
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MAXIMUM VARIANCE UNFOLDING
ON DISJOINT MANIFOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

An assumption underlying much of machine learning is that observed data are of-
ten sampled from a manifold of much lower dimension than the data space itself.
While linear methods such as PCA can often be used to perform dimensionality
reduction, they fail to capture nonlinear relationships in the data, which are often
present in natural datasets. Maximum variance unfolding is an established and
well-studied neighborhood graph-based method for nonlinear dimensionality re-
duction with the unique property of retaining strong local isometry. However, its
applicability on real-world data is limited due to its dependence on the connec-
tivity of the underlying neighborhood graph: in natural datasets, data are often
multimodal and lie on disjoint manifolds, giving rise to clusters of points that are
distant in the data space. In this work, we present a method that extends MVU to
the common case where data lie on disjoint manifolds. We show that it decreases
both computation time and memory requirements, and that it improves perfor-
mance in standard metrics that assess the extent to which the local structure of the
data is preserved.

1 INTRODUCTION

Dimensionality reduction is a vast research field with the fundamental goal of transforming high-
dimensional data into a lower-dimensional representation that captures its intrinsic structure. This
is related to the manifold assumption, whereby we expect that data are sampled from distributions
whose support lies on (or close to) a manifold embedded in the data space (Fefferman et al., 2016).

Despite being widely used as a preprocessing step in machine learning tasks, linear methods for
dimensionality reduction, such as principal component analysis (PCA) (Pearson, 1901), are inade-
quate for capturing nonlinear relationships in the data. While PCA seeks to find a linear subspace
that minimizes the reconstruction error of the data points, methods for nonlinear dimensionality
reduction generalize this idea to smooth, nonlinear, and lower-dimensional geometries, i.e., mani-
folds. This is done by constructing a neighborhood graph, where each data point is connected to its
k-nearest neighbors. Each method then specifies a different problem resulting in embeddings with
different properties, e.g., Isomap (Tenenbaum et al., 2000) maps data to a lower dimension while
preserving geodesic distances approximated by shortest paths along the neighborhood graph.

Due to their ability to recover nonlinear structure in data, and even in the age of deep learning tech-
niques, nonlinear dimensionality reduction methods are used across many domains and applications
including the study of industrial (Wei et al., 2016), chemical (Boninsegna et al., 2015), and bio-
logical processes (Dsilva et al., 2018), brain imaging data (Tang et al., 2021), sentiment analysis
(Kim & Lee, 2014), remote sensing (Song et al., 2024), facial recognition (Ge et al., 2024), and
semi-supervised learning (Pitelis et al., 2014; Huang et al., 2019).

Maximum variance unfolding (MVU) (Weinberger & Saul, 2006a) is a well-studied (Sun et al.,
2006; Ghojogh et al., 2021; 2023) method for nonlinear dimensionality reduction which attempts
to pull data points apart, effectively ”unfolding” them onto the embedding space. MVU has some
ineresting properties: unlike kernel-based methods (e.g., kernel PCA (Schölkopf et al., 1998)), it
does not require specifying a kernel, and can directly learn the intrinsic structure of the underlying
manifold. In some applications, it may be difficult to find an appropriate kernel; e.g., Liu et al.
(2014) show that MVU significantly outperforms kernel PCA in industrial process control. Fur-
thermore, MVU is unique among its peers in that it provides local isometry guarantees. In certain

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

applications, this is a requirement, e.g., Simonetto et al. (2012) use MVU for sensor localization and
robotic dispersion problems. Finally, unlike most other methods for nonlinear dimensionality reduc-
tion, MVU is immune to the so-called “repeated eigendirection problem”, whereby eigenvectors of
embedding Jacobians are harmonics of previous ones (Dsilva et al., 2018; Meilă & Zhang, 2024).
This is because of MVU’s variance maximization objective, which works as a repulsion mechanism
which does not allow for the collapse of intrinsic data dimensions.

MVU has been successfully used in many applications and types of data. Weinberger & Saul (2006b)
use MVU to recover a 2D representation of 60, 000-dimensional text co-occurrence statistics and
show that semantic relationships between words are preserved. Mahadevan et al. (2011) develop an
extension to MVU which allows it to learn from bimodal data such as EEG-fMRI data and image-
text pairs. Wang & Paynabar (2023) use MVU for regression in process optimization. Finally, Song
et al. (2007); Wei et al. (2016); Yang & Qi (2024) develop supervised variants of MVU.

However, MVU has two main drawbacks: most importantly, it cannot be applied to data which form
a disconnected neighborhood graph. These graphs arise naturally in the common case where data
lie on multiple disjoint manifolds (e.g., multimodal data) or simply due to sampling irregularities.
Secondly, MVU is computationally expensive, and applying it to datasets with thousands of sam-
ples may be prohibitive. In this paper, we propose a simple solution to address the first problem,
which involves computing MVU embeddings for disjoint graph components separately, and after-
wards reconstructing their global structure. By allowing for parallel computing of MVU on disjoint
components, our method also greatly alleviates the second problem, which we demonstrate later. 1

The rest of the paper is organized as follows: in Section 2, we present MVU and derive its convex
relaxation which is used in practice. We also present some of its notable extensions which are
relevant for our problem. We present our method in Section 3, and describe and discuss an extensive
experimental evaluation in Section 4. We discuss our findings in Section 5 and conclude with some
closing remarks in Section 6.

2 BACKGROUND

2.1 MAXIMUM VARIANCE UNFOLDING

Maximum variance unfolding (MVU) (Weinberger & Saul, 2006a) is a method for nonlinear dimen-
sionality reduction which solves the problem of ”unfolding” the data manifold by spreading points
in the target space while maintaining local isometry.

