

THE MULTI-BLOCK DC FUNCTION CLASS: THEORY, ALGORITHMS, AND APPLICATIONS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We present the Multi-Block DC (BDC) class, a broad class of structured nonconvex
 012 functions that admit a DC (“difference-of-convex”) decomposition across parameter
 013 blocks. This block structure not only subsumes the usual DC programming, it
 014 turns out to be provably more powerful. Specifically, we demonstrate how standard
 015 models (e.g., polynomials and tensor factorization) *must have* DC decompositions
 016 of exponential size, while their BDC formulation is polynomial. This separation in
 017 complexity also underscores another *key aspect*: unlike DC formulations, obtaining
 018 BDC formulations for problems is vastly easier and constructive. We illustrate
 019 this aspect by presenting explicit BDC formulations for modern tasks such as deep
 020 ReLU networks, a result with no known equivalent in the DC class. Moreover, we
 021 complement the theory by developing algorithms with non-asymptotic convergence
 022 theory, including both batch and stochastic settings, and demonstrate the broad
 023 applicability of our method through several applications.

1 INTRODUCTION

028 The growing complexity of machine learning raises numerous challenges for nonconvex optimization,
 029 of which the identification of problem formulations that model, expose, and exploit structure is of key
 030 importance. A specific example of this idea is the class of difference-of-convex (DC) functions, which
 031 captures problem structure that has not only been well-studied over the decades but has attracted
 032 significant attention recently (Khamaru and Wainwright, 2018; Davis et al., 2022; Maskan et al.,
 033 2025). However, identifying a tractable and practically useful DC decomposition for a given problem
 034 can be difficult, even NP-hard in some cases (Ahmadi and Hall, 2018). Although the existence of DC
 035 decompositions can be guaranteed under mild smoothness assumptions (Tuy, 2016), these classical
 036 results are often non-constructive and offer no guidance on how to obtain a suitable decomposition.

037 These challenges call for a more flexible perspective, so rather than insisting on a single global DC
 038 decomposition we advocate a shift toward multi-block DC structure. Formally, we consider the
 039 minimization of a function $f(\theta_1, \dots, \theta_n)$ that admits a DC decomposition with respect to each block
 040 θ_i individually, when all other blocks are fixed. To our knowledge, this perspective has been explored
 041 only in the two-block case, and surprisingly, remains largely unstudied in the multi-block setting,
 042 despite being highly amenable to practice. We show how multi-block DC decompositions are easy to
 043 construct, align naturally with the structure of many modern machine learning problems, and admit
 044 algorithms with convergence guarantees comparable to the classical DC framework.

045 In light of the above motivation, we summarize our main contributions as follows:

- 046 • We define a new class called *multi-block* DC functions (hereafter, BDC), which extends the so-
 047 called partial DC framework from two-blocks to multiple blocks. We study fundamental properties
 048 of this class, including an exponential separation in representation complexity compared to DC
 049 formulations. We present both examples and concrete tools to show how one can flexibly formulate
 050 problems to be BDC, underscoring the class’s practicality across several applications.
- 051 • We propose a multi-block variant of the DC algorithm designed for BDC functions, which exploits
 052 the block structure to perform efficient updates. We further extend this algorithm to a stochastic
 053 setting, where the decomposition functions are accessed only through noisy oracles, broadening
 054 the practical applicability of our framework to large-scale machine learning problems.

054

2 PROBLEM SETUP AND RELATED WORK

055
056 We consider the general optimization problem
057

058
$$\min_{\theta \in \mathcal{X}} f(\theta), \quad (2.1)$$

059

060 where $f : \mathcal{X} \rightarrow \mathbb{R}$ is possibly nonconvex and $\mathcal{X} \subseteq \mathbb{R}^d$ is the domain of our objective.
061062 **Block structure.** We assume that \mathcal{X} admits a Cartesian product decomposition $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$,
063 where each $\mathcal{X}_i \subseteq \mathbb{R}^{d_i}$ and $d = \sum_{i=1}^n d_i$. We also define $\bar{\mathcal{X}}_i = \mathcal{X}_1 \times \cdots \times \{0\}^{d_i} \times \cdots \times \mathcal{X}_n$, the set
064 obtained from \mathcal{X} by forcing the i th block to be zero, for notational convenience.
065066 Let $D_i \in \mathbb{R}^{d_i \times d}$ be the selection matrix that extracts the i th block of θ . Equivalently, D_i is obtained
067 by taking d_i distinct rows of the identity matrix I_d , so that $\{D_i\}_{i=1}^n$ forms a non-overlapping partition
068 of the coordinates and satisfies $\sum_{i=1}^n D_i^\top D_i = I_d$.
069070 For clarity, we use boldface letters (e.g., $\theta \in \mathcal{X}$) to denote full decision variables, and non-boldface
071 symbols (e.g., $\theta_i \in \mathcal{X}_i$) to denote individual blocks. We define, for each $i \in [n]$, $\theta_i := D_i \theta$, so that
072 $\theta_i \in \mathbb{R}^{d_i}$ represents the i th block of θ . We also define the block-extended vector $\bar{\theta}_i := D_i^\top D_i \theta$,
073 which coincides with θ on block i and is zero elsewhere. Its complement is $\bar{\theta}_i := (I_d - D_i^\top D_i) \theta$,
074 so that $\theta = \theta_i + \bar{\theta}_i$. These definitions will be useful for expressing multi-block DC decompositions
075 and coordinate updates. We are now ready to state our key structural assumption on f and establish
076 closure properties of the induced function class.
077078 **Assumption 1** (Multi-Block DC separability). We assume that $f : \mathcal{X} \rightarrow \mathbb{R}$ admits a DC decomposi-
079 tion with respect to each block θ_i when all other blocks are fixed. Formally, this means that for each
080 $i \in [n]$, there exist functions $g_i, h_i : \mathcal{X}_i \times \bar{\mathcal{X}}_i \rightarrow \mathbb{R}$, such that for every $\theta \in \mathcal{X}$,
081

082
$$f(\theta) = g_i(\theta_i; \bar{\theta}_i) - h_i(\theta_i; \bar{\theta}_i),$$

083

084 where $g_i(\cdot; \bar{\theta}_i)$ and $h_i(\cdot; \bar{\theta}_i)$ are convex in θ_i . We refer to this property as a BDC decomposi-
085 tion.
086087 **Proposition 2.1** (Closure). Let f_i be BDC functions for $i = 1, \dots, m$. Then, the following functions
088 are also BDC: (i) $\sum_{i=1}^m \alpha_i f_i$, for $\alpha_i \in \mathbb{R}$, (ii) $\min_{i=1, \dots, m} f_i$, (iii) $\max_{i=1, \dots, m} f_i$
089090 Proof can be found in [Appendix B.1](#). It is worth noting that the class of BDC functions is strictly
091 larger than the classical DC family. For instance, [Veselý and Zajíček \(2018\)](#) construct a function in \mathbb{R}^2
092 that is DC on every convex curve but does not admit a global DC decomposition, implying it is BDC
093 but not DC. The main appeal of the BDC class, however, is not merely its greater expressiveness but
094 its flexibility. In practice, BDC decompositions are easier to construct than global DC decompositions,
095 and in many cases of practical interest they can be obtained explicitly in a constructive manner.
096097 **Example** (Tensor decomposition). Let $\mathcal{T} \in \mathbb{R}^{m_1 \times \cdots \times m_n}$ be an n th-order tensor, and let $\theta_i \in \mathbb{R}^{m_i \times r}$
098 denote the i th factor matrix. The canonical polyadic (CP) decomposition solves
099

100
$$\min_{\theta_1, \dots, \theta_n} \frac{1}{2} \|\mathcal{T} - [\theta_1, \dots, \theta_n]\|_F^2,$$

101

102 where $[\theta_1, \dots, \theta_n]$ denotes the rank- r CP reconstruction. This problem is nonconvex jointly in all
103 θ_i 's, but convex in each θ_i when the others are fixed. This gives a BDC decomposition with $h_i = 0$,
104 which also underlies the classical alternating least-squares (ALS) algorithm, which performs exact
105 multi-block minimization steps. Although this is a purely multi-block convex structure ($h_i = 0$), it
106 illustrates how BDC decompositions are easier to obtain than DC decompositions, which would be
107 algebraically complex in this case. We present more general examples with nontrivial h_i in [Section 3](#).
108109

2.1 RELATED WORK

110111 DC programming has been employed in a wide range of machine learning applications from kernel
112 selection ([Argyriou et al., 2006](#)) to discrepancy estimation for domain adaptation ([Awasthi et al.,
113 2024](#)). The classical method for solving DC problems is the DC Algorithm (DCA), introduced
114 by [Tao and Souad \(1986\)](#). The first asymptotic convergence results for DCA were established by [Tao
115 \(1997\)](#), with a simplified analysis under differentiability assumptions later provided by [Lanckriet
116 and Sriperumbudur \(2009\)](#). More recently, non-asymptotic convergence rates of $\mathcal{O}(1/k)$ have been
117

108 established (Khamaru and Wainwright, 2018; Yurtsever and Sra, 2022; Abbaszadehpeivasti et al.,
 109 2023). For a comprehensive survey, we refer to (Le Thi and Pham Dinh, 2018; 2024).

110 Despite its generality, the class of BDC functions remains largely unexplored. The only prior study
 111 we are aware of is (Pham Dinh et al., 2022) that considers only the two-block case (termed partial DC
 112 decomposition) and proposes the Alternating DC algorithm. Their method converges to weak critical
 113 points in general, and to Fréchet/Clarke critical points under the Kurdyka–Łojasiewicz property, with
 114 numerical validation on a nonconvex feasibility problem (intersection of two nonconvex sets) and
 115 robust PCA. However, their results investigate neither the constructive structure (algebra) of BDC
 116 functions nor their broader application potential, topics that we address through a general multi-block
 117 formulation and algorithms with non-asymptotic convergence guarantees.

118 Finally, our framework should not be confused with the block-coordinate DCA of Maskan et al.
 119 (2024), which tackles the simpler classical DC problem with a fixed global decomposition and
 120 develops a block-coordinate algorithm. In contrast, we introduce and study the BDC problem class,
 121 yielding a broader and much more flexible formulation. Our work, moreover, calls for a conceptual
 122 shift: rather than seeking a global DC decomposition, we advocate a multi-block decomposition, as
 123 this is vastly easier to construct, more expressive, and often algorithmically advantageous.

3 WHY THE BDC FUNCTION CLASS?

128 We discuss two important types of functions to motivate the BDC class. First, we prove that the
 129 complexity of a DC decomposition for monomials is exponentially higher than its BDC counterpart.
 130 Second, we propose an explicit BDC decomposition for deep ReLU networks (their architectural
 131 core), which we then expand to cover regression and classification tasks.

3.1 DC AND BDC COMPLEXITY OF A MONOMIAL

135 Let $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)$ and $f(\boldsymbol{\theta}) = \theta_1^{b_1} \theta_2^{b_2} \dots \theta_n^{b_n}$ with $s = \sum_{i=1}^n b_i$. We measure DC and BDC
 136 complexities by the minimum number of atoms needed to represent a decomposition. For the DC
 137 class, take $f(\boldsymbol{\theta}) = g(\boldsymbol{\theta}) - h(\boldsymbol{\theta})$ with $g(\boldsymbol{\theta}) = \sum_{i=1}^r \alpha_i \phi_i(\boldsymbol{\theta})$ and $h(\boldsymbol{\theta}) = \sum_{i=r+1}^{r+q} \alpha_i \phi_i(\boldsymbol{\theta})$, where
 138 each $\alpha_i > 0$ and ϕ_i is a convex atom: $\phi_i(\boldsymbol{\theta}) = (u_i^\top \boldsymbol{\theta})^s$ if s is even, and $\phi_i(\boldsymbol{\theta}) = (u_i^\top \boldsymbol{\theta} + d_i)^{s+1}$
 139 if s is odd. We denote by N the *minimum atom count*, i.e., the minimum of $r + q$ over all such
 140 decompositions. Using the notion of *Waring rank* (Carlini et al., 2012) and the *polarization property*
 141 (Drápal and Vojtěchovský, 2009), we bound N in the following [Theorem 3.1](#). The detailed proof and
 142 definitions needed for this result are given in [Appendix B.2](#).

143 **Theorem 3.1** (DC complexity for monomials). *Consider $f(\boldsymbol{\theta}) = \prod_{i=1}^n \theta_i^{b_i}$ with $1 \leq b_1 \leq \dots \leq b_n$
 144 and $s = \sum_i b_i$. Then the minimum atom count N for DC decomposition is either of the following:*

- *If s is even and atoms are of the form $(u^\top \boldsymbol{\theta})^s$, then $\prod_{i=2}^n (b_i + 1) \leq N \leq \left\lfloor \frac{1}{2} \prod_{i=1}^n (b_i + 1) \right\rfloor$.*
- *If s is odd and atoms are of the form $(u^\top \boldsymbol{\theta} + d)^{s+1}$, then $N = \prod_{i=1}^n (b_i + 1)$.*

149 As [Theorem 3.1](#) shows, the DC decomposition of a monomial requires a very large number of atoms.
 150 In contrast, a BDC decomposition can be significantly more compact. In the simplest case, each
 151 $\theta_i^{b_i}$ is treated as a standalone block, reducing the atom count *exponentially* compared to the DC
 152 decomposition. More generally, one may split the monomial into a few larger blocks, decompose
 153 each block, and then multiply the resulting sums, thereby reducing the complexity. For instance, the
 154 monomial $\theta_1 \theta_2 \theta_3^2 \theta_4^4$ requires at least 30 atoms in a DC representation, which matches the lower bound
 155 of [Theorem 3.1](#). Instead taking the trivial blocks $\theta_1, \theta_2, \theta_3^2$, and θ_4^4 , yields a BDC decomposition with
 156 only 4 atoms. Alternatively, splitting into two blocks, $\theta_1 \theta_2$ and $\theta_3^2 \theta_4^4$, results in $2 + 7 = 9$ atoms in
 157 total through [Theorem 3.1](#). An explicit BDC decomposition in this case is

$$\begin{aligned} \theta_1 \theta_2 \theta_3^2 \theta_4^4 &= \frac{1}{14400} \left[(\theta_1 + \theta_2)^2 - (\theta_1 - \theta_2)^2 \right] \times \left[5 \left((\theta_3 + \theta_4)^6 + (\theta_3 - \theta_4)^6 \right) \right. \\ &\quad \left. + 3 \left((\theta_3 + 3\theta_4)^6 + (\theta_3 - 3\theta_4)^6 \right) - 8 \left((\theta_3 + 2\theta_4)^6 + (\theta_3 - 2\theta_4)^6 + 420\theta_4^6 \right) \right]. \end{aligned}$$

162 3.2 BDC FORMULATION OF A DEEP RELU NETWORK
163164 Consider an L -layer ReLU network parameterized by $\theta = (W_1, b_1, \dots, W_L, b_L)$. For input $x \in \mathbb{R}^d$,
165 define $a_0(x) = x$, and

166
$$F_x(\theta) = W_L a_{L-1}(x) + b_L, \quad a_l(x) = \sigma(W_l a_{l-1}(x) + b_l), \quad l = 1, \dots, L-1,$$

167

168 where W_l are weight matrices, b_l are bias vectors, and $\sigma(\cdot)$ denotes the ReLU activation. Here
169 $W_L \in \mathbb{R}^{C \times d_L}$ and $b_L \in \mathbb{R}^C$ represent the weights of the output layer. For regression, we take $C = 1$;
170 for classification, C is the number of classes.171 Now, we aim to express the network output as a BDC function in each class. We begin by writing
172 each activation using two nonnegative multi-block component-wise convex functions $a_l = Z_l^+ - Z_l^-$,
173 with the following initialization and forward recursion:174 **Initialization** ($l = 1$): $Z_1^+ = \sigma(W_1 x + b_1)$, $Z_1^- = 0$.175 **Forward recursion** ($l \rightarrow l+1$): given (Z_l^+, Z_l^-) with $a_l = Z_l^+ - Z_l^-$, define

176
$$p_{l+1} = \sigma(W_{l+1}) Z_l^+ + \sigma(-W_{l+1}) Z_l^- + b_{l+1},$$

177
$$Z_{l+1}^- = \sigma(W_{l+1}) Z_l^- + \sigma(-W_{l+1}) Z_l^+, \quad Z_{l+1}^+ = \max\{p_{l+1}, Z_{l+1}^-\}.$$

178

179 Using $\sigma(a - b) = \max\{a, b\} - b$, we obtain

180
$$Z_{l+1}^+ - Z_{l+1}^- = \sigma(W_{l+1}(Z_l^+ - Z_l^-) + b_{l+1}) = \sigma(W_{l+1}a_l + b_{l+1}) = a_{l+1}(x).$$

