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ABSTRACT

We present the Multi-Block DC (BDC) class, a broad class of structured nonconvex
functions that admit a DC (“difference-of-convex”) decomposition across parameter
blocks. This block structure not only subsumes the usual DC programming, it
turns out to be provably more powerful. Specifically, we demonstrate how standard
models (e.g., polynomials and tensor factorization) must have DC decompositions
of exponential size, while their BDC formulation is polynomial. This separation in
complexity also underscores another key aspect: unlike DC formulations, obtaining
BDC formulations for problems is vastly easier and constructive. We illustrate
this aspect by presenting explicit BDC formulations for modern tasks such as deep
ReLU networks, a result with no known equivalent in the DC class. Moreover, we
complement the theory by developing algorithms with non-asymptotic convergence
theory, including both batch and stochastic settings, and illustrate their empirical
performance through several experiments.

1 INTRODUCTION

The growing complexity of machine learning raises numerous challenges for nonconvex optimization,
of which the identification of problem formulations that model, expose, and exploit structure is of key
importance. A specific example of this idea is the class of difference-of-convex (DC) functions, which
captures problem structure that has not only been well-studied over the decades but has attracted
significant attention recently (Khamaru and Wainwright, 2018; Davis et al., 2022; Maskan et al.,
2025). However, identifying a tractable and practically useful DC decomposition for a given problem
can be difficult, even NP-hard in some cases (Ahmadi and Hall, 2018). Although the existence of DC
decompositions can be guaranteed under mild smoothness assumptions (Tuy, 2016), these classical
results are often non-constructive and offer no guidance on how to obtain a suitable decomposition.

These challenges call for a more flexible perspective, so rather than insisting on a single global DC
decomposition we advocate a shift toward multi-block DC structure. Formally, we consider the
minimization of a function f(θ1, . . . , θn) that admits a DC decomposition with respect to each block
θi individually, when all other blocks are fixed. To our knowledge, this perspective has been explored
only in the two-block case, and surprisingly, remains largely unstudied in the multi-block setting,
despite being highly amenable to practice. We show how multi-block DC decompositions are easy to
construct, align naturally with the structure of many modern machine learning problems, and admit
algorithms with convergence guarantees comparable to the classical DC framework.

In light of the above motivation, we summarize our main contributions as follows:

• We define a new class called multi-block DC functions (hereafter, BDC), which extends the so-
called partial DC framework from two-blocks to multiple blocks. We study fundamental properties
of this class, including an exponential separation in representation complexity compared to DC
formulations. We present both examples and concrete tools to show how one can flexibly formulate
problems to be BDC, underscoring the class’s practicality across several applications.

• We propose a multi-block variant of the DC algorithm designed for BDC functions, which exploits
the block structure to perform efficient updates. We further extend this algorithm to a stochastic
setting, where the decomposition functions are accessed only through noisy oracles, broadening
the practical applicability of our framework to large-scale machine learning problems.
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2 PROBLEM SETUP AND RELATED WORK

We consider the general optimization problem

min
θ∈X

f(θ), (2.1)

where f : X → R is possibly nonconvex and X ⊆ Rd is the domain of our objective.

Block structure. We assume that X admits a Cartesian product decomposition X = X1 × · · · × Xn,
where each Xi ⊆ Rdi and d =

∑n
i=1 di. We also define X̄i = X1 × · · · × {0}di × · · · × Xn, the set

obtained from X by forcing the ith block to be zero, for notational convenience.

Let Di ∈ Rdi×d be the selection matrix that extracts the ith block of θ. Equivalently, Di is obtained
by taking di distinct rows of the identity matrix Id, so that {Di}ni=1 forms a non-overlapping partition
of the coordinates and satisfies

∑n
i=1 D

⊤
i Di = Id.

For clarity, we use boldface letters (e.g., θ ∈ X ) to denote full decision variables, and non-boldface
symbols (e.g., θi ∈ Xi) to denote individual blocks. We define, for each i ∈ [n], θi := Diθ, so that
θi ∈ Rdi represents the ith block of θ. We also define the block-extended vector θi := D⊤

i Diθ,
which coincides with θ on block i and is zero elsewhere. Its complement is θ̄i := (Id −D⊤

i Di)θ,
so that θ = θi + θ̄i. These definitions will be useful for expressing multi-block DC decompositions
and coordinate updates. We are now ready to state our key structural assumption on f and establish
closure properties of the induced function class.

Assumption 1 (Multi-Block DC separability). We assume that f : X → R admits a DC decomposi-
tion with respect to each block θi when all other blocks are fixed. Formally, this means that for each
i ∈ [n], there exist functions gi, hi : Xi × X̄i → R, such that for every θ ∈ X ,

f(θ) = gi(θi; θ̄i)− hi(θi; θ̄i),

where gi(· ; θ̄i) and hi(· ; θ̄i) are convex in θi. We refer to this property as a BDC decomposition.

Proposition 2.1 (Closure). Let fi be BDC functions for i = 1, . . . ,m, Then, the following functions
are also BDC: (i)

∑m
i=1 αifi, for αi ∈ R, (ii) mini=1,...m fi, (iii) maxi=1,...m fi

Proof can be found in Appendix B.1. It is worth noting that the class of BDC functions is strictly
larger than the classical DC family. For instance, Veselý and Zajíček (2018) construct a function in R2

that is DC on every convex curve but does not admit a global DC decomposition, implying it is BDC
but not DC. The main appeal of the BDC class, however, is not merely its greater expressiveness but
its flexibility. In practice, BDC decompositions are easier to construct than global DC decompositions,
and in many cases of practical interest they can be obtained explicitly in a constructive manner.

Example (Tensor decomposition). Let T ∈ Rm1×···×mn be an nth-order tensor, and let θi ∈ Rmi×r

denote the ith factor matrix. The canonical polyadic (CP) decomposition solves

min
θ1,...,θn

1

2

∥∥T − Jθ1, . . . , θnK
∥∥2
F
,

where Jθ1, . . . , θnK denotes the rank-r CP reconstruction. This problem is nonconvex jointly in all
θi’s, but convex in each θi when the others are fixed. This gives a BDC decomposition with hi = 0,
which also underlies the classical alternating least-squares (ALS) algorithm, which performs exact
multi-block minimization steps. Although this is a purely multi-block convex structure (hi = 0), it
illustrates how BDC decompositions are easier to obtain than DC decompositions, which would be
algebraically complex in this case. We present more general examples with nontrivial hi in Section 3.

2.1 RELATED WORK

DC programming has been employed in a wide range of machine learning applications from kernel
selection (Argyriou et al., 2006) to discrepancy estimation for domain adaptation (Awasthi et al.,
2024). The classical method for solving DC problems is the DC Algorithm (DCA), introduced
by Tao and Souad (1986). The first asymptotic convergence results for DCA were established by Tao
(1997), with a simplified analysis under differentiability assumptions later provided by Lanckriet
and Sriperumbudur (2009). More recently, non-asymptotic convergence rates of O(1/k) have been

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

established (Khamaru and Wainwright, 2018; Yurtsever and Sra, 2022; Abbaszadehpeivasti et al.,
2023). For a comprehensive survey, we refer to (Le Thi and Pham Dinh, 2018; 2024).

Despite its generality, the class of BDC functions remains largely unexplored. The only prior study
we are aware of is (Pham Dinh et al., 2022) that considers only the two-block case (termed partial DC
decomposition) and proposes the Alternating DC algorithm. Their method converges to weak critical
points in general, and to Fréchet/Clarke critical points under the Kurdyka–Łojasiewicz property, with
numerical validation on a nonconvex feasibility problem (intersection of two nonconvex sets) and
robust PCA. However, their results investigate neither the constructive structure (algebra) of BDC
functions nor their broader application potential, topics that we address through a general multi-block
formulation and algorithms with non-asymptotic convergence guarantees.

Finally, our framework should not be confused with the block-coordinate DCA of Maskan et al.
(2024), which tackles the simpler classical DC problem with a fixed global decomposition and
develops a block-coordinate algorithm. In contrast, we introduce and study the BDC problem class,
yielding a broader and much more flexible formulation. Our work, moreover, calls for a conceptual
shift: rather than seeking a global DC decomposition, we advocate a multi-block decomposition, as
this is vastly easier to construct, more expressive, and often algorithmically advantageous.

3 WHY THE BDC FUNCTION CLASS?

We discuss two important types of functions to motivate the BDC class. First, we prove that the
complexity of a DC decomposition for monomials is exponentially higher than its BDC counterpart.
Second, we propose an explicit BDC decomposition for deep ReLU networks (their architectural
core), which we then expand to cover regression and classification tasks.

3.1 DC AND BDC COMPLEXITY OF A MONOMIAL

Let θ = (θ1, · · · , θn) and f(θ) = θb11 θb22 · · · θbnn with s =
∑n

i=1 bi. We measure DC and BDC
complexities by the minimum number of atoms needed to represent a decomposition. For the DC

class, take f(θ) = g(θ)− h(θ) with g(θ) =
∑r

i=1 αi ϕi(θ) and h(θ) =
∑r+q

i=r+1 αi ϕi(θ), where
each αi > 0 and ϕi is a convex atom: ϕi(θ) = (u⊤

i θ)
s if s is even, and ϕi(θ) = (u⊤

i θ + di)
s+1

if s is odd. We denote by N the minimum atom count, i.e., the minimum of r + q over all such
decompositions. Using the notion of Waring rank (Carlini et al., 2012) and the polarization property
(Drápal and Vojtěchovskỳ, 2009), we bound N in the following Theorem 3.1. The detailed proof and
definitions needed for this result are given in Appendix B.2.

Theorem 3.1 (DC complexity for monomials). Consider f(θ) =
∏n

i=1 θ
bi
i with 1 ≤ b1 ≤ · · · ≤ bn

and s =
∑

i bi. Then the minimum atom count N for DC decomposition is either of the following:

• If s is even and atoms are of the form (u⊤θ)s, then
∏n

i=2(bi + 1) ≤ N ≤
⌊
1
2

∏n
i=1(bi + 1)

⌋
.

• If s is odd and atoms are of the form (u⊤θ + d)s+1, then N =
∏n

i=1(bi + 1).

As Theorem 3.1 shows, the DC decomposition of a monomial requires a very large number of atoms.
In contrast, a BDC decomposition can be significantly more compact. In the simplest case, each
θbii is treated as a standalone block, reducing the atom count exponentially compared to the DC
decomposition. More generally, one may split the monomial into a few larger blocks, decompose
each block, and then multiply the resulting sums, thereby reducing the complexity. For instance, the
monomial θ1θ2θ23θ

4
4 requires at least 30 atoms in a DC representation, which matches the lower bound

of Theorem 3.1. Instead taking the trivial blocks θ1, θ2, θ23 , and θ44 , yields a BDC decomposition with
only 4 atoms. Alternatively, splitting into two blocks, θ1θ2 and θ23θ

4
4 , results in 2 + 7 = 9 atoms in

total through Theorem 3.1. An explicit BDC decomposition in this case is

θ1θ2θ
2
3θ

4
4 =

1

14400

[
(θ1 + θ2)

2 − (θ1 − θ2)
2

]
×

[
5
(
(θ3 + θ4)

6
+ (θ3 − θ4)

6
)

+ 3
(
(θ3 + 3θ4)

6
+ (θ3 − 3θ4)

6
)
− 8

(
(θ3 + 2θ4)

6
+ (θ3 − 2θ4)

6
+ 420θ64

)]
.
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3.2 BDC FORMULATION OF A DEEP RELU NETWORK

Consider an L-layer ReLU network parameterized by θ =
(
W1, b1, . . . ,WL, bL

)
. For input x ∈ Rd,

define a0(x) = x, and

Fx(θ) = WLaL−1(x) + bL, al(x) = σ
(
Wl al−1(x) + bl

)
, l = 1, . . . , L− 1,

where Wl are weight matrices, bl are bias vectors, and σ(·) denotes the ReLU activation. Here
WL ∈ RC×dL and bL ∈ RC represent the weights of the output layer. For regression, we take C = 1;
for classification, C is the number of classes.

Now, we aim to express the network output as a BDC function in each class. We begin by writing
each activation using two nonnegative multi-block component-wise convex functions al = Z+

l −Z−
l ,

with the following initialization and forward recursion:

Initialization (l = 1): Z+
1 = σ(W1x+ b1), Z−

1 = 0.

Forward recursion (l → l+1): given (Z+
l , Z−

l ) with al = Z+
l − Z−

l , define

pl+1 = σ(Wl+1)Z
+
l + σ(−Wl+1)Z

−
l + bl+1,

Z−
l+1 = σ(Wl+1)Z

−
l + σ(−Wl+1)Z

+
l , Z+

l+1 = max{pl+1, Z
−
l+1}.

Using σ(a− b) = max{a, b} − b, we obtain

Z+
l+1 − Z−

l+1 = σ
(
Wl+1(Z

+
l − Z−

l ) + bl+1

)
= σ(Wl+1al + bl+1) = al+1(x).

This recursion guarantees Z±
l ≥ 0 and that each component of Z±

l is convex in the chosen block
θl = (Wl, bl); the used operations (nonnegative linear maps and coordinatewise maxima) preserve
convexity and nonnegativity layer by layer.

Output layer. Define nonnegative functions

A(θ) := σ(WL)Z
+
L−1 + σ(−WL)Z

−
L−1 + σ(bL),

B(θ) := σ(WL)Z
−
L−1 + σ(−WL)Z

+
L−1 + σ(−bL).

(3.1)

Then, Fx(θ) = A(θ)−B(θ). The following Theorem 3.2 proves that each component of A(θ) and
B(θ) in (3.1) is a convex function in every block (See Appendix B.3 for the proof).