Given data X = {xi}Ni=1,xi ∈ RD, we state:

max
y1,...,yN

N∑
k=1

∥yi∥22 (1)

s.t. ∥yi − yj∥22 = ∥xi − xj∥22 , i ∼ j (2)
N∑
i=1

yi = 0 (3)

The objective encodes our wish to spread the data as much as possible in the target space, i.e.,
to maximize the variance of the embeddings y1, . . . ,yN ∈ Rd. With i ∼ j indicating a k-nearest
neighborhood relationship between the i-th and j-th points, the constraint in equation 2 specifies that
distances between neighbors in the target space should be equal to the original distances between
those same points. Finally, a centering constraint is enforced in equation 3. This is necessary because
if the data were not centered in the target space, the points could be taken indefinitely far away from
the origin, maximizing variance but leading to an unbounded problem.

Note that the problem as stated is not convex: the objective consists of maximizing a quadratic
function. Furthermore, the bilinear terms on the left hand side of constraint equation 2 define a
quadratic equality on the decision variables, which does not, in general, define a convex set. We can,

1We will provide all the software used to obtain the results presented in this paper as soon as deanonimyza-
tion is allowed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Maximum variance unfolding on disjoint manifolds

Input: X ∈ R(n×D)

Hyperparameter: k ∈ R
Output: Y ∈ R(N×d)

1: X1, . . . ,XC ← build neighborhood graph(X, k)
2: Y1, . . . ,YC ←MVU(X,Xc), p = 1, . . . , C
3: Z1, . . . ,ZC ← choose representative points(Yp), p = 1, . . . , C
4: L ← choose intercomponent connections(X, {Xp}Cp=1)

5: Z1 . . . ,ZC ← global MVU(X, {Xp}Cp=1,Y , {Zp}Cp=1,L)
6: Y1, . . . ,YC ← translate components(Yp,Zp), p = 1, . . . , C
7: Return [Y1 · · · YC]

however, reach a convex version of this problem through the substitution K = Y ⊤Y ∈ RN×N

(intermediate steps and further details can be found in the Appendix):

max
K

tr(K) (4)

s.t. Kii − 2Kij +Kjj = ∥xi − xj∥22 , i ∼ j (5)
K ⪰ 0, (6)
N∑
i=1

N∑
j=1

Kij = 0. (7)

The SDP in MVU is solved using interior point methods, whose per-iteration computational com-
plexity is O((kN)3) and the memory requirement is O((kN)2) (Borchers & Young, 2007). This
cost is prohibitive for datasets with more than a few thousand samples, where convergence may take
a long time or the data may not fit in memory at all, making MVU difficult to apply to real world
data.

2.2 EXTENSIONS TO MVU

An issue with all neighborhood graph-based methods for nonlinear dimensionality reduction is that
they fail when neighborhood graphs are not connected, i.e., when disconnected components arise
from the k-nearest neighbor selection. In the case of MVU, if there are disjoint components, the
problem becomes unbounded as components could be taken arbitrarily far away from the origin,
increasing variance to infinity.

A simple solution to this is the one employed in Van Der Maaten et al. (2009): starting with the
largest component, we find the component that’s closest to it and create a connection between the
closest points in each component. Those are now considered only one component, and this process
is repeated until the neighborhood graph is connected. Another solution proposed for dealing with
this limitation, called the enhanced neighborhood graph (ENG), was proposed by Fan et al. (2018).

Finally, some extensions may be used to alleviate the computational burden of MVU. The Nyström
approximation (Platt, 2005) is a low-rank matrix approximation used on kernel methods. It can be
applied to MVU on disjoint components by embedding the largest component as usual, and project-
ing the rest of the data points using a Gaussian kernel. Landmark MVU (Weinberger et al., 2005)
embeds a set of randomly sampled points, so-called “landmarks”, and computes the embeddings for
the remaining points as linear combinations of the landmarks. However, by ignoring local structure,
both of these methods sacrifice the strong local isometry guarantees of MVU.

3 MAXIMUM VARIANCE UNFOLDING ON DISJOINT MANIFOLDS

In this section, we describe our method in detail, which we summarize in pseudocode in Algorithm
1. We provide a notation (glossary? variable index?) table in Appendix TODO. The steps of our
algorithm, given data X ∈ RN×D and hyperparameter k ∈ R, are as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1. A neighborhood graph is built based on the k-nearest neighbors of each point. The com-
ponents are then found by simply starting a breadth-first search on unvisited nodes until
all nodes have been visited. The indices of the points that belong to each component are
collected into sets X1, . . . ,XC , where C is the number of components. Note that:

• The above definition implies Xp ∩ Xq = ∅, p ̸= q, p, q = 1, . . . , C (components are
disjoint) and ∪Cp=1Xp = [N] (the union of components is a collection of the indices of
all the data points).

• The number of components varies for the choice of k. The smaller the value of this
hyperparameter, the larger the amount of components, and vice versa. We can always
set the number of components to 1 by choosing a sufficiently large k.

2. Maximum variance unfolding (MVU) is applied to each component separately, yielding
embedded data Yp ∈ R|Xp|×dp . Importantly, these computations can be done in parallel,
since no intercomponent connections are considered at this time. We note that the dimen-
sionality of the computed embeddings dp depends on the intrinsic dimensionality of the
corresponding manifold: like MVU, we retain the top eigenvalues of K which preserve
some percentage of the variance in the original data. Furthermore, each component Yp is
zero-centered, and not yet in its final position.

3. For each embedded component Yp, a set of ”representative points” Zp is chosen. The goal
of this step is to choose a subset of the points of each embedded component that is a good
estimate of its global geometry. We experiment with two methods for this selection, which
we detail in Section 3.1. In either case, the number of representative points selected for
each component is twice the dimensionality of that component, i.e., |Zp| = 2dp. We can
generally expect the number of representative points to be much smaller than the size of
the component, i.e., 2dp << |Xp|.

