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Abstract
We investigate repeated interactions between a decision-making receiver agent1
and an informed sender agent who cannot directly influence the environment.2
Our primary focus is to determine whether both agents can learn strategies to3
maximize joint reward, even when their incentives are not fully aligned. We4
illustrate that the sender learns an effective signalling strategy that the receiver5
learns to act upon. We further explore the use of contracts, where the sender6
sells its information to the receiver. Our findings show that the sender learns to7
extract surplus reward from the receiver in such scenarios.8

1 Introduction9

Agents are often faced with the problem of making decisions and taking action in situa-10
tions where they have incomplete information. Often better-informed agents exist who can11
provide valuable information without direct intervention. Examples of such scenarios in-12
clude many services such as navigation and ride-sharing apps where the platform has access13
to relevant global information while individual users prioritize their own interests. This14
can lead to misaligned incentives, where an information-rich agent may strategically share15
information to guide the decision-maker’s choices and steer them towards certain outcomes.16

In this paper we explore the tensions that arise in such settings. In particular, we propose17
a model where there is an information-rich sender agent and an action-taking, but less in-18
formed receiver agent. While both agents are cumulative-reward maximizers, their interests19
may be misaligned. We show that the sender learns to strategically disclose information to20
the receiver and that the receiver learns to act in the environment using information, in the21
form of signals, provided by the sender. We illustrate that these learned policies depend22
critically on both the alignment or misalignment of the agents’ incentives and on the quality23
of the receiver’s information, independent of the sender.24

We also study the use of linear contracts, which allows the sender to charge a price for25
the information they provide. Sender agents quickly learn to extract significant surplus26
from receivers, raising interesting questions about contract design, fairness, and information27
design.28

1.1 Related Work29

Our work is directly influenced by the literature on Bayesian Persuasion Kamenica &30
Gentzkow (2011); Kamenica (2019). Bayesian Persuasion models scenarios where an in-31
formed sender influences a receiver’s actions, with both parties’ rewards dependent on the32
true ”state of the world” and the receiver’s chosen action. The sender commits to a sig-33
nalling strategy, which maps states to signals. The receiver updates their beliefs based on34
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these signals and acts accordingly. This framework, where the sender optimizes their payoff35
given the receiver’s utility, can be solved efficiently.36

Recent reinforcement learning research has explored dynamic Bayesian Persuasion. For37
example, Gan et al. (2022) showed that optimal signalling strategies are computable for38
myopic receivers but NP-hard to approximate for far-sighted ones in an MDP setting, while39
Wu et al. (2022)introduced Markovian Persuasion Processes for influencing a stream of40
myopic receivers. Lin et al. (2023) further advanced this by considering Markov signalling41
Games where the sender does not commit to a strategy. Instead, sender and receiver learning42
processes become coupled, aiming for mutually beneficial outcomes, and allowing for richer43
signal spaces beyond direct action advice.44

Our work builds on these dynamic settings by examining how reward misalignment between45
the sender and receiver impacts signalling strategies and outcomes. We also integrate simple46
payment-based contracts, specifically linear contracts Dütting et al. (2019); Duetting et al.47
(2024), with information design. This exploration provides new insights into learning in48
environments with imperfectly cooperative agents.49

2 Model50

We consider a setting with two agents, a Sender, and a Receiver. The environment critically51
has 3 factors: 1.) The Sender has an informational advantage over the Receiver, 2.) Only52
the Receiver has agency, and can act in the environment, and 3.) Their rewards may not be53
fully aligned. We assume these two agents are engaging and interacting in an environment54
modelled as an MDP: M = 〈S,O,A, P,RS , RR〉, where S is the state space, O ⊆ S is the55
observation space visible to the Receiver and A is the action space of the receiver. The56
transition function P : S × A → ∆(S) specifies the probability distribution of the next57
state given the current state and executed action. The reward functions for the sender and58
receiver agents can be different, and are denoted by RS and RR (RS , RR : S × A → R),59
respectively.60

The Sender constructs two optimal policies πS and πR using the two reward structures of61
M. The policies πS , πR : S → ∆(A) specify probability distributions over the action space62
A given any state S. This will allow the Sender to potentially share action advice to the63
Receiver since it has a model of the best actions for both agents. The Sender wants to64
learn a signalling policy where it shares information with the Receiver. In particular, we65
define the signalling policy of the Sender to be a mapping from a state in S, to a probability66
over an action recommendation sent to the Receiver. In this work, we impose additional67
structure on the signalling policy by using a commitment probability parameter p, where p68
is the probability that the Sender will recommend the action specified by πR(s), that is, the69
best action for the Receiver to take in state s ∈ S. This means that with probability 1− p70
the Sender will recommend it’s preferred action πS(s).71