181

182 This recursion guarantees $Z_l^\pm \geq 0$ and that each component of Z_l^\pm is convex in the chosen block
183 $\theta_l = (W_l, b_l)$; the used operations (nonnegative linear maps and coordinatewise maxima) preserve
184 convexity and nonnegativity layer by layer.185 **Output layer:** Define nonnegative functions

186
$$A(\theta) := \sigma(W_L) Z_{L-1}^+ + \sigma(-W_L) Z_{L-1}^- + \sigma(b_L),$$

187
$$B(\theta) := \sigma(W_L) Z_{L-1}^- + \sigma(-W_L) Z_{L-1}^+ + \sigma(-b_L).$$

188

189 Then, $F_x(\theta) = A(\theta) - B(\theta)$. The following **Theorem 3.2** proves that each component of $A(\theta)$ and
190 $B(\theta)$ in (3.1) is a convex function in every block (See [Appendix B.3](#) for the proof).191 **Theorem 3.2** (Validity of BDC decomposition for Deep ReLU Network). *For any block $\theta_l = (W_l, b_l)$,
192 (3.1) gives $A(\theta)$ and $B(\theta)$ such that each component of $A(\cdot; \bar{\theta}_l)$ and $B(\cdot; \bar{\theta}_l)$ is nonnegative and
193 convex in θ_l , and we have $F_x(\theta) = A(\theta) - B(\theta)$.*194 Our result in **Theorem 3.2** provides an explicit BDC formulation for deep ReLU networks. While it is
195 known (as an existence result) that deep ReLU networks are DC, explicit DC decompositions are
196 currently available only for *shallow* networks ([Askarizadeh et al., 2024](#)).201 3.2.1 REGRESSION WITH MSE LOSS: BDC FORMULATION
202203 For a label $y \in \mathbb{R}$ and scalar output $F_x(\theta) = A(\theta) - B(\theta)$, the Mean Squared Error (MSE) loss is
204
$$\mathcal{L}_{x,y}^{\text{MSE}}(\theta) := (F_x(\theta) - y)^2.$$
 This yields the explicit BDC decomposition
205

206
$$\mathcal{L}_{x,y}^{\text{MSE}}(\theta) = 2(A^2(\theta) + (B(\theta) + y)^2) - (A(\theta) + B(\theta) + y)^2,$$

207

208 a difference of two multi-block convex functions if $y \geq 0$.209 **Remark 3.3.** *If labels y are not guaranteed to be nonnegative, one can shift labels and outputs
210 by a constant $c \geq 0$ so that $y + c \geq 0$. This translation does not affect the BDC structure, so the
211 assumption $y \geq 0$ is not restrictive.*212 **Correctness.** By **Theorem 3.2**, $A(\theta), B(\theta) \geq 0$ are multi-block convex. For $y \geq 0$ we have
213 $B(\theta) + y \geq 0$ and $A(\theta) + B(\theta) + y \geq 0$, so $A^2(\theta)$, $(B(\theta) + y)^2$, and $(A(\theta) + B(\theta) + y)^2$ are
214 multi-block convex (square is convex and nondecreasing on $[0, \infty)$). Therefore (3.2) gives a valid
215 BDC decomposition of $\mathcal{L}_{x,y}^{\text{MSE}}(\theta)$.

216 3.2.2 CLASSIFICATION WITH CE LOSS: BDC FORMULATION
217

218 Before we can establish a BDC formulation of the Cross-Entropy (CE) loss, we need a general result
219 that extends BDC decompositions to more complex structures. Specifically, we develop a composition
220 principle ensuring that when the input admits a BDC decomposition, the expression obtained through
221 a conjugate function can also be written explicitly in BDC form. The following [Proposition 3.4](#)
222 establishes this principle (see [Appendix B.4](#) for the proof). In contrast to many DC composition rules
223 that only guarantee existence, this result is *constructive*.

224 **Proposition 3.4** (BDC decomposition for $f^* \circ E$). *Let $U \subset \mathbb{R}^m$ be compact, $f : U \rightarrow \mathbb{R}$ finite, and
225 $f^*(t) = \max_{u \in U} \{ \langle u, t \rangle - f(u) \}$ be the conjugate of f . Suppose $E(\boldsymbol{\theta}) = (E_1(\boldsymbol{\theta}), \dots, E_m(\boldsymbol{\theta}))$,
226 where each component E_j is BDC, i.e., $E_j(\boldsymbol{\theta}) = a_{ij}(\boldsymbol{\theta}_i) - b_{ij}(\boldsymbol{\theta}_i)$ for every block $i \in [n]$. For
227 $j = 1, \dots, m$ set $\underline{u}_j := \min_{u \in U} u_j$, $\bar{u}_j := \max_{u \in U} u_j$, $c_j^+ := \max\{-\underline{u}_j, 0\}$, $d_j^+ := \max\{\bar{u}_j, 0\}$.
228 Define the vectors $c^+, d^+ \in \mathbb{R}^m$. Then $f^* \circ E$ is BDC, with an explicit multi-block decomposition
229 $f^*(E(\boldsymbol{\theta})) = g_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) - h_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i)$, where, for each block i ,*

$$230 \quad h_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) := \langle c^+, a_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) \rangle + \langle d^+, b_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) \rangle, \\ 231 \quad g_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) := f^*(E(\boldsymbol{\theta})) + h_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i),$$

232 with $a_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) := (a_{i1}(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i), \dots, a_{im}(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i))$, $b_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) := (b_{i1}(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i), \dots, b_{im}(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i))$.

234 Using the split $F_x(\boldsymbol{\theta}) = A(\boldsymbol{\theta}) - B(\boldsymbol{\theta})$ in [\(3.1\)](#), for a label $y \in \{1, \dots, C\}$ the CE loss is $\mathcal{L}_{x,y}^{\text{CE}}(\boldsymbol{\theta}) =$
235 $\text{LSE}(F_x(\boldsymbol{\theta})) - A_y(\boldsymbol{\theta}) + B_y(\boldsymbol{\theta})$, where $\text{LSE}(\cdot)$ is the log-sum-exp with variational form
236
237 $\text{LSE}(t) = \max_{p \in \Delta_C} \{ \langle p, t \rangle - \text{Ent}(p) \}$, $\Delta_C := \{p \geq 0, 1^\top p = 1\}$, $\text{Ent}(p) := \sum_{c=1}^C p_c \log p_c$.

239 **Corollary 3.5.** *Applying [Proposition 3.4](#) with $U = \Delta_C$ and $f = \text{Ent}$ yields $\underline{u}_j = 0$ and $\bar{u}_j = 1$ for
240 all j , hence $c^+ = 0$ and $d^+ = 1$. Therefore, for every x, y , $\mathcal{L}_{x,y}^{\text{CE}}(\boldsymbol{\theta}) = g(\boldsymbol{\theta}) - h(\boldsymbol{\theta})$, where*

$$242 \quad g(\boldsymbol{\theta}) := \text{LSE}(F_x(\boldsymbol{\theta})) + 1^\top B(\boldsymbol{\theta}) + B_y(\boldsymbol{\theta}), \quad h(\boldsymbol{\theta}) := A_y(\boldsymbol{\theta}) + 1^\top B(\boldsymbol{\theta}).$$

243 **Correctness.** For any parameter block, by [Theorem 3.2](#) each component of $A(\boldsymbol{\theta})$ and $B(\boldsymbol{\theta})$ is
244 convex. Convexity of $g(\cdot; \bar{\boldsymbol{\theta}}_l)$ and $h(\cdot; \bar{\boldsymbol{\theta}}_l)$ in block l follows directly from [Proposition 3.4](#) with
245 shifts $c^+ = 0$ and $d^+ = 1$. Therefore $\mathcal{L}_{x,y}^{\text{CE}}(\boldsymbol{\theta})$ is a valid BDC function.

247 4 BDC ALGORITHM
248

250 In this section we propose BDC algorithms (BDCA) along with their convergence results for BDC
251 optimization [\(2.1\)](#) under assumptions of L -smoothness, generalized smoothness, and stochasticity.
252 Unlike the conventional DCA, our BDC algorithm considers a convex surrogate function obtained by
253 linearizing the concave component of the objective function on each randomly chosen block i_k around
254 the update point, $\boldsymbol{\theta}^k$, at k^{th} iteration. Throughout this section we denote $\mathcal{G}(\boldsymbol{\theta}) := \sup_{u \in \partial f(\boldsymbol{\theta})} \|u\|$.

255 4.1 BDCA UNDER L -SMOOTHNESS
256

257 Assume BDC problem [\(2.1\)](#), when each $g_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i)$ satisfies L_i -smoothness and $L := \max_{i \in [n]} L_i$.
258 Our BDC algorithm at k^{th} iteration will select a block i_k uniformly at random, and then update by
259 minimizing a surrogate function on the selected block, as:

$$261 \quad \theta_{i_k}^{k+1} \in \operatorname{argmin}_{\theta_{i_k} \in \mathcal{X}_{i_k}} g_{i_k}(\theta_{i_k}; \bar{\boldsymbol{\theta}}_{i_k}^k) - \langle u_{i_k}^k, \theta_{i_k} \rangle, \quad (4.1)$$

263 where $u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k)$. After solving [\(4.1\)](#), we update $\boldsymbol{\theta}^{k+1} = \bar{\boldsymbol{\theta}}_{i_k}^k + \theta_{i_k}^{k+1}$, and set $k = k + 1$.
264 The convergence guarantee for [\(4.1\)](#) is summarized in the following corollary. When the problem has
265 convex and compact constraints, we propose a more general convergence result in [Appendix A.1](#).

266 **Corollary 4.1.** *The sequence generated by the update [\(4.1\)](#) will satisfy*

$$268 \quad \min_{k \in \{1, \dots, K\}} \mathbb{E}_i [\mathcal{G}^2(\boldsymbol{\theta}^k)] \leq \frac{2L_n}{K} (f(\boldsymbol{\theta}^1) - f^*) , \quad (4.2)$$

269 where $\mathbb{E}_i[\cdot]$ denotes expectation w.r.t. the i^{th} block choice.

270 4.2 PROXIMAL BDCA UNDER GENERALIZED SMOOTHNESS ASSUMPTION
271

272 Many optimization objectives do not possess a
273 Lipschitz continuous gradient. Despite this, re-
274 cent studies have shown that in some important
275 training tasks a more relaxed smoothness assump-
276 tion holds (Zhang et al., 2019; Crawshaw et al.,
277 2022). This assumption essentially bounds the
278 norm of the Hessian of the objective with a func-
279 tion of the gradient norm. Motivated by this,
280 we conducted a simulation showing that a multi-
281 block reminiscent of the generalized smoothness
282 holds when training a neural network (see Fig-
283 ure 1). Based on these observations, we assume
284 a more relaxed assumption on the components of
285 $g(\theta)$, known as ℓ -smoothness defined below.
286

287 **Definition 1** (ℓ -smoothness, (Li et al., 2024)). A
288 real-valued differentiable function $g_i : \mathcal{X}_i \times$
289 $\bar{\mathcal{X}}_i \rightarrow \mathbb{R}$ is ℓ -smooth for continuous function $\ell : [0, +\infty) \rightarrow (0, +\infty)$ where ℓ is non-decreasing,
290 if it satisfies $\|\nabla^2 g_i(\theta_i; \bar{\theta}_i)\| \leq \ell(\|\nabla g_i(\theta_i; \bar{\theta}_i)\|)$ for fixed $\bar{\theta}_i$ almost everywhere with respect to the
291 Lebesgue measure in \mathcal{X}_i .

292 It is possible to relate ℓ -smooth to its first-order reminiscent, known as (r, ℓ) -smoothness and vice-
293 versa under specific choices for functions r and ℓ (see Appendix A.4).

294 **Definition 2** ((r, ℓ) -smoothness, (Li et al., 2024)). A real-valued differentiable function $g_i : \mathcal{X}_i \times \bar{\mathcal{X}}_i \rightarrow$
295 \mathbb{R} is (r, ℓ) -smooth for continuous functions $r, \ell : [0, +\infty) \rightarrow (0, +\infty)$ where ℓ is non-decreasing and
296 r is non-increasing, if for any $\theta_i \in \mathcal{X}_i$ we have $\mathcal{B}(\theta_i, r(\|\nabla g_i(\theta_i; \bar{\theta}_i)\|)) \subseteq \mathcal{X}_i$ and, for all $\theta_i^1, \theta_i^2 \in$
297 $\mathcal{B}(\theta_i, r(\|\nabla g_i(\theta_i; \bar{\theta}_i)\|))$ it holds that $\|\nabla g_i(\theta_i^1; \bar{\theta}_i) - \nabla g_i(\theta_i^2; \bar{\theta}_i)\| \leq \ell(\|\nabla g_i(\theta_i; \bar{\theta}_i)\|) \|\theta_i^1 - \theta_i^2\|$.

298 The (r, ℓ) -smoothness requires successive updates distance $\|\theta^{k+1} - \theta^k\|$ to be bounded. Although in
299 algorithms like Gradient Descent (GD), this is satisfied through a bounded gradient norm condition
300 and the sequential form of the algorithm, in BDCA such a link is nontrivial. To solve this, we exploit
301 the non-uniqueness of the DC decomposition by adding and subtracting $\frac{\rho}{2} \|\theta_{i_k}\|^2$ to (2.1) on each
302 block, yielding the proximal-type subproblems in (4.4) and ensuring bounded iterate differences.
303 Under the assumptions below, we propose the convergence guarantee for Algorithm 1.

304 **Assumption 2.** For every $i \in \{n\}$, the functions g_i is differentiable and closed within its open
305 domain $\mathcal{X}_i \times \bar{\mathcal{X}}_i$.

306 **Assumption 3.** For every $i \in \{n\}$, the functions h_i are Lipschitz continuous with constant R .

307 **Theorem 4.2.** Consider Assumptions 2 and 3 when θ^k is the output of Algorithm 1 for any initializa-
308 tion $\theta^0 \in \mathcal{X}$. Then, for any ℓ -smooth g_i with subquadratic ℓ , if $h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - h_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) \leq H$ for
309 a constant $H \geq 0$, $E := \sup\{u > 0 : u^2 \leq 2\ell(2u).G\} < \infty$, $G := \max_j g_j(\theta_j^0; \bar{\theta}_j^0) - g^* + H$ and
310 $L := \ell(2E)$, then the sequence θ^k generated by Algorithm 1 with $\rho \geq L \frac{2(E+R)}{E}$ will satisfy

$$311 \min_{k \in \{1, \dots, K\}} \mathbb{E}_i [\mathcal{G}^2(\theta^k)] \leq \frac{2n(L+\rho)}{K} (f(\theta^1) - f^*) . \quad (4.3)$$

312 For a detailed discussion on the convergence result and the proof of Theorem 4.2 see Appendix A.2.
313 Compared to (Li et al., 2024), this rate is scaled by n which is expected due to the random choice of
314 the blocks in each iteration of Algorithm 1.