4. Connections are created between components until the neighborhood graph is connected.
This is done in the same way as described in Section 2.1 for vanilla MVU: we find the
largest component and the component closest to it, create a connection between the closest
points between those two components, and treat them as a single component. This is done
iteratively until the neighborhood graph is connected. Creating these connections amounts
to saving the indices of the points that share a connection in pairs, for use in the next step.
The points of each component that are selected as part of intercomponent connections are
also added to the set of representative points of the respective components. This step is
done in the sample space and could be performed earlier in the algorithm, but we present it
here since it is related to the next step.

5. We perform a final ”global MVU” on the representative points of each component: we pre-
serve isometry between all representative points of a component (intracomponent connec-
tions) and the connections created in the previous step (intercomponent connections). This
step takes the representative points of the zero-centered components Yp, given by the corre-
sponding index subsetsZp, and puts them in their final location, yielding Zp ∈ R|Zp|×d. To
ensure that all components have the same embedding dimensionality, we add dimensions
(zeroes) when required such that d = max dp, p = 1, . . . , C before this step.

6. The remaining points of each component Yp are translated to their positions relative to
the representative points of that component Zp. This is done by representing the points in
homogeneous coordinates and computing an affine transformation matrix.

It is guaranteed that, in the linearized global MVU, there are the same or more dimensions
to define each component, assuring no loss of information. Then, we can compute an
affine transformation that takes the representative points from each component into the
global MVU. Subsequently, the results obtained from applying each transformation to its
respective component are aggregated.

Further details about the computations used in our method can be found in the Appendix. We
explain the need and method for selecting representative points of a component in Section 3.1, and
the ”global MVU” step in greater detail in Section 3.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1 0 1

1

0

2

(a) Component in the data space R3

5 5
4

4

(b) Component unfolded in R2

5 5
4

4

(c) Representative points

Figure 1: Illustration of the process of selecting representative points of a component. (a) Com-
ponent in ambient (data) space, (b) Embedded component and principal directions, (c) Selected
representative points and their connections highlighted.

3.1 CHOOSING SETS OF REPRESENTATIVE POINTS

After embedding the components separately, the goal is to translate each of them to their final posi-
tion in the target space; this is done in the final three steps of the algorithm. However, performing
the ”global MVU” step on all the points would partly defeat the purpose of embedding each com-
ponent separately, as optimizing the entire Gramian would incur the computational and memory
requirements described in Section 2.1.

Instead, we propose working with only a small subset of the points in each component. We would
like the chosen subset to be a good approximation of the structure formed by the points of each
component. Since embedded components are unfolded to their maximum variance, we can expect
the convex hull defined by the extrema along their principal directions to be a good approximation
of that structure. This is illustrated in Figure 3.

Thus, our procedure to select the representative subset of each component is to represent its points
in terms of its principal components (computed through SVD, which is computationally cheap), and
select the indices of the points which are the maxima and minima along each principal direction.
Given an embedded component of dimension dp ∈ N, we have |Zp| = 2dp. However, recall
that points selected as part of intercomponent connections (step 4) are also added to the set of
representative points of a component.

3.2 GLOBAL MVU

Having selecting the representative subset of each component, we choose which intercomponent
connections to keep as described in step 4. We also need to make sure that all embedded components
have the same dimensionality; to this end, we add zero-filled dimensions as required such that
dp ← max{dq, q = 1, . . . , C}, p = 1, . . . , C, that is, all embedded components have the same
dimensionality as the embedded component with highest dimensionality.

We can now formulate our ”global MVU” step, which is illustrated in Figure 2:

max
z1,1,...,zp,|Zp|∈Rdp

C∑
p=1

|Zp|∑
i=1

∥zp,i∥22 (8)

s.t. ∥zp,i − zp,j∥22 = ∥yp,i − yp,j∥22 , p = 1, . . . , C; i, j ∈ Zp (9)

∥zp,i − zq,j∥22 = ∥xp,i − xq,j∥22 , (xp,i,xq,j) i.c. connections (10)
C∑

p=1

|Zp|∑
i=1

zp,i = 0 (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1
1 1

1

2

2

(a) Components in the data space R3

5 5
4

4

5 5
4

3

(b) Each component is em-
bedded separately

10 8
3

3

(c) Global MVU is applied

11 9
4

4

(d) Local MVU are positioned

Figure 2: Illustration of the ”global MVU” step. (a) Two components in ambient (data) space, (b)
Each component is embedded separately, and their representative subsets are computed, (c) Global
MVU is applied, retaining both intercomponent connections and distances between all representative
points within the same component, (d) The remaining points of each component are translated to
their final positions.

The objective (Equation 8) is the same as in vanilla MVU: to maximize the variance. However, in
this case, we are only spreading out the set of representative points of all components. Equation 9
defines intracomponent isometry constraints: all distances between points in each set of representa-
tive points should be kept. Finally, Equation 10 defines intercomponent isometry constraints based
on the connections selected in step 4. Note that in these constraints, isometry is with respect to the
distances in the original data space. As usual, we zero-center the solution to avoid unboundedness.
We note that the problem as stated is not convex, but turning it into a convex problem is done in the
same manner as for MVU (cf. Section 2.1).

4 EVALUATION

In this section, we describe in detail the experimental evaluation performed to validate our method.
We start by enumerating the methods we test in our benchmarks in Section 4.1. Then, we present
a diverse set of both artificial and natural datasets in Section 4.2, which we use to benchmark our
methods. We evaluate the performance of all methods on all datasets according to the metrics de-
scribed in Section 4.3.