Theorem 3.2 (Validity of BDC decomposition for Deep ReLU Network). For any block θl = (Wl, bl),
(3.1) gives A(θ) and B(θ) such that each component of A(· ; θ̄l) and B(· ; θ̄l) is nonnegative and
convex in θl, and we have Fx(θ) = A(θ)−B(θ).

Our result in Theorem 3.2 provides an explicit BDC formulation for deep ReLU networks. While it is
known (as an existence result) that deep ReLU networks are DC, explicit DC decompositions are
currently available only for shallow networks (Askarizadeh et al., 2024).

3.2.1 REGRESSION WITH MSE LOSS: BDC FORMULATION

For a label y ∈ R and scalar output Fx(θ) = A(θ)−B(θ), the Mean Squared Error (MSE) loss is
LMSE
x,y (θ) :=

(
Fx(θ)− y

)2
. This yields the explicit BDC decomposition

LMSE
x,y (θ) = 2

(
A2(θ) + (B(θ) + y)2

)
− (A(θ) +B(θ) + y)2, (3.2)

a difference of two multi-block convex functions if y ≥ 0.

Remark 3.3. If labels y are not guaranteed to be nonnegative, one can shift labels and outputs
by a constant c ≥ 0 so that y + c ≥ 0. This translation does not affect the BDC structure, so the
assumption y ≥ 0 is not restrictive.

Correctness. By Theorem 3.2, A(θ), B(θ) ≥ 0 are multi-block convex. For y ≥ 0 we have
B(θ) + y ≥ 0 and A(θ) + B(θ) + y ≥ 0, so A2(θ), (B(θ) + y)2, and (A(θ) + B(θ) + y)2 are
multi-block convex (square is convex and nondecreasing on [0,∞)). Therefore (3.2) gives a valid
BDC decomposition of LMSE

x,y (θ).
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3.2.2 CLASSIFICATION WITH CE LOSS: BDC FORMULATION

Before we can establish a BDC formulation of the Cross-Entropy (CE) loss, we need a general result
that extends BDC decompositions to more complex structures. Specifically, we develop a composition
principle ensuring that when the input admits a BDC decomposition, the expression obtained through
a conjugate function can also be written explicitly in BDC form. The following Proposition 3.4
establishes this principle (see Appendix B.4 for the proof). In contrast to many DC composition rules
that only guarantee existence, this result is constructive.
Proposition 3.4 (BDC decomposition for f∗◦ E). Let U ⊂ Rm be compact, f : U → R finite, and
f∗(t) = maxu∈U{⟨u, t⟩ − f(u)} be the conjugate of f . Suppose E(θ) = (E1(θ), . . . , Em(θ)),
where each component Ej is BDC, i.e., Ej(θ) = aij(θi; θ̄i)− bij(θi; θ̄i) for every block i ∈ [n]. For
j = 1, . . . ,m set uj := minu∈U uj , ūj := maxu∈U uj , c

+
j := max{−uj , 0}, d+j := max{ūj , 0}.

Define the vectors c+, d+ ∈ Rm. Then f∗◦ E is BDC, with an explicit multi-block decomposition
f∗(E(θ)) = gi(θi; θ̄i)− hi(θi; θ̄i), where, for each block i,

hi(θi; θ̄i) := ⟨c+, ai(θi; θ̄i)⟩+ ⟨d+, bi(θi; θ̄i)⟩,
gi(θi; θ̄i) := f∗(E(θ)) + hi(θi; θ̄i),

with ai(θi; θ̄i) := (ai1(θi; θ̄i), . . . , aim(θi; θ̄i)), bi(θi; θ̄i) := (bi1(θi; θ̄i), . . . , bim(θi; θ̄i)).

Using the split Fx(θ) = A(θ)−B(θ) in (3.1), for a label y ∈ {1, . . . , C} the CE loss is LCE
x,y(θ) =

LSE
(
Fx(θ)

)
−Ay(θ) +By(θ), where LSE(·) is the log-sum-exp with variational form

LSE(u) = max
p∈∆C

{
⟨p, u⟩ − Ent(p)

}
, ∆C := {p ≥ 0, 1⊤p = 1}, Ent(p) :=

∑C
c=1 pc log pc.

Corollary 3.5. Applying Proposition 3.4 with U = ∆C and f = Ent yields uj = 0 and ūj = 1 for
all j, hence c+ = 0 and d+ = 1. Therefore, for every x, y, LCE

x,y(θ) = g(θ)− h(θ), where

g(θ) := LSE(Fx(θ)) + 1⊤B(θ) +By(θ), h(θ) := Ay(θ) + 1⊤B(θ).

Correctness. For any parameter block, by Theorem 3.2 each component of A(θ) and B(θ) is
convex. Convexity of g(· ; θ̄l) and h(· ; θ̄l) in block l follows directly from Proposition 3.4 with
shifts c+ = 0 and d+ = 1. Therefore LCE

x,y(θ) is a valid BDC function.

4 BDC ALGORITHM

In this section we propose BDC algorithms (BDCA) along with their convergence results for BDC
optimization (2.1) under assumptions of L-smoothness, generalized smoothness, and stochasticity.
Unlike the conventional DCA, our BDC algorithm considers a convex surrogate function obtained by
linearizing the concave component of the objective function on each randomly chosen block ik around
the update point, θk, at kth iteration. Throughout this section we denote G(θ) := supu∈∂f(θ) ∥u∥.

4.1 BDCA UNDER L-SMOOTHNESS

Assume BDC problem (2.1), when each gi(θi; θ̄i) satisfies Li-smoothness and L := maxi∈[n] Li.
Our BDC algorithm at kth iteration will select a block ik uniformly at random, and then update by
minimizing a surrogate function on the selected block, as:

θk+1
ik

∈ argmin
θik∈Xik

gik(θik ; θ̄
k
ik
)− ⟨uk

ik
, θik⟩, (4.1)

where uk
ik

∈ ∂hik(θ
k
ik
; θ̄k

ik
). After solving (4.1), we update θk+1 = θ̄k

ik
+ θk+1

ik
, and set k = k + 1.

The convergence guarantee for (4.1) is summarized in the following corollary. When the problem has
convex and compact constraints, we propose a more general convergence result in Appendix A.1.
Corollary 4.1. The sequence generated by the update (4.1) will satisfy

min
k∈{1,...,K}

Ei

[
G2(θk)

]
≤ 2Ln

K

(
f(θ1)− f⋆

)
, (4.2)

where Ei[.] denotes expectation w.r.t. the ith block choice.
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4.2 PROXIMAL BDCA UNDER GENERALIZED SMOOTHNESS ASSUMPTION
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Figure 1: Estimated smoothness constant of
gi(· ; θ̄i) in (3.2) vs its gradient norm. For more
details of the experiment see Appendix A.6.1

Many optimization objectives do not possess a
Lipschitz continuous gradient. Despite this, re-
cent studies have shown that in some important
training tasks a more relaxed smoothness assump-
tion holds (Zhang et al., 2019; Crawshaw et al.,
2022). This assumption essentially bounds the
norm of the Hessian of the objective with a func-
tion of the gradient norm. Motivated by this,
we conducted a simulation showing that a multi-
block reminiscent of the generalized smoothness
holds when training a neural network (see Fig-
ure 1). Based on these observations, we assume
a more relaxed assumption on the components of
g(θ), known as ℓ-smoothness defined below.

Definition 1 (ℓ-smoothness,(Li et al., 2024)). A
real-valued differentiable function gi : Xi ×
X̄i → R is ℓ-smooth for continuous function ℓ :
[0,+∞) → (0,+∞) where ℓ is non-decreasing,
if it satisfies ∥∇2gi(θi; θ̄i)∥ ≤ ℓ(∥∇gi(θi; θ̄i)∥)
for fixed θ̄i almost everywhere with respect to the
Lebesgue measure in Xi.

It is possible to relate ℓ-smooth to its first-order reminiscent, known as (r, ℓ)-smoothness and vice-
versa under specific choices for functions r and ℓ (see Appendix A.4).

Definition 2 ((r, ℓ)-smoothness,(Li et al., 2024)). A real-valued differentiable function gi : Xi×X̄i →
R is (r, ℓ)-smooth for continuous functions r, ℓ : [0,+∞) → (0,+∞) where ℓ is non-decreasing and
r is non-increasing, if for any θi ∈ Xi we have B(θi, r(∥∇gi(θi; θ̄i)∥)) ⊆ Xi and, for all θ1i , θ

2
i ∈

B(θi, r(∥∇gi(θi; θ̄i)∥)) it holds that ∥∇gi(θ
1
i ; θ̄i)−∇gi(θ

2
i ; θ̄i)∥ ≤ ℓ(∥∇gi(θi; θ̄i)∥)∥θ1i − θ2i ∥.

The (r, ℓ)-smoothness requires successive updates distance ∥θk+1 − θk∥ to be bounded. Although in
algorithms like Gradient Descent (GD), this is satisfied through a bounded gradient norm condition
and the sequential form of the algorithm, in BDCA such a link is nontrivial. To solve this, we exploit
the non-uniqueness of the DC decomposition by adding and subtracting ρ

2∥θik∥
2 to (2.1) on each

block, yielding the proximal-type subproblems in (4.4) and ensuring bounded iterate differences.
Under the assumptions below, we propose the convergence guarantee for Algorithm 1.

Assumption 2. For every i ∈ {n}, the functions gi is differentiable and closed within its open
domain Xi × X̄i.

Assumption 3. For every i ∈ {n}, the functions hi are Lipschitz continuous with constant R.

Theorem 4.2. Consider Assumptions 2 and 3 when θk is the output of Algorithm 1 for any initializa-
tion θ0 ∈ X . Then, for any ℓ-smooth gi with subquadratic ℓ, if hik(θ

k
ik
; θ̄k

ik
)− hi0(θ

0
i0
; θ̄0

i0
) ≤ H for

a constant H ≥ 0, E := sup{u > 0 : u2 ≤ 2ℓ(2u).G} < ∞, G := maxj gj(θ
0
j ; θ̄

0
j )− g∗ +H and

L := ℓ(2E), then the sequence θk generated by Algorithm 1 with ρ ≥ L 2(E+R)
E will satisfy

min
k∈{1,...,K}

Ei

[
G2(θk)

]
≤ 2n(L+ ρ)

K

(
f(θ1)− f⋆

)
. (4.3)

For a detailed discussion on the convergence result and the proof of Theorem 4.2 see Appendix A.2.
Compared to (Li et al., 2024), this rate is scaled by n which is expected due to the random choice of
the blocks in each iteration of Algorithm 1.

4.3 STOCHASTIC PROXIMAL BDCA UNDER GENERALIZED SMOOTHNESS

In this section, we target (2.1) when on ith block we have

f(θ) := gi(θi; θ̄i)− hi(θi; θ̄i) = Es∼P[gi(θi; θ̄i, s)− hi(θi; θ̄i, s)] (4.5)
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Algorithm 1 Proximal BDC

Input: set k = 0, and number of blocks n, number of iterations T
REPEAT:
Randomly choose ik in [n] with uniform distribution
Evaluate uk

ik
∈ ∂hik(θ

k
ik
; θ̄k

ik
),

θk+1
ik

∈ argmin
θik

∈Xik

gik(θik ; θ̄
k
ik
)− ⟨uk

ik
, θik⟩+

ρ

2
∥θkik − θik∥2 (4.4)

Update θk+1 = θ̄k
ik
+ θk+1

ik
,

Set k = k + 1,
UNTIL Stopping criterion.

where (Ω,ΣΩ,P) is the probability space and BDC functions g(., s), h(., s), s ∈ Ω are defined on
X . In the realm of supervised learning, empirical loss is a common realistic approximation of the
objective (4.5). In this sense, for each i ∈ [n] we have

gi(θi; θ̄i)− hi(θi; θ̄i) ≈
1

J

J∑
j=1

gi(θi; θ̄i, s
j)− 1

J

J∑
j=1

hi(θi; θ̄i, s
j) (4.6)

for sj ∈ Ω. For simplicity, denote ĝi(θi; θ̄i) = gi(θi; θ̄i, s) and ĥi(θi; θ̄i) = hi(θi; θ̄i, s). Through-
out this section, we make the following assumption:
Assumption 4. Take ui ∈ ∂hi(θi; θ̄i) and ûi,∇ĝi(θi; θ̄i) as the unbiased stochastic approx-
imations of ui and ∇gi(θi; θ̄i) such that E [ûi] = ui and E

[
∇ĝi(θi; θ̄i)

]
= ∇gi(θi; θ̄i) with

E
[
∥∇ĝi(θi; θ̄i)− ûi − (∇gi(θi; θ̄i)− ui)∥2

]
≤ σ2 for i = 1, . . . , n.