315 4.3 STOCHASTIC PROXIMAL BDCA UNDER GENERALIZED SMOOTHNESS
316

317 In this section, we target (2.1) when on i^{th} block we have
318

$$319 f(\theta) := g_i(\theta_i; \bar{\theta}_i) - h_i(\theta_i; \bar{\theta}_i) = \mathbb{E}_{s \sim \mathbb{P}} [g_i(\theta_i; \bar{\theta}_i, s) - h_i(\theta_i; \bar{\theta}_i, s)] \quad (4.5)$$

Algorithm 1 Proximal BDC

324 **Input:** set $k = 0$, and number of blocks n , number of iterations T
 325 REPEAT:
 326 Randomly choose i_k in $[n]$ with uniform distribution
 327 Evaluate $u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)$,
 328
$$\theta_{i_k}^{k+1} \in \operatorname{argmin}_{\theta_{i_k} \in \mathcal{X}_{i_k}} g_{i_k}(\theta_{i_k}; \bar{\theta}_{i_k}^k) - \langle u_{i_k}^k, \theta_{i_k} \rangle + \frac{\rho}{2} \|\theta_{i_k}^k - \theta_{i_k}\|^2 \quad (4.4)$$

 329 Update $\theta^{k+1} = \bar{\theta}_{i_k}^k + \theta_{i_k}^{k+1}$,
 330 Set $k = k + 1$,
 331 UNTIL Stopping criterion.
 332
 333
 334
 335

336
 337 where $(\Omega, \Sigma_\Omega, \mathbb{P})$ is the probability space and BDC functions $g(\cdot, s), h(\cdot, s), s \in \Omega$ are defined on
 338 \mathcal{X} . In the realm of supervised learning, empirical loss is a common realistic approximation of the
 339 objective (4.5). In this sense, for each $i \in [n]$ we have
 340

341
$$g_i(\theta_i; \bar{\theta}_i) - h_i(\theta_i; \bar{\theta}_i) \approx \frac{1}{J} \sum_{j=1}^J g_i(\theta_i; \bar{\theta}_i, s^j) - \frac{1}{J} \sum_{j=1}^J h_i(\theta_i; \bar{\theta}_i, s^j) \quad (4.6)$$

 342
 343

344 for $s^j \in \Omega$. For simplicity, denote $\hat{g}_i(\theta_i; \bar{\theta}_i) = g_i(\theta_i; \bar{\theta}_i, s)$ and $\hat{h}_i(\theta_i; \bar{\theta}_i) = h_i(\theta_i; \bar{\theta}_i, s)$. Through-
 345 out this section, we make the following assumption:

346 **Assumption 4.** Take $u_i \in \partial h_i(\theta_i; \bar{\theta}_i)$ and $\hat{u}_i, \nabla \hat{g}_i(\theta_i; \bar{\theta}_i)$ as the unbiased stochastic approx-
 347 imations of u_i and $\nabla g_i(\theta_i; \bar{\theta}_i)$ such that $\mathbb{E}[\hat{u}_i] = u_i$ and $\mathbb{E}[\nabla \hat{g}_i(\theta_i; \bar{\theta}_i)] = \nabla g_i(\theta_i; \bar{\theta}_i)$ with
 348 $\mathbb{E}[\|\nabla \hat{g}_i(\theta_i; \bar{\theta}_i) - \hat{u}_i - (\nabla g_i(\theta_i; \bar{\theta}_i) - u_i)\|^2] \leq \sigma^2$ for $i = 1, \dots, n$.
 349

350 To solve the stochastic minimization of (4.6), we need to modify **Algorithm 1**. Using i.i.d. random
 351 $s^k \sim \text{Unif}\{1, J\}$, we evaluate $\hat{u}_{i_k}^k \in \partial \hat{h}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)$. Now, instead of (4.4), we solve:

352
$$\theta_{i_k}^{k+1} \in \operatorname{argmin}_{\theta_{i_k} \in \mathcal{X}_{i_k}} g_{i_k}(\theta_{i_k}; \bar{\theta}_{i_k}^k, s^k) - \langle \hat{u}_{i_k}^k, \theta_{i_k} \rangle + \frac{\rho}{2} \|\theta_{i_k}^k - \theta_{i_k}\|^2. \quad (4.7)$$

 353
 354

355 The following theorem formulates the convergence of SBDC algorithm explained above.

356 **Theorem 4.3.** Consider assumptions 2, 3, and 4 when θ^k as the output of (4.7) for any initial-
 357 ization $\theta^0 \in \mathcal{X}$. Then, for any ℓ -smooth g_i with subquadratic ℓ take $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq G$
 358 and $\|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\| \leq F'$ for $G, F' > 0$ and $\rho \geq L \frac{2(E+R+F')}{E}$,
 359 $L := \ell(2E)$, $h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - h_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) \leq H$ for a constant $H \geq 0$. Further, for any $0 < \delta < 1$
 360 consider $G := \max_j 8(g_j(\theta_j^0; \bar{\theta}_j^0) - g^* + C')/\delta$, $C' := K\sigma^2/\rho + H$, $F' = E\rho/9L - (E + R)$,
 361 $\sigma^2 = \mathcal{O}(1/\sqrt{K})$, $\rho = (18L + \frac{9ER}{G} + \frac{81L}{4} \left[\frac{C'-H}{C'} \right])\sqrt{K}$, $E := \sup\{u > 0 : u^2 \leq 2\ell(2u)G\} < \infty$,
 362 and $K \geq (L + \frac{3}{2}\rho)nG\delta/4\epsilon^2$ for any $\epsilon > 0$. Then, with probability at least $1 - \delta$ the iterates of the (4.7)
 363 with n blocks will satisfy

364
$$\min_{k=1, \dots, K} \mathbb{E}_{s,i} [\mathcal{G}^2(\theta^k)] \leq \epsilon^2. \quad (4.8)$$

 365
 366

367 The proof of **Theorem 4.3** with detailed discussion is presented in [Appendix A.3](#). This result achieves
 368 the gradient complexity $\mathcal{O}(n^2/\epsilon^4)$ for $\rho = \Omega(\sqrt{K})$. The condition $\sigma^2 = \mathcal{O}(1/\sqrt{K})$ is achievable
 369 through a comparable number of samples in the mini-batch or through variance reduction techniques.
 370 In particular, by [Lemma A.12](#) (see [Appendix A.5](#)) batch size should be $\Omega(n/\epsilon^2)$ and this means a
 371 sample complexity $\Omega(n^3/\epsilon^6)$. Similar assumption has appeared in previous works such as ([Nitanda and Suzuki, 2017](#); [Yurtsever et al., 2019](#)).

372 5 APPLICATIONS
 373
 374

375 We highlight the versatility of the BDC framework through a few illustrative applications and
 376 numerical experiments.

Figure 2: Reconstruction error and sparsity of codes for the ℓ_1 regularizer (orange) and the nonconvex $\ell_1 - \ell_Q$ regularizer (blue) on synthetic data and BSDS500 patches. Solid curves denote the mean over 10 runs, with shaded bands showing 95% probabilistic bounds. The dashed green line indicates the true sparsity level in the synthetic data. The nonconvex $\ell_1 - \ell_Q$ formulation yields both lower reconstruction error and sparser codes.

Proximal Alternating Linearized Minimization. The general class of nonconvex nonsmooth optimization problems in the form of:

$$\min_{\theta_i \in \mathcal{X}_{d_i}, i=1, \dots, n} \sum_{i=1}^n f_i(\theta_i) + H(\boldsymbol{\theta}), \quad (5.1)$$

was addressed by [Bolte et al. \(2014\)](#) for an L -smooth function $H(\boldsymbol{\theta})$. This problem is an instance of (2.1) under some assumptions. [Bolte et al. \(2014\)](#) proved a non-asymptotic convergence rate for the PALM algorithm assuming the KL property while in this work, we do not make such assumption.

Multiplicative Multitask Feature Learning. MMFL aims to train a neural network that learns shared representations across multiple tasks. A shared vector $\mathbf{c} \in \mathbb{R}^T$ indicates feature usefulness for T tasks, and is multiplied by the weight vector $\beta_t \in \mathbb{R}^d$, where d is the number of features. Sparse regularization is then to exclude redundant features. For details on regularizer choices, see [\(Wang et al., 2016\)](#). The mathematical formulation of the MMFL problem with sparse regularizer on \mathbf{c} is:

$$\min_{\mathbf{c} \geq 0, \beta_t} \sum_{t=1}^T \text{loss}(\text{diag}(\mathbf{c})\beta_t, X_t, y_t) + \lambda_1 \sum_{t=1}^T \|\beta_t\|_p^p + \lambda_2 \|\mathbf{c}\|_0, \quad (5.2)$$

where $\text{loss}(\cdot)$ denotes a loss function (e.g., least squares or logistic loss), $X_t \in \mathbb{R}^{n_t \times d}$ is the dataset, and y_t represents the labels for the t^{th} task. Since convex ℓ_1 regularizers are too relaxed to approximate the shrinkage effect in the feature space, non-convex alternatives such as $\|\mathbf{c}\|_1 - \|\mathbf{c}\|_Q$ ($\|\mathbf{x}\|_Q$ denotes the largest- Q norm) or the capped ℓ_1 -norm ($\sum_t \min\{|\mathbf{c}_t|, \gamma\} = \|\mathbf{c}\|_1 - \sum_t \max\{|\mathbf{c}_t| - \gamma, 0\}$) are preferred [\(Gong et al., 2012\)](#). Replacing either of these in (5.2) results in a BDC optimization task.

Rank Regularization. Consider an optimization problem of the following form:

$$\min_{X, Y} f(X, Y) + \lambda \text{rank}(X) \quad (5.3)$$

where X and Y are two matrices in $\mathbb{R}^{n \times m}$ and the function $f(\cdot)$ is BDC. This type of problem has several applications, such as matrix completion [\(Hazan et al., 2023\)](#) and deep learning [\(Wang et al., 2024; Scarvelis and Solomon, 2024\)](#). Due to the rank term, (5.3) is NP-hard and a convex surrogate known as the nuclear norm $\|X\|_* = \sum_{i=1}^{\min\{n, m\}} \sigma_i$ is often utilized, where σ_i represents the i^{th} largest singular value. A tighter non-convex approximation of the rank regularizer is the truncated nuclear norm (TNN), defined as $\sum_{i=r+1}^{\min\{n, m\}} \sigma_i$. TNN can be rewritten as $\|X\|_* - \sum_{i=1}^r \sigma_i$, which is a DC function. Thus, replacing it in (5.3) gives a BDC due to the DC regularizer. Note that when $r = 1$, the regularizer is equivalent to $\|X\|_* - \|X\|_2$, which is a special case commonly used as a non-convex regularizer for the rank term [\(Jiang et al., 2021\)](#).

Sparse Dictionary Learning. We illustrate the applicability of our theoretical framework on SDL problem. Given a data matrix $Y = [y_1, \dots, y_n] \in \mathbb{R}^{m \times n}$, SDL seeks a dictionary $\mathbf{D} = [d_1, \dots, d_k] \in \mathbb{R}^{m \times k}$ and sparse codes $X = [x_1, \dots, x_n] \in \mathbb{R}^{k \times n}$ by solving

$$\min_{\mathbf{D} \in \mathcal{C}, X} \sum_{i=1}^n \frac{1}{2} \|y_i - \mathbf{D} x_i\|_2^2 + \alpha \sum_{i=1}^n \|x_i\|_0, \quad \mathcal{C} = \{\mathbf{D} \in \mathbb{R}^{m \times k} \mid \|d_j\|_2 \leq 1 \forall j\}. \quad (5.4)$$

Figure 3: Comparison of SBDC with SGD in regression (left) and classification (middle, right) for 10 Monte-Carlo instances. The shaded bands specify the 68% confidence intervals. As depicted, SBDC has comparable performance to the SGD in terms of the test loss and test accuracy.

Since the ℓ_0 -norm is NP-hard to optimize, it is often replaced with ℓ_1 -norm. More recently, nonconvex regularizers have been used to yield a tighter approximation to sparsity. Following (Deng and Lan, 2020; Maskan et al., 2024), we consider

$$\min_{\mathbf{D} \in \mathcal{C}, X} \sum_{i=1}^n \frac{1}{2} \|y_i - \mathbf{D} x_i\|_2^2 + \alpha \sum_{i=1}^n (\|x_i\|_1 - \|x_i\|_Q). \quad (5.5)$$

Problem (5.5) is BDC: fixing either \mathbf{D} or X yields a DC problem. The optimization problem (5.5) is a special case of our formulation in Section 4.1 and Appendix A.1. We conducted numerical simulations to solve the SDL problem with ℓ_1 and nonconvex $\ell_1 - \ell_Q$ regularizers (Eq. 5.5) via BDCA (4.1). Performance is measured by reconstruction error $\|Y - \mathbf{D}X\|_F^2$ and the proportion of zeros in X . We compare using synthetic data and Berkeley segmentation dataset (Martin et al., 2001). The results are shown in Figure 2. For more detail, see Appendix A.6.

Application to Neural Networks. In Section 3.2 we found explicit formulations of training objective for MSE and CE losses as a BDC problem. Using these formulations and (4.7), we train neural networks for the MSE and the CE loss functions. Next, we train neural networks using (4.7). We use CIFAR10 and FASHIONMNIST datasets for the classification task and BOSTON HOUSING PRICE dataset¹ for the regression task. See Appendix A.6 for a details of our implementation setting.

Remark 5.1. *Our implementation via (4.7) computes gradients only with respect to the selected random layer in each iteration, offering computational benefits by reducing the gradient calculation bottleneck. In practice, we backpropagate only up to the selected layer.*

6 CONCLUSION AND DISCUSSION

We introduce and motivate the *multi-block* DC (BDC) class—strictly richer than classical DC—and demonstrate its practicality from two angles: (i) compared to DC decompositions, BDC formulations are far cheaper to construct (e.g., exponentially cheaper for monomials), and (ii) obtaining BDC decompositions for modern problems (e.g., training deep ReLU networks) is vastly easier and constructive. Subsequently, after developing foundational properties of the BDC class, we leverage multi-block convexity to propose a Gauss–Seidel-type BDC algorithm with non-asymptotic guarantees under L -smoothness, generalized smoothness, and stochasticity. Applications to MMFL, rank regularization, sparse dictionary learning, and neural network training illustrate the framework’s practicality and breadth.

We conclude by noting one avenue for future work and two algorithmic limitations. On the theory side, a natural direction is to further investigate the representation complexity gap between the BDC and DC classes (e.g., for ReLU networks). On the algorithmic side, although Algorithm 1 ensures monotone descent, our analysis assumes bounded $g_i(\theta_i; \bar{\theta}_i)$ along the trajectory, which we enforce via bounded $h_i(\theta_i; \bar{\theta}_i)$ at update points; removing this assumption would strengthen the result. In addition, our generalized-smoothness theory currently covers only unconstrained BDC optimization; extending it to constrained problems remains open.

¹<https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset>

486 REFERENCES
487

488 Hadi Abbaszadehpeivasti, Etienne de Klerk, and Moslem Zamani. On the rate of convergence of the
489 difference-of-convex algorithm (DCA). *Journal of Optimization Theory and Applications*, pages
490 1–22, 2023.

491 Amir Ali Ahmadi and Georgina Hall. Dc decomposition of nonconvex polynomials with algebraic
492 techniques. *Mathematical Programming*, 169:69–94, 2018.

493

494 Andreas Argyriou, Raphael Hauser, Charles A Micchelli, and Massimiliano Pontil. A DC-
495 programming algorithm for kernel selection. In *Proceedings of the 23rd international conference*
496 *on Machine learning*, pages 41–48, 2006.

497

498 Mohammad Askarizadeh, Alireza Morsali, Sadegh Tofigh, and Kim Khoa Nguyen. Convex-concave
499 programming: An effective alternative for optimizing shallow neural networks. *IEEE Transactions*
500 *on Emerging Topics in Computational Intelligence*, pages 1–14, 2024. doi: 10.1109/TETCI.2024.
3502463.

501

502 Pranjal Awasthi, Corinna Cortes, and Mehryar Mohri. Best-effort adaptation. *Annals of Mathematics*
503 *and Artificial Intelligence*, pages 1–46, 2024.

504

505 Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization for
506 nonconvex and nonsmooth problems. *Mathematical Programming*, 146(1):459–494, 2014.

507

508 Enrico Carlini, Maria Virginia Catalisano, and Anthony V Geramita. The solution to the waring
509 problem for monomials and the sum of coprime monomials. *Journal of algebra*, 370:5–14, 2012.

510

511 Enrico Carlini, Mario Kummer, Alessandro Oneto, and Emanuele Ventura. On the real rank of
512 monomials. *Mathematische Zeitschrift*, 286(1):571–577, 2017.

513

514 Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
515 to unbounded smoothness of generalized signsgd. *Advances in Neural Information Processing*
516 *Systems*, 35:9955–9968, 2022.

517

518 Damek Davis, Dmitriy Drusvyatskiy, Yin Tat Lee, Swati Padmanabhan, and Guanghao Ye. A gradient
519 sampling method with complexity guarantees for Lipschitz functions in high and low dimensions.
520 *Advances in Neural Information Processing Systems*, 35:6692–6703, 2022.

521

522 Qi Deng and Chenghao Lan. Efficiency of coordinate descent methods for structured nonconvex
523 optimization. In *Joint European Conference on Machine Learning and Knowledge Discovery in*
524 *Databases*, pages 74–89. Springer, 2020.

525

526 Aleš Drápal and Petr Vojtěchovský. Symmetric multilinear forms and polarization of polynomials.
527 *Linear algebra and its applications*, 431(5-7):998–1012, 2009.

528

529 Pinghua Gong, Jieping Ye, and Chang-shui Zhang. Multi-stage multi-task feature learning. *Advances*
530 *in Neural Information Processing Systems*, 25, 2012.

531

532 Elad Hazan, Adam Tauman Kalai, Varun Kanade, Clara Mohri, and Y Jennifer Sun. Partial matrix
533 completion. *Advances in Neural Information Processing Systems*, 36:30134–30145, 2023.

534

535 Zhuoxuan Jiang, Xinyuan Zhao, and Chao Ding. A proximal dc approach for quadratic assignment
536 problem. *Computational Optimization and Applications*, 78:825–851, 2021.

537

538 Raymond Kan. From moments of sum to moments of product. *Journal of Multivariate Analysis*, 99
539 (3):542–554, 2008.