4.1 METHODS

In addition to comparing our method, which we call maximum variance unfolding on disjoint man-
ifolds (MVU-DM), with vanilla MVU (Weinberger & Saul, 2006a), we consider the following
representative methods for nonlinear dimensionality reduction: kernel PCA (KPCA) (Schölkopf
et al., 1998), Laplacian eigenmaps (LE) (Belkin & Niyogi, 2003), locally linear embedding (LLE)
(Roweis & Saul, 2000), Hessian locally linear embedding (HLLE) (Donoho & Grimes, 2003),
Isomap (Tenenbaum et al., 2000), and local tangent space alignment (Zhang & Zha, 2004) (LTSA).
We also add the enhanced neighborhood graph (ENG) (Fan et al., 2018) to Isomap, which performed
best in their experiments.

Despite being the most commonly used method for data visualization, t-SNE (Maaten & Hinton,
2008) is expected to perform poorly in our benchmarks as it emphasizes clustering over preserving
distances between points. As such, we exclude it from our experiments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 DATASETS

We include a variety of both artificial and natural datasets with varying global structures, scales, and
intrinsic dimensionalities. We describe them here on a high level, and leave a presentation of all the
details to the Appendix.

4.2.1 ARTIFICIAL DATASETS

We considered all datasets from Van Der Maaten et al. (2009) and Fan et al. (2018). However, we
excluded the fully connected datasets for not fitting the objective of this study. Additionally, we
exclude the Broken Swiss Roll dataset since it is largely redundant when compared with the Broken
S-curve dataset in terms of their properties.

The selection of artificial datasets we use focuses on evaluating the way each method relates com-
ponents that were found disconnected from the neighborhood graph. So, we consider the Broken
S-curve (BSC) dataset, consisting of 4 sections of a bent 2D manifold forming a 3D ’S’ structure.
We utilized two variations of the Swiss Roll: one consists of two distinct Swiss rolls separated by
an arbitrary distance (SR1), while the other features two non-colliding Swiss rolls placed adjacent
to each other (SR2). The last synthetic dataset considered is the Four Moons (FM) dataset which
consists of two pairs of C-shaped manifolds. Each pair is composed of a smaller manifold nested
within a larger one, with the two pairs positioned parallel to each other.

All of these artificial datasets were generated with 2000 points, to which we added Gaussian noise
with variance 0.05. Formulas for their generation and illustrations may be found in the appendix.

4.2.2 NATURAL DATASETS

We used all the disconnected natural datasets from Van Der Maaten et al. (2009) and Fan et al.
(2018). The COIL20 dataset consists of 1440 single-channel (128 × 128) photos of 20 different
objects, taken from varying angles of rotation. ORL is a 400-photo dataset of faces from 40 distinct
subjects, from different angles, with (112× 92) resolution. The MIT-CBCL dataset also consists of
photos of subjects’ faces taken from different angles. It comprises 2059 (64 × 64) photos. Addi-
tionally, the Olivetti dataset comprises the same original data as the ORL dataset; however, it was
treated and is made available by scikit-learn. Although they have the same images, they are 64 by
64 pixels.

4.3 METRICS

We follow Van Der Maaten et al. (2009) and assess all methods according to the quality of their
embeddings with respect to 1-nearest neighbor classification performance (cf. Sanguinetti (2008)),
trustworthiness, and continuity (Venna & Kaski, 2006). These metrics evaluate to what extent the
local structure of the data is preserved in the embeddings.

The 1-nearest neighbor classifier error is the percentage of points whose closest neighbor in the
embedding space is of a different class than in the original space (Sanguinetti, 2008). Classes are
assigned to points according to hypercubes defined in the data space.

The trustworthiness and continuity assess how well neighborhoods around each point are preserved
in the embedding space (Venna & Kaski, 2006). For the i-th point, Uk

i is the set of its k-nearest
neighbors in the embedding space. With j its r(i, j)-nearest neighbor in the input space, trustwor-
thiness is given by:

T (k) = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Uk

i

max(0, r(i, j)− k) (12)

We can think of r(i, j) as a ranking: a list, ordered by distance, of the neighbors of i in the original
space. Then, since Uk

i is the set of neighbors of i in the embedding space, trustworthiness penalizes
”intrusions” into the set of nearest neighbors after embedding.

Analogously, if we define Vk
i as the set of the k-nearest neighbors of i in the original space, and

r̂(i, j) as the ranking of j in terms of nearest-neighbors of i in the embedding space, we get the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: 1-NN results (Smaller values are better)

Artificial Datasets Natural Datasets
BSC SR1 SR2 FM COIL20 ORL MIT-CBCL Olivetti

Isomap 6.50% 15.30% 9.15% 0.00% 5.83% 11.25% 1.60% 18.25%
Isomap+ENG 13.10% 15.15% 8.70% 4.95% 7.36% 11.75% 1.65% 18.25%
LLE 4.15% 26.75% 26.45% 0.00% 7.43% 9.00% 1.70% 14.75%
HLLE 5.20% 7.55% 8.05% 0.10% 7.29% 25.75% 2.43% 20.50%
LE 5.05% 32.15% 32.25% 1.05% 10.35% 13.25% 1.99% 31.00%
LTSA 9.20% 11.90% 7.55% 0.15% 7.01% 25.75% 2.38% 37.25%
K-PCA 50.45% 26.75% 16.85% 0.00% 5.83% 4.00% 1.41% 13.25%
MVU 6.70% 13.35% 13.10% 0.00% 5.69% 10.75% 1.89% 14.50%
MVU-DM 4.85% 9.20% 9.75% 2.65% 4.38% 6.25% 1.94% 8.25%

Table 2: Trustworthiness results (Larger values are better)