To solve the stochastic minimization of (4.6), we need to modify Algorithm 1. Using i.i.d. random
sk ∼ Unif{1, J}, we evaluate ûk

ik
∈ ∂ĥik(θ

k
ik
; θ̄k

ik
). Now, instead of (4.4), we solve:

θk+1
ik

∈ argmin
θik

∈Xik

gik(θik ; θ̄
k
ik
, sk)− ⟨ûk

ik
, θik⟩+

ρ

2
∥θkik − θik∥2. (4.7)

The following theorem formulates the convergence of SBDC algorithm explained above.
Theorem 4.3. Consider assumptions 2, 3, and 4 when θk as the output of (4.7) for any initial-
ization θ0 ∈ X . Then, for any ℓ-smooth gi with subquadratic ℓ take gik(θ

k
ik
; θ̄k

ik
) − g∗ ≤ G

and ∥∇ĝik(θ
k
ik
; θ̄k

ik
) − ûk

ik
− (∇gik(θ

k
ik
; θ̄k

ik
) − uk

ik
)∥ ≤ F ′ for G,F ′ > 0 and ρ ≥ L 2(E+R+F ′)

E ,
L := ℓ(2E), hik(θ

k
ik
; θ̄k

ik
) − hi0(θ

0
i0
; θ̄0

i0
) ≤ H for a constant H ≥ 0. Further, for any 0 < δ < 1

consider G := maxj 8
(
gj(θ

0
j ; θ̄

0
j )− g∗ + C ′) /δ, C ′ := Kσ2

/ρ + H, F ′ = Eρ/9L − (E + R),

σ2 = O(1/
√
K), ρ = (18L+ 9ER

G + 81L
4

[
C′−H
C′

]
)
√
K, E := sup{u > 0 : u2 ≤ 2ℓ(2u)G} < ∞,

and K ≥ (L+
3
2ρ)nGδ/4ϵ2 for any ϵ > 0. Then, with probability at least 1− δ the iterates of the (4.7)

with n blocks will satisfy

min
k=1,...,K

Es,i

[
G2(θk)

]
≤ ϵ2. (4.8)

The proof of Theorem 4.3 with detailed discussion is presented in Appendix A.3. This result achieves
the gradient complexity O(n2/ϵ4) for ρ = Ω(

√
K). The condition σ2 = O(1/

√
K) is achievable

through a comparable number of samples in the mini-batch or through variance reduction techniques.
In particular, by Lemma A.12 (see Appendix A.5) batch size should be Ω(n/ϵ2) and this means a
sample complexity Ω(n3/ϵ6). Similar assumption has appeared in previous works such as (Nitanda
and Suzuki, 2017; Yurtsever et al., 2019).

5 APPLICATIONS

We highlight the versatility of the BDC framework through a few illustrative applications and
numerical experiments.
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Figure 2: Reconstruction error and sparsity of codes for the ℓ1 regularizer (orange) and the nonconvex ℓ1 − ℓQ
regularizer (blue) on synthetic data and BSDS500 patches. Solid curves denote the mean over 10 runs, with
shaded bands showing 95% probabilistic bounds. The dashed green line indicates the true sparsity level in the
synthetic data. The nonconvex ℓ1 − ℓQ formulation yields both lower reconstruction error and sparser codes.

Proximal Alternating Linearized Minimization. The general class of nonconvex nonsmooth
optimization problems in the form of:

min
θi∈Xdi

,i=1,...,n

n∑
i=1

fi(θi) +H(θ), (5.1)

was addressed by Bolte et al. (2014) for an L-smooth function H(θ). This problem is an instance of
(2.1) under some assumptions. Bolte et al. (2014) proved a non-asymptotic convergence rate for the
PALM algorithm assuming the KL property while in this work, we do not make such assumption.

Multiplicative Multitask Feature Learning. MMFL aims to train a neural network that learns
shared representations across multiple tasks. A shared vector c ∈ RT indicates feature usefulness for
T tasks, and is multiplied by the weight vector βt ∈ Rd, where d is the number of features. Sparse
regularization is then to exclude redundant features. For details on regularizer choices, see (Wang
et al., 2016). The mathematical formulation of the MMFL problem with sparse regularizer on c is:

min
c≥0,βt

T∑
t=1

loss(diag(c)βt, Xt, yt) + λ1

T∑
t=1

∥βt∥pp + λ2∥c∥0, (5.2)

where loss(·) denotes a loss function (e.g., least squares or logistic loss), Xt ∈ Rnt×d is the dataset,
and yt represents the labels for the tth task. Since convex ℓ1 regularizers are too relaxed to approximate
the shrinkage effect in the feature space, non-convex alternatives such as ∥c∥1−∥c∥Q (∥x∥Q denotes
the largest-Q norm) or the capped ℓ1-norm (

∑
t min{|ct|, γ} = ∥c∥1 −

∑
t max{|ct| − γ, 0}) are

preferred (Gong et al., 2012). Replacing either of these in (5.2) results in a BDC optimization task.

Rank Regularization. Consider an optimization problem of the following form:

min
X,Y

f(X,Y ) + λ rank(X) (5.3)

where X and Y are two matrices in Rn×m and the function f(·) is BDC. This type of problem has
several applications, such as matrix completion (Hazan et al., 2023) and deep learning (Wang et al.,
2024; Scarvelis and Solomon, 2024). Due to the rank term, (5.3) is NP-hard and a convex surrogate
known as the nuclear norm ∥X∥∗ =

∑min{n,m}
i=1 σi is often utilized, where σi represents the i-th

largest singular value. A tighter non-convex approximation of the rank regularizer is the truncated
nuclear norm (TNN), defined as

∑min{n,m}
i=r+1 σi. TNN can be rewritten as ∥X∥∗ −

∑r
i=1 σi, which is

a DC function. Thus, replacing it in (5.3) gives a BDC due to the DC regularizer. Note that when
r = 1, the regularizer is equivalent to ∥X∥∗ − ∥X∥2, which is a special case commonly used as a
non-convex regularizer for the rank term (Jiang et al., 2021).

Sparse Dictionary Learning. We illustrate the applicability of our theoretical framework on
SDL problem. Given a data matrix Y = [y1, . . . , yn] ∈ Rm×n, SDL seeks a dictionary D =
[d1, . . . , dk] ∈ Rm×k and sparse codes X = [x1, . . . , xn] ∈ Rk×n by solving

min
D∈C, X

n∑
i=1

1

2

∥∥yi −Dxi

∥∥2
2
+ α

n∑
i=1

∥xi∥0, C =
{
D ∈ Rm×k | ∥dj∥2 ≤ 1 ∀j

}
. (5.4)
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Figure 3: Comparison of SBDC with SGD in regression (left) and classification (middle, right) for 10 Monte-
Carlo instances. The shaded bands specify the 90% confidence intervals. As depicted, SBDC has comparable
performance to the SGD in terms of the test loss and test accuracy.

Since the ℓ0-norm is NP-hard to optimize, it is often replaced with ℓ1-norm. More recently, nonconvex
regularizers have been used to yield a tighter approximation to sparsity. Following (Deng and Lan,
2020; Maskan et al., 2024), we consider

min
D∈C, X

n∑
i=1

1

2

∥∥yi −Dxi

∥∥2
2
+ α

n∑
i=1

(
∥xi∥1 − ∥xi∥Q

)
. (5.5)

Problem (5.5) is BDC: fixing either D or X yields a DC problem. The optimization problem (5.5)
is a special case of our formulation in Section 4.1 and Appendix A.1. We conducted numerical
simulations to solve the SDL problem with ℓ1 and nonconvex ℓ1 − ℓQ regularizers (Eq. 5.5) via
BDCA (4.1). Performance is measured by reconstruction error ∥Y −DX∥2F and the proportion of
zeros in X . We compare using synthetic data and Berkeley segmentation dataset (Martin et al., 2001).
The results are shown in Figure 2. For more detail, see Appendix A.6.

Application to Neural Networks. In Section 3.2 we found explicit formulations of training objective
for MSE and CE losses as a BDC problem. Using the these formulations and (4.7), we train neural
networks for the MSE and the CE loss functions. Next, we train neural networks using (4.7). We use
CIFAR10 and FASHIONMNIST datasets for the classification task and BOSTON HOUSING PRICE
dataset1 for the regression task. See Appendix A.6 for a details of our implementation setting.
Remark 5.1. Our implementation via (4.7) computes gradients only with respect to the selected
random layer in each iteration, offering computational benefits by reducing the gradient calculation
bottleneck. In practice, we backpropagate only up to the selected layer.

6 CONCLUSION AND DISCUSSION

We introduce and motivate the multi-block DC (BDC) class—strictly richer than classical DC—and
demonstrate its practicality from two angles: (i) compared to DC decompositions, BDC formula-
tions are far cheaper to construct (e.g., exponentially cheaper for monomials), and (ii) obtaining
BDC decompositions for modern problems (e.g., training deep ReLU networks) is vastly easier and
constructive. Subsequently, after developing foundational properties of the BDC class, we leverage
multi-block convexity to propose a Gauss–Seidel–type BDC algorithm with non-asymptotic guaran-
tees under L-smoothness, generalized smoothness, and stochasticity. Applications to MMFL, rank
regularization, sparse dictionary learning, and neural network training illustrate the framework’s
practicality and breadth.

We conclude by noting one avenue for future work and two algorithmic limitations. On the theory
side, a natural direction is to further investigate the representation complexity gap between the BDC
and DC classes (e.g., for ReLU networks). On the algorithmic side, although Algorithm 1 ensures
monotone descent, our analysis assumes bounded gi(θi; θ̄i) along the trajectory, which we enforce
via bounded hi(θi; θ̄i) at update points; removing this assumption would strengthen the result. In
addition, our generalized-smoothness theory currently covers only unconstrained BDC optimization;
extending it to constrained problems remains open.

1https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset
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Algorithm 2 BDC Algorithm (L-smooth))

Input: set k = 0, and number of blocks n, number of iterations T
REPEAT:
Randomly choose ik in [1, ..., n] with uniform distribution
Evaluate uk

ik
∈ ∂hik(θ

k
ik
; θ̄k

ik
),

Solve

θk+1
ik

∈ argmin
θik∈Mik

gik(θ
k
ik
; θ̄k

ik
) + rik(θik)− ⟨uk

ik
, θik⟩ (A.4)

Update θk+1 = θ̄k
ik
+ θk+1

ik
,

Set k = k + 1,
UNTIL Stopping criterion.

A DISCUSSIONS

In this section, we provide more general results under smoothness assumption in Appendix A.1,
background on generalized smoothness in Appendix A.4, useful lemmas in stochastic gradient
estimator’s variance in Appendix A.5, and more detail on numerical results in Appendix A.6. All the
proofs are given in Appendix B.

A.1 MULTI-BLOCK DCA UNDER SMOOTHNESS ASSUMPTION

Here, we focus on a more general problem of the form:
min
θ∈M

f(θ), (A.1)

where for each block θi

f(θ) := gi(θi; θ̄i) + ri(θi)− hi(θi; θ̄i), (A.2)

when gi(· ; θ̄i) is an L-smooth function, ri(θi) is a non-differentiable convex function, and we have
constraint set M = M1 × M2 × . . . × Mn and each Mi ⊆ Rdi is a closed convex set and
d =

∑n
i=1 di. The rest of the setup is similar to the unconstrained setting in Section 2. Problem

(A.1) was addressed for DC objective function f(θ) in Maskan et al. (2024). Here, we show that our
formulation is capable of solving such problem formulation under a multi-block DC assumption on
the objective f(θ). Under this assumption, we propose a multi-block DCA (BDCA) algorithm, shown
in Algorithm 2. The following Theorem shows the convergence of this method. The proof of this
theorem is given in Appendix B.11.
Theorem A.1. The sequence generated by the update (A.4) will satisfy

min
k∈{1,...,K}

Ei

[
gapLM(θk)

]
≤ n

K

(
f(θ1)− f⋆

)
, (A.3)

where Ei[.] denotes expectation w.r.t. the ith block choice and

gapLM(y) := max
x∈M

min
ν∈∂f(y)

{
⟨ν, y − x⟩+ r(y)− r(x)− L

2
∥x− y∥2

}
,

is a gap measure ensuring convergence to first order stationary points and we denote ∂f(y) =
∇gi(yi; ȳi)− ui for u ∈ ∂hi(yi; ȳi).

This result, is more general than the one presented in Corollary 4.1. Specifically, when r doesn’t
exist and M becomes the domain X (no constraint), the gap measure is 1

2LG(θ
k) for G(θ) :=

supu∈∂f(θ) ∥u∥ which results in Corollary 4.1.

A.2 DETAILED ANALYSIS OF MULTI-BLOCK PROXIMAL DCA UNDER GENERALIZED
SMOOTHNESS ASSUMPTION

In this section, we provide a more detailed discussion and prove the results in Section 4.2. Recall that
we assumed a more relaxed assumption on the component gi(· ; θ̄i), known as ℓ-smoothness. A first
order reminiscent of the ℓ-smoothness is the (r, ℓ)-smoothness.
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Definition 3 ((r, ℓ)-smoothness,(Li et al., 2024)). A real-valued differentiable function gi : Xi×X̄i →
R is (r, ℓ)-smooth for continuous functions r, ℓ : [0,+∞) → (0,+∞) where ℓ is non-decreasing and
r is non-increasing, if for any θi ∈ Xi we have B(θi, r(∥∇gi(θi; θ̄i)∥)) ⊆ Xi and, for all θ1i , θ

2
i ∈

B(θi, r(∥∇gi(θi; θ̄i)∥)) it holds that ∥∇gi(θ
1
i ; θ̄i)−∇gi(θ

2
i ; θ̄i)∥ ≤ ℓ(∥∇gi(θi; θ̄i)∥)∥θ1i − θ2i ∥.

Due to ∥∇gi(θi; θ̄i)∥ ≤ ∥∇gj(θj , θ̄j)∥ for j := argmaxk ∥∇gk(θk, θ̄k)∥ and the fact that r is a
non-increasing function, we get B(θi, r(∥∇gj(θj , θ̄j)∥)) ⊆ B(θi, r(∥∇gi(θi; θ̄i)∥)). Therefore, for
any θ1i , θ

2
i ∈ B(θi, r(∥∇gj(θj , θ̄j)∥)) that satisfy (r, ℓ)-smoothness, we have:

∥∇gi(θ
1
i ; θ̄i)−∇gi(θ

2
i ; θ̄i)∥ ≤ ℓ(∥∇gj(θj , θ̄j)∥)∥θ1i − θ2i ∥.