540

541 R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*, 33
542 (3):291–297, 1997. ISSN 0167-7152. doi: [https://doi.org/10.1016/S0167-7152\(96\)00140-X](https://doi.org/10.1016/S0167-7152(96)00140-X).

543

544 Kouluk Khamaru and Martin Wainwright. Convergence guarantees for a class of non-convex and
545 non-smooth optimization problems. In *International Conference on Machine Learning*, pages
546 2601–2610. PMLR, 2018.

540 Gert Lanckriet and Bharath K Sriperumbudur. On the convergence of the concave-convex procedure.
 541 *Advances in Neural Information Processing Systems*, 22, 2009.
 542

543 Hoai An Le Thi and Tao Pham Dinh. DC programming and DCA: Thirty years of developments.
 544 *Mathematical Programming*, 169(1):5–68, 2018.
 545

546 Hoai An Le Thi and Tao Pham Dinh. Open issues and recent advances in dc programming and dca.
 547 *Journal of Global Optimization*, 88(3):533–590, 2024.
 548

549 Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
 550 optimization under generalized smoothness. *Advances in Neural Information Processing Systems*,
 551 36, 2024.
 552

553 D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its
 554 application to evaluating segmentation algorithms and measuring ecological statistics. In *Proc. 8th
 555 Int'l Conf. Computer Vision*, volume 2, pages 416–423, July 2001.
 556

557 Hoomaan Maskan, Paniz Halvachi, Suvrit Sra, and Alp Yurtsever. Block coordinate dc programming.
 558 *arXiv preprint arXiv:2411.11664*, 2024.
 559

560 Hoomaan Maskan, Yikun Hou, Suvrit Sra, and Alp Yurtsever. Revisiting frank-wolfe for structured
 561 nonconvex optimization. *arXiv preprint arXiv:2503.08921*, 2025.
 562

563 Atsushi Nitanda and Taiji Suzuki. Stochastic difference of convex algorithm and its application to
 564 training deep boltzmann machines. In *Artificial intelligence and statistics*, pages 470–478. PMLR,
 565 2017.
 566

567 Tao Pham Dinh, Van Ngai Huynh, Hoai An Le Thi, and Vinh Thanh Ho. Alternating DC algorithm
 568 for partial DC programming problems. *Journal of Global Optimization*, 82(4):897–928, 2022.
 569

570 Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic frank-wolfe methods for
 571 nonconvex optimization. In *2016 54th annual Allerton conference on communication, control, and
 572 computing (Allerton)*, pages 1244–1251. IEEE, 2016.
 573

574 Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madař. How does batch
 575 normalization help optimization? (no, it is not about internal covariate shift). In *Neural Information
 576 Processing Systems*, 2018.
 577

578 Christopher Scarvelis and Justin M Solomon. Nuclear norm regularization for deep learning. *Advances
 579 in Neural Information Processing Systems*, 37:116223–116253, 2024.
 580

581 Pham Dinh Tao. Convex analysis approach to DC programming: theory, algorithms and applications.
 582 *Acta mathematica vietnamica*, 22(1):289–355, 1997.
 583

584 Pham Dinh Tao and El Bernoussi Souad. Algorithms for solving a class of nonconvex optimization
 585 problems. methods of subgradients. In *North-Holland Mathematics Studies*, volume 129, pages
 586 249–271. Elsevier, 1986.
 587

588 Hoang Tuy. *Convex analysis and global optimization*. Springer, 2016.
 589

590 Libor Veselý and Luděk Zajíček. A non-dc function which is dc along all convex curves. *Journal
 591 of Mathematical Analysis and Applications*, 463(1):167–175, 2018. ISSN 0022-247X. doi:
 592 <https://doi.org/10.1016/j.jmaa.2018.03.021>.
 593

594 Xin Wang, Jinbo Bi, Shipeng Yu, Jiangwen Sun, and Minghu Song. Multiplicative multitask feature
 595 learning. *Journal of Machine Learning Research*, 17(80):1–33, 2016.
 596

597 Yancheng Wang, Rajeev Goel, Utkarsh Nath, Alvin C. Silva, Teresa Wu, and Yingzhen Yang. Learning
 598 low-rank feature for thorax disease classification. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 599 U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*,
 600 volume 37, pages 117133–117163. Curran Associates, Inc., 2024.
 601

602 Alp Yurtsever and Suvrit Sra. CCCP is Frank-Wolfe in disguise. *Advances in Neural Information
 603 Processing Systems*, 35:35352–35364, 2022.
 604

594 Alp Yurtsever, Suvrit Sra, and Volkan Cevher. Conditional gradient methods via stochastic path-
595 integrated differential estimator. In *International Conference on Machine Learning*, pages 7282–
596 7291. PMLR, 2019.
597
598 Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
599 training: A theoretical justification for adaptivity. *arXiv preprint arXiv:1905.11881*, 2019.
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Algorithm 2 BDC Algorithm (L-smooth)

648
649 **Input:** set $k = 0$, and number of blocks n , number of iterations T
650 REPEAT:
651 Randomly choose i_k in $[1, \dots, n]$ with uniform distribution
652 Evaluate $u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)$,
653 Solve
654
$$\theta_{i_k}^{k+1} \in \operatorname{argmin}_{\theta_{i_k} \in \mathcal{M}^{i_k}} g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) + r_{i_k}(\theta_{i_k}) - \langle u_{i_k}^k, \theta_{i_k} \rangle \quad (\text{A.4})$$

655 Update $\theta^{k+1} = \bar{\theta}_{i_k}^k + \theta_{i_k}^{k+1}$,
656 Set $k = k + 1$,
657 UNTIL Stopping criterion.

A DISCUSSIONS

661
662 In this section, we provide more general results under smoothness assumption in [Appendix A.1](#),
663 background on generalized smoothness in [Appendix A.4](#), useful lemmas in stochastic gradient
664 estimator's variance in [Appendix A.5](#), and more detail on numerical results in [Appendix A.6](#). All the
665 proofs are given in [Appendix B](#).
666

A.1 MULTI-BLOCK DCA UNDER SMOOTHNESS ASSUMPTION

667 Here, we focus on a more general problem of the form:
668

$$\min_{\theta \in \mathcal{M}} f(\theta), \quad (\text{A.1})$$

669 where for each block θ_i

$$f(\theta) := g_i(\theta_i; \bar{\theta}_i) + r_i(\theta_i) - h_i(\theta_i; \bar{\theta}_i), \quad (\text{A.2})$$

670 when $g_i(\cdot; \bar{\theta}_i)$ is an L -smooth function, $r_i(\theta_i)$ is a non-differentiable convex function, and we have
671 constraint set $\mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2 \times \dots \times \mathcal{M}_n$ and each $\mathcal{M}_i \subseteq \mathbb{R}^{d_i}$ is a closed convex set and
672 $d = \sum_{i=1}^n d_i$. The rest of the setup is similar to the unconstrained setting in [Section 2](#). Problem
673 ([A.1](#)) was addressed for DC objective function $f(\theta)$ in [Maskan et al. \(2024\)](#). Here, we show that our
674 formulation is capable of solving such problem formulation under a multi-block DC assumption on
675 the objective $f(\theta)$. Under this assumption, we propose a multi-block DCA (BDCA) algorithm, shown
676 in [Algorithm 2](#). The following Theorem shows the convergence of this method. The proof of this
677 theorem is given in [Appendix B.11](#).
678

679 **Theorem A.1.** *The sequence generated by the update ([A.4](#)) will satisfy*

$$\min_{k \in \{1, \dots, K\}} \mathbb{E}_i [\operatorname{gap}_{\mathcal{M}}^L(\theta^k)] \leq \frac{n}{K} (f(\theta^1) - f^*), \quad (\text{A.3})$$

681 where $\mathbb{E}_i[\cdot]$ denotes expectation w.r.t. the i^{th} block choice and

$$\operatorname{gap}_{\mathcal{M}}^L(\mathbf{y}) := \max_{\mathbf{x} \in \mathcal{M}} \min_{\boldsymbol{\nu} \in \partial f(\mathbf{y})} \left\{ \langle \boldsymbol{\nu}, \mathbf{y} - \mathbf{x} \rangle + r(\mathbf{y}) - r(\mathbf{x}) - \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2 \right\},$$

682 is a gap measure ensuring convergence to first order stationary points and we denote $\partial f(\mathbf{y}) =$
683 $\nabla g_i(y_i; \bar{\mathbf{y}}_i) - u_i$ for $u \in \partial h_i(y_i; \bar{\mathbf{y}}_i)$.
684

685 This result, is more general than the one presented in [Corollary 4.1](#). Specifically, when r doesn't
686 exist and \mathcal{M} becomes the domain \mathcal{X} (no constraint), the gap measure is $\frac{1}{2L} \mathcal{G}(\theta^k)$ for $\mathcal{G}(\theta) :=$
687 $\sup_{u \in \partial f(\theta)} \|u\|$ which results in [Corollary 4.1](#).
688

A.2 DETAILED ANALYSIS OF MULTI-BLOCK PROXIMAL DCA UNDER GENERALIZED SMOOTHNESS ASSUMPTION

689 In this section, we provide a more detailed discussion and prove the results in [Section 4.2](#). Recall that
690 we assumed a more relaxed assumption on the component $g_i(\cdot; \bar{\theta}_i)$, known as ℓ -smoothness. A first
691 order reminiscent of the ℓ -smoothness is the (r, ℓ) -smoothness.
692

702 **Definition 3** ((r, ℓ)-smoothness, (Li et al., 2024)). A real-valued differentiable function $g_i : \mathcal{X}_i \times \bar{\mathcal{X}}_i \rightarrow \mathbb{R}$ is (r, ℓ) -smooth for continuous functions $r, \ell : [0, +\infty) \rightarrow (0, +\infty)$ where ℓ is non-decreasing and r is non-increasing, if for any $\theta_i \in \mathcal{X}_i$ we have $\mathcal{B}(\theta_i, r(\|\nabla g_i(\theta_i; \bar{\theta}_i)\|)) \subseteq \mathcal{X}_i$ and, for all $\theta_i^1, \theta_i^2 \in \mathcal{B}(\theta_i, r(\|\nabla g_i(\theta_i; \bar{\theta}_i)\|))$ it holds that $\|\nabla g_i(\theta_i^1; \bar{\theta}_i) - \nabla g_i(\theta_i^2; \bar{\theta}_i)\| \leq \ell(\|\nabla g_i(\theta_i; \bar{\theta}_i)\|)\|\theta_i^1 - \theta_i^2\|$.

707 Due to $\|\nabla g_i(\theta_i; \bar{\theta}_i)\| \leq \|\nabla g_j(\theta_j, \bar{\theta}_j)\|$ for $j := \arg \max_k \|\nabla g_k(\theta_k, \bar{\theta}_k)\|$ and the fact that r is a
708 non-increasing function, we get $\mathcal{B}(\theta_i, r(\|\nabla g_j(\theta_j, \bar{\theta}_j)\|)) \subseteq \mathcal{B}(\theta_i, r(\|\nabla g_i(\theta_i; \bar{\theta}_i)\|))$. Therefore, for
709 any $\theta_i^1, \theta_i^2 \in \mathcal{B}(\theta_i, r(\|\nabla g_j(\theta_j, \bar{\theta}_j)\|))$ that satisfy (r, ℓ) -smoothness, we have:

$$710 \quad 711 \quad \|\nabla g_i(\theta_i^1; \bar{\theta}_i) - \nabla g_i(\theta_i^2; \bar{\theta}_i)\| \leq \ell(\|\nabla g_j(\theta_j, \bar{\theta}_j)\|)\|\theta_i^1 - \theta_i^2\|.$$

712 It is possible to relate these two definitions, i.e., we can show that an ℓ -smooth function is (r, ℓ) -
713 smooth and vice-versa under specific choices for r and ℓ . This connection, investigated by Li et al.
714 (2024), with more discussion and related results are given in [Appendix A.4](#).

716 A necessary condition for (r, ℓ) -smoothness is that the iterates of our sequential algorithm have a
717 bounded distance $\|\theta^{k+1} - \theta^k\|$. Usually, this is satisfied through bounded gradient norm condition
718 and the sequential form of the algorithm. For example, in GD we have $\|\theta^{k+1} - \theta^k\| = \|\eta \nabla f(\theta^k)\|$.
719 In DCA, such a connection does not have trivial validity. Using the non-uniqueness of the DC
720 decomposition, we add and subtract $\frac{\rho}{2}\|\theta_{i_k}\|^2$ to (2.1) on each block. This gives the subproblems (4.4)
721 after applying DCA, which are proximal-type updates. The expected convergence rate of [Algorithm 1](#)
722 is finalized in the following proposition:

723 **Proposition A.2.** Consider Assumptions 2 and 3 when θ^k is the output of [Algorithm 1](#) for any initialization
724 $\theta^0 \in \mathcal{X}$. Then, for any ℓ -smooth g_i with subquadratic ℓ , if $h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - h_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) \leq H$
725 for a constant $H \geq 0$, $E := \sup\{u > 0 : u^2 \leq 2\ell(2u) \cdot G\} < \infty$, $G := \max_j g_j(\theta_j^0; \bar{\theta}_j^0) - g^* + H$
726 and $L := \ell(2E)$, then the sequence θ^k generated by [Algorithm 1](#) with $\rho \geq L \frac{2(E+R)}{E}$ will satisfy

$$727 \quad 728 \quad \min_{k \in \{1, \dots, K\}} \mathbb{E}_i [\mathcal{G}^2(\theta^k)] \leq \frac{2n(L + \rho)}{K} (f(\theta^1) - f^*) . \quad (\text{A.5})$$

730 *Proof.* We begin by bounding the updates through the following lemma. See [Appendix B.5](#) for the
731 proof.

733 **Lemma A.3.** For any starting point θ^k the update generated by (4.4) is in $\mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))$.

736 This result guarantees $\|\theta^{k+1} - \theta^k\| \leq \frac{2}{\rho} \sup_{\nu_{i_k}^k \in \partial_{i_k} f(\theta^k)} \|\nu_{i_k}^k\| \leq \frac{2}{\rho} \mathcal{G}(\theta^k)$. Due to $\|\nu_{i_k}^k\| \leq$
737 $\|\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)\| + \|u_{i_k}^k\|$ for any $u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)$, $\nu_{i_k}^k \in \partial_{i_k} f(\theta^k)$, and R -Lipschitz h_{i_k} (see
738 [Assumption 3](#)), we need to bound $\|\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)\|$ in order to have a bounded $\|\nu_{i_k}^k\|$. When g_{i_k} is
739 ℓ -smooth with bounded $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^*$ for some $\theta_{i_k} \in \mathcal{X}_{i_k}$, we get $\|\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)\| \leq E$ for
740 $E > 0$ (see [Corollary A.11](#) in [Appendix A.4](#)). The following Lemma bounds $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^*$ and
741 proposes a choice for ρ such that we have local bound on the gradients.

743 **Lemma A.4.** Consider Assumptions 2 and 3 when θ^{k+1} is the output of [Algorithm 1](#) for any
744 initialization $\theta^0 \in \mathcal{X}$. Then, if $h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - h_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) \leq H$ for a constant $H \geq 0$, we have
745 $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) - g^* + H$. Additionally, for any ℓ -smooth g_i with subquadratic ℓ ,
746 if $\rho \geq \ell(2E) \frac{2(E+R)}{E}$, then for any $i \in [n]$ and $\theta^1, \theta^2 \in \mathcal{B}(\theta^k, 2(E+R)/\rho)$ we have:

$$748 \quad 749 \quad \|\nabla g_i(\theta_i^2; \bar{\theta}_i^2) - \nabla g_i(\theta_i^1; \bar{\theta}_i^1)\| \leq L\|\theta_i^1 - \theta_i^2\|, \\ 750 \quad 751 \quad g_i(\theta_i^2; \bar{\theta}_i^2) \leq g_i(\theta_i^1; \bar{\theta}_i^1) + \langle \nabla g_i(\theta_i^1; \bar{\theta}_i^1), \theta_i^2 - \theta_i^1 \rangle + \frac{L}{2}\|\theta_i^1 - \theta_i^2\|^2,$$

752 where $L = \ell(2E)$ is the effective smoothness for some $E > 0$.