Artificial Datasets Natural Datasets
BSC SR1 SR2 FM COIL20 ORL MIT-CBCL Olivetti

Isomap 99.18% 98.05% 99.76% 99.10% 99.09% 98.69% 99.67% 97.16%
Isomap+ENG 98.01% 98.12% 99.93% 97.27% 98.26% 98.46% 99.42% 97.16%
LLE 99.53% 94.81% 94.92% 99.17% 97.99% 95.86% 99.06% 91.16%
HLLE 98.85% 99.81% 99.95% 98.68% 97.91% 90.73% 99.06% 88.92%
LE 98.94% 93.76% 93.69% 99.72% 98.56% 98.20% 99.73% 94.03%
LTSA 97.58% 99.41% 99.96% 98.39% 96.98% 90.73% 99.20% 88.52%
K-PCA 92.90% 92.19% 89.41% 100.00% 99.43% 99.37% 99.90% 98.45%
MVU 97.99% 98.44% 97.32% 98.64% 97.86% 97.54% 99.33% 97.03%
MVU-DM 99.50% 99.90% 99.70% 97.62% 99.10% 98.10% 99.10% 98.30%

metric of continuity, which measures how many neighbors of i in the data space are no longer its
neighbors in the embedding space:

C(k) = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Vk

i

max(0, r̂(i, j)− k) (13)

5 DISCUSSION

Our results corroborate those on the seminal analysis by Van Der Maaten et al. (2009): MVU is
often among the best performing methods, particularly on the artificial datasets. In those scenarios,
our method tended to improve performance over the baseline MVU. However, improvements were
even more robust in the natural datasets, where our proposed MVU-DM achieved some of the best
results.

Besides generally improving performance over MVU, we find that our method significantly speeds
up execution. We present speedups of MVU-DM over vanilla MVU in Table 4 for different values
of k.

6 CONCLUSION

We introduced a new method for applying MVU to data that lie on disjoint manifolds, or which
display a disconnected neighborhood graph for any reason. Our experiments on a variety of both
artificial and natural datasets show that its ability to preserve local structure is at least as good as
that of MVU, while both improving its efficiency and increasing its applicability to disconnected
neighborhood graphs. Furthermore, our method does not require any additional hyperparameters to
vanilla MVU, making it more adequate for cross-validation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Continuity results (Larger values are better)

Artificial Datasets Natural Datasets
BSC SR1 SR2 FM COIL20 ORL MIT-CBCL Olivetti

Isomap 99.85% 99.55% 99.91% 99.55% 99.80% 99.68% 99.87% 99.41%
Isomap+ENG 99.60% 99.55% 99.95% 99.60% 99.64% 99.66% 99.77% 99.37%
LLE 98.49% 99.40% 99.40% 98.68% 99.14% 97.30% 99.31% 92.47%
HLLE 95.70% 95.69% 95.80% 93.50% 98.76% 94.86% 98.60% 88.65%
LE 96.86% 99.40% 99.35% 80.30% 99.06% 99.16% 99.63% 96.80%
LTSA 87.55% 93.10% 95.59% 93.82% 99.11% 94.86% 98.52% 88.65%
K-PCA 99.28% 98.78% 98.03% 100.00% 99.80% 99.48% 99.91% 99.12%
MVU 99.24% 99.58% 99.76% 99.45% 99.73% 99.71% 99.82% 99.59%
MVU-DM 99.80% 99.90% 99.80% 99.21% 99.80% 99.70% 99.80% 99.70%

Table 4: Time speedup of MVU-DM compared to MVU for different values of k

Artificial Datasets Natural Datasets
BSC SR1 SR2 FM COIL20 ORL MIT-CBCL Olivetti

k = 5 6.69 3.24 2.43 6.10 4.02 1.15 7.96 0.55
k = 10 12.18 6.40 6.61 12.81 3.03 1.09 4.54 1.23
k = 15 11.13 4.14 5.67 15.94 1.59 1.09 2.48 1.39

ACKNOWLEDGMENTS

This work was partly funded by the Foundation of Science and Technology through scholarship
2024.04726.BD.

REPRODUCIBILITY STATEMENT

We have prepared a codebase with all the software necessary to reproduce the experiments in this pa-
per. This includes all the nonlinear dimensionality methods used in the experiments, all extensions,
metrics, and datasets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Lorenzo Boninsegna, Gianpaolo Gobbo, Frank Noé, and Cecilia Clementi. Investigating molecular
kinetics by variationally optimized diffusion maps. Journal of chemical theory and computation,
11(12):5947–5960, 2015.

Brian Borchers and Joseph G Young. Implementation of a primal–dual method for sdp on a shared
memory parallel architecture. Computational Optimization and Applications, 37:355–369, 2007.

Edsger W Dijkstra. A note on two problems in connexion with graphs, 2022.

David L Donoho and Carrie Grimes. Hessian eigenmaps: Locally linear embedding techniques for
high-dimensional data. Proceedings of the National Academy of Sciences, 100(10):5591–5596,
2003.

Carmeline J Dsilva, Ronen Talmon, Ronald R Coifman, and Ioannis G Kevrekidis. Parsimonious
representation of nonlinear dynamical systems through manifold learning: A chemotaxis case
study. Applied and Computational Harmonic Analysis, 44(3):759–773, 2018.

Jicong Fan, Tommy WS Chow, Mingbo Zhao, and John KL Ho. Nonlinear dimensionality reduction
for data with disconnected neighborhood graph. Neural Processing Letters, 47(2):697–716, 2018.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345–345, 1962.

Huilin Ge, Zhiyu Zhu, Jiali Ouyang, Muhammad Awais Ashraf, Zhiwen Qiu, and Umar Muhammad
Ibrahim. Integration of manifold learning and density estimation for fine-tuned face recognition.
Symmetry, 16(6):765, 2024.

Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Unified framework for spec-
tral dimensionality reduction, maximum variance unfolding, and kernel learning by semidefinite
programming: Tutorial and survey. arXiv preprint arXiv:2106.15379, 2021.