The Sender informs the Receiver of its signalling policy before any action-recommendations.72
That is, the Receiver knows p. Given p and the action-recommendation, the Receiver can73
decide to follow the advice of the Sender or take an action on its own. Thus it learns a74
receiving policy, πO which, given its current observations, p and the proposed action, a, from75
the Sender, returns a probability distribution over A. Since both agents wish to maximize76
their expected discounted sum of future rewards, there is a coupling between the two agents’77
objectives:78

p∗ = arg max
p

∑
t

γtRS(st, π
O,∗(p, ot))

πO,∗ = arg max
πO

∑
t

γtRR(st, π
O(p∗, ot))

where γ < 1 is the discount factor.79
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2.1 Contracts and Information Pricing80

We introduce the possibility of the Sender charging for information through the use of linear81
contracts Dütting et al. (2019). In theory this should allow the Sender to increase their82
expected utility by providing more accurate information to the Receiver. We are interested83
in understanding whether the Sender can learn to price appropriately.84

We expand the policy space and process of the Sender and Receiver. The Sender announces85
〈p, c〉 to the Receiver, specifying its signalling policy (p) and the reward share c ∈ [0, 1]86
it will collect from the Receiver’s collected rewards. The Receiver can decide to accept or87
reject the proposal. If the proposal is rejected, the Receiver must act in the environment88
with no further interaction from the Sender. If the proposal is accepted, the process is the89
same as described earlier, except that the reward structure changes. The effective reward90
structures become91

RS,∗ = RS + cRR (1)
RR,∗ = (1− c)RR. (2)

3 Experiments92

In this section, we present our experimental findings. We ground our work in two settings.93
The first is a classic recommendation letter scenario from the Bayesian persuasion litera-94
ture Dughmi (2017), while the second is a grid-world environment which allows us to explore95
the impact that reward alignment has on agents’ learned policies.96

3.1 Recommendation Letter97

In the recommendation letter problem, there are two agents, a professor (sender) and a98
recruiter (receiver). The professor is writing a recommendation letter for their student99
who is being recruited by the recruiter. The student is either a strong candidate or a100
weak candidate, and the student quality is known to the professor but not to the recruiter.101
The recommendation letter serves as a binary signal (recommend/don’t recommend) from102
the professor (sender) to the recruiter (receiver). If the recruiter hires a strong student,103
then they receive a reward of +1. Otherwise, they receive a reward of -1. The professor104
receives a reward of +1 if their student is hired, regardless of the quality. This problem105
captures the challenges of asymmetric information and misaligned incentives. If the professor106
(sender) truthfully reported student quality, the recruiter (receiver) would only hire strong107
students. By recommending all strong students and randomly recommending weak students,108
the professor can increase their expected utility.109

We model this problem using multi-armed bandits. The sender’s policy is a tuple 〈p1, p2〉110
where p1 is the probability that the sender provides a good recommendation if the student is111
strong (P (G|S)), while p2 is the probability that the sender provides a good recommendation112
if the student is weak (P (G|W )). Thus, the arms for the sender’s bandit problem correspond113
to different signalling policies. The receiver observes the signalling policy of the sender and114
the recommendation. This forms the context for a contextual bandit problem with two115
arms, with one arm corresponding to the hire decision and the other arm corresponding116
to the not hire decision. Rewards for both the receiver and sender are observed after the117
hire/not hire decision and arm-values are updated.118

3.1.1 Recommendation Letter Results119

We first determine whether agents can learn optimal policies for the recommendation letter120
problem. We instantiate an instance of the problem where the prior probability that a121
student is strong is 1

3 . The theoretically optimal signalling policy of the sender is 〈1.0, 0.5〉.122
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That is, to truthfully recommend hiring if the student is strong and to recommend hiring123
half the time if the student is weak. The expected utility of the sender under this strategy124
is 0.5 while the expected utility of the receiver is 0.0.125

We ensure that there is a finite number of arms for the sender’s bandit problem by discretiz-126
ing p1 and p2 into 0.1 increments. Each trial consists of 200,000 interactions, and we define127
an episode to be 50 interactions. In a single episode, the sender commits to a fixed strategy128
〈p1, p2〉. The underlying learning algorithm was a discounted ε-greedy algorithm 1. All of129
our results are averages computed over 100 trials.130