753 See [Appendix B.6](#) for the proof. Note that θ^1, θ^2 in [Lemma A.4](#) differ only in their i_k^{th} block
754 selected on iteration k of [Algorithm 1](#). Now building on the previous lemmas, we propose our main
755 convergence result for [Algorithm 1](#). The proof of this result is given in [Appendix B.7](#)

756 **Proposition A.5.** *Assume the conditions in Lemma A.4 and take $E := \sup\{u > 0 : u^2 \leq 757 2\ell(2u).G\} < \infty$, $G := \max_i g_i(\theta_i^0; \bar{\theta}_i^0) - g^* + H$ and $L := \ell(2E)$. Then, the sequence θ^k 758 generated by Algorithm 1 with $\rho \geq L \frac{2(E+R)}{E}$ will satisfy*

$$760 \min_{k \in \{1, \dots, K\}} \mathbb{E}_i [\mathcal{G}^2(\theta^k)] \leq \frac{2n(L + \rho)}{K} (f(\theta^1) - f^*) . \quad (A.7)$$

762 \square

763 **A.3 DETAILED ANALYSIS OF STOCHASTIC MULTI-BLOCK PROXIMAL DCA UNDER**
 764 **GENERALIZED SMOOTHNESS ASSUMPTION**

765 In order to show the convergence of (4.7), we start by ensuring the boundedness of the updates as in
 766 the following lemma. See Appendix B.9 for the proof.

767 **Lemma A.6.** *Denote the sequence generated by (4.7) as θ^k . Then, for any $u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)$, if
 768 $\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k), \hat{u}_{i_k}^k$ are the respective stochastic approximations of $u_{i_k}^k$ and $\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)$, we have:*

$$769 \|\theta^{k+1} - \theta^k\| \leq \frac{2}{\rho} (\mathcal{G}(\theta^k) + \|\nabla \hat{g}_{i_k}(\theta^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\|) .$$

770 Note that the bound in Lemma A.6 does not immediately imply that the solutions to the subproblems
 771 (4.7) will fall inside a ball. For this, we take $\|\nabla \hat{g}_{i_k}(\theta^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\| \leq F'$ for
 772 some $F' > 0$. Later, we find the value of F' such that the bound $\|\nabla \hat{g}_{i_k}(\theta^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\| \leq F'$ holds with high probability. Then, a similar result to Lemma A.4 holds in the stochastic
 773 setting.

774 **Lemma A.7.** *Consider Assumptions 2 and 3 when θ^k is the output of (4.7) for any initialization $\theta^0 \in$
 775 \mathcal{X} . Then, for any ℓ -smooth g_i with subquadratic ℓ if $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq G$ and $\|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) -$
 776 $\hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\| \leq F'$ for $G, F' > 0$ and $\rho \geq L \frac{2(E+R+F')}{E}$ for $L := \ell(2E)$, we have:*

$$777 \|\nabla g_i(\theta_i^2; \bar{\theta}_i^2) - \nabla g_i(\theta_i^1; \bar{\theta}_i^1)\| \leq L \|\theta_i^1 - \theta_i^2\|, \\ 778 g_i(\theta_i^2; \bar{\theta}_i^2) \leq g_i(\theta_i^1; \bar{\theta}_i^1) + \langle \nabla g_i(\theta_i^1; \bar{\theta}_i^1), \theta_i^2 - \theta_i^1 \rangle + \frac{L}{2} \|\theta_i^1 - \theta_i^2\|^2, \quad (A.8)$$

779 for any $\theta^1, \theta^2 \in \mathcal{B}(\theta^k, 2(E+R+F')/\rho)$.

780 See Appendix B.10 for the proof. Note that if $F' = 0$, we get $\rho \geq 2L(E+R)/E$ which was
 781 in Lemma A.4. In order to use Lemma A.7, we need to show $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq G$ and
 782 $\|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\| \leq F'$. Due to stochasticity, it is not possible
 783 to directly bound these values for all the iterations. Instead, we will show that the probabilities of the
 784 following events are low up to time K :

$$785 t_1 := \min \{ \min \{k | g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - g^* > G\}, K \}, \\ 786 t_2 := \min \{ \min \{k | \|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\| > F'\}, K \}, \\ 787 t := \min \{t_1, t_2\}, \quad (A.9)$$

788 In (A.9), the event $t_1 = K$ will ensure $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq G$ before time $k < K$ and the event
 789 $t_2 = K$ will ensure $\|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\| \leq F'$ before time $k < K$.
 790 Next, we should show that the probability of the event $\{t < K\}$ is low. Alternatively, we can show a
 791 low probability for the event $\{t = t_2 < K\} \cup \{t = t_1 < K, t_2 = K\}$. This is a similar technique to
 792 (Li et al., 2024) in order to show convergence in the stochastic setting. Compared to their work, our
 793 proposed method in (4.7) targets a more general class of functions (BDC). Although the generality
 794 of our function class, our guarantee in Theorem 4.3 requires only the first components of our BDC
 795 structure to be ℓ -smoothness. In this sense, our work generalizes the prior result by Li et al. (2024).
 796 The main convergence result is given in the following proposition (see Appendix B.8 for the proof).

797 **Proposition A.8.** *Consider Assumption 4 and the conditions in Lemma A.7 with $h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) -$
 798 $h_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) \leq H$ for a constant $H \geq 0$. Further, for any $0 < \delta < 1$ take $G :=$*

810 $\max_j 8 \left(g_j(\theta_j^0; \bar{\theta}_j^0) - g^* + C' \right) / \delta$, $C' := K\sigma^2/\rho + H$, $F' = E\rho/9L - (E + R)$, $\sigma^2 = \mathcal{O}(1/\sqrt{K})$,
 811 $\rho = (18L + \frac{9ER}{G} + \frac{81L}{4} \left[\frac{C' - H}{C'} \right])\sqrt{K}$, $E := \sup\{u > 0 : u^2 \leq 2\ell(2u)G\} < \infty$, $L := \ell(2E)$, and
 812 $K \geq (L + \frac{3}{2}\rho)nG\delta/4\epsilon^2$ for any $\epsilon > 0$. Then, with probability at least $1 - \delta$ the iterates of the (4.7) with
 813 n blocks will satisfy

$$816 \min_{k=1,\dots,K} \mathbb{E}_{s,i} [\mathcal{G}^2(\theta^k)] \leq \epsilon^2. \quad (\text{A.10})$$

818 A.4 BACKGROUND ON (r, ℓ) -SMOOTHNESS AND ℓ -SMOOTHNESS

820 Here, we discuss the required background and results on ℓ -smoothness. We mainly represent the
 821 results from (Li et al., 2024) and briefly explain the results and connections with this work.

823 We start with the following lemma characterizing a local descent condition for any $x \in \mathcal{X}$ when g is
 824 (r, ℓ) -smooth:

825 **Lemma A.9** (Li et al. (2024)). *If g is (r, ℓ) -smooth, for any $x \in \mathcal{X}$ satisfying $\|\nabla g(x)\| \leq E$ we have
 826 $\mathcal{B}(x, r(E)) \subset \mathcal{X}$, and for any $x_1, x_2 \in \mathcal{B}(x, r(E))$,*

$$828 \|\nabla g(x_2) - \nabla g(x_1)\| \leq L\|x_1 - x_2\| \quad g(x_2) \leq g(x_1) + \langle \nabla g(x_1), x_2 - x_1 \rangle + \frac{L}{2}\|x_1 - x_2\|^2$$

830 where $L = \ell(E)$ is the effective smoothness.

832 The following proposition, bridges ℓ -smoothness and (r, ℓ) -smoothness. The importance of this result
 833 is due to the fact that it shows applicability of the descent **Lemma A.9** on ℓ -smooth functions.

834 **Proposition A.10** (Li et al. (2024)). *An (r, l) -smooth function is l -smooth; and an l -smooth is
 835 (r, m) -smooth with $m(u) := l(u + a)$ and $r(u) := a/m(u)$ for any $a > 0$ if f is a closed function
 836 within its open domain \mathcal{X} .*

838 With this result, one can use **Lemma A.9** on an ℓ -smooth function which satisfies the conditions in
 839 **Lemma A.9**: bounded gradients and (r, ℓ) -smoothness. Also, we need to ensure that the updates
 840 remain inside a ball. Despite the convexity of the function g in our problem setup, DCA updates
 841 do not guarantee the boundedness of its gradients. Therefore, we use the following corollary which
 842 provides such bound when the function ℓ is sub-quadratic in the sense that $\lim_{t \rightarrow \infty} \ell(t)/t^2 = 0$.

843 **Corollary A.11** (Li et al. (2024)). *Suppose g is ℓ -smooth with sub-quadratic ℓ . If $g(x) -$
 844 $\inf_{y \in \mathcal{X}} g(y) \leq G$ for some $x \in \mathcal{X}$ and $G \geq 0$, then $E^2 = 2\ell(2E)G$ and $\|\nabla g(x)\| \leq E < \infty$ for
 845 $E := \sup\{u \geq 0 : u^2 \leq 2\ell(2u)G\}$*

847 With **Corollary A.11**, if we can show that the updates remain inside a ball, then the descent condition
 848 in **Lemma A.9** holds.

850 A.5 USEFUL LEMMA ON GRADIENT ESTIMATION VARIANCE

852 The following lemma is a classical result on the variance in terms of the mini-batch size. We used
 853 this Lemma for the discussions on our reduced variance assumption in **Theorem 4.3**.

854 **Lemma A.12** (Lemma 2 from (Reddi et al., 2016)). *Suppose that \mathcal{S}^k is a subset that samples s^k
 855 i.i.d realizations from the distribution \mathcal{P} . Let the stochastic estimator $\nabla f(\theta^k, s^k)$ satisfy the bounded
 856 variance condition **Assumption 4**. Then, the following bound holds:*

$$858 \mathbb{E} [\|\nabla f(\theta^k, s^k) - \nabla f(\theta^k)\|^2] \leq \frac{\sigma^2}{s^k}, \quad , \forall \theta \in \mathcal{X}. \quad (\text{A.11})$$

860 A.6 MORE DETAIL ON NUMERICAL EXAMPLES

862 In this section, we provide the reader with more detail of our implementation settings and parameter
 863 choices.

864 A.6.1 GENERALIZED SMOOTHNESS ON DEEP NETWORKS.
865

866 The relationship between the Hessian of the objective function in training language models and the
867 norm of its gradient was already observed in (Zhang et al., 2019). This relationship was later extended
868 to more general cases by Li et al. (2024). The previous analyses, heavily relied on the trajectory of the
869 optimization guided by GD updates. Here, we want to show that a similar relationship exists between
870 the estimated smoothness of the first BDC component and its gradient norm when the updates are
871 done by the BDCA. In order to do this, we use the same smoothness estimator as in (Santurkar et al.,
872 2018) defined below:

$$873 \hat{L}_{g_i}(\theta^k) = \max_{\gamma \in \{\delta, 2\delta, \dots, 1\}} \frac{\nabla g_i(\theta_i^k + \gamma d) - \nabla g_i(\theta_i^k)}{\gamma d}, \quad (A.12)$$

874 for a small value δ and $d = \theta_i^{k+1} - \theta_i^k$. This value determines the variations along d on the block
875 i . Note that unlike previous results, in BDCA we do not necessarily decrease the value of the first
876 component along the update trajectory. To show this, we conducted numerical simulations on a
877 regression task using a three-layer ReLU network of size $(8 \times 64 \times 32 \times 1)$ on the California Housing
878 dataset (Kelley Pace and Barry, 1997). We considered training for 30 epochs, a learning rate of
879 0.5×10^{-3} with 10 oracle calls to the BDCA sub-problem solver. We set $\delta = 0.25$. The logarithm
880 of the estimated smoothness constant of the first BDC component in (3.2) was depicted against
881 its gradient norm for each block is depicted in Figure 1. This figure suggests that a sub-quadratic
882 relationship between the layer-wise smoothness constant and their gradient norms exists, a similar
883 relationship required for our convergence result in Theorem 4.2 and Theorem 4.3.

885 A.6.2 SPARSE DICTIONARY LEARNING
886

887 Here, we explain the implementation structures of the sparse dictionary learning problem with more
888 detail. Note that the structure of SDL problem fits with the more general analysis provided in
889 Appendix A.1.

890 **Implementation Details.** Both formulations (with ℓ_1 norm and (5.5)) are solved via alternating
891 minimization. In each iteration, we first update X : for the ℓ_1 model, we use GD; for the nonconvex
892 model (5.5), we employ the DC algorithm by linearizing the $\|\cdot\|_Q$ term and then applying GD to the
893 resulting convex surrogate. Next, we update D using a Frank–Wolfe procedure, projecting onto \mathcal{C} to
894 enforce the unit- ℓ_2 constraints. A line search determines the optimal step size in each Frank–Wolfe
895 update. We evaluate performance by the reconstruction error $\|Y - DX\|_F^2$ and the proportion of
896 zeros in X . Each experiment is repeated 10 times, and we report a 95% probabilistic bound in our
897 plots. We compare the formulations on synthetic data and Berkeley segmentation dataset Martin et al.
898 (2001).

899 **Synthetic Data.** We set $m = 10$, $k = 32$, and $n = 100$. A ground-truth dictionary $\mathbf{D}^* \in \mathbb{R}^{m \times k}$ is
900 generated by sampling each entry i.i.d. from $\mathcal{N}(0, 1)$ and normalizing each column to unit ℓ_2 -norm.
901 The true sparse code matrix $X^* \in \mathbb{R}^{k \times n}$ has exactly five nonzero entries per column, drawn i.i.d.
902 from $\mathcal{N}(0, 1)$. We synthesize the data as $Y = \mathbf{D}^* X^*$, using $\alpha = 0.1$ and $Q = 5$. Results are shown
903 in Figure 2.

904 In addition to the previous experiment, we also compare the loss behavior of the SDL problem under
905 the GD and BDC algorithms for the nonconvex $\ell_1 - \ell_Q$ regularizer (Eq. 5.5). At each iteration, the
906 gradient descent algorithm performs a single joint full-batch update of both the dictionary D and the
907 code matrix X , using the adaptive step size

$$908 \eta = \frac{1}{\|D\|_2^2 + \|X\|_2^2}$$

912 which is motivated by the block Lipschitz constants of the smooth reconstruction term. Dictionary
913 feasibility is maintained by projecting each column of D onto the unit ℓ_2 -ball after every update. The
914 resulting loss curves for both GD and BDC are shown in Figure 4. As illustrated in the Figure 4,
915 BDCA converges faster and attains a lower objective value compared to GD.

916 **Berkeley Segmentation Dataset.** Martin et al. (2001) From the BSDS500 training set (200
917 images), we randomly extract 50 grayscale patches of size 8×8 from each image. Any patch that is

Figure 4: SDL loss evolution with the nonconvex $\ell_1 - \ell_Q$ regularizer (Eq. 5.5) on synthetic data. The left panel shows the loss trajectory of the joint full-batch gradient descent method with an adaptive step size, while the right panel shows the loss evolution of the BDC algorithm. Each curve reports the mean and ± 2 standard deviations over 3 independent runs.

identically zero is discarded; the remaining patches are demeaned and normalized to unit ℓ_2 -norm, then assembled as columns of Y . For this experiment we use $\alpha = 0.2$, $Q = 5$, and $k = 256$. Results are shown in Figure 2.

A.6.3 TRAINING NEURAL NETWORKS.

Here, we explain the implementation structures of the training problem with more detail.

Implementation details (Regression Task). For the regression task’s training we set 50 epochs and a batch size of 20. The training network included three linear layers with sequential input-output dimensions (13, 64, 32, 16, 1) and with ReLU activation functions. The training result was compared with SGD as a benchmark method with step-size 10^{-2} . The BDC sub-problems were solved with 100 calls to the minimization oracle. Here, we used a constant $\rho = 10^3$. For the BDC subproblems, simple GD was utilized. The results for 10 Monte-Carlo instances and 68% confidence intervals are shown in Figure 3 (left).

Implementation details (Classification Task). For the classification task, we tested CIFAR10 dataset, and FASHIONMNIST datasets. For the FASHIONMNIST dataset, we considered a three layer ReLU network with sequential input-output dimensions (28 * 28, 512, 64, 10). The training step-size for SGD was set to 10^{-2} , the batch size was fixed to 256, and epoch is 100. The inner iterations for solving BDC sub-problems using GD was fixed to 100. The results for 10 Monte-Carlo instances, 90% confidence intervals, and $\rho = 1/3 \times 10^3$ are depicted in Figure 3 (middle).

For the CIFAR10 dataset, we considered a four layer ReLU network with sequential input-output dimensions (3 * 32 * 32, 256, 128, 64, 10). The training step-size for the SGD method was set to 10^{-2} , the batch size was fixed to 128, and the epoch is 100. The inner iterations for solving BDC sub-problems was fixed to 100 with a similar step-size strategy as for FASHIONMNIST. The results for 10 Monte-Carlo instances, 90% confidence intervals, and $\rho = 10^3$ are depicted in Figure 3 (right).