Benyamin Ghojogh, Mark Crowley, Fakhri Karray, and Ali Ghodsi. Unified spectral framework and
maximum variance unfolding. In Elements of Dimensionality Reduction and Manifold Learning,
pp. 285–312. Springer, 2023.

Rui Huang, Guopeng Zhang, and Junli Chen. Semi-supervised discriminant isomap with application
to visualization, image retrieval and classification. International Journal of Machine Learning and
Cybernetics, 10(6):1269–1278, 2019.

Kyoungok Kim and Jaewook Lee. Sentiment visualization and classification via semi-supervised
nonlinear dimensionality reduction. Pattern Recognition, 47(2):758–768, 2014.

Yuan-Jui Liu, Tao Chen, and Yuan Yao. Nonlinear process monitoring and fault isolation using
extended maximum variance unfolding. Journal of process control, 24(6):880–891, 2014.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Vijay Mahadevan, Chi Wong, Jose Pereira, Tom Liu, Nuno Vasconcelos, and Lawrence Saul. Maxi-
mum covariance unfolding: Manifold learning for bimodal data. Advances in Neural Information
Processing Systems, 24, 2011.

Marina Meilă and Hanyu Zhang. Manifold learning: What, how, and why. Annual Review of
Statistics and Its Application, 11(1):393–417, 2024.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikolaos Pitelis, Chris Russell, and Lourdes Agapito. Semi-supervised learning using an unsuper-
vised atlas. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 565–580. Springer, 2014.

John Platt. Fastmap, metricmap, and landmark mds are all nyström algorithms. In International
Workshop on Artificial Intelligence and Statistics, pp. 261–268. PMLR, 2005.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Guido Sanguinetti. Dimensionality reduction of clustered data sets. IEEE Transactions on pattern
analysis and machine intelligence, 30(3):535–540, 2008.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as
a kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

Andrea Simonetto, Tamás Keviczky, and Dimos V Dimarogonas. Distributed solution for a max-
imum variance unfolding problem with sensor and robotic network applications. In 2012 50th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 63–70.
IEEE, 2012.

Le Song, Arthur Gretton, Karsten Borgwardt, and Alex Smola. Colored maximum
variance unfolding. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Ad-
vances in Neural Information Processing Systems, volume 20. Curran Associates, Inc.,
2007. URL https://proceedings.neurips.cc/paper_files/paper/2007/
file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf.

Wenhui Song, Xin Zhang, Guozhu Yang, Yijin Chen, Lianchao Wang, and Hanghang Xu. A study on
dimensionality reduction and parameters for hyperspectral imagery based on manifold learning.
Sensors, 24(7):2089, 2024.

Jun Sun, Stephen Boyd, Lin Xiao, and Persi Diaconis. The fastest mixing markov process on a
graph and a connection to a maximum variance unfolding problem. SIAM review, 48(4):681–699,
2006.

Yunbo Tang, Dan Chen, and Xiaoli Li. Dimensionality reduction methods for brain imaging data
analysis. ACM Computing Surveys (CSUR), 54(4):1–36, 2021.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Warren S Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17(4):401–
419, 1952.

Laurens Van Der Maaten, Eric O Postma, H Jaap Van Den Herik, et al. Dimensionality reduction:
A comparative review. Journal of machine learning research, 10(66-71):13, 2009.

Jarkko Venna and Samuel Kaski. Visualizing gene interaction graphs with local multidimensional
scaling. In The European Symposium on Artificial Neural Networks, 2006. URL https://
api.semanticscholar.org/CorpusID:12239921.

Qian Wang and Kamran Paynabar. Maximum covariance unfolding regression: A novel covariate-
based manifold learning approach for point cloud data. arXiv preprint arXiv:2303.17852, 2023.

Chihang Wei, Junghui Chen, and Zhihuan Song. Developments of two supervised maximum vari-
ance unfolding algorithms for process classification. Chemometrics and Intelligent Laboratory
Systems, 159:31–44, 2016.

Kilian Weinberger, Benjamin Packer, and Lawrence Saul. Nonlinear dimensionality reduction by
semidefinite programming and kernel matrix factorization. In Robert G. Cowell and Zoubin
Ghahramani (eds.), Proceedings of the Tenth International Workshop on Artificial Intelligence and
Statistics, volume R5 of Proceedings of Machine Learning Research, pp. 381–388. PMLR, 06–
08 Jan 2005. URL https://proceedings.mlr.press/r5/weinberger05a.html.
Reissued by PMLR on 30 March 2021.

11

https://proceedings.neurips.cc/paper_files/paper/2007/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf
https://api.semanticscholar.org/CorpusID:12239921
https://api.semanticscholar.org/CorpusID:12239921
https://proceedings.mlr.press/r5/weinberger05a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kilian Q Weinberger and Lawrence K Saul. Unsupervised learning of image manifolds by semidef-
inite programming. International journal of computer vision, 70:77–90, 2006a.

Kilian Q Weinberger and Lawrence K Saul. An introduction to nonlinear dimensionality reduction
by maximum variance unfolding. In AAAI, volume 6, pp. 1683–1686, 2006b.

Deliang Yang and Hou-Duo Qi. Supervised maximum variance unfolding. Machine Learning, 113
(9):6197–6226, 2024.

Zhenyue Zhang and Hongyuan Zha. Principal manifolds and nonlinear dimensionality reduction via
tangent space alignment. SIAM journal on scientific computing, 26(1):313–338, 2004.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A METHODS FOR NONLINEAR DIMENSIONALITY REDUCTION

Practically all methods for nonlinear dimensionality reduction use neighborhood graphs, which are
built by connecting each point to its k-nearest neighbors according to some metric (usually the
Euclidean distance). The idea is that while it is difficult to define some global objective for how
points should be arranged in the embedding space, we can use information about the local structure
around each data point. Many methods for nonlinear dimensionality reduction involve finding, for
some data {xi}Ni=1 ∈ RD, embeddings {yi}Ni=1 ∈ Rd with d << D such that:

min
y1,...,yN

N∑
i=1

N∑
j=1

(d(xi,xj)− ∥yi − yj∥2)2 (14)

If we set d(·, ·) to be the Euclidean distance, we recover classical multidimensional scaling, a linear
method for dimensionality reduction that is equivalent to PCA Torgerson (1952).