We first study the case where the sender learns a signalling policy. The results are shown in131
Figure 1a (and Figure 5 in the appendix). In particular, we notice that the sender quickly132
settles on two contracts, 〈1.0, 0.4〉 and 〈0.0, 0.6〉, resulting in average rewards of 0.577 for the133
sender (professor) and 0.05 for the receiver (recruiter). We observe that the average rewards134
are close to the theoretical optimal rewards, and that signalling strategy 〈1.0, 0.4〉 is a close135
approximation to the optimal strategy. 〈0.0, 0.6〉 is technically the same signaling strategy136
if the two signals are interchanged. We allowed for random tie-breaking in our experiments137
whereas the Bayesian persuasion literature typically assumes that ties are always broken in138
favour of the sender.139

(a) The average normalized frequency of sig-
nalling strategy 〈p1, p2〉

(b) The average normalized frequency of contract
proposals

Figure 1: Results for Recommendation Letter

In our second set of experiments we studied the impact of the addition of contracts. The140
sender’s strategy is enriched to be a vector 〈p1, p2, c〉 where contract c ∈ [0, 1] is the fraction141
of the receiver’s reward that is paid to the sender if the contract is accepted. As before, in our142
experiments we discretized the signalling strategy and contract space (into 0.2 increments)143
resulting in a 108 arm bandit problem. The receiver’s problem is the same as before, but144
with an enlarged context (the signalling strategy and the proposed contract), but with the145
caveat that if the contract is rejected the sender sends no signal as to the strength of the146
student and so the receiver must make a decision (hire/don’t hire) without information.147

Figure 1b shows the overall contract proposals made by the sender, while Figures 7 and 6148
in the appendix present the contract-specific acceptance rates. We first observe that the149
signalling strategy of the sender quickly converges to the optimal signalling strategies we150
observed before, but there is more variability around the contract price. While we see that151
the use of contracts does increase the sender’s average utility to 0.57 while dropping the152
receiver’s utility to 0.02, we hypothesize that the benefit of contracts is small in this context153
since there is little surplus to extract from the receiver.154

1We use a discounting rate of 0.9, and a gradually decaying ε from 1 to 0.05
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3.2 Gridworld Experiments155

We now explore the possibility of learning signalling policies and contracts in a more com-156
plex setting, where we can control both the reward alignment and information asymmetry157
between the sender and receiver. Our environment is shown in Figure 2. It is a simple 10 by158
10 grid world with two types of objects: apples and diamonds. The sender can observe the159
entire grid, but can not move in the environment. The receiver is able to move and collect160
objects but has limited observability. We use a parameter v to control the observability,161
with v defining the Moore neighbourhood around the receiver. While the receiver can col-162
lect both apple and diamond objects, we structure the rewards of the agents so that their163
interests are potentially misaligned. In particular, the reward functions of the agents are a164
vector 〈ra, rd〉 where ra is the reward an agent receives for a collected apple while rd is the165
reward per collected diamond. We set the reward vector for the receiver agent to be 〈1, 0〉166
(i.e. it only cares about collecting apples). We capture the degree of misalignment between167
the receiver and the sender by a parameter θ, the angle between two reward vectors, and set168
the reward vector of the sender agent to be 〈cos θ, sin θ〉. Thus, fully aligned agents (θ = 0)169
have the same reward vectors while fully misaligned agents (θ = 180) have reward vectors170
〈1, 0〉 and 〈0, 1〉. Table 1 contains the reward vectors we experiment with to understand the171
impact of reward alignment.172

We assume that the sender (since it has full information), can compute optimal policies173
for moving in the grid world from its own perspective (πS) and from the perspective of174
the receiver(πR). It will use these policies to make action recommendations to the receiver.175
Given these policies, we are interested in understanding what signalling and contract policies176
the sender will learn, and how the receiver will learn how to respond. As in the recommen-177
dation letter example, we use bandits as the underlying learning mechanism for the sender.178
The sender’s policy takes the form of a tuple 〈p, c〉, p, c ∈ [0, 1], where p is the probability179
that the sender recommends the action according to πR (and with probability 1−p it recom-180
mends the best action from its perspective, according to πS). Parameter c is the contract,181
which specifies what fraction of the reward collected by the receiver should be shared with182
the sender. For example, if p = 1 and c = 0 then the sender always sends optimal action183
information for the receiver and asks for no compensation, while if p = 0 and c = 1 then the184
sender always recommends the best action for itself and demands all the receiver’s rewards.185
We discretize the strategy space into {0.0, 0.2, . . . , 0.8, 1.0}2, resulting in 36 arms. After an186
arm is selected, the arm’s value is updated with the sender’s episodic reward. We use the187
discounted ε-greedy algorithm with a discounting rate of 0.9, and a decaying schedule for ε188
from 1 to 0.05 over the first 75% of the training horizon.189

The learning problem of the receiver is more complicated since must learn whether to ac-190
cept or reject the contract and, if the contract is accepted, whether to accept the action191
recommendation or act on its own. We use tabular DQN to learn whether or not to accept192
a contract.2 For learning whether to follow the action recommendation or not, we use PPO.193
If the action recommendation is not followed, then the receiver follows a simple heuristic194
strategy that greedily moves towards the closest observed apple or takes an action at random195
if no apples are observable.196

2We use a discounting rate of 0.9, a learning rate of 0.1, and an exploration constant of 0.05.
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Figure 2: A representative grid world where
the cells currently visible to the receiver
(visibility, v = 1) are shown in blue.

θ (in degrees) rS

0 〈1, 0〉
30 〈0.87, 0.50〉
45 〈0.71, 0.71〉
60 〈0.50, 0.87〉
90 〈0, 1〉
180 〈−1, 0〉

Table 1: The sender reward vector rS for
various values of θ while the receiver reward
vector rR is set as < 1, 0 >.

197

We train the agents for 2000 episodes and each episode consists of 500 timesteps. We198
consider two scenarios to control for the information gap — low-visibility scenario (v = 1,199
average observability near 10%), and high-visibility scenario (v = 5, average observability200
near 50% of the grid). To account for misaligned incentives, we vary the angle between201
the sender and receiver reward vectors θ from 0 to 180 degrees. The reward vector for202
the receiver is 〈1, 0〉 and the corresponding values of rS can be seen in Table 1. Further,203
both agents receive a negative reward of −0.05 for each step, as is common in most RL204
environments. All results reported are averaged over 10 trials, where each trial consists of205
2000 episodes.206

Signalling Strategies: First, we look at the case where the sender does not charge a price207
for information. The average rewards for both agents and the number of objects collected208
on average in an episode are shown in Table 2. When the angle between their reward209
vectors, θ is 0, they are fully aligned, and therefore, they are interested in apples only and210
receive the same reward. We note that as the difference between the two agents’ reward211
structures increases (i.e. the sender prefers diamonds while the receiver prefers apples), the212
number of collected diamonds increases. However, if the receiver can observe more of the213
environment it collects more apples. This is the result of a change of signalling policy on214
the side of the sender (see appendix, Figure 4a and Figure 4b). If the receiver has low215
observability the sender learns to use signalling strategies with p = 0.0, meaning that it216
always recommends actions in its own interest, not the receiver. If the receiver can observe217
more of the environment, then the learned signalling strategy uses higher values of p, though218
the actual value appears to depend on how aligned or misaligned the agents are.219

Contract Strategies: We now explore whether the sender will learn to use contracts to220
price the information sent to the receiver. The average episodic rewards and the objects221
collected per episode are shown in Table 3. Similarly, the bandit arm pull frequencies are222
shown as heatmaps in Figure 3.223

We observe a qualitative difference in the strategies learned by the sender, as they focus on224
extracting surplus from the receiver and thus benefit from the collection of apples. Overall,225
there is an increase in the receiver’s overall utility (at a cost to the sender). The contract226
offered depends on the alignment of the agents. When the two agents are well aligned227
(theta < 90) the sender sends useful information to the receiver but charges a high amount228
for it (c > 0.8). Once θ > 90, the two agents are no longer well aligned and the sender229
shifts to a signalling policy with p = 0 (i.e. it only sends action advice that is in its own230
interest, not the receiver’s interest). The contract also drops to c = 0 since the receiver231
quickly learns that the information provided by the sender has no value. Again we observe232
that if the receiver can observe the environment, then it is less reliant on the receiver which233
again results in the receiver supplying better quality information.234
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(a) Low visibility setting v = 1

(b) High visibility setting v = 5

Figure 3: Contract Setting | Heatmaps depicting average normalized arm pull frequencies
over 10 trials for different values of reward alignment θ. In each map, row values are the
commitment probability p while column values are the payment fraction c. Lighter colors
indicate higher frequency.

7



Under review for RLC 2025, to be published in RLJ 2025

v θ Receiver Sender Apple Diamond
1 0 53.72 (0.48) 53.72 (0.48) 74.79 (0.46) 3.88 (0.15)
1 30 45.24 (0.66) 50.31 (0.87) 65.57 (0.73) 27.71 (2.51)
1 45 33.24 (0.49) 49.54 (0.51) 53.32 (0.49) 45.13 (0.74)
1 60 11.00 (0.69) 49.35 (0.82) 31.32 (0.70) 62.36 (1.15)
1 90 -6.26 (1.31) 47.67 (2.51) 14.59 (1.23) 68.50 (2.38)
1 180 -6.22 (1.09) -35.38 (1.06) 14.63 (1.07) 68.33 (2.00)
5 0 53.67 (0.54) 53.67 (0.54) 74.74 (0.52) 3.91 (0.18)
5 30 48.64 (2.26) 43.05 (1.51) 69.78 (2.24) 7.49 (2.62)
5 45 46.59 (3.41) 32.20 (1.62) 67.81 (3.37) 7.72 (3.35)
5 60 43.29 (4.35) 18.16 (1.46) 64.64 (4.26) 8.27 (3.01)
5 90 35.34 (2.49) -3.42 (1.55) 56.62 (2.33) 17.82 (1.39)
5 180 31.83 (3.50) -74.83 (2.96) 53.35 (3.23) 16.45 (2.81)

Table 2: Information Design Setting | Average episodic rewards for receiver, sender and the
average objects collected of each type. These are averaged over 10 trials, each consisting of
2000 episodes. Values in parentheses are the standard deviation.

v θ Receiver Sender Apple Diamond
1 0 6.31 (3.66) 78.49 (22.90) 64.04 (11.39) 3.22 (0.37)
1 30 3.44 (4.85) 83.07 (8.40) 64.95 (4.72) 14.71 (6.12)
1 45 5.52 (3.61) 69.26 (6.90) 58.77 (7.67) 23.01 (11.29)
1 60 3.76 (3.70) 50.46 (6.50) 46.23 (12.06) 31.30 (15.33)
1 90 -3.42 (3.20) 34.78 (8.89) 24.63 (12.13) 49.32 (16.81)
1 180 -8.37 (0.91) -33.91 (0.81) 13.13 (0.97) 63.07 (2.70)
5 0 20.13 (5.02) 80.95 (4.75) 71.78 (0.67) 3.35 (0.16)
5 30 17.45 (3.87) 70.52 (6.00) 68.34 (3.25) 6.01 (3.13)
5 45 20.78 (3.97) 56.67 (6.35) 67.83 (2.96) 6.03 (2.89)
5 60 23.55 (4.17) 34.01 (11.41) 63.71 (7.40) 5.80 (3.23)
5 90 20.15 (4.25) 6.47 (7.33) 63.09 (6.42) 6.53 (3.26)
5 180 11.26 (0.89) -55.03 (1.14) 55.08 (10.98) 7.09 (4.55)

Table 3: Contract Setting | Average episodic rewards for receiver, sender and the average
objects collected of each type. These are averaged over 10 trials, each consisting of 2000
episodes. Values in parentheses are the standard deviation.

4 Conclusion235

We study repeated interactions between an information-rich sender agent and a decision-236
making receiver agent with misaligned incentives. Through experiments in two different237
settings, we find that the sender improves its cumulative rewards by learning signalling238
policies to influence the receiver. The receiver learns to use its own partial observation239
along with the sender’s signal to better navigate the environment. These learned policies240
depend on the degree of alignment of their incentives and the quality of receiver’s obser-241
vations. Further, we also explore the use of linear contracts, which allow the sender to fix242
a price for the signals. We observe that the sender learns to extract the surplus from the243
receiver. Future work could explore other mechanisms and contract designs that enables244
fairer outcomes for the receiver.245
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Supplementary Materials278
The following content was not necessarily subject to peer review.279

280

Additional Figures for Gridworld281

(a) Low visibility setting v = 1 (b) High visibility setting v = 5

Figure 4: Information Design Setting | Average normalized arm pull frequencies over 10
trials. Each bar represents how many times each value of p was chosen by the sender.

Additional Results for Rec Letter282

Here, we list out some additional figures and results for the recommendation letter experi-283
ments.284
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Figure 5: Information Design Setting: The normalized frequency of signalling strategies
〈p1, p2〉 for the full range of discretized values for p1 and p2.

Figure 6: The average contract acceptance rates over 4000 episodes (200,000 interactions).
These are averaged over 100 trials.
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Figure 7: Contract setting: Average contract acceptance rates of all possible contracts
averaged over 100 trials with each trial consisting of 4000 episodes.
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