972 **B PROOFS**
 973

974 **B.1 PROOF OF PROPOSITION 2.1**
 975

976 Fix any block $i \in [n]$ and fix an arbitrary complement $\bar{\theta}_i \in \bar{\mathcal{X}}_i$. We work with the i -th block (with $\bar{\theta}_i$
 977 fixed and θ_i free). By BDC assumption, for each $r \in \{1, \dots, m\}$ there exist functions

$$978 \quad g_i^{(r)}(\cdot; \bar{\theta}_i), h_i^{(r)}(\cdot; \bar{\theta}_i) : \mathcal{X}_i \rightarrow \mathbb{R}$$

980 that are convex in θ_i such that

$$981 \quad f_r(\theta) = g_i^{(r)}(\theta_i; \bar{\theta}_i) - h_i^{(r)}(\theta_i; \bar{\theta}_i), \quad \theta_i \in \mathcal{X}_i.$$

983 We show that each operation preserves this BDC form.
 984

985 **(i) Linear combinations.** Let $\alpha_1, \dots, \alpha_m \in \mathbb{R}$ and write $\alpha_r = \alpha_r^+ - \alpha_r^-$ with $\alpha_r^\pm \geq 0$. Then, for
 986 every $\theta_i \in \mathcal{X}_i$,

$$987 \quad \sum_{r=1}^m \alpha_r f_r(\theta) = \sum_{r=1}^m \alpha_r^+ (g_i^{(r)}(\theta_i; \bar{\theta}_i) - h_i^{(r)}(\theta_i; \bar{\theta}_i))$$

$$988 \quad - \sum_{r=1}^m \alpha_r^- (g_i^{(r)}(\theta_i; \bar{\theta}_i) - h_i^{(r)}(\theta_i; \bar{\theta}_i))$$

$$989 \quad = \underbrace{\left(\sum_{r=1}^m \alpha_r^+ g_i^{(r)}(\theta_i; \bar{\theta}_i) + \sum_{r=1}^m \alpha_r^- h_i^{(r)}(\theta_i; \bar{\theta}_i) \right)}_{\text{convex in } \theta_i}$$

$$990 \quad - \underbrace{\left(\sum_{r=1}^m \alpha_r^+ h_i^{(r)}(\theta_i; \bar{\theta}_i) + \sum_{r=1}^m \alpha_r^- g_i^{(r)}(\theta_i; \bar{\theta}_i) \right)}_{\text{convex in } \theta_i}.$$

1001 Each bracket is a nonnegative sum of convex functions of θ_i , hence convex. Therefore $\sum_{r=1}^m \alpha_r f_r$ is
 1002 BDC.
 1003

1004 **(ii) Maximum.** Using the BDC decompositions of all f_r , for every $\theta_i \in \mathcal{X}_i$,

$$1006 \quad \max_{1 \leq r \leq m} f_r(\theta) = \max_{1 \leq r \leq m} \left\{ g_i^{(r)}(\theta_i; \bar{\theta}_i) - h_i^{(r)}(\theta_i; \bar{\theta}_i) \right\}$$

$$1007 \quad = \max_{1 \leq r \leq m} \left\{ g_i^{(r)}(\theta_i; \bar{\theta}_i) + \sum_{\substack{s=1 \\ s \neq r}}^m h_i^{(s)}(\theta_i; \bar{\theta}_i) \right\} - \sum_{k=1}^m h_i^{(k)}(\theta_i; \bar{\theta}_i). \quad (\text{B.1})$$

1011 For the fixed $\bar{\theta}_i$, each inner map

$$1013 \quad \theta_i \mapsto g_i^{(r)}(\theta_i; \bar{\theta}_i) + \sum_{\substack{s=1 \\ s \neq r}}^m h_i^{(s)}(\theta_i; \bar{\theta}_i)$$

1017 is convex in θ_i (sum of convex functions); the pointwise maximum over finitely many convex
 1018 functions is convex in θ_i ; and the final sum $\sum_{k=1}^m h_i^{(k)}(\theta_i; \bar{\theta}_i)$ is convex in θ_i . Hence the right-hand
 1019 side of (B.1) is a difference of two convex functions of θ_i , proving that $\max_r f_r$ is BDC.

1020 **(iii) Minimum.** By part (i) with $\alpha_r = -1$, the function $-f_r$ is BDC for each r . Applying part (ii)
 1021 to $\{-f_r\}_{r=1}^m$ and using

$$1023 \quad \min_{1 \leq r \leq m} f_r(\theta) = - \max_{1 \leq r \leq m} (-f_r(\theta)),$$

1024 we conclude that $\min_r f_r$ is BDC.
 1025

Since the block i was arbitrary, all three operations preserve the BDC property.

1026 **B.2 PROOF OF THEOREM 3.1**
1027

1028 We prove the proposition by treating the *even-degree* and *odd-degree* cases separately. In each case
1029 we first derive an *upper bound* via the polarization identity of monomials together with a precise
1030 pairing argument that halves the raw atom count, and then obtain a *lower bound* by relating any DC
1031 decomposition to a (real) Waring decomposition and invoking known rank formulas for monomials.

1032 **Preliminaries**
1033

1034 *Polarization identity of monomials.* We use the following polynomial identity.

1035 **Lemma B.1** (Polarization identity of monomials [Kan \(2008\)](#)). *Let $b_1, \dots, b_M \in \mathbb{Z}_{\geq 0}$ with $S =$
1036 $\sum_{i=1}^M b_i$ and variables $\theta_1, \dots, \theta_M$. Then*

$$1037 \prod_{i=1}^M \theta_i^{b_i} = \frac{1}{S!} \sum_{v_1=0}^{b_1} \cdots \sum_{v_M=0}^{b_M} (-1)^{\sum_{i=1}^M v_i} \prod_{i=1}^M \binom{b_i}{v_i} \left(\sum_{i=1}^M \left(\frac{b_i}{2} - v_i \right) \theta_i \right)^S.$$

1041 *Waring decompositions and ranks.* A *Waring decomposition* of a degree- S homogeneous polynomial
1042 (form) F is an identity

$$1044 F(\boldsymbol{\theta}) = \sum_{j=1}^r c_j \ell_j(\boldsymbol{\theta})^S, \quad \ell_j(\boldsymbol{\theta}) = a_{j1}\theta_1 + \cdots + a_{jm}\theta_n.$$

1047 We distinguish two notions:

- 1048 • **Complex Waring rank** $\text{rk}_{\mathbb{C}}(F)$: the minimal r for which there exist real scalars c_j and
1049 linear forms ℓ_j with complex coefficients such that $F = \sum_{j=1}^r c_j \ell_j^S$.
- 1050 • **Real Waring rank** $\text{rk}_{\mathbb{R}}(F)$: the minimal r for which there exist *real* c_j and *real-coefficient*
1051 ℓ_j such that $F = \sum_{j=1}^r c_j \ell_j^S$.

1053 Allowing complex coefficients cannot increase the minimum, hence

$$1055 \text{rk}_{\mathbb{C}}(F) \leq \text{rk}_{\mathbb{R}}(F).$$

1057 **Case 1: s even (linear-even atoms $(u^\top \boldsymbol{\theta})^s$).**

1058 First, we upper bound N via the polarization identity. Apply [Lemma B.1](#) with $M = n$, $S = s$,
1059 $z_i = \theta_i$. This expresses f as a linear combination of $\prod_{i=1}^n (b_i + 1)$ degree- s powers of linear forms:

$$1061 f(\boldsymbol{\theta}) = \frac{1}{s!} \sum_{v_1=0}^{b_1} \cdots \sum_{v_n=0}^{b_n} (-1)^{\sum_{i=1}^n v_i} \left(\prod_{i=1}^n \binom{b_i}{v_i} \right) \left(\sum_{i=1}^n \left(\frac{b_i}{2} - v_i \right) \theta_i \right)^s.$$

1064 Write $v = (v_1, \dots, v_n)$ and let the *complement* be $b - v = (b_1 - v_1, \dots, b_n - v_n)$. Since s is even,
1065 we have

$$1067 \left(\sum_{i=1}^n \left(\frac{b_i}{2} - (b_i - v_i) \right) \theta_i \right)^s = \left(- \sum_{i=1}^n \left(\frac{b_i}{2} - v_i \right) \theta_i \right)^s = \left(\sum_{i=1}^n \left(\frac{b_i}{2} - v_i \right) \theta_i \right)^s,$$

1069 so the two atoms coincide. Thus each complementary pair $\{v, b - v\}$ contributes *twice* the same
1070 atom, and pairing halves the count to $\frac{1}{2} \prod_{i=1}^n (b_i + 1)$. If all b_i are even, when $v_i = b_i/2$, we have
1071 $\frac{b_i}{2} - v_i = 0$, so the exact number of nonzero atoms equals $(\prod_{i=1}^n (b_i + 1) - 1)/2 = \lfloor \frac{1}{2} \prod_{i=1}^n (b_i + 1) \rfloor$.
1072 Therefore,

$$1074 N \leq \left\lfloor \frac{1}{2} \prod_{i=1}^n (b_i + 1) \right\rfloor.$$

1076 Second, we find the lower bound N via Waring rank. Any DC split in this model can be written as
1077

$$1078 f(\boldsymbol{\theta}) = g(\boldsymbol{\theta}) - h(\boldsymbol{\theta}) = \sum_{i=1}^r \alpha_i (u_i^\top \boldsymbol{\theta})^s - \sum_{i=r+1}^{r+q} \alpha_i (u_i^\top \boldsymbol{\theta})^s = \sum_{i=1}^N c_i (u_i^\top \boldsymbol{\theta})^s,$$

1080 with $\alpha_i > 0$, $c_i = \pm \alpha_i$, and $N = r + q$. This is a Waring decomposition with real coefficients and
 1081 real linear forms, hence

$$1082 \quad N \geq \text{rk}_{\mathbb{R}}(f) \geq \text{rk}_{\mathbb{C}}(f).$$

1083 For monomials the complex rank is known exactly:

1084 **Lemma B.2** (Complex Waring rank of a monomial [Carlini et al. \(2012\)](#)). *Let $b_1, \dots, b_n \in \mathbb{Z}_{\geq 0}$ with
 1085 $s = \sum_{i=1}^n b_i$, and $1 \leq b_1 \leq \dots \leq b_n$. For the monomial $f(\boldsymbol{\theta}) = \theta_1^{b_1} \cdots \theta_n^{b_n}$,*

$$1086 \quad \text{rk}_{\mathbb{C}}(f) = \prod_{i=2}^n (b_i + 1).$$

1090 Combining $N \geq \text{rk}_{\mathbb{C}}(f)$ with [Lemma B.2](#) yields

$$1091 \quad N \geq \prod_{i=2}^n (b_i + 1).$$

1095 Finally, the relationship between real and complex ranks clarifies tightness:

1096 **Theorem B.3** ([Carlini et al. \(2017\)](#)). *Let $f(\boldsymbol{\theta}) = \theta_1^{b_1} \cdots \theta_n^{b_n}$ with $1 \leq b_1 \leq \dots \leq b_n$. Then
 1097 $\text{rk}_{\mathbb{R}}(f) = \text{rk}_{\mathbb{C}}(f)$ if and only if $b_1 = 1$.*

1099 Hence, when $b_1 = 1$ the lower bound $\prod_{i=2}^n (b_i + 1)$ equals the complex (and real) rank, and together
 1100 with the polarization upper bound we obtain matching bounds; for $b_1 > 1$ a strict gap can remain.

1101 **Case 2: s odd (affine-even atoms $(u^\top \boldsymbol{\theta} + d)^{s+1}$).** We now handle s odd, where $(u^\top \boldsymbol{\theta})^s$ is not convex.
 1102 To remain in a convex-atom setting we use *even-degree affine atoms*, obtained via degree- $d = s + 1$
 1103 homogenization.

1104 Define

$$1105 \quad F(\boldsymbol{\theta}, t) = t f(\boldsymbol{\theta}) = t \theta_1^{b_1} \cdots \theta_n^{b_n},$$

1106 which is homogeneous of even degree $S = s + 1$ in the variables $(\boldsymbol{\theta}, t) \in \mathbb{R}^n \times \mathbb{R}$. Any atom of
 1107 the form $(u^\top \boldsymbol{\theta} + dt)^S$ is convex (even power of an affine form). Evaluating any homogeneous
 1108 decomposition of F at $t = 1$ yields atoms $(u^\top \boldsymbol{\theta} + d)^{s+1}$, which remain convex in $\boldsymbol{\theta}$.

1109 Now, we upper bound N via the polarization identity and pairing. Apply [Lemma B.1](#) to the $(n+1)$ -
 1110 variate monomial $t \theta_1^{b_1} \cdots \theta_n^{b_n}$ with $(z_0, \dots, z_n) = (t, \theta_1, \dots, \theta_n)$, $(b_0, \dots, b_n) = (1, b_1, \dots, b_n)$,
 1111 and $S = s + 1$. We obtain

$$1112 \quad F(\boldsymbol{\theta}, t) = \frac{1}{S!} \sum_{v_0=0}^1 \sum_{v_1=0}^{b_1} \cdots \sum_{v_n=0}^{b_n} (-1)^{\sum_{i=0}^n v_i} \left(\prod_{i=0}^n \binom{b_i}{v_i} \right) \left(\sum_{i=0}^n \left(\frac{b_i}{2} - v_i \right) z_i \right)^S,$$

1113 a signed sum of even powers of affine forms $(dt + u^\top \boldsymbol{\theta})^S$. Pair each index $v = (v_0, \dots, v_n)$ with its
 1114 complement $b - v$. Hence the raw count $(b_0 + 1) \prod_{i=1}^n (b_i + 1) = 2 \prod_{i=1}^n (b_i + 1)$ collapses *exactly*
 1115 by a factor 2, yielding

$$1116 \quad \#\text{atoms in } F = \prod_{i=1}^n (b_i + 1).$$

1117 Setting $t = 1$ gives a DC decomposition of f with convex affine-power atoms $(u^\top \boldsymbol{\theta} + d)^{s+1}$ and

$$1118 \quad N \leq \prod_{i=1}^n (b_i + 1).$$

1119 **Affine vs. homogeneous decompositions.** In the odd-degree case we use degree- $d = s + 1$ powers
 1120 of *affine* forms $(\ell(\boldsymbol{\theta}) + \beta)^d$. It is crucial that sums of such affine powers correspond *exactly* to
 1121 homogeneous sums of degree- d powers of linear forms in one extra variable, with a *term-by-term*
 1122 correspondence that preserves the number of terms.

1123 **Lemma B.4** (Affine–homogeneous correspondence). *Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be of degree d , and let its
 1124 degree- d homogenization be $F(X_0, X) = X_0^d f(X/X_0)$, so that F is homogeneous of degree d and
 1125 $F(1, \boldsymbol{\theta}) = f(\boldsymbol{\theta})$. Then the following are equivalent:*

1134 1. $f(\boldsymbol{\theta}) = \sum_{j=1}^r c_j (\ell_j(\boldsymbol{\theta}) + \beta_j)^d$ (affine sum of degree- d powers).
 1135
 1136 2. $F(X_0, X) = \sum_{j=1}^r c_j (\beta_j X_0 + \ell_j(X))^d$ (homogeneous sum of degree- d powers).
 1137

1138 Moreover, the number of terms r is preserved in both directions.

1139

1140 *Proof.* (1) \Rightarrow (2): Substitute $\boldsymbol{\theta} = X/X_0$ and multiply by X_0^d , then expand: $F(X_0, X) =$
 1141 $X_0^d f(X/X_0) = \sum_j c_j (\beta_j X_0 + \ell_j(X))^d$. (2) \Rightarrow (1): Evaluate at $X_0 = 1$ to get $f(\boldsymbol{\theta}) = F(1, \boldsymbol{\theta}) =$
 1142 $\sum_j c_j (\ell_j(\boldsymbol{\theta}) + \beta_j)^d$. Thus the atoms correspond bijectively and the count r is unchanged. \square
 1143

1144 By [Lemma B.4](#) with $d = S = s + 1$, every DC decomposition of f into affine atoms $(\ell(\boldsymbol{\theta}) + \beta)^{s+1}$
 1145 induces a homogeneous Waring decomposition of F into atoms $(\beta t + \ell(\boldsymbol{\theta}))^{s+1}$ with the *same* number
 1146 of terms, and conversely any homogeneous decomposition of F restricts at $t = 1$ to a decomposition
 1147 of f with the *same* number of terms. Thus the minimal atom count in our odd- s DC model equals the
 1148 affine Waring rank of f at degree $s + 1$, which by [Lemma B.4](#) equals the Waring rank of F .