A.1 ISOMAP

Isomap (Tenenbaum et al., 2000) is a particular formulation of classical multidimensional scaling
(Torgerson, 1952), which we repeat here:

min
y1,...,yN

N∑
i=1

N∑
j=1

(d(xi,xj)− ∥yi − yj∥2)2 (15)

Given a dataset {xi}Ni=1 ∈ RD, the above expresses our wish to find embeddings {yi}Ni=1 ∈ Rd such
that some distance d(·, ·) is maintained between all points when embedded. In particular, Isomap
constructs a k-neighborhood graph, from which it computes shortest-path distances ∆ij between
each pair of points. These distances correspond to approximate geodesics along the data manifold,
and can be computed with Dijsktra’s (Dijkstra, 2022) or Floyd-Warshall’s (Floyd, 1962) algorithms.

Isomap (Tenenbaum et al., 2000) builds a distance matrix of approximated geodesics between all
points, where geodesics are estimated as shortest-distance paths across the neighborhood graph.
Then, it minimizes the above objective where d(xi,xj) is the approximated geodesic distance ∆ij

between the i-th and j-th points.

However, we may also perform Isomap in closed form. We can retrieve the inner product matrix,
i.e., the Gramian of the embedded data from ∆ij via ”double-centering”:

K = −1

2
(I− 1

n
ee⊤)∆2(I− 1

n
ee⊤), (16)

with e = [1, . . . , 1]⊤ ∈ Rn. Then, from the eigendecomposition of K = QΛQ⊤, we recover the
embeddings:

Y =
√
ΛdQ

⊤
d , (17)

where Λd and Q⊤
d contain the d largest eigenvalues and eigenvectors respectively.

A.2 LOCALLY LINEAR EMBEDDING

While Isomap tries to preserve geodesic distances globally across the manifold, locally linear em-
bedding (LLE) (Roweis & Saul, 2000) attempts to preserve only local properties of the data. By
assuming that the k-neighborhood N k

i around each point xi lies on a linear patch of the mani-
fold, LLE starts by defining each (high-dimensional) point as a linear combination of its k-nearest
neighbors and finding the corresponding reconstruction weights W ∈ RD×D:

min
W

N∑
i

∥∥∥∥∥∥xi −
∑
j

wijxj

∥∥∥∥∥∥
2

2

, i ∼ j (18)

s.t.
N∑
j=1

wij = 1, i = 1, . . . , N (19)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where i ∼ j indicates a nearest-neighbor relation.

Then, the goal is to find projections {yi}Ni=1 ∈ Rd such that each projected point can be reliably
computed as a linear combination of its k-nearest neighbors in the original space using the recon-
struction weights above. We can then formulate the LLE objective:

min
yi

∑
i

∥∥∥∥∥∥yi −
∑
j

wi,jyi,j

∥∥∥∥∥∥
2

2

(20)

A.3 HESSIAN LLE

Hessian LLE (HLLE) (Donoho & Grimes, 2003) extends LLE by computing a global Hessian matrix
describing the manifold’s curvature, and minimizing it. This matrix is computed from the factor-
ization of each local patch around a data point into principal directions. After merging these and
a column of ones, this output is orthogonalised in a Gram-Schmidt manner to estimate the Local
Hessian.

Finishing by applying the eigenvalue decomposition on the estimated Hessian matrixH:

Hα = λα (21)

and selecting the d smallest eigenvalues and their associated eigenvectors, to define the reduced
space.

A.4 LAPLACIAN EIGENMAPS

Laplacian Eigenmaps (LE) (Belkin & Niyogi, 2003) compute edge weights wij between k-nearest
neighbors using the Gaussian kernel function:

wi,j = e−
∥xi−xj∥2

2
2σ2 , i ∼ j (22)

Since larger weights wij correspond to smaller distances in the original space, we try to put points
that are nearby in the data space as close as possible in the embedding space:

min
yi

∑
i,j

wi,j ∥yi − yj∥22 , i ∼ j (23)

A.5 LOCAL TANGENT SPACE ALIGNMENT

Local Tangent Space Alignment (LTSA) (Zhang & Zha, 2004) aligns local tangent spaces to preserve
the local geometric structure. For each point, it computes a local tangent space using PCA on its
neighborhood, then finds a global embedding that best aligns these local tangent spaces. The global
tangent space matrix is B built iteratively:

BNiNi
= BNi−1Ni−1

+ Jk(I − ViV
⊤
i)Jk, (24)

where Ni define the neighborhood indexes of i, and Jk(I − ViV
⊤
i)Jk is the double centered PCA

projections ViV
⊤
i .