It is possible to relate these two definitions, i.e., we can show that an ℓ-smooth function is (r, ℓ)-
smooth and vice-versa under specific choices for r and ℓ. This connection, investigated by Li et al.
(2024), with more discussion and related results are given in Appendix A.4.

A necessary condition for (r, ℓ)-smoothness is that the iterates of our sequential algorithm have a
bounded distance ∥θk+1 − θk∥. Usually, this is satisfied through bounded gradient norm condition
and the sequential form of the algorithm. For example, in GD we have ∥θk+1 − θk∥ = ∥η∇f(θk)∥.
In DCA, such a connection does not have trivial validity. Using the non-uniqueness of the DC
decomposition, we add and subtract ρ

2∥θik∥
2 to (2.1) on each block. This gives the subproblems (4.4)

after applying DCA, which are proximal-type updates. The expected convergence rate of Algorithm 1
is finalized in the following proposition:

Proposition A.2. Consider Assumptions 2 and 3 when θk is the output of Algorithm 1 for any initial-
ization θ0 ∈ X . Then, for any ℓ-smooth gi with subquadratic ℓ, if hik(θ

k
ik
; θ̄k

ik
)− hi0(θ

0
i0
; θ̄0

i0
) ≤ H

for a constant H ≥ 0, E := sup{u > 0 : u2 ≤ 2ℓ(2u).G} < ∞, G := maxj gj(θ
0
j ; θ̄

0
j )− g∗ +H

and L := ℓ(2E), then the sequence θk generated by Algorithm 1 with ρ ≥ L 2(E+R)
E will satisfy

min
k∈{1,...,K}

Ei

[
G2(θk)

]
≤ 2n(L+ ρ)

K

(
f(θ1)− f⋆

)
. (A.5)

Proof. We begin by bounding the updates through the following lemma. See Appendix B.5 for the
proof.

Lemma A.3. For any starting point θk the update generated by (4.4) is in B
(
θk, 2

ρG(θ
k)
)

.

This result guarantees ∥θk+1 − θk∥ ≤ 2
ρ supνk

ik
∈∂ik

f(θk) ∥νkik∥ ≤ 2
ρG(θ

k). Due to ∥νkik∥ ≤
∥∇gik(θ

k
ik
; θ̄k

ik
)∥ + ∥uk

ik
∥ for any uk

ik
∈ ∂hik(θ

k
ik
; θ̄k

ik
), νkik ∈ ∂ikf(θ

k), and R-Lipschitz hik (see
Assumption 3), we need to bound ∥∇gik(θ

k
ik
; θ̄k

ik
)∥ in order to have a bounded ∥νkik∥. When gik is

ℓ-smooth with bounded gik(θik ; θ̄
k
ik
) − g∗ for some θik ∈ Xik , we get ∥∇gik(θik ; θ̄

k
ik
)∥ ≤ E for

E > 0 (see Corollary A.11 in Appendix A.4). The following Lemma bounds gik(θ
k
ik
; θ̄k

ik
)− g∗ and

proposes a choice for ρ such that we have local bound on the gradients.

Lemma A.4. Consider Assumptions 2 and 3 when θk+1 is the output of Algorithm 1 for any
initialization θ0 ∈ X . Then, if hik(θ

k
ik
; θ̄k

ik
) − hi0(θ

0
i0
; θ̄0

i0
) ≤ H for a constant H ≥ 0, we have

gik(θ
k
ik
; θ̄k

ik
)− g∗ ≤ gi0(θ

0
i0
; θ̄0

i0
)− g∗ +H . Additionally, for any ℓ-smooth gi with subquadratic ℓ,

if ρ ≥ ℓ(2E) 2(E+R)
E , then for any i ∈ [n] and θ1,θ2 ∈ B(θk, 2(E+R)/ρ) we have:

∥∇gi(θ
2
i ; θ̄

2
i )−∇gi(θ

1
i ; θ̄

1
i )∥ ≤ L∥θ1i − θ2i ∥,

gi(θ
2
i ; θ̄

2
i ) ≤ gi(θ

1
i ; θ̄

1
i ) + ⟨∇gi(θ

1
i ; θ̄

1
i ), θ

2
i − θ1i ⟩+

L

2
∥θ1i − θ2i ∥2,

(A.6)

where L = ℓ(2E) is the effective smoothness for some E > 0.

See Appendix B.6 for the proof. Note that θ1,θ2 in Lemma A.4 differ only in their ith
k block

selected on iteration k of Algorithm 1. Now building on the previous lemmas, we propose our main
convergence result for Algorithm 1. The proof of this result is given in Appendix B.7
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Proposition A.5. Assume the conditions in Lemma A.4 and take E := sup{u > 0 : u2 ≤
2ℓ(2u).G} < ∞, G := maxi gi(θ

0
i ; θ̄

0
i ) − g∗ + H and L := ℓ(2E). Then, the sequence θk

generated by Algorithm 1 with ρ ≥ L 2(E+R)
E will satisfy

min
k∈{1,...,K}

Ei

[
G2(θk)

]
≤ 2n(L+ ρ)

K

(
f(θ1)− f⋆

)
. (A.7)

A.3 DETAILED ANALYSIS OF STOCHASTIC MULTI-BLOCK PROXIMAL DCA UNDER
GENERALIZED SMOOTHNESS ASSUMPTION

In order to show the convergence of (4.7), we start by ensuring the boundedness of the updates as in
the following lemma. See Appendix B.9 for the proof.
Lemma A.6. Denote the sequence generated by (4.7) as θk. Then, for any uk

ik
∈ ∂hik(θ

k
ik
; θ̄k

ik
), if

∇ĝik(θ
k
ik
; θ̄k

ik
), ûk

ik
are the respective stochastic approximations of uk

ik
and ∇gik(θ

k
ik
; θ̄k

ik
), we have:

∥θk+1 − θk∥ ≤ 2

ρ

(
G(θk) + ∥∇ĝik(θ

k)− ûk
ik
− (∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
)∥
)
.

Note that the bound in Lemma A.6 does not immediately imply that the solutions to the subproblems
(4.7) will fall inside a ball. For this, we take ∥∇ĝik(θ

k)− ûk
ik
− (∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
)∥ ≤ F ′ for

some F ′ > 0. Later, we find the value of F ′ such that the bound ∥∇ĝik(θ
k)−ûk

ik
−(∇gik(θ

k
ik
; θ̄k

ik
)−

uk
ik
)∥ ≤ F ′ holds with high probability. Then, a similar result to Lemma A.4 holds in the stochastic

setting.
Lemma A.7. Consider Assumptions 2 and 3 when θk is the output of (4.7) for any initialization θ0 ∈
X . Then, for any ℓ-smooth gi with subquadratic ℓ if gik(θ

k
ik
; θ̄k

ik
)− g∗ ≤ G and ∥∇ĝik(θ

k
ik
; θ̄k

ik
)−

ûk
ik
− (∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
)∥ ≤ F ′ for G,F ′ > 0 and ρ ≥ L 2(E+R+F ′)

E for L := ℓ(2E), we have:

∥∇gi(θ
2
i ; θ̄

2
i )−∇gi(θ

1
i ; θ̄

1
i )∥ ≤ L∥θ1i − θ2i ∥,

gi(θ
2
i ; θ̄

2
i ) ≤ gi(θ

1
i ; θ̄

1
i ) + ⟨∇gi(θ

1
i ; θ̄

1
i ), θ

2
i − θ1i ⟩+

L

2
∥θ1i − θ2i ∥2,

(A.8)

for any θ1,θ2 ∈ B(θk, 2(E+R+F ′)/ρ).

See Appendix B.10 for the proof. Note that if F ′ = 0, we get ρ ≥ 2L(E+R)/E which was
in Lemma A.4. In order to use Lemma A.7, we need to show gik(θ

k
ik
; θ̄k

ik
) − g∗ ≤ G and

∥∇ĝik(θ
k
ik
; θ̄k

ik
) − ûk

ik
− (∇gik(θ

k
ik
; θ̄k

ik
) − uk

ik
)∥ ≤ F ′. Due to stochasticity, it is not possible

to directly bound these values for all the iterations. Instead, we will show that the probabilities of the
following events are low up to time K:

t1 := min
{
min{k|gik(θ

k+1
ik

; θ̄k
ik
)− g∗ > G},K

}
,

t2 := min
{
min{k|∥∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
− (∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
)∥ > F ′},K

}
,

t := min{t1, t2},
(A.9)

In (A.9), the event t1 = K will ensure gik(θ
k
ik
; θ̄k

ik
) − g∗ ≤ G before time k < K and the event

t2 = K will ensure ∥∇ĝik(θ
k
ik
; θ̄k

ik
) − ûk

ik
− (∇gik(θ

k
ik
; θ̄k

ik
) − uk

ik
)∥ ≤ F ′ before time k < K.

Next, we should show that the probability of the event {t < K} is low. Alternatively, we can show a
low probability for the event {t = t2 < K} ∪ {t = t1 < K, t2 = K}. This is a similar technique to
(Li et al., 2024) in order to show convergence in the stochastic setting. Compared to their work, our
proposed method in (4.7) targets a more general class of functions (BDC). Although the generality
of our function class, our guarantee in Theorem 4.3 requires only the first components of our BDC
structure to be ℓ-smoothness. In this sense, our work generalizes the prior result by Li et al. (2024).
The main convergence result is given in the following proposition (see Appendix B.8 for the proof).
Proposition A.8. Consider Assumption 4 and the conditions in Lemma A.7 with hik(θ

k
ik
; θ̄k

ik
) −

hi0(θ
0
i0
; θ̄0

i0
) ≤ H for a constant H ≥ 0. Further, for any 0 < δ < 1 take G :=
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maxj 8
(
gj(θ

0
j ; θ̄

0
j )− g∗ + C ′) /δ, C ′ := Kσ2

/ρ + H, F ′ = Eρ/9L − (E + R), σ2 = O(1/
√
K),

ρ = (18L+ 9ER
G + 81L

4

[
C′−H
C′

]
)
√
K, E := sup{u > 0 : u2 ≤ 2ℓ(2u)G} < ∞, L := ℓ(2E), and

K ≥ (L+
3
2ρ)nGδ/4ϵ2 for any ϵ > 0. Then, with probability at least 1− δ the iterates of the (4.7) with

n blocks will satisfy

min
k=1,...,K

Es,i

[
G2(θk)

]
≤ ϵ2. (A.10)

A.4 BACKGROUND ON (r, ℓ)-SMOOTHNESS AND ℓ-SMOOTHNESS

Here, we discuss the required background and results on ℓ-smoothness. We mainly represent the
results from (Li et al., 2024) and briefly explain the results and connections with this work.

We start with the following lemma characterizing a local descent condition for any x ∈ X when g is
(r, ℓ)-smooth:

Lemma A.9 (Li et al. (2024)). If g is (r, ℓ)-smooth, for any x ∈ X satisfying ∥∇g(x)∥ ≤ E we have
B(x, r(E)) ⊂ X , and for any x1, x2 ∈ B(x, r(E)),

∥∇g(x2)−∇g(x1)∥ ≤ L∥x1 − x2∥ g(x2) ≤ g(x1) + ⟨∇g(x1), x2 − x1⟩+
L

2
∥x1 − x2∥2

where L = ℓ(E) is the effective smoothness.

The following proposition, bridges ℓ-smoothness and (r, ℓ)-smoothness. The importance of this result
is due to the fact that it shows applicability of the descent Lemma A.9 on ℓ-smooth functions.

Proposition A.10 (Li et al. (2024)). An (r, l)-smooth function is l-smooth; and an l-smooth is
(r,m)-smooth with m(u) := l(u+ a) and r(u) := a/m(u) for any a > 0 if f is a closed function
within its open domain X .

With this result, one can use Lemma A.9 on an ℓ-smooth function which satisfies the conditions in
Lemma A.9: bounded gradients and (r, ℓ)-smoothness. Also, we need to ensure that the updates
remain inside a ball. Despite the convexity of the function g in our problem setup, DCA updates
do not guarantee the boundedness of its gradients. Therefore, we use the following corollary which
provides such bound when the function ℓ is sub-quadratic in the sense that limt→∞ ℓ(t)/t2 = 0.

Corollary A.11 (Li et al. (2024)). Suppose g is ℓ-smooth with sub-quadratic ℓ. If g(x) −
infy∈X g(y) ≤ G for some x ∈ X and G ≥ 0, then E2 = 2ℓ(2E)G and ∥∇g(x)∥ ≤ E < ∞ for
E := sup{u ≥ 0|u2 ≤ 2ℓ(2u)G}

With Corollary A.11, if we can show that the updates remain inside a ball, then the descent condition
in Lemma A.9 holds.

A.5 USEFUL LEMMA ON GRADIENT ESTIMATION VARIANCE

The following lemma is a classical result on the variance in terms of the mini-batch size. We used
this Lemma for the discussions on our reduced variance assumption in Theorem 4.3.

Lemma A.12 (Lemma 2 from (Reddi et al., 2016) ). Suppose that Sk is a subset that samples sk
i.i.d realizations from the distribution P . Let the stochastic estimator ∇f(θk, sk) satisfy the bounded
variance condition Assumption 4. Then, the following bound holds:

E
[
∥∇f(θk, sk)−∇f(θk)∥2

]
≤ σ2

sk
, ,∀θ ∈ X . (A.11)

A.6 MORE DETAIL ON NUMERICAL EXAMPLES

In this section, we provide the reader with more detail of our implementation settings and parameter
choices.
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A.6.1 GENERALIZED SMOOTHNESS ON DEEP NETWORKS.

The relationship between the Hessian of the objective function in training language models and the
norm of its gradient was already observed in (Zhang et al., 2019). This relationship was later extended
to more general cases by Li et al. (2024). The previous analyses, heavily relied on the trajectory of the
optimization guided by GD updates. Here, we want to show that a similar relationship exists between
the estimated smoothness of the first BDC component and its gradient norm when the updates are
done by the BDCA. In order to do this, we use the same smoothness estimator as in (Santurkar et al.,
2018) defined below:

L̂gi(θ
k) = max

γ∈{δ,2δ,...,1}

∇gi(θ
k
i + γd)−∇gi(θ

k
i )

γd
, (A.12)

for a small value δ and d = θk+1
i − θki . This value determines the variations along d on the block

i. Note that unlike previous results, in BDCA we do not necessarily decrease the value of the first
component along the update trajectory. To show this, we conducted numerical simulations on a
regression task using a three-layer ReLU network of size (8×64×32×1) on the California Housing
dataset (Kelley Pace and Barry, 1997). We considered training for 30 epochs, a learning rate of
0.5× 10−3 with 10 oracle calls to the BDCA sub-problem solver. We set δ = 0.25. The logarithm
of the estimated smoothness constant of the first BDC component in (3.2) was depicted against
its gradient norm for each block is depicted in Figure 1. This figure suggests that a sub-quadratic
relationship between the layer-wise smoothness constant and their gradient norms exists, a similar
relationship required for our convergence result in Theorem 4.2 and Theorem 4.3.

A.6.2 SPARSE DICTIONARY LEARNING

Here, we explain the implementation structures of the sparse dictionary learning problem with more
detail. Note that the structure of SDL problem fits with the more general analysis provided in
Appendix A.1.

Implementation Details. Both formulations (with ℓ1 norm and (5.5)) are solved via alternating
minimization. In each iteration, we first update X: for the ℓ1 model, we use GD; for the nonconvex
model (5.5), we employ the DC algorithm by linearizing the ∥ · ∥Q term and then applying GD to the
resulting convex surrogate. Next, we update D using a Frank–Wolfe procedure, projecting onto C to
enforce the unit-ℓ2 constraints. A line search determines the optimal step size in each Frank–Wolfe
update. We evaluate performance by the reconstruction error ∥Y −DX∥2F and the proportion of
zeros in X . Each experiment is repeated 10 times, and we report a 95% probabilistic bound in our
plots. We compare the formulations on synthetic data and Berkeley segmentation dataset Martin et al.
(2001).

Synthetic Data. We set m = 10, k = 32, and n = 100. A ground-truth dictionary D∗ ∈ Rm×k is
generated by sampling each entry i.i.d. from N (0, 1) and normalizing each column to unit ℓ2-norm.
The true sparse code matrix X∗ ∈ Rk×n has exactly five nonzero entries per column, drawn i.i.d.
from N (0, 1). We synthesize the data as Y = D∗X∗, using α = 0.1 and Q = 5. Results are shown
in Figure 2.

Berkeley Segmentation Dataset. Martin et al. (2001) From the BSDS500 training set (200
images), we randomly extract 50 grayscale patches of size 8× 8 from each image. Any patch that is
identically zero is discarded; the remaining patches are demeaned and normalized to unit ℓ2-norm,
then assembled as columns of Y . For this experiment we use α = 0.2, Q = 5, and k = 256. Results
are shown in Figure 2.

A.6.3 TRAINING NEURAL NETWORKS.

Here, we explain the implementation structures of the training problem with more detail.

Implementation details (Regression Task). For the regression task’s training we set 100 epochs
and a batch size of 20. The training network included three linear layers with sequential input-output
dimensions (13, 64, 32, 16, 1) and with ReLU activation functions. The training result was compared
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with SGD as a benchmark method with step-size 10−2. The BDC sub-problems were solved with
50 calls to the minimization oracle. Here, we used a constant ρ = 103. For the BDC subproblems,
simple GD was utilized. The results for 10 Monte-Carlo instances and 90% confidence intervals are
shown in Figure 3 (left).

Implementation details (Classification Task). For the classification task, we tested CIFAR10
dataset, and FASHIONMNIST datasets. For the FASHIONMNIST dataset, we considered a three
layer ReLU network with sequential input-output dimensions (28 ∗ 28, 512, 64, 10). The training
step-size for SGD was set to 10−2, the batch size was fixed to 256, and epoch is 100. The inner
iterations for solving BDC sub-problems using GD was fixed to 20. The results for 10 Monte-Carlo
instances, 90% confidence intervals, and ρ = 103 are depicted in Figure 3 (middle).

For the CIFAR10 dataset, we considered a four layer ReLU network with sequential input-output
dimensions (3 ∗ 32 ∗ 32, 256, 128, 64, 10). The training step-size for the SGD method was set to
10−2, the batch size was fixed to 128, and the epoch is 100. The inner iterations for solving BDC
sub-problems was fixed to 50 with a similar step-size strategy as for FASHIONMNIST. The results
for 10 Monte-Carlo instances, 90% confidence intervals, and ρ = 103 are depicted in Figure 3 (right).
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B PROOFS

B.1 PROOF OF PROPOSITION 2.1

Fix any block i ∈ [n] and fix an arbitrary complement θ̄i ∈ X̄i. We work with the i-th block (with θ̄i
fixed and θi free). By BDC assumption, for each r ∈ {1, . . . ,m} there exist functions

g
(r)
i (· ; θ̄i), h(r)

i (· ; θ̄i) : Xi → R

that are convex in θi such that

fr(θ) = g
(r)
i (θi; θ̄i) − h

(r)
i (θi; θ̄i), θi ∈ Xi.

We show that each operation preserves this BDC form.

(i) Linear combinations. Let α1, . . . , αm ∈ R and write αr = α+
r − α−

r with α±
r ≥ 0. Then, for

every θi ∈ Xi,
m∑
r=1

αr fr(θ) =

m∑
r=1

α+
r

(
g
(r)
i (θi; θ̄i)− h

(r)
i (θi; θ̄i)

)
−

m∑
r=1

α−
r

(
g
(r)
i (θi; θ̄i)− h

(r)
i (θi; θ̄i)

)
=

( m∑
r=1

α+
r g

(r)
i (θi; θ̄i) +

m∑
r=1

α−
r h

(r)
i (θi; θ̄i)

)
︸ ︷︷ ︸

convex in θi

−
( m∑

r=1

α+
r h

(r)
i (θi; θ̄i) +

m∑
r=1

α−
r g

(r)
i (θi; θ̄i)

)
︸ ︷︷ ︸

convex in θi

.

Each bracket is a nonnegative sum of convex functions of θi, hence convex. Therefore
∑m

r=1 αrfr is
BDC.

(ii) Maximum. Using the BDC decompositions of all fr, for every θi ∈ Xi,

max
1≤r≤m

fr(θ) = max
1≤r≤m

{
g
(r)
i (θi; θ̄i)− h

(r)
i (θi; θ̄i)

}
= max

1≤r≤m

{
g
(r)
i (θi; θ̄i) +

m∑
s=1
s̸=r

h
(s)
i (θi; θ̄i)

}
−

m∑
k=1

h
(k)
i (θi; θ̄i). (B.1)

For the fixed θ̄i, each inner map

θi 7→ g
(r)
i (θi; θ̄i) +

m∑
s=1
s ̸=r

h
(s)
i (θi; θ̄i)

is convex in θi (sum of convex functions); the pointwise maximum over finitely many convex
functions is convex in θi; and the final sum

∑m
k=1 h

(k)
i (θi; θ̄i) is convex in θi. Hence the right-hand

side of (B.1) is a difference of two convex functions of θi, proving that maxr fr is BDC.

(iii) Minimum. By part (i) with αr = −1, the function −fr is BDC for each r. Applying part (ii)
to {−fr}mr=1 and using

min
1≤r≤m

fr(θ) = − max
1≤r≤m

(
− fr(θ)

)
,

we conclude that minr fr is BDC.

Since the block i was arbitrary, all three operations preserve the BDC property.
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B.2 PROOF OF THEOREM 3.1

We prove the proposition by treating the even-degree and odd-degree cases separately. In each case
we first derive an upper bound via the polarization identity of monomials together with a precise
pairing argument that halves the raw atom count, and then obtain a lower bound by relating any DC
decomposition to a (real) Waring decomposition and invoking known rank formulas for monomials.

Preliminaries

Polarization identity of monomials. We use the following polynomial identity.
Lemma B.1 (Polarization identity of monomials Kan (2008)). Let b1, . . . , bM ∈ Z≥0 with S =∑M

i=1 bi and variables θ1, . . . , θM . Then

M∏
i=1

θ bi
i =

1

S!

b1∑
v1=0

· · ·
bM∑

vM=0

(−1)
∑M

i=1 vi

M∏
i=1

(
bi
vi

)( M∑
i=1

(
bi
2 − vi

)
θi

)S
.

Waring decompositions and ranks. A Waring decomposition of a degree-S homogeneous polynomial
(form) F is an identity

F (θ) =

r∑
j=1

cj ℓj(θ)
S , ℓj(θ) = aj1θ1 + · · ·+ ajmθn.

We distinguish two notions:

• Complex Waring rank rkC(F ): the minimal r for which there exist real scalars cj and
linear forms ℓj with complex coefficients such that F =

∑r
j=1 cj ℓ

S
j .

• Real Waring rank rkR(F ): the minimal r for which there exist real cj and real-coefficient
ℓj such that F =

∑r
j=1 cj ℓ

S
j .

Allowing complex coefficients cannot increase the minimum, hence

rkC(F ) ≤ rkR(F ).

Case 1: s even (linear-even atoms (u⊤θ)s).

First, we upper bound N via the polarization identity. Apply Lemma B.1 with M = n, S = s,
zi = θi. This expresses f as a linear combination of

∏n
i=1(bi + 1) degree-s powers of linear forms:

f(θ) =
1

s!

b1∑
v1=0

· · ·
bn∑

vn=0

(−1)
∑n

i=1 vi
(∏n

i=1

(
bi
vi

))(∑n
i=1

(
bi
2 − vi

)
θi

)s
.

Write v = (v1, . . . , vn) and let the complement be b− v = (b1 − v1, . . . , bn − vn). Since s is even,
we have ( n∑

i=1

(
bi
2 − (bi − vi)

)
θi

)s
=

(
−

n∑
i=1

(
bi
2 − vi

)
θi

)s
=

( n∑
i=1

(
bi
2 − vi

)
θi

)s
,

so the two atoms coincide. Thus each complementary pair {v, b − v} contributes twice the same
atom, and pairing halves the count to 1

2

∏n
i=1(bi + 1). If all bi are even, when vi = bi/2, we have

bi
2 −vi = 0, so the exact number of nonzero atoms equals

(∏n
i=1(bi+1)−1

)
/2 =

⌊
1
2

∏n
i=1(bi+1)

⌋
.

Therefore,

N ≤
⌊
1
2

n∏
i=1

(bi + 1)
⌋
.

Second, we find the lower bound N via Waring rank. Any DC split in this model can be written as

f(θ) = g(θ)− h(θ) =

r∑
i=1

αi (u
⊤
i θ)

s −
r+q∑

i=r+1

αi (u
⊤
i θ)

s =

N∑
i=1

ci (u
⊤
i θ)

s,
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with αi > 0, ci = ±αi, and N = r + q. This is a Waring decomposition with real coefficients and
real linear forms, hence

N ≥ rkR(f) ≥ rkC(f).

For monomials the complex rank is known exactly:
Lemma B.2 (Complex Waring rank of a monomial Carlini et al. (2012)). Let b1, . . . , bn ∈ Z≥0 with
s =

∑n
i=1 bi, and 1 ≤ b1 ≤ · · · ≤ bn. For the monomial f(θ) = θb11 · · · θbnn ,

rkC(f) =

n∏
i=2

(bi + 1).

Combining N ≥ rkC(f) with Lemma B.2 yields

N ≥
n∏

i=2

(bi + 1).

Finally, the relationship between real and complex ranks clarifies tightness:

Theorem B.3 (Carlini et al. (2017)). Let f(θ) = θb11 · · · θbnn with 1 ≤ b1 ≤ · · · ≤ bn. Then
rkR(f) = rkC(f) if and only if b1 = 1.

Hence, when b1 = 1 the lower bound
∏n

i=2(bi + 1) equals the complex (and real) rank, and together
with the polarization upper bound we obtain matching bounds; for b1 > 1 a strict gap can remain.

Case 2: s odd (affine-even atoms (u⊤θ+d)s+1). We now handle s odd, where (u⊤θ)s is not convex.
To remain in a convex-atom setting we use even-degree affine atoms, obtained via degree-d = s+ 1
homogenization.

Define
F (θ, t) = t f(θ) = t θb11 · · · θbnn ,

which is homogeneous of even degree S = s + 1 in the variables (θ, t) ∈ Rn × R. Any atom of
the form (u⊤θ + d t)S is convex (even power of an affine form). Evaluating any homogeneous
decomposition of F at t = 1 yields atoms (u⊤θ + d)s+1, which remain convex in θ.

Now, we upper bound N via the polarization identity and pairing. Apply Lemma B.1 to the (n+1)-
variate monomial t θb11 · · · θbnn with (z0, . . . , zn) = (t, θ1, . . . , θn), (b0, . . . , bn) = (1, b1, . . . , bn),
and S = s+ 1. We obtain

F (θ, t) =
1

S!

1∑
v0=0

b1∑
v1=0

· · ·
bn∑

vn=0

(−1)
∑n

i=0 vi
(∏n

i=0

(
bi
vi

))(∑n
i=0

(
bi
2 − vi

)
zi

)S
,

a signed sum of even powers of affine forms (d t+ u⊤θ)S . Pair each index v = (v0, . . . , vn) with its
complement b− v. Hence the raw count (b0 + 1)

∏n
i=1(bi + 1) = 2

∏n
i=1(bi + 1) collapses exactly

by a factor 2, yielding

#atoms in F =

n∏
i=1

(bi + 1).

Setting t = 1 gives a DC decomposition of f with convex affine-power atoms (u⊤θ + d)s+1 and

N ≤
n∏

i=1

(bi + 1).

Affine vs. homogeneous decompositions. In the odd-degree case we use degree-d = s + 1 powers
of affine forms (ℓ(θ) + β)d. It is crucial that sums of such affine powers correspond exactly to
homogeneous sums of degree-d powers of linear forms in one extra variable, with a term-by-term
correspondence that preserves the number of terms.
Lemma B.4 (Affine–homogeneous correspondence). Let f : Rn → R be of degree d, and let its
degree-d homogenization be F (X0, X) = X d

0 f(X/X0), so that F is homogeneous of degree d and
F (1,θ) = f(θ). Then the following are equivalent:
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1. f(θ) =
∑r

j=1 cj (ℓj(θ) + βj)
d (affine sum of degree-d powers).

2. F (X0, X) =
∑r

j=1 cj (βjX0 + ℓj(X))d (homogeneous sum of degree-d powers).

Moreover, the number of terms r is preserved in both directions.

Proof. (1) ⇒ (2): Substitute θ = X/X0 and multiply by X d
0 , then expand: F (X0, X) =

X d
0 f(X/X0) =

∑
j cj (βjX0 + ℓj(X))d. (2) ⇒ (1): Evaluate at X0 = 1 to get f(θ) = F (1,θ) =∑

j cj (ℓj(θ) + βj)
d. Thus the atoms correspond bijectively and the count r is unchanged.

By Lemma B.4 with d = S = s+ 1, every DC decomposition of f into affine atoms (ℓ(θ) + β)s+1

induces a homogeneous Waring decomposition of F into atoms (βt+ℓ(θ))s+1 with the same number
of terms, and conversely any homogeneous decomposition of F restricts at t = 1 to a decomposition
of f with the same number of terms. Thus the minimal atom count in our odd-s DC model equals the
affine Waring rank of f at degree s+ 1, which by Lemma B.4 equals the Waring rank of F .

So we lower bound N via Waring rank of the lifted monomial. Any such DC decomposition of f
induces a decomposition of F of the form

F (θ, t) =

N∑
j=1

cj
(
u⊤
j θ + djt

)s+1
,

which is a real Waring decomposition of the (n+1)-variate monomial t1θb11 · · · θbnn of degree S =
s+ 1. The complex Waring rank of this monomial equals

rkC(t
1θb11 · · · θbnn ) =

n∏
i=1

(bi + 1),

and, since the smallest exponent is 1, real and complex ranks coincide (see Theorem B.3). Therefore

N ≥ rkR(F ) = rkC(F ) =

n∏
i=1

(bi + 1).

Together with the upper bound we conclude

N =

n∏
i=1

(bi + 1).

Conclusion. For even s, the polarization identity and complementary-index pairing yield N ≤⌊
1
2

∏n
i=1(bi + 1)

⌋
, while the Waring-rank argument gives N ≥

∏n
i=2(bi + 1); when b1 = 1 these

bounds are tight. For odd s, the degree-(s+ 1) homogenization F (θ, t) = tf(θ), the polarization
identity in n+1 variables, and the corresponding Waring-rank lower bound match exactly, giving
N =

∏n
i=1(bi + 1).

B.3 PROOF OF THEOREM 3.2

Fix an arbitrary block θl and hold all other blocks fixed. When we refer to ‘convex’ for a vector-valued
function in the proof, we mean it in the componentwise sense. We consider two cases.

Case 1: Hidden block θl = (Wl, bl).

First, We prove by induction on k that Z±
k are componentwise convex in (Wl, bl) and satisfy Z±

k ≥0.

Base (k < l): For k < l, the quantities Z±
k do not depend on (Wl, bl) and are thus constant (hence

convex) w.r.t. (Wl, bl). It remains to justify nonnegativity for these layers. at k = 1,

Z+
1 = σ(W1x+ b1) ≥ 0, Z−

1 = 0.

Assume Z±
s ≥ 0 for some s < l − 1. Then

Z−
s+1 = σ(Ws+1)Z

−
s + σ(−Ws+1)Z

+
s ≥ 0,
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because σ(Ws+1) and σ(−Ws+1) are entrywise nonnegative. Moreover,

Z+
s+1 = max

{
σ(Ws+1)Z

+
s + σ(−Ws+1)Z

−
s + bs+1︸ ︷︷ ︸

ps+1

, Z−
s+1

}
≥ Z−

s+1 ≥ 0.

By induction, Z±
k ≥ 0 for all k < l.

Layer k = l: With Z±
l−1 ≥ 0 fixed,

pl = σ(Wl)Z
+
l−1 + σ(−Wl)Z

−
l−1 + bl, Z−

l = σ(Wl)Z
−
l−1 + σ(−Wl)Z

+
l−1.

Entrywise w 7→ σ(±w) are convex and nonnegative; multiplying by fixed nonnegative vectors Z±
l−1

and adding the affine term bl preserve convexity. Hence pl and Z−
l are convex, with Z−

l ≥ 0. Set

Z+
l = max{pl, Z−

l },

which is convex (pointwise max preserves convexity) and satisfies Z+
l ≥ Z−

l ≥ 0.

Induction (k → k+1 for k ≥ l): Assume Z±
k are convex in (Wl, bl) and Z±

k ≥ 0. For fixed
(Wk+1, bk+1), the matrices σ(Wk+1) and σ(−Wk+1) are entrywise nonnegative constants. Thus

pk+1 = σ(Wk+1)Z
+
k + σ(−Wk+1)Z

−
k + bk+1, Z−

k+1 = σ(Wk+1)Z
−
k + σ(−Wk+1)Z

+
k

are nonnegative linear images of (Z+
k , Z−

k ) plus a constant; hence Z−
k+1 ≥ 0 and both pk+1, Z

−
k+1

are convex. Finally,
Z+
k+1 = max{pk+1, Z

−
k+1}

is convex and satisfies Z+
k+1 ≥ Z−

k+1 ≥ 0. By induction, this holds for all k ≥ l, in particular for
k = L− 1. Using σ(a− b) = max{a, b} − b coordinatewise,

Z+
k+1 − Z−

k+1 = σ
(
Wk+1(Z

+
k − Z−

k ) + bk+1

)
,

so ak+1 = Z+
k+1 − Z−

k+1 and in particular aL−1 = Z+
L−1 − Z−

L−1.

at the end, keep (WL, bL) fixed. For each class c,

Ac(θ) = σ(WL,c)Z
+
L−1+σ(−WL,c)Z

−
L−1+σ(bL,c), Bc(θ) = σ(WL,c)Z

−
L−1+σ(−WL,c)Z

+
L−1+σ(−bL,c).

Here σ(±WL,c) ≥ 0 and σ(±bL,c) ≥ 0 are constants; therefore Ac(· ; θ̄l), Bc(· ; θ̄l) are nonnegative
linear combinations of the convex functions Z±

L plus constants, hence are convex and nonnegative in
θl = (Wl, bl). Using σ(t)− σ(−t) = t entrywise and aL−1 = Z+

L−1 − Z−
L−1, we obtain

A(θ)−B(θ) =
(
σ(WL)−σ(−WL)

)⊤
(Z+

L−1−Z−
L−1)+

(
σ(bL)−σ(−bL)

)
= W⊤

L aL−1+bL = Fx(θ).

Case 2: Output block θL = (WL, bL).

Here Z±
L−1 are fixed and nonnegative. The entrywise maps WL 7→ σ(±WL) and bL 7→ σ(±bL) are

convex and nonnegative. Hence each component of A(· ; θ̄L), B(· ; θ̄L) in (3.1) is a nonnegative
linear combination of nonnegative convex functions, and is therefore convex and nonnegative in
(WL, bL).

B.4 PROOF OF PROPOSITION 3.4

Fix an arbitrary block i ∈ [n] and fix θ̄i. By the componentwise BDC assumption, for each
coordinate j = 1, . . . ,m there exist convex functions aij(· ; θ̄i) and bij(· ; θ̄i) in θi such that Ej(θ) =
aij(θi; θ̄i)− bij(θi; θ̄i).

Multi-Block convexity of g. From the conjugate definition and Ej = aij − bij ,

f∗(E(θ)) = max
u∈U

{
⟨u, ai(θi; θ̄i)⟩ − ⟨u, bi(θi; θ̄i)⟩ − f(u)

}
.

Adding hi yields the variational form

gi(θi; θ̄i) = max
u∈U

{
⟨u+ c+, ai(θi; θ̄i)⟩+ ⟨−u+ d+, bi(θi; θ̄i)⟩ − f(u)

}
.
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For any fixed u ∈ U , the map

θi 7→ ⟨u+ c+, ai(θi; θ̄i)⟩+ ⟨−u+ d+, bi(θi; θ̄i)⟩ − f(u)

is convex in θi since uj + c+j ≥ 0 and −uj + d+j ≥ 0 for all j, making it a nonnegative linear
combination of convex functions. Taking the pointwise maximum over u ∈ U preserves convexity,
so gi(·; θ̄i) is convex.

Multi-Block convexity of h. By definition,

hi(θi; θ̄i) = ⟨c+, ai(θi; θ̄i)⟩+ ⟨d+, bi(θi; θ̄i)⟩,

which is a nonnegative linear combination of convex functions of θi, hence convex.

Finally, by construction,
f∗(E(θ)) = gi(θi; θ̄i)− hi(θi; θ̄i),

so f∗◦ E admits a multi-block DC decomposition. Since block i was arbitrary, f∗◦ E is BDC.

B.5 PROOF OF LEMMA A.3

Due to (4.4), we have

uk
ik

∈ ∂hik(θ
k
ik
; θ̄k

ik
) and ⟨uk

ik
, θkik − θk+1

ik
⟩ ≤ gik(θ

k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
)− ρ

2
∥θk+1

ik
− θkik∥

2.

(B.2)

Using convexity of gik(· , θ̄k
ik
) in (B.2), we have

⟨uk
ik
, θkik − θk+1

ik
⟩ ≤ gik(θ

k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
)− ρ

2
∥θk+1

ik
− θkik∥

2,

=⇒ ⟨uk
ik
, θkik − θk+1

ik
⟩ ≤ −⟨∇gik(θ

k
ik
; θ̄k

ik
), θk+1

ik
− θkik⟩ −

ρ

2
∥θk+1

ik
− θkik∥

2,

=⇒ ρ

2
∥θk+1

ik
− θkik∥

2 ≤ ⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θk+1

ik
⟩,

=⇒ ρ

2
∥θk+1

ik
− θkik∥

2 ≤ G(θk)∥θk+1
ik

− θkik∥,

=⇒ ∥θk+1 − θk∥ ≤ 2

ρ
G(θk).

We get that the update θk+1 is in B
(
θk, 2

ρG(θ
k)
)

.

B.6 PROOF OF LEMMA A.4

From (4.4) we know:

uk
ik

∈ ∂hik(θ
k
ik
; θ̄k

ik
) and ⟨uk

ik
, θkik − θk+1

ik
⟩ ≤ gik(θ

k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
)− ρ

2
∥θk+1

ik
− θkik∥

2.

Now, using convexity of hik we get:

hik(θ
k
ik
; θ̄k

ik
)− hik(θ

k+1
ik

; θ̄k
ik
) ≤ gik(θ

k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
)− ρ

2
∥θk+1

ik
− θkik∥

2,

gik(θ
k+1
ik

; θ̄k
ik
) ≤ gik(θ

k
ik
; θ̄k

ik
) + hik(θ

k+1
ik

; θ̄k
ik
)− hik(θ

k
ik
; θ̄k

ik
),

f(θk+1) ≤ f(θk)

Unrolling this inequality to the initialization gives

f(θk+1) ≤ f(θ0)

gik(θ
k+1
ik

; θ̄k
ik
) ≤ gi0(θ

0
i0 ; θ̄

0
i0) + hik(θ

k+1
ik

; θ̄k
ik
)− hi0(θ

0
i0 ; θ̄

0
i0),

≤ gi0(θ
0
i0 ; θ̄

0
i0) +H,

where we have used hik(θ
k+1
ik

; θ̄k
ik
) − hi0(θ

0
i0
; θ̄0

i0
) ≤ H and the fact that θ̄k+1

ik
= θ̄k

ik
. Since this

result holds for any k, through Corollary A.11 we have ∥∇gik(θ
k
ik
; θ̄k

ik
)∥ ≤ E. Recall that gik is
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ℓ-smooth with a subquadratic ℓ. Using Proposition A.10, gik is also (r,m)-smooth with r(u) = a
m(u)

and m(u) := ℓ(u+ a) for some a > 0. Therefore, we can use Lemma A.9 if we ensure the updates
are inside B(θk, r(E)). Similar to the proof of Lemma A.3 (Appendix B.5), we know

∥θk+1 − θk∥ ≤ sup
u∈∂hik

(θk
ik

;θ̄k
ik

)

2(∥∇gik(θ
k
ik
; θ̄k

ik
)∥+ ∥u∥)

ρ
≤ 2(E +R)

ρ
.

As a result taking ρ ≥ 2(E+R)
r(E) = ℓ(2E) 2(E+R)

E will satisfy the conditions in Lemma A.9. This
implies the desired result.