1149 So we lower bound N via Waring rank of the lifted monomial. Any such DC decomposition of f
 1150 induces a decomposition of F of the form

1151
 1152
$$F(\boldsymbol{\theta}, t) = \sum_{j=1}^N c_j (u_j^\top \boldsymbol{\theta} + d_j t)^{s+1},$$

 1153
 1154

1155 which is a real Waring decomposition of the $(n+1)$ -variate monomial $t^1 \theta_1^{b_1} \cdots \theta_n^{b_n}$ of degree $S =$
 1156 $s + 1$. The complex Waring rank of this monomial equals

1157
 1158
$$\text{rk}_{\mathbb{C}}(t^1 \theta_1^{b_1} \cdots \theta_n^{b_n}) = \prod_{i=1}^n (b_i + 1),$$

 1159

1160 and, since the smallest exponent is 1, real and complex ranks coincide (see [Theorem B.3](#)). Therefore

1161
 1162
$$N \geq \text{rk}_{\mathbb{R}}(F) = \text{rk}_{\mathbb{C}}(F) = \prod_{i=1}^n (b_i + 1).$$

 1163
 1164

1165 Together with the upper bound we conclude

1166
 1167
$$N = \prod_{i=1}^n (b_i + 1).$$

 1168

1169 **Conclusion.** For even s , the polarization identity and complementary-index pairing yield $N \leq$
 1170 $\lfloor \frac{1}{2} \prod_{i=1}^n (b_i + 1) \rfloor$, while the Waring-rank argument gives $N \geq \prod_{i=2}^n (b_i + 1)$; when $b_1 = 1$ these
 1171 bounds are tight. For odd s , the degree- $(s + 1)$ homogenization $F(\boldsymbol{\theta}, t) = t f(\boldsymbol{\theta})$, the polarization
 1172 identity in $n+1$ variables, and the corresponding Waring-rank lower bound match exactly, giving
 1173 $N = \prod_{i=1}^n (b_i + 1)$.
 1174

1175 B.3 PROOF OF [THEOREM 3.2](#)

1176 Fix an arbitrary block θ_l and hold all other blocks fixed. When we refer to ‘convex’ for a vector-valued
 1177 function in the proof, we mean it in the componentwise sense. We consider two cases.

1178 **Case 1: Hidden block** $\theta_l = (W_l, b_l)$.

1179 First, We prove by induction on k that Z_k^\pm are componentwise convex in (W_l, b_l) and satisfy $Z_k^\pm \geq 0$.

1180 **Base** ($k < l$): For $k < l$, the quantities Z_k^\pm do not depend on (W_l, b_l) and are thus constant (hence
 1181 convex) w.r.t. (W_l, b_l) . It remains to justify nonnegativity for these layers. at $k = 1$,

1182
$$Z_1^+ = \sigma(W_1 x + b_1) \geq 0, \quad Z_1^- = 0.$$

1183 Assume $Z_s^\pm \geq 0$ for some $s < l - 1$. Then

1184
$$Z_{s+1}^- = \sigma(W_{s+1}) Z_s^- + \sigma(-W_{s+1}) Z_s^+ \geq 0,$$

1188 because $\sigma(W_{s+1})$ and $\sigma(-W_{s+1})$ are entrywise nonnegative. Moreover,

$$1190 \quad Z_{s+1}^+ = \max \left\{ \underbrace{\sigma(W_{s+1})Z_s^+ + \sigma(-W_{s+1})Z_s^-}_{p_{s+1}} + b_{s+1}, Z_{s+1}^- \right\} \geq Z_{s+1}^- \geq 0.$$

1192 By induction, $Z_k^\pm \geq 0$ for all $k < l$.

1194 *Layer $k = l$:* With $Z_{l-1}^\pm \geq 0$ fixed,

$$1196 \quad p_l = \sigma(W_l)Z_{l-1}^+ + \sigma(-W_l)Z_{l-1}^- + b_l, \quad Z_l^- = \sigma(W_l)Z_{l-1}^- + \sigma(-W_l)Z_{l-1}^+.$$

1197 Entrywise $w \mapsto \sigma(\pm w)$ are convex and nonnegative; multiplying by fixed nonnegative vectors Z_{l-1}^\pm
1198 and adding the affine term b_l preserve convexity. Hence p_l and Z_l^- are convex, with $Z_l^- \geq 0$. Set

$$1200 \quad Z_l^+ = \max\{p_l, Z_l^-\},$$

1202 which is convex (pointwise max preserves convexity) and satisfies $Z_l^+ \geq Z_l^- \geq 0$.

1203 *Induction ($k \rightarrow k+1$ for $k \geq l$):* Assume Z_k^\pm are convex in (W_l, b_l) and $Z_k^\pm \geq 0$. For fixed
1204 (W_{k+1}, b_{k+1}) , the matrices $\sigma(W_{k+1})$ and $\sigma(-W_{k+1})$ are entrywise nonnegative constants. Thus

$$1205 \quad p_{k+1} = \sigma(W_{k+1})Z_k^+ + \sigma(-W_{k+1})Z_k^- + b_{k+1}, \quad Z_{k+1}^- = \sigma(W_{k+1})Z_k^- + \sigma(-W_{k+1})Z_k^+$$

1207 are nonnegative linear images of (Z_k^+, Z_k^-) plus a constant; hence $Z_{k+1}^- \geq 0$ and both p_{k+1}, Z_{k+1}^-
1208 are convex. Finally,

$$1209 \quad Z_{k+1}^+ = \max\{p_{k+1}, Z_{k+1}^-\}$$

1210 is convex and satisfies $Z_{k+1}^+ \geq Z_{k+1}^- \geq 0$. By induction, this holds for all $k \geq l$, in particular for
1211 $k = L - 1$. Using $\sigma(a - b) = \max\{a, b\} - b$ coordinatewise,

$$1213 \quad Z_{k+1}^+ - Z_{k+1}^- = \sigma(W_{k+1}(Z_k^+ - Z_k^-) + b_{k+1}),$$

1214 so $a_{k+1} = Z_{k+1}^+ - Z_{k+1}^-$ and in particular $a_{L-1} = Z_{L-1}^+ - Z_{L-1}^-$.

1216 at the end, keep (W_L, b_L) fixed. For each class c ,

$$1217 \quad A_c(\boldsymbol{\theta}) = \sigma(W_{L,c})Z_{L-1}^+ + \sigma(-W_{L,c})Z_{L-1}^- + \sigma(b_{L,c}), \quad B_c(\boldsymbol{\theta}) = \sigma(W_{L,c})Z_{L-1}^- + \sigma(-W_{L,c})Z_{L-1}^+ + \sigma(-b_{L,c}).$$

1219 Here $\sigma(\pm W_{L,c}) \geq 0$ and $\sigma(\pm b_{L,c}) \geq 0$ are constants; therefore $A_c(\cdot; \bar{\boldsymbol{\theta}}_L), B_c(\cdot; \bar{\boldsymbol{\theta}}_L)$ are nonnegative
1220 linear combinations of the convex functions Z_{L-1}^\pm plus constants, hence are convex and nonnegative
1221 in $\boldsymbol{\theta}_L = (W_L, b_L)$. Using $\sigma(t) - \sigma(-t) = t$ entrywise and $a_{L-1} = Z_{L-1}^+ - Z_{L-1}^-$, we obtain

$$1223 \quad A(\boldsymbol{\theta}) - B(\boldsymbol{\theta}) = (\sigma(W_L) - \sigma(-W_L))(Z_{L-1}^+ - Z_{L-1}^-) + (\sigma(b_L) - \sigma(-b_L)) = W_L a_{L-1} + b_L = F_x(\boldsymbol{\theta}).$$

1224 **Case 2: Output block $\boldsymbol{\theta}_L = (W_L, b_L)$.**

1226 Here Z_{L-1}^\pm are fixed and nonnegative. The entrywise maps $W_L \mapsto \sigma(\pm W_L)$ and $b_L \mapsto \sigma(\pm b_L)$ are
1227 convex and nonnegative. Hence each component of $A(\cdot; \bar{\boldsymbol{\theta}}_L), B(\cdot; \bar{\boldsymbol{\theta}}_L)$ in (3.1) is a nonnegative
1228 linear combination of nonnegative convex functions, and is therefore convex and nonnegative in
1229 (W_L, b_L) .

1230

B.4 PROOF OF PROPOSITION 3.4

1233 Fix an arbitrary block $i \in [n]$ and fix $\bar{\boldsymbol{\theta}}_i$. By the componentwise BDC assumption, for each
1234 coordinate $j = 1, \dots, m$ there exist convex functions $a_{ij}(\cdot; \bar{\boldsymbol{\theta}}_i)$ and $b_{ij}(\cdot; \bar{\boldsymbol{\theta}}_i)$ in $\boldsymbol{\theta}_i$ such that $E_j(\boldsymbol{\theta}) =$
1235 $a_{ij}(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) - b_{ij}(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i)$.

1236 *Multi-Block convexity of g .* From the conjugate definition and $E_j = a_{ij} - b_{ij}$,

$$1238 \quad f^*(E(\boldsymbol{\theta})) = \max_{u \in U} \left\{ \langle u, a_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) \rangle - \langle u, b_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) \rangle - f(u) \right\}.$$

1239 Adding h_i yields the variational form

$$1241 \quad g_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) = \max_{u \in U} \left\{ \langle u + c^+, a_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) \rangle + \langle -u + d^+, b_i(\boldsymbol{\theta}_i; \bar{\boldsymbol{\theta}}_i) \rangle - f(u) \right\}.$$

1242 For any fixed $u \in U$, the map
 1243

$$1244 \theta_i \mapsto \langle u + c^+, a_i(\theta_i; \bar{\theta}_i) \rangle + \langle -u + d^+, b_i(\theta_i; \bar{\theta}_i) \rangle - f(u)$$

1245 is convex in θ_i since $u_j + c_j^+ \geq 0$ and $-u_j + d_j^+ \geq 0$ for all j , making it a nonnegative linear
 1246 combination of convex functions. Taking the pointwise maximum over $u \in U$ preserves convexity,
 1247 so $g_i(\cdot; \bar{\theta}_i)$ is convex.

1248 *Multi-Block convexity of h .* By definition,
 1249

$$1250 h_i(\theta_i; \bar{\theta}_i) = \langle c^+, a_i(\theta_i; \bar{\theta}_i) \rangle + \langle d^+, b_i(\theta_i; \bar{\theta}_i) \rangle,$$

1251 which is a nonnegative linear combination of convex functions of θ_i , hence convex.
 1252

1253 Finally, by construction,
 1254

$$f^*(E(\theta)) = g_i(\theta_i; \bar{\theta}_i) - h_i(\theta_i; \bar{\theta}_i),$$

1255 so $f^* \circ E$ admits a multi-block DC decomposition. Since block i was arbitrary, $f^* \circ E$ is BDC.
 1256

1257 B.5 PROOF OF LEMMA A.3

1258 Due to (4.4), we have
 1259

$$1260 u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) \quad \text{and} \quad \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle \leq g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2. \quad (\text{B.2})$$

1263 Using convexity of $g_{i_k}(\cdot, \bar{\theta}_{i_k}^k)$ in (B.2), we have
 1264

$$\begin{aligned} 1265 \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle &\leq g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2, \\ 1266 \implies \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle &\leq -\langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k), \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2, \\ 1267 \implies \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 &\leq \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle, \\ 1268 \implies \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 &\leq \mathcal{G}(\theta^k) \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|, \\ 1269 \implies \|\theta^{k+1} - \theta^k\| &\leq \frac{2}{\rho} \mathcal{G}(\theta^k). \end{aligned}$$

1270 We get that the update θ^{k+1} is in $\mathcal{B}\left(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k)\right)$.
 1271

1272 B.6 PROOF OF LEMMA A.4

1273 From (4.4) we know:
 1274

$$1275 u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) \quad \text{and} \quad \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle \leq g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2.$$

1276 Now, using convexity of h_{i_k} we get:
 1277

$$\begin{aligned} 1278 h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - h_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) &\leq g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2, \\ 1279 g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) &\leq g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) + h_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k), \\ 1280 f(\theta^{k+1}) &\leq f(\theta^k) \end{aligned}$$

1281 Unrolling this inequality to the initialization gives
 1282

$$\begin{aligned} 1283 f(\theta^{k+1}) &\leq f(\theta^0) \\ 1284 g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) &\leq g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) + h_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - h_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0), \\ 1285 &\leq g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) + H, \end{aligned}$$

1286 where we have used $h_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - h_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) \leq H$ and the fact that $\bar{\theta}_{i_k}^{k+1} = \bar{\theta}_{i_k}^k$. Since this
 1287 result holds for any k , through Corollary A.11 we have $\|\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)\| \leq E$. Recall that g_{i_k} is
 1288

ℓ -smooth with a subquadratic ℓ . Using [Proposition A.10](#), g_{i_k} is also (r, m) -smooth with $r(u) = \frac{a}{m(u)}$ and $m(u) := \ell(u + a)$ for some $a > 0$. Therefore, we can use [Lemma A.9](#) if we ensure the updates are inside $\mathcal{B}(\boldsymbol{\theta}^k, r(E))$. Similar to the proof of [Lemma A.3 \(Appendix B.5\)](#), we know

$$\|\boldsymbol{\theta}^{k+1} - \boldsymbol{\theta}^k\| \leq \sup_{u \in \partial h_{i_k}(\boldsymbol{\theta}_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k)} \frac{2(\|\nabla g_{i_k}(\boldsymbol{\theta}_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k)\| + \|u\|)}{\rho} \leq \frac{2(E + R)}{\rho}.$$

As a result taking $\rho \geq \frac{2(E+R)}{r(E)} = \ell(2E) \frac{2(E+R)}{E}$ will satisfy the conditions in [Lemma A.9](#). This implies the desired result.

B.7 PROOF OF PROPOSITION A.5

Using the assumptions in the theorem statement, we know that for any $\boldsymbol{\theta}^k \in \mathcal{X}$, the update $\boldsymbol{\theta}^{k+1} \in \mathcal{B}(\boldsymbol{\theta}^k, r(E))$. For any $\theta_{i_k} \in \mathcal{B}(\theta_{i_k}^k, r(E))$, consider the surrogate function

$$\hat{f}(\theta_{i_k}; \bar{\boldsymbol{\theta}}_{i_k}^k) := g_{i_k}(\theta_{i_k}; \bar{\boldsymbol{\theta}}_{i_k}^k) - h_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - \langle u_{i_k}^k, \theta_{i_k} - \theta_{i_k}^k \rangle + \frac{\rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2.$$

where $u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k)$. From [\(4.4\)](#) we know that

$$\hat{f}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) \leq \hat{f}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k),$$

and further considering the descent [Lemma A.9](#) for g_{i_k} with $L = \ell(2E)$, we get

$$\hat{f}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) \leq g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) + \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k), \theta_{i_k} - \theta_{i_k}^k \rangle + \frac{L + \rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 - h_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - \langle u_{i_k}^k, \theta_{i_k} - \theta_{i_k}^k \rangle.$$

By [Assumption 1](#), we get

$$\begin{aligned} \hat{f}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) &\leq f(\boldsymbol{\theta}^k) + \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k} - \theta_{i_k}^k \rangle + \frac{L + \rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2, \\ \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k} - \theta_{i_k}^k \rangle &\leq f(\boldsymbol{\theta}^k) + \frac{L + \rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 - \hat{f}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k), \\ \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle &\leq g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) + \frac{L + \rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 \\ &\quad + \langle u_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle, \end{aligned} \tag{B.3}$$

Note that if we choose $\rho = \frac{2(E+R)}{r(E)}$, then we know that

$$\frac{\rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 \leq 0,$$

since in this case $\frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 = r(E)$. However, in the more general case of $\rho \geq \frac{2(E+R)}{r(E)}$, this may not hold. Here, we proceed with the general case. Using the negativity of $-\frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 \leq 0$, we have

$$\begin{aligned} \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle - \frac{L + \rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 &\leq g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) + \langle u_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle, \\ \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle - \frac{L + \rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 &\leq g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) + h_{i_k}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) - h_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k), \\ \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle - \frac{L + \rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 &\leq f(\boldsymbol{\theta}^k) - f(\boldsymbol{\theta}^{k+1}). \end{aligned} \tag{B.4}$$

Let us denote by $\mathbb{E}_{|k}$ the conditional expectation with respect to the random selection of i_k , given all the random choices in the previous iterations. Then, we have

$$\begin{aligned} \mathbb{E}_{|k} \left[\langle \nabla_{i_k} g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle - \frac{L + \rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \right] \\ = \frac{1}{n} \left(\langle \boldsymbol{\nu}^k, \boldsymbol{\theta}^k - \boldsymbol{\theta} \rangle - \frac{L + \rho}{2} \|\boldsymbol{\theta} - \boldsymbol{\theta}^k\|^2 \right), \end{aligned} \tag{B.5}$$

1350 for every $\nu^k \in \partial f(\theta^k)$. Using (B.3) we have
 1351

$$1352 \quad \langle \nu^k, \theta^k - \theta \rangle - \frac{L + \rho}{2} \|\theta - \theta^k\|^2 \leq n f(\theta^k) - n \mathbb{E}_{|k} [f(\theta^{k+1})], \\ 1353$$