A.6 KERNEL PCA

Finally, we mention kernel PCA (KPCA) (Schölkopf et al., 1998), which does not rely on neigh-
borhood graphs. Instead, the user picks a kernel function k(xi,xj) with which the data points are
mapped to a higher-dimensional feature space, where PCA is applied. Embeddings are found by
solving an eigenvalue problem:

Kα = λα (25)

where K is the kernel matrix with entries kij = k(xi,xj).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B CONVEX MVU

In this Section we derive a convex version of MVU from the original formulation, which we reiterate:

max
y1,...,yN

N∑
i=1

∥yi∥22 (26)

s.t. ∥yi − yj∥22 = ∥xi − xj∥22 , i ∼ j (27)
N∑
i=1

yi = 0 (28)

Again, we not that this is not a convex problem since the objective is a maximization of a convex
function and the constrain encoded in 27 does not, in general, define a convex set. Expanding the
squared terms:

max
y1,...,yn

n∑
i=1

y⊤
i yi (29)

s.t. y⊤
i yi − 2y⊤

i yj + y⊤
j yj = ∥xi − xj∥22 , i ∼ j (30)

n∑
i,j=1

y⊤
i yj = 0 (31)

By collecting the embedded points into the columns of a matrix Y = [y1 · · · yn] ∈ Rd×N , we
can rewrite the problem:

max
Y

tr(Y ⊤Y) (32)

s.t. e⊤i Y
⊤Y ei − 2e⊤i Y

⊤Y ej + e⊤j Y
⊤Y ej = ∥xi − xj∥22 , i ∼ j (33)

1⊤Y ⊤Y 1 = 0, (34)
where ei is a ”selection” or ”one-hot” vector, i.e., its elements are all zero except for the element at
the i-th index, which is 1. Note that, now, the whole problem depends on Y ⊤Y , so we introduce a
new variable K = Y ⊤Y ∈ RN×N to linearize the terms that depend on Y ⊤Y :

max
K,Y

tr(K) (35)

s.t. e⊤i Kei − 2e⊤i Kej + e⊤j Kej = ∥xi − xj∥22 , i ∼ j (36)

1⊤K1 = 0 (37)

K = Y ⊤Y (38)

Because K = Y ⊤Y defines an inner product matrix, we can replace that constraint if we make
sure that K is both symmetric, positive semidefinite and that the rank of K is not greater than the
dimension of the yis:

max
K

tr(K) (39)

s.t. e⊤i Kei − 2e⊤i Kej + e⊤j Kej = ∥xi − xl∥22 , i ∼ j (40)

1⊤K1 = 0 (41)
K ⪰ 0 (42)
rk(K) ≤ n (43)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Now, the only nonconvexity in the problem is given by the rank constraint. If we remove it, we
arrive at a convex relaxation of the original problem, which is the final formulation of MVU:

max
K

tr(K) (44)

s.t. e⊤i Kei − 2e⊤i Kej + e⊤j Kej = ∥xi − xj∥22 , i ∼ j (45)

1⊤G1 = 0 (46)
K ⪰ 0 (47)

Here, K ∈ RN×N is a Gramian (or inner product) matrix, so that maximizing its trace corresponds
to maximizing the variance of the data in the target space.

C DATASETS

C.1 ARTIFICIAL DATASETS

In the following datasets we use a small Gaussian perturbation ϵ ∈ N (0, 0.05) added to the gener-
ated data points:

Broken S-curve

The dataset is defined by:

t0 ∼ U
(
−3π

2
,−3π

2
+ 0.4π

)
(48)

t1 ∼ U
(
−3π

2
+ 0.6π,−3π

2
+ 1.4π

)
(49)

t2 ∼ U
(
−3π

2
+ 1.6π,−3π

2
+ 2.4π

)
(50)

t3 ∼ U
(
−3π

2
+ 2.6π,−3π

2
+ 3.0π

)
(51)

t ∈ {t0, t1, t2, t3} (52)
h ∼ U(0, 2) (53)

X =

[
sin(t)
h

sign(t) · (cos(t)− 1)

]
+ ϵ (54)

Parallel Swiss Rolls

Defining a raw Swiss Roll:

t ∼ U
(
3π

2
, 3π

)
(55)

h ∼ U(0, 30) (56)

X(raw) =

[
t cos(t)

h
t sin(t)

]
+ ϵ, (57)

(58)
(59)

the dataset consists of:

X2 = X(raw) +

[
0
60
0

]
(60)

X = X(raw) ∪X2 (61)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1
1 1

1

2

2

(a) Broken S-curve

11
11 45

45
11

14

(b) Parallel Swiss Roll

27

33 32

35

26

29

(c) Arbitrary Swiss Rolls

1

1
0

1

1

1

(d) Four Moons

Figure 3: Visual representation of the synthetic datasets used.

Arbitrary Swiss Rolls

Alongside the last, using the same original datasets:

t ∼ U
(
3π

2
, 3π

)
(62)

h ∼ U(0, 30) (63)

X(raw) =

[
t cos(t)

h
t sin(t)

]
+ ϵ, (64)

(65)
(66)

we apply the transformation:

R =

[
cos(−π/4) − sin(−π/4) 0
sin(−π/4) cos(−π/4) 0

0 0 1

]
(67)

X1 = RX(raw) +

[
20
20
30

]
, (68)

and define the dataset as:

X2 = X(raw) +

[
0
−20
0

]
(69)

X = X1 ∪X2 (70)

Four Moons

Defining a raw pair of moons as:
t ∼ U(0, π) (71)

X1 =

[
0

sin(t)
cos(t)

]
+ ϵ (72)

X2 =

 0
1−sin(t)

4
− cos(t)

4

+ ϵ (73)

X(raw) = X1 ∪X2, (74)

the full dataset is defined:

X = X(raw) ∪

(
X(raw) +

[
1
0
0

])
(75)

17

	Introduction
	Background
	Maximum Variance Unfolding
	Extensions to MVU

	Maximum Variance Unfolding on Disjoint Manifolds
	Choosing Sets of Representative Points
	Global MVU

	Evaluation
	Methods
	Datasets
	Artificial Datasets
	Natural Datasets

	Metrics

	Discussion
	Conclusion
	Methods for Nonlinear Dimensionality Reduction
	Isomap
	Locally Linear Embedding
	Hessian LLE
	Laplacian Eigenmaps
	Local Tangent Space Alignment
	Kernel PCA

	Convex MVU
	Datasets
	Artificial Datasets