B.7 PROOF OF PROPOSITION A.5

Using the assumptions in the theorem statement, we know that for any θk ∈ X , the update θk+1 ∈
B(θk, r(E)). For any θik ∈ B(θkik , r(E)), consider the surrogate function

f̂(θik ; θ̄
k
ik
) := gik(θik ; θ̄

k
ik
)− hik(θ

k
ik
; θ̄k

ik
)− ⟨uk

ik
, θik − θkik⟩+

ρ

2
∥θkik − θik∥2.

where uk
ik

∈ ∂hik(θ
k
ik
; θ̄k

ik
). From (4.4) we know that

f̂(θk+1
ik

; θ̄k
ik
) ≤ f̂(θkik ; θ̄

k
ik
),

and further considering the descent Lemma A.9 for gik with L = ℓ(2E), we get

f̂(θk+1
ik

; θ̄k
ik
) ≤ gik(θ

k
ik
; θ̄k

ik
)+⟨∇gik(θ

k
ik
; θ̄k

ik
), θik−θkik⟩+

L+ ρ

2
∥θik−θkik∥

2−hik(θ
k
ik
; θ̄k

ik
)−⟨uk

ik
, θik−θkik⟩.

By Assumption 1, we get

f̂(θk+1
ik

; θ̄k
ik
) ≤ f(θk) + ⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θik − θkik⟩+

L+ ρ

2
∥θik − θkik∥

2,

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ ≤ f(θk) +

L+ ρ

2
∥θik − θkik∥

2 − f̂(θk+1
ik

; θ̄k
ik
),

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ ≤ gik(θ

k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
) +

L+ ρ

2
∥θik − θkik∥

2 − ρ

2
∥θk+1

ik
− θkik∥

2

+ ⟨uk
ik
, θk+1

ik
− θkik⟩,

(B.3)
Note that if we choose ρ = 2(E+R)

r(E) , then we know that

ρ

2
∥θik − θkik∥

2 − ρ

2
∥θk+1

ik
− θkik∥

2 ≤ 0,

since in this case ρ
2∥θ

k+1
ik

− θkik∥
2 = r(E). However, in the more general case of ρ ≥ 2(E+R)

r(E) , this

may not hold. Here, we proceed with the general case. Using the negetavity of −ρ
2∥θ

k+1
ik

−θkik∥
2 ≤ 0,

we have

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ ρ

2
∥θik − θkik∥

2 ≤ gik(θ
k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
) + ⟨uk

ik
, θk+1

ik
− θkik⟩,

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ ρ

2
∥θik − θkik∥

2 ≤ gik(θ
k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
) + hik(θ

k+1
ik

; θ̄k
ik
)− hik(θ

k
ik
; θ̄k

ik
),

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ ρ

2
∥θik − θkik∥

2 ≤ f(θk)− f(θk+1).

(B.4)

Let us denote by E|k the conditional expectation with respect to the random selection of ik, given all
the random choices in the previous iterations. Then, we have

E|k

[
⟨∇ikgik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ ρ

2
∥θik − θkik∥

2

]
=

1

n

(
⟨νk, θk − θ⟩ − L+ ρ

2
∥θ − θk∥2

)
,

(B.5)
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for every νk ∈ ∂f(θk). Using (B.3) we have

⟨νk, θk − θ⟩ − L+ ρ

2
∥θ − θk∥2 ≤ nf(θk)− nE|k

[
f(θk+1)

]
,

for every νk ∈ ∂f(θk). Now, we maximize this inequality over θ ∈ X to get

1

2(L+ ρ)
G2(θk) ≤ nf(θk)− nE|k

[
f(θk+1)

]
. (B.6)

Now, taking expectation w.r.t. all the iterations we have

E
[

1

2(L+ ρ)
G2(θk)

]
≤ nE

[
f(θk)

]
− nE

[
f(θk+1)

]
. (B.7)

Finally, we take the average of this inequality over k = 1, . . . ,K:

1

K

K∑
k=1

E
[

1

2(L+ ρ)
G2(θk)

]
≤ n

K

(
f(θ1)− E

[
f(θK+1)

]
)
)
≤ n

K

(
f(θ1)− f⋆

)
. (B.8)

which concludes the proof.

B.8 PROOF OF PROPOSITION A.8

Denote ϵk := ∇ĝik(θ
k
ik
; θ̄k

ik
) − ûk

ik
−

(
∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik

)
. We want to show a low probability

for the event {t = t2 < K} ∪ {t = t1 < K, t2 = K}. To do so, we prove a low probability for each
of these events. For the first event, it is easy to see that the probability of {t2 < K} is

P(t2 < T ) = P(
⋃
k<K

{∥ϵk∥ > F ′}) ≤
∑
k<K

P({∥ϵk∥ > F ′}) ≤ Kσ2

F ′2 . (B.9)

Note that we want Kσ2

F ′2 ≤ δ
4 for 0 < δ < 1. For the second event, take k = t. Then, we have:

gik(θ
k+1
ik

; θ̄k
ik
)− g∗ > G ∥ϵk∥ ≤ F ′

which implies gik(θ
k
ik
; θ̄k

ik
)− g∗ ≤ G due to the min{.} operator. Note that since t = t1, we must

have t1 < t2. This ensures ∥∇gik(θ
k
ik
; θ̄k

ik
)∥ ≤ E through Corollary A.11 and boundedness of the

update points through Lemma A.6. Now, using Lemma A.7, we get

gik(θ
k+1
ik

; θ̄k
ik
)− gik(θ

k
ik
; θ̄k

ik
) ≤ ⟨∇gik(θ

k
ik
; θ̄k

ik
), θk+1

ik
− θkik⟩+

L

2
∥θk+1

ik
− θkik∥

2

≤ ∥∇gik(θ
k
ik
; θ̄k

ik
)∥∥θk+1

ik
− θk

ik
∥+ L

2
∥θk+1

ik
− θkik∥

2,

≤ E
2

ρ
(E +R+ F ′) +

L

2

[
2

ρ
(E +R+ F ′)

]2
.

(B.10)

Take F ′ = Eρ/9L − (E +R) and note that E2 = 2LG. F ′ is positive for ρ ≥ 9L(E+R)/E. This is a
valid choice of ρ since it satisfies (see Lemma A.7):

ρ ≥ 2(E +R+ F ′)

r(E)
.

Now, replacing in (B.10) gives:

gik(θ
k+1
ik

; θ̄k
ik
)− gik(θ

k
ik
; θ̄k

ik
) ≤ G

2
. (B.11)

This means that:

gik(θ
k
ik
; θ̄k

ik
)− g∗ = gik(θ

k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
) + gik(θ

k+1
ik

; θ̄k
ik
)− g∗ ≥ G

2
, (B.12)
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which essentially implies:

P({t1 < K} ∩ {t2 = K}) ≤ P(gik(θkik ; θ̄
k
ik
)− g∗ ≥ G

2
) ≤

E[gik(θkik ; θ̄
k
ik
)− g∗]

G
2

. (B.13)

Now, we need to calculate E[gik(θkik ; θ̄
k
ik
)− g∗]. Due to (4.7), we have

uk
ik

∈ ∂hik(θ
k
ik
; θ̄k

ik
) and ⟨ûk

ik
, θkik − θk+1

ik
⟩ ≤ gik(θ

k
ik
; θ̄k

ik
, sk)− gik(θ

k+1
ik

; θ̄k
ik
, sk)− ρ

2
∥θk+1

ik
− θkik∥

2.

(B.14)

By adding and subtracting ⟨ûk
ik
− uk

ik
, θk+1

ik
− θkik⟩ and using convexity of gik , we have

⟨uk
ik
, θkik − θk+1

ik
⟩ ≤⟨ûk

ik
− uk

ik
, θk+1

ik
− θkik⟩ − ⟨∇ĝik(θ

k
ik
; θ̄k

ik
), θk+1

ik
− θkik⟩

− ρ

2
∥θk+1

ik
− θkik∥

2,

=⇒ ⟨∇gik(θ
k
ik
; θ̄k

ik
), θk+1

ik
− θkik⟩ ≤⟨∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
−

(
∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik

)
, θkik − θk+1

ik
⟩

− ρ

2
∥θk+1

ik
− θkik∥

2 − ⟨uk
ik
, θkik − θk+1

ik
⟩,

Since the conditions of Lemma A.7 are satisfied up to time point k, we may use the conclusion of
this lemma. Therefore, local smoothness of gik together with Young’s inequality imply:

gik(θ
k+1
ik

; θ̄k
ik
)− gik(θ

k
ik
; θ̄k

ik
)− L

2
∥θk+1

ik
− θkik∥

2 ≤ρ

4
∥θk+1

ik
− θkik∥

2

+
1

ρ
∥∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
−

(
∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik

)
∥2

− ρ

2
∥θk+1

ik
− θkik∥

2 − ⟨uk
ik
, θkik − θk+1

ik
⟩

=
1

ρ
∥∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
−

(
∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik

)
∥2

− ⟨uk
ik
, θkik − θk+1

ik
⟩ − ρ

4
∥θk+1

ik
− θkik∥

2.

Now, using ρ ≥ 9L(E+R)/E, we know that L
2 ∥θ

k+1
ik

− θkik∥
2 ≤ ρ

4∥θ
k+1
ik

− θkik∥
2. Therefore, we have:

gik(θ
k+1
ik

; θ̄k
ik
)− gik(θ

k
ik
; θ̄k

ik
) ≤1

ρ
∥∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
−

(
∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik

)
∥2

+ hik(θ
k+1
ik

; θ̄k
ik
)− hik(θ

k
ik
; θ̄k

ik
).

where the last inequality is due to convexity of hik . Taking expectation with respect to s ∼
Unif{1, . . . , J}, summing over iteration number k and using the assumption on boundedness of
hik(θ

k
ik
; θ̄k

ik
)− hi0(θ

0
i0
; θ̄0

i0
) ≤ H , we get:

gik(θ
k+1
ik

; θ̄k
ik
)− g∗ ≤ gi0(θ

0
i0 ; θ̄

0
i0)− g∗ +

(k + 1)σ2

ρ
+H. (B.15)

This means that

gik(θ
k
ik
; θ̄k

ik
)− g∗ ≤ gi0(θ

0
i0 ; θ̄

0
i0)− g∗ +

kσ2

ρ
+H ≤ gi0(θ

0
i0 ; θ̄

0
i0)− g∗ +

Kσ2

ρ
+H.

By taking ρ = Ω(
√
K) and σ2 = O(1/

√
K) we have

gik(θ
k
ik
; θ̄k

ik
)− g∗ ≤ gi0(θ

0
i0 ; θ̄

0
i0)− g∗ + C ′, (B.16)

for a constant C ′ := Kσ2
/ρ +H . Using (B.16) in (B.13) we get

gik(θ
k
ik
; θ̄k

ik
)− g∗

G
2

≤
2
(
maxj gj(θ

0
j ; θ̄

0
j )− g∗ + C ′)

G
=

δ

4
, (B.17)
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which holds for G =
8(maxj gj(θ

0
j ;θ̄

0
j )−g∗+C′)

δ . Now, replacing in (B.13) gives

P({t1 < K} ∩ {t2 = K}) ≤ P(gik(θkik ; θ̄
k
ik
)− g∗ ≥ G

2
) ≤ δ

4
. (B.18)

Using Kσ2

F ′2 ≤ δ
4 and G =

8(gi0 (θ
0
i0

;θ̄0
i0

)−g∗+C′)
δ we need

Kσ2

(Eρ
9L − (E +R))2

≤ δ

4
. (B.19)

Using E2 = 2LG and simplifying (B.19), we have:

2Gρ2

81L
+ (E +R)2 − 2ρ

9L
(2LG+ ER) ≥ 2Gρ2

81L
− 2ρ

9L
(2LG+ ER) ≥ 4

δ
Kσ2. (B.20)

Replacing C ′ = Kσ2
/ρ +H and the fact that Gδ ≥ 8C ′ by the definition of G, gives

ρ2 − 9ρ

G
(2LG+ ER) ≥ ρ(C ′ −H)(81L)

4C ′ , (B.21)

=⇒ ρ ≥ 18L+
9ER

G
+

81L

4

[
C ′ −H

C ′

]
(B.22)

With this choice of ρ we ensure

P({t1 < K} ∩ {t2 = K}) + P({t2 < K}) ≤ δ/2. (B.23)

As a result P({t = K}) ≥ 1− δ/2 ≥ 1/2. Using this result we may use the descent Lemma A.7 up
to time point K. Using the update rule of (4.7), we have:

gik(θ
k+1
ik

; θ̄k
ik
, sk)− hik(θ

k+1
ik

; θ̄k
ik
, sk)

≤ gik(θ
k+1
ik

; θ̄k
ik
, sk)− hik(θ

k
ik
; θ̄k

ik
, sk)− ⟨ûk

ik
, θk+1

ik
− θkik⟩

≤ gik(θ
k+1
ik

; θ̄k
ik
, sk)− hik(θ

k
ik
; θ̄k

ik
, sk)− ⟨ûk

ik
, θk+1

ik
− θkik⟩+

ρ

2
∥θk+1

ik
− θkik∥

2 − ρ

2
∥θk+1

ik
− θkik∥

2

≤ gik(θik ; θ̄
k
ik
, sk)− hik(θ

k
ik
; θ̄k

ik
, sk)− ⟨ûk

ik
, θik − θkik⟩+

ρ

2
∥θik − θkik∥

2 − ρ

2
∥θk+1

ik
− θkik∥

2,

(B.24)
for any θ ∈ B(θk, 2

ρG(θ
k)). Now, using Lemma A.7 we have

gik(θ
k
ik
; θ̄k

ik
, sk)− hik(θ

k
ik
; θ̄k

ik
, sk) + ⟨∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
, θik − θkik⟩+

L+ ρ

2
∥θik − θkik∥

2 − ρ

2
∥θk+1

ik
− θkik∥

2

≤ f(θk, sk) + ⟨∇ĝik(θ
k
ik
; θ̄k

ik
)− ûk

ik
− (∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
), θik − θkik⟩+ ⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θik − θkik⟩

+
L+ ρ

2
∥θik − θkik∥

2

(B.25)
Rearranging and using Young’s inequality gives

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ ρ

2
∥θik − θkik∥

2 ≤

f(θk, sk)− f(θk+1, sk) +
ρ

4
∥θik − θkik∥

2 +
1

ρ
∥∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
− (∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
)∥2,

(B.26)
which implies:

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ 3
2ρ

2
∥θik − θkik∥

2 ≤

f(θk, sk)− f(θk+1, sk) +
1

ρ
∥∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
− (∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
)∥2.

(B.27)
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Now, taking expectation conditioned on all the information up to iteration k and t = K and also
maximizing l.h.s for all θ ∈ B(θk, 2

ρG(θ
k)), we get:

Es,ik|k

[
max

θ∈B(θk, 2ρG(θk))
⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ 3
2ρ

2
∥θik − θkik∥

2

]

≤ max
θ∈B(θk, 2ρG(θk))

Es,ik|k

[
⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ 3
2ρ

2
∥θik − θkik∥

2

]
=

1

n
max

θ∈B(θk, 2ρG(θk))
Es|k

[
⟨νk, θk − θ⟩ −

L+ 3
2ρ

2
∥θ − θk∥2

]
≤ Es,ik|k

[
f(θk, sk)− f(θk+1, sk)

]
+

1

ρ
Es,ik|k

[
∥∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
− (∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
)∥2

]
≤ Es,ik|k

[
f(θk, sk)− f(θk+1, sk)

]
+

σ2

ρ
,

(B.28)
for every νk ∈ ∂f(θk). Averaging both hand sides from k = 0 to k = K and using P({t = K}) ≥
1− δ/2 ≥ 1/2., we have:

1

2K

∑
k<K

Es,ik|k

[
max

θ∈B(θk, 2ρG(θk))
⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ 3
2ρ

2
∥θik − θkik∥

2

]

≤ P({t = K})
K

∑
k<K

Es,ik|k

[
max

θ∈B(θk, 2ρG(θk))
⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ 3
2ρ

2
∥θik − θkik∥

2
∣∣∣t = K

]

≤ P({t = K})
K

∑
k<K

Es,ik|k

[
max

θ∈B(θk, 2ρG(θk))
⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ 3
2ρ

2
∥θik − θkik∥

2
∣∣∣t = K

]

≤ 1

K

∑
k<t

Es,ik|k

[
max

θ∈B(θk, 2ρG(θk))
⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L+ 3
2ρ

2
∥θik − θkik∥

2

]

≤ n

K

[
E
[
f(θ0)− f(θK)

]
+

Kσ2

ρ

]
≤ n

K

[
gi0(θ

0
i0 ; θ̄

0
i0)− g(θ∗) +H +

Kσ2

ρ

]
=

n

K

[
gi0(θ

0
i0 ; θ̄

0
i0)− g(θ∗) + C ′] = nGδ

8K
.

(B.29)

were in the last equality we used the definition of G. Note that the maximum in (B.29) is achieved
for θ = θk − 1

L+
3ρ
2

νkik for νkik ∈ ∂ikf(θ
k). Since this value is in B(θk, 2

ρG(θ
k)), we can replace

this value and write:

1

2K

∑
k<K

E
[
G2(θk)

]
≤

(L+ 3ρ
2 )nGδ

8K
. (B.30)

Choosing K ≥ (L+
3ρ
2 )nG

2ϵ2 such that we have

1

K

∑
k<K

E
[
G2(θk)

]
≤

(L+ 3ρ
2 )nGδ

4K
≤ δ

2
ϵ2. (B.31)

Using the fact that ρ = Ω(
√
K), our convergence guarantee holds for K = Ω(1/ϵ4).

Now, we define the event ϱ =
{

1
K

∑
k<K E

[
G2(θk)

]
> ϵ2

}
. Using Markov’s inequality we get

P(ϱ) ≤ δ/2. Finally, we get P({t < K} ∪ ϱ) ≤ δ.
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B.9 PROOF OF LEMMA A.6

Due to (4.7), we have

uk
ik

∈ ∂hik(θ
k
ik
; θ̄k

ik
) and ⟨ûk

ik
, θkik − θk+1

ik
⟩ ≤ gik(θ

k
ik
; θ̄k

ik
, sk)− gik(θ

k+1
ik

; θ̄k
ik
, sk)− ρ

2
∥θk+1

ik
− θkik∥

2.

(B.32)

By adding and subtracting ⟨ûk
ik
− uk

ik
, θk+1

ik
− θkik⟩ and using convexity of gik , we have

⟨uk
ik
, θkik − θk+1

ik
⟩ ≤⟨ûk

ik
− uk

ik
, θk+1

ik
− θkik⟩ − ⟨∇ĝik(θ

k
ik
; θ̄k

ik
), θk+1

ik
− θkik⟩

− ρ

2
∥θk+1

ik
− θkik∥

2,

=⇒ ⟨uk
ik
−∇gik(θ

k
ik
; θ̄k

ik
), θkik − θk+1

ik
⟩ ≤⟨∇ĝik(θ

k
ik
; θ̄k

ik
)− ûk

ik
−

(
∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik

)
, θkik − θk+1

ik
⟩

− ρ

2
∥θk+1

ik
− θkik∥

2,

Now, through Cauchy–Schwarz inequality we get

ρ

2
∥θk+1

ik
− θkik∥

2 ≤ ⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θk+1

ik
⟩

+ ∥∇ĝik(θ
k
ik
; θ̄k

ik
)− ûk

ik
−

(
∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik

)
∥∥θk+1

ik
− θkik∥,

=⇒ ρ

2
∥θk+1

ik
− θkik∥

2 ≤ ∥νkik∥∥θ
k+1
ik

− θkik∥+ ∥ûk
ik
− νkik∥∥θ

k+1
ik

− θkik∥,

=⇒ ∥θk+1 − θk∥ ≤ 2

ρ

(
∥νkik∥+ ∥ν̂kik − νkik∥

)
,

≤ 2

ρ

(
∥νk∥+ ∥ν̂kik − νkik∥

)
,

where νk ∈ ∂f(θk), νkik ∈ ∂ikf(θ
k), ûk

ik
∈ ∂ik f̂(θ

k), and the second to last line holds due to the
fact that (4.7) updates only the ith

k block at each iteration. This implies the desired result.

B.10 PROOF OF LEMMA A.7

By assumption, we know that gik(θ
k
ik
; θ̄k

ik
) − g∗ ≤ G and ∥∇ĝik(θ

k
ik
; θ̄k

ik
) − ûk

ik
− (∇ikg(θ

k) −
uk
ik
)∥ ≤ F ′ for G,F ′ > 0. Since this result holds for any k, through Corollary A.11 we have

∥∇gik(θ
k
ik
; θ̄k

ik
)∥ ≤ E. Recall that gik is ℓ-smooth with a subquadratic ℓ. Using Proposition A.10,

g is also (r,m)-smooth with r(u) = a
m(u) and m(u) := ℓ(u + a) for some a > 0. Therefore, we

can use Lemma A.9 if we ensure the updates are inside B(θk, r(E)). From the proof of Lemma A.6
(Appendix B.9), we know

∥θk+1 − θk∥ ≤ sup
u∈∂hik

(θk
ik

;θ̄k
ik

)

2(∥∇gik(θ
k
ik
; θ̄k

ik
)∥+ ∥u∥+ F ′)

ρ
≤ 2(E +R+ F ′)

ρ
.

As a result taking ρ ≥ 2(E+R+F ′)
r(E) = ℓ(2E) 2(E+R+F ′)

E will satisfy the conditions in Lemma A.9.
This implies the desired result.

B.11 PROOF OF THEOREM A.1

For any θik ∈ Mik , Consider the surrogate function

f̂(θik ; θ̄
k
ik
) := gik(θik ; θ̄

k
ik
) + rik(θik)− hik(θ

k
ik
; θ̄k

ik
)− ⟨uk

ik
, θik − θkik⟩.

where uk
ik

∈ ∂hik(θik ; θ̄
k
ik
). Also, it is important to mention that f(θkik ; θ̄

k
ik
) = f(θk) and

f̂(θkik ; θ̄
k
ik
) = f̂(θk). From (A.4) we know that

f̂(θk+1) ≤ f̂(θik ; θ̄
k
ik
) = gik(θik ; θ̄

k
ik
) + rik(θik)− hik(θ

k
ik
; θ̄k

ik
)− ⟨uk

ik
, θik − θkik⟩,
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and further considering the smoothness of g, we get

f̂(θk+1) ≤ gik(θ
k
ik
; θ̄k

ik
)+⟨∇gik(θ

k
ik
; θ̄k

ik
), θik−θkik⟩+

L

2
∥θik−θkik∥

2+rik(θik)−hik(θ
k
ik
; θ̄k

ik
)−⟨uk

ik
, θik−θkik⟩.

By (A.2), we get

f̂(θk+1) ≤ f(θk) + ⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θik − θkik⟩+

L

2
∥θik − θkik∥

2 + rik(θik)− rik(θ
k
ik
)

(B.33)
Therefore,

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ − rik(θik) + rik(θ

k
ik
) ≤ f(θk)− f̂(θk+1) +

L

2
∥θik − θkik∥

2

≤ gik(θ
k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
) +

L

2
∥θik − θkik∥

2

+ ⟨uk
ik
, θk+1

ik
− θkik⟩+ rik(θ

k
ik
)− rik(θ

k+1
ik

).
(B.34)

Therefore, by convexity of hik(· ; θ̄k
ik
) we have:

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L

2
∥θik − θkik∥

2 − rik(θik) + rik(θ
k
ik
) ≤ gik(θ

k
ik
; θ̄k

ik
)− gik(θ

k+1
ik

; θ̄k
ik
)

+ hik(θ
k+1
ik

; θ̄k
ik
)− hik(θ

k
ik
; θ̄k

ik
) + rik(θ

k
ik
)− rik(θ

k+1
ik

),

⟨∇gik(θ
k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L

2
∥θik − θkik∥

2 − rik(θik) + rik(θ
k
ik
) ≤ f(θk)− f(θk+1).

(B.35)
Let us denote by E|k the conditional expectation with respect to the random selection of ik, given all
the random choices in the previous iterations. Then, we have

E|k

[
⟨∇gik(θ

k
ik
; θ̄k

ik
)− uk

ik
, θkik − θik⟩ −

L

2
∥θik − θkik∥

2 − rik(θik) + rik(θ
k
ik
)

]
=

1

n

n∑
i=1

(
⟨∇gi(θ

k
i ; θ̄

k
i )− uk

i , θ
k
i − θi⟩ −

L

2
∥θi − θki ∥2 − ri(θi) + ri(θ

k
i )

)
=

1

n

(
⟨νk, θk − θ⟩ − L

2
∥θ − θk∥2 − r(θ) + r(θk)

)
,

(B.36)

for every νk ∈ ∂f(θk). We have used the block separability of the function r(θ). Using (B.36) we
have

⟨νk, θk − θ⟩ − L

2
∥θ − θk∥2 − r(θ) + r(θk) ≤ nf(θk)− nE|k

[
f(θk+1)

]
.

Now, we maximize this inequality over θ ∈ M to get

gapLM(θk) ≤ nf(θk)− nE|k
[
f(θk+1)

]
. (B.37)

Now, taking expectation w.r.t. all the iterations we have

E
[
gapLM(θk)

]
≤ nE

[
f(θk)

]
− nE

[
f(θk+1)

]
. (B.38)

Finally, we take the average of this inequality over k = 1, . . . ,K:

1

K

K∑
k=1

E
[
gapLM(θk)

]
≤ n

K

(
f(θ1)− E

[
f(θK+1)

]
)
)
≤ n

K

(
f(θ1)− f⋆

)
. (B.39)

We complete the proof by noting that the minimum of gapLM(θk) over k = 1, . . . ,K is smaller than
or equal to the average gap.

31


	Introduction
	Problem Setup and Related work
	Related Work

	Why the Bdc Function Class?
	Dc and Bdc Complexity of a Monomial
	Bdc Formulation of a Deep ReLU Network
	Regression with MSE Loss: Bdc Formulation
	Classification with CE Loss: Bdc Formulation


	Bdc Algorithm
	Bdca under L-smoothness
	Proximal Bdca Under Generalized Smoothness Assumption
	Stochastic Proximal Bdca Under Generalized Smoothness

	Applications
	Conclusion and Discussion
	Discussions
	Multi-Block DCA Under Smoothness Assumption
	Detailed Analysis of Multi-Block Proximal DCA Under Generalized Smoothness Assumption
	Detailed Analysis of stochastic multi-block proximal dca under generalized smoothness assumption
	Background on (r,)-smoothness and -smoothness
	Useful Lemma on Gradient Estimation Variance
	More detail on Numerical Examples
	Generalized smoothness on Deep networks.
	Sparse Dictionary Learning
	Training Neural Networks.


	Proofs
	Proof of prop:bdc-Closure
	Proof of prop:dccomplexity
	Proof of thm:bdc-struct-Relu
	Proof of thm:bdc-conjugate-compact
	Proof of applem:bdcdeterbounded
	Proof of applem:boundong
	Proof of appprop:bdcgensmoothconvergence
	Proof of prop:sbdcconvergence
	Proof of lem:boundingdifferencesstoc
	Proof of lem:boundongstochastic
	Proof of thm:bdcsmooth