1354 for every $\nu^k \in \partial f(\theta^k)$. Now, we maximize this inequality over $\theta \in \mathcal{X}$ to get
 1355

$$1356 \quad \frac{1}{2(L + \rho)} \mathcal{G}^2(\theta^k) \leq n f(\theta^k) - n \mathbb{E}_{|k} [f(\theta^{k+1})]. \quad (\text{B.6}) \\ 1357$$

1358 Now, taking expectation w.r.t. all the iterations we have
 1359

$$1360 \quad \mathbb{E} \left[\frac{1}{2(L + \rho)} \mathcal{G}^2(\theta^k) \right] \leq n \mathbb{E} [f(\theta^k)] - n \mathbb{E} [f(\theta^{k+1})]. \quad (\text{B.7}) \\ 1361 \\ 1362$$

1363 Finally, we take the average of this inequality over $k = 1, \dots, K$:
 1364

$$1365 \quad \frac{1}{K} \sum_{k=1}^K \mathbb{E} \left[\frac{1}{2(L + \rho)} \mathcal{G}^2(\theta^k) \right] \leq \frac{n}{K} (f(\theta^1) - \mathbb{E} [f(\theta^{K+1})]) \leq \frac{n}{K} (f(\theta^1) - f^*). \quad (\text{B.8}) \\ 1366 \\ 1367$$

1368 which concludes the proof.
 1369

1370 B.8 PROOF OF PROPOSITION A.8

1371 Denote $\epsilon_k := \nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)$. We want to show a low probability
 1372 for the event $\{t = t_2 < K\} \cup \{t = t_1 < K, t_2 = K\}$. To do so, we prove a low probability for each
 1373 of these events. For the first event, it is easy to see that the probability of $\{t_2 < K\}$ is
 1374

$$1375 \quad \mathbb{P}(t_2 < T) = \mathbb{P}(\bigcup_{k < K} \{\|\epsilon_k\| > F'\}) \leq \sum_{k < K} \mathbb{P}(\{\|\epsilon_k\| > F'\}) \leq \frac{K\sigma^2}{F'^2}. \quad (\text{B.9}) \\ 1376 \\ 1377$$

1378 Note that we want $\frac{K\sigma^2}{F'^2} \leq \frac{\delta}{4}$ for $0 < \delta < 1$. For the second event, take $k = t$. Then, we have:
 1379

$$1380 \quad g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - g^* > G \quad \|\epsilon_k\| \leq F'$$

1381 which implies $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq G$ due to the $\min\{\cdot\}$ operator. Note that since $t = t_1$, we must
 1382 have $t_1 < t_2$. This ensures $\|\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)\| \leq E$ through Corollary A.11 and boundedness of the
 1383 update points through Lemma A.6. Now, using Lemma A.7, we get
 1384

$$1385 \quad \begin{aligned} g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) &\leq \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k), \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle + \frac{L}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 \\ 1386 &\leq \|\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)\| \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\| + \frac{L}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2, \\ 1387 &\leq E \frac{2}{\rho} (E + R + F') + \frac{L}{2} \left[\frac{2}{\rho} (E + R + F') \right]^2. \end{aligned} \quad (\text{B.10}) \\ 1388 \\ 1389 \\ 1390 \\ 1391$$

1392 Take $F' = E\rho/9L - (E + R)$ and note that $E^2 = 2LG$. F' is positive for $\rho \geq 9L(E+R)/E$. This is a
 1393 valid choice of ρ since it satisfies (see Lemma A.7):
 1394

$$1395 \quad \rho \geq \frac{2(E + R + F')}{r(E)}.$$

1396 Now, replacing in (B.10) gives:
 1397

$$1398 \quad g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) \leq \frac{G}{2}. \quad (\text{B.11}) \\ 1399 \\ 1400$$

1401 This means that:
 1402

$$1403 \quad g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* = g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) + g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - g^* \geq \frac{G}{2}, \quad (\text{B.12})$$

which essentially implies:

$$\mathbb{P}(\{t_1 < K\} \cap \{t_2 = K\}) \leq \mathbb{P}(g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \geq \frac{G}{2}) \leq \frac{\mathbb{E}[g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^*]}{\frac{G}{2}}. \quad (\text{B.13})$$

Now, we need to calculate $\mathbb{E}[g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^*]$. Due to (4.7), we have

$$u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) \quad \text{and} \quad \langle \hat{u}_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle \leq g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k, s^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k, s^k) - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2. \quad (\text{B.14})$$

By adding and subtracting $\langle \hat{u}_{i_k}^k - u_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle$ and using convexity of g_{i_k} , we have

$$\begin{aligned} \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle &\leq \langle \hat{u}_{i_k}^k - u_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle - \langle \nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k), \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle \\ &\quad - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2, \\ \implies \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k), \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle &\leq \langle \nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k), \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle \\ &\quad - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 - \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle, \end{aligned}$$

Since the conditions of Lemma A.7 are satisfied up to time point k , we may use the conclusion of this lemma. Therefore, local smoothness of g_{i_k} together with Young's inequality imply:

$$\begin{aligned} g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \frac{L}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 &\leq \frac{\rho}{4} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 \\ &\quad + \frac{1}{\rho} \|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\|^2 \\ &\quad - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 - \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle \\ &= \frac{1}{\rho} \|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\|^2 \\ &\quad - \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle - \frac{\rho}{4} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2. \end{aligned}$$

Now, using $\rho \geq 9L(E+R)/E$, we know that $\frac{L}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 \leq \frac{\rho}{4} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2$. Therefore, we have:

$$\begin{aligned} g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) &\leq \frac{1}{\rho} \|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\|^2 \\ &\quad + h_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k). \end{aligned}$$

where the last inequality is due to convexity of h_{i_k} . Taking expectation with respect to $s \sim \text{Unif}\{1, \dots, J\}$, summing over iteration number k and using the assumption on boundedness of $h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - h_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) \leq H$, we get:

$$g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k) - g^* \leq g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) - g^* + \frac{(k+1)\sigma^2}{\rho} + H. \quad (\text{B.15})$$

This means that

$$g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) - g^* + \frac{k\sigma^2}{\rho} + H \leq g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) - g^* + \frac{K\sigma^2}{\rho} + H.$$

By taking $\rho = \Omega(\sqrt{K})$ and $\sigma^2 = \mathcal{O}(1/\sqrt{K})$ we have

$$g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) - g^* + C', \quad (\text{B.16})$$

for a constant $C' := K\sigma^2/\rho + H$. Using (B.16) in (B.13) we get

$$\frac{g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^*}{\frac{G}{2}} \leq \frac{2 \left(\max_j g_j(\theta_j^0; \bar{\theta}_j^0) - g^* + C' \right)}{G} = \frac{\delta}{4}, \quad (\text{B.17})$$

1458 which holds for $G = \frac{8(\max_j g_j(\theta_j^0; \bar{\theta}_j^0) - g^* + C')}{\delta}$. Now, replacing in (B.13) gives
 1459

$$1460 \quad \mathbb{P}(\{t_1 < K\} \cap \{t_2 = K\}) \leq \mathbb{P}(g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \geq \frac{G}{2}) \leq \frac{\delta}{4}. \quad (B.18)$$

1463 Using $\frac{K\sigma^2}{F'^2} \leq \frac{\delta}{4}$ and $G = \frac{8(g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) - g^* + C')}{\delta}$ we need
 1464

$$1465 \quad \frac{K\sigma^2}{(\frac{E\rho}{9L} - (E + R))^2} \leq \frac{\delta}{4}. \quad (B.19)$$

1468 Using $E^2 = 2LG$ and simplifying (B.19), we have:
 1469

$$1470 \quad \frac{2G\rho^2}{81L} + (E + R)^2 - \frac{2\rho}{9L}(2LG + ER) \geq \frac{2G\rho^2}{81L} - \frac{2\rho}{9L}(2LG + ER) \geq \frac{4}{\delta}K\sigma^2. \quad (B.20)$$

1472 Replacing $C' = K\sigma^2/\rho + H$ and the fact that $G\delta \geq 8C'$ by the definition of G , gives
 1473

$$1474 \quad \rho^2 - \frac{9\rho}{G}(2LG + ER) \geq \frac{\rho(C' - H)(81L)}{4C'}, \quad (B.21)$$

$$1475 \quad \implies \rho \geq 18L + \frac{9ER}{G} + \frac{81L}{4} \left[\frac{C' - H}{C'} \right] \quad (B.22)$$

1479 With this choice of ρ we ensure
 1480

$$1481 \quad \mathbb{P}(\{t_1 < K\} \cap \{t_2 = K\}) + \mathbb{P}(\{t_2 < K\}) \leq \delta/2. \quad (B.23)$$

1483 As a result $\mathbb{P}(\{t = K\}) \geq 1 - \delta/2 \geq 1/2$. Using this result we may use the descent [Lemma A.7](#) up
 1484 to time point K . Using the update rule of (4.7), we have:

$$1485 \quad \begin{aligned} & g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k, s^k) - h_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k, s^k) \\ & \leq g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k, s^k) - h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k, s^k) - \langle \hat{u}_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle \\ & \leq g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k, s^k) - h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k, s^k) - \langle \hat{u}_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle + \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 \\ & \leq g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k, s^k) - h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k, s^k) - \langle \hat{u}_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle + \frac{\rho}{2} \|\theta_{i_k}^k - \theta_{i_k}^k\|^2 - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2, \end{aligned} \quad (B.24)$$

1492 for any $\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))$. Now, using [Lemma A.7](#) we have
 1493

$$1494 \quad \begin{aligned} & g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k, s^k) - h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k, s^k) + \langle \nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle + \frac{L + \rho}{2} \|\theta_{i_k}^k - \theta_{i_k}^k\|^2 - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 \\ & \leq f(\theta^k, s^k) + \langle \nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k), \theta_{i_k}^k - \theta_{i_k}^k \rangle + \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle \\ & \quad + \frac{L + \rho}{2} \|\theta_{i_k}^k - \theta_{i_k}^k\|^2 \end{aligned} \quad (B.25)$$

1500 Rearranging and using Young's inequality gives
 1501

$$1502 \quad \begin{aligned} & \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle - \frac{L + \rho}{2} \|\theta_{i_k}^k - \theta_{i_k}^k\|^2 \leq \\ & f(\theta^k, s^k) - f(\theta^{k+1}, s^k) + \frac{\rho}{4} \|\theta_{i_k}^k - \theta_{i_k}^k\|^2 + \frac{1}{\rho} \|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\|^2, \end{aligned} \quad (B.26)$$

1507 which implies:

$$1508 \quad \begin{aligned} & \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle - \frac{L + \frac{3}{2}\rho}{2} \|\theta_{i_k}^k - \theta_{i_k}^k\|^2 \leq \\ & f(\theta^k, s^k) - f(\theta^{k+1}, s^k) + \frac{1}{\rho} \|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\|^2. \end{aligned} \quad (B.27)$$

1512 Now, taking expectation conditioned on all the information up to iteration k and $t = K$ and also
 1513 maximizing l.h.s for all $\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))$, we get:
 1514

$$\begin{aligned}
 & \mathbb{E}_{s,i_k|k} \left[\max_{\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))} \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle - \frac{L + \frac{3}{2}\rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \right] \\
 & \leq \max_{\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))} \mathbb{E}_{s,i_k|k} \left[\langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle - \frac{L + \frac{3}{2}\rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \right] \\
 & = \frac{1}{n} \max_{\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))} \mathbb{E}_{s|k} \left[\langle \nu^k, \theta^k - \theta \rangle - \frac{L + \frac{3}{2}\rho}{2} \|\theta - \theta^k\|^2 \right] \\
 & \leq \mathbb{E}_{s,i_k|k} [f(\theta^k, s^k) - f(\theta^{k+1}, s^k)] + \frac{1}{\rho} \mathbb{E}_{s,i_k|k} [\|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\|^2] \\
 & \leq \mathbb{E}_{s,i_k|k} [f(\theta^k, s^k) - f(\theta^{k+1}, s^k)] + \frac{\sigma^2}{\rho},
 \end{aligned} \tag{B.28}$$

1528 for every $\nu^k \in \partial f(\theta^k)$. Averaging both hand sides from $k = 0$ to $k = K$ and using $\mathbb{P}(\{t = K\}) \geq$
 1529 $1 - \delta/2 \geq 1/2$, we have:
 1530

$$\begin{aligned}
 & \frac{1}{2K} \sum_{k < K} \mathbb{E}_{s,i_k|k} \left[\max_{\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))} \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle - \frac{L + \frac{3}{2}\rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \right] \\
 & \leq \frac{\mathbb{P}(\{t = K\})}{K} \sum_{k < K} \mathbb{E}_{s,i_k|k} \left[\max_{\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))} \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle - \frac{L + \frac{3}{2}\rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \middle| t = K \right] \\
 & \leq \frac{\mathbb{P}(\{t = K\})}{K} \sum_{k < K} \mathbb{E}_{s,i_k|k} \left[\max_{\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))} \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle - \frac{L + \frac{3}{2}\rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \middle| t = K \right] \\
 & \leq \frac{1}{K} \sum_{k < t} \mathbb{E}_{s,i_k|k} \left[\max_{\theta \in \mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))} \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^k \rangle - \frac{L + \frac{3}{2}\rho}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \right] \\
 & \leq \frac{n}{K} \left[\mathbb{E} [f(\theta^0) - f(\theta^K)] + \frac{K\sigma^2}{\rho} \right] \leq \frac{n}{K} \left[g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) - g(\theta^*) + H + \frac{K\sigma^2}{\rho} \right] \\
 & = \frac{n}{K} [g_{i_0}(\theta_{i_0}^0; \bar{\theta}_{i_0}^0) - g(\theta^*) + C'] = \frac{nG\delta}{8K}.
 \end{aligned} \tag{B.29}$$

1548
 1549 were in the last equality we used the definition of G . Note that the maximum in (B.29) is achieved
 1550 for $\theta = \theta^k - \frac{1}{L + \frac{3}{2}\rho} \nu_{i_k}^k$ for $\nu_{i_k}^k \in \partial_{i_k} f(\theta^k)$. Since this value is in $\mathcal{B}(\theta^k, \frac{2}{\rho} \mathcal{G}(\theta^k))$, we can replace
 1551 this value and write:
 1552

$$\frac{1}{2K} \sum_{k < K} \mathbb{E} [\mathcal{G}^2(\theta^k)] \leq \frac{(L + \frac{3}{2}\rho)nG\delta}{8K}. \tag{B.30}$$

1556
 1557 Choosing $K \geq \frac{(L + \frac{3}{2}\rho)nG}{2\epsilon^2}$ such that we have
 1558

$$\frac{1}{K} \sum_{k < K} \mathbb{E} [\mathcal{G}^2(\theta^k)] \leq \frac{(L + \frac{3}{2}\rho)nG\delta}{4K} \leq \frac{\delta}{2} \epsilon^2. \tag{B.31}$$

1562
 1563 Using the fact that $\rho = \Omega(\sqrt{K})$, our convergence guarantee holds for $K = \Omega(1/\epsilon^4)$.
 1564

1565 Now, we define the event $\varrho = \{\frac{1}{K} \sum_{k < K} \mathbb{E} [\mathcal{G}^2(\theta^k)] > \epsilon^2\}$. Using Markov's inequality we get
 1566 $\mathbb{P}(\varrho) \leq \delta/2$. Finally, we get $\mathbb{P}(\{t < K\} \cup \varrho) \leq \delta$.

1566 B.9 PROOF OF LEMMA A.6
15671568 Due to (4.7), we have
1569

1570 $u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)$ and $\langle \hat{u}_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle \leq g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k, s^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\theta}_{i_k}^k, s^k) - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2$.
1571 (B.32)
1572

1573 By adding and subtracting $\langle \hat{u}_{i_k}^k - u_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle$ and using convexity of g_{i_k} , we have
1574

1575
$$\begin{aligned} \langle u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle &\leq \langle \hat{u}_{i_k}^k - u_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle - \langle \nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k), \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle \\ &\quad - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2, \\ 1578 \implies \langle u_{i_k}^k - \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k), \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle &\leq \langle \nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k), \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle \\ &\quad - \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2, \end{aligned}$$

1579
1580

1581 Now, through Cauchy–Schwarz inequality we get
1582

1583
$$\begin{aligned} \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 &\leq \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k}^{k+1} \rangle \\ &\quad + \|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - u_{i_k}^k)\| \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|, \\ 1586 \implies \frac{\rho}{2} \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|^2 &\leq \|\nu_{i_k}^k\| \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\| + \|\hat{u}_{i_k}^k - \nu_{i_k}^k\| \|\theta_{i_k}^{k+1} - \theