For a, b > 0, the following inequality holds

a · U(t) + b · U(−t) ≥ a log(1 + b/a) + b log(1 + a/b)

and equality holds if and only if t = log(a/b) Denote{
p1(xw, yw,o, xl, yl,o|xt, xr) = qw(xw, yw,o|xt, xr) · ql(xl, yl,o|xt, xr)
p2(xw, yw,o, xl, yl,o|xt, xr) = ql(xw, yw,o|xt, xr) · qw(xl, yl,o|xt, xr)

and abbreviated as p1 and p2 for notational convenience. Then,

2 [U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr))]

≥2 log 2−
(
p1
∥∥p1 + p2

2

)
−
(
p2
∥∥p1 + p2

2

)
(21)

Equality holds if and only if

f(x, y) = g(x) + log
qw(xv, y|xt, xr)

ql(xv, y|xt, xr)
(22)
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where g(x) is any function that is possibly dependent on xv , xt and xr.

2 [U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr))]

=

∫
q(xt, xr) · p1 · U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr)) dxdy

+

∫
q(xt, xr) · p2 · U (f(xl, yl,o, xt, xr)− f(xw, yw,o, xt, xr)) dxdy

≥
∫

q(xt, xr)

[
p1 · log

(
1 +

p2
p1

)
+ p2 · log

(
1 +

p1
p2

)]
dxdy

=2 log 2 +

∫
q(xt, xr)

[
p1 · log

(
p1 + p2
2p1

)
+ p2 · log

(
p1 + p2
2p2

)]
dxdy

=2 log 2−KL

(
p1
∥∥p1 + p2

2

)
−KL

(
p2
∥∥p1 + p2

2

)

(23)

where the first inequality follows from Lemma E.3. For equivalence,

f(x, yw,o, xt, xr)− f(xl, yl,o, xt, xr) = log
qw(xw, yw,o|xt, xr) · ql(xl, yl,o|xt, xr)

ql(xw, yw,o|xt, xr) · qw(xl, yl,o|xt, xr)
(24)

Thus, for any xw, yw,o, xl, yl,o, xt, xr,

f(xw, yw,o, xt, xr)− log
qw(xw, yw,o|xt, xr)

ql(xw, yw,o|xt, xr)
= f(xl, yl,o, xt, xr)− log

qw(xl, yl,o|xt, xr)

ql(xl, yl,o|xt, xr)
(25)

Therefore, equation 25 holds if and only if there exists some g(xv, xt, xr) such that

f(xv, xt, xr, y) = g(xt, xr) + log
qw(xv, y|xt, xr)

ql(xv, y|xt, xr)
(26)

Lemma E.3 provides a closed-form solution to equation 14 if the parameter space is sufficiently
large. This lemma is crucial for the proof Lemma E.3, which follows below According to the
Assumption E.2, we have

π(xv, y|xt, xr) = ĝ(xt, xr)πo(xv, y|xt, xr)

(
qw(xv, y|xt, xr)

ql(xv, y|xt, xr)

) 1
α

(27)

After reparameterization,

α log

(
π(xv, y|xt, xr)

πo(xv, y|xt, xr)

)
= α log[ĝ(xt, xr)] + log

qw(xv, y|xt, xr)

ql(xv, y|xt, xr)
(28)

which is the global minimum of

f [U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr))] (29)

by Lemma E.3. Since π(xv, y|xt, xr) ∈ {πθ, θ ∈ Θ} lies in the optimization space, we have

min
f

U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr))

=min
πθ

U

(
α log

πθ(yw,o|xw, xt, xr)

πo(yw,o|xw, xt, xr)
− α log

πθ(yl,o|xl, xt, xr)

πo(yl,o|xl, xt, xr)

) (30)

and πθ(xv, y|xt, xr) is the optimizer of equation 30, which gives

α log

(
πθ(xv, y|xt, xr)

πo(xv, y|xt, xr)

)
= g(xt, xr) + log

qw(xv, y|xt, xr)

ql(xv, y|xt, xr)

=⇒πθ(xv, y|xt, xr) = πo(xv, y|xt, xr)

(
qw(xv, y|xt, xr)

ql(xv, y|xt, xr)

) 1
α

exp

(
1

α
g(xt, xr)

) (31)
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Then

πθ(y|x) =
πθ(xv, y|xt, xr)

πθ(x|xt, xr)
=

πo(xv, y|xt, xr)
(

qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

exp
(
1
α (g(xt, xr)

)
∑

y πo(xv, y|xt, xr)
(

qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

exp
(
1
α (g(xt, xr)

)
=

πo(y|x)
(

qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

∑
y πo(y|x)

(
qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

=
πo(y|x)

(
qw(y|xv,xt,xr)
ql(y|xv,xt,xr)

) 1
α

∑
y πo(y|x)

(
qw(y|xv,xt,xr)
ql(y|xv,xt,xr)

) 1
α

(32)

Suppose that preferred responses (xw, yw) and dispreferred responses (xl, yl) satisfy yw = βxw+ϵ1
and yl = β̃xl + ϵ2 respectively. DPO for y = θxv + ϵ3 is based on reference model y = θoxv + ϵ4,
where ϵi’s are independent and follow standard normal distribution. Then,

θ = θo +
1

α
(β − β̃) (33)

Corollary E.3 is a direct application of Lemma E.3, indicating that the model updates coefficient θo
towards the direction of β for preferred responses and away from β̃ for dispreferred responses.

Let ϕ(·) denote the probability density function of standard normal, by Lemma E.3,

ϕ(y − θx) ∝ ϕ(y − θox)

(
ϕ(y − βx)

ϕ(y − β̃x)

) 1
α

=⇒ exp

(
1

2
y2 − θ1xy

)
∝ exp

(
1

2
y2 − θoxy

)
· exp

(
− 1

α
(β − β̃)xy

)
=⇒ exp (θ1xy) ∝ exp (θoxy) · exp

(
1

α
(β − β̃)xy

)
=⇒θ = θo +

1

α
(β − β̃)

(34)

For linear model y = θ1xv + θ2xt + ϵ such that ϵ ∼ N(0, 1), wt(xv, πθ) = θ21 Let ϕ(·) denote the
probability density function of standard normal,

wt(xv, πθ) =

∫ (
−1

2

∂

∂xv
(y − θ1xv − θ2xt)

2

)2

ϕ(y − θ1xv − θ2xt)dy

= θ21

∫
(y − θ1xv − θ2xt)

2
ϕ(y − θ1xv − θ2xt)dy

= θ21

∫
(θ1xv + θ2xt − y)

dϕ(y − θ1xv − θ2xt)

dy
dy

= θ21

∫
ϕ(y − θ1xv − θ2xt)dy = θ21

(35)

Suppose that Assumption E.2 holds, then cross-modality increase the weight of xv .
wt(xv, πθ) > wt(xv, πo) (36)

By Lemma E.3, we have

πθ(y|x) = πo(y|x) · h(x, y),
∫

πo(y|x) · h(x, y)dy = 1 (37)

Abbreviate h(x, y) and πo(y|xv, xt) as h and πo respectively, we have

wt(xv, πθ)− wt(xv, πo) ≥
∫ ( ∂

∂xv
πo

πo
+

∂
∂xv

h

h

)2

πoh dy − wt(xv, πo)

≥
∫ [

∂

∂xv
h

]2
πo

h
dy − 2

√
wt(xv, πo) ·

∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥
2

− wt(xv, πo)

(38)
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the second inequality follows from Cauchy–Schwarz inequality∫
∂

∂xv
πo ·

∂

∂xv
h dy =

∫
∂

∂xv
πo ·

√
πo√
πo

· ∂

∂xv
h dy ≤

√
wt(xv, πo) ·

∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥
2

(39)

Denote c as

c :=

√∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥2
2

+

∫ (
∂

∂xv
h

)2
πo

h
dy −

∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥
2

(40)

the last term in equation 38 is equivalent to(
c−

√
wt(xv, πo)

)
·
(√

wt(xv, πo) + c+ 2

∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥
2

)
(41)

Thus, wt(xv, πθ) > wt(xv, πo) if
√

wt(xv, πo) < c.

Suppose that Assumption E.2 holds, the overall loss increase the weight of xr and decrease the
weight of x̃r.

wt(xr, πθ) > wt(xr, πo), wt(x̃r, πθ) < wt(x̃r, πo) (42)

The distribution of preferred responses can be considered as a mixture distribution:
q1w(xv, yw,o|xt, xr) + q2w(xv, yw,o|xt). Similarly, for dispreferred responses, the distribution is rep-
resented as q1l (xv, yl,o|xt) + q2l (xv, yl,o|xt, xr). By Lemma E.3,

πθ(y|x) = πo(y|x) · h1(x, y),

∫
πo(y|x) · h1(x, y)dy = 1 (43)

Abbreviate h1(x, y) as h1. Follow the same procedure in the proof of Theorem E.3,

wt(xr, πθ)− wt(xr, πo) ≥
∫ [

∂

∂xr
h1

]2
πo

h1
dy − 2

√
wt(xr, πo) ·

∥∥∥∥√πo ·
∂

∂xr
h1

∥∥∥∥
2

− wt(xr, πo)

=
(
c1 −

√
wt(xr, πo)

)
·
(√

wt(xr, πo) + c1 + 2

∥∥∥∥√πo ·
∂

∂xr
h1

∥∥∥∥
2

)
(44)

where we apply Cauchy–Schwarz inequality in equation 44.

c1 =

√∥∥∥∥√πo(y|x) ·
∂

∂xr
h1

∥∥∥∥2
2

+

∫ (
∂

∂xr
h1

)2
πo(y|x)

h1
dy −

∥∥∥∥√πo(y|x) ·
∂

∂xr
h1

∥∥∥∥
2

(45)

Thus, wt(xr, πθ) > wt(xr, πo) if
√

wt(xr, πo) < c1. Again, by Cauchy–Schwarz inequality

wt(x̃r, πθ)− wt(x̃r, πo)

≤
∫ (

∂h1

∂x̃r

)2
πo

h1
+

(
∂πo

∂x̃r

)2
h1

πo
dy + 2

√
wt(x̃r, πo) ·

∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥
2

− wt(x̃r, πo)

=−
(√

wt(x̃r, πo)− c2

)
·
(√

wt(x̃r, πo)− c2 + 2

∥∥∥∥√πo ·
∂

∂x̃r
h1

∥∥∥∥
2

) (46)

where

c2 =

√∥∥∥∥√πo ·
∂

∂x̃r
h1

∥∥∥∥2

2

+

∫ (
∂

∂x̃r
h1

)2
πo

h1
+

(
∂

∂x̃r
πo

)2
h1

πo
dy +

∥∥∥∥√πo ·
∂

∂x̃r
h1

∥∥∥∥
2

(47)

Thus, wt(xr, πθ) < wt(xr, πo) if
√

wt(xr, πo) > c2.
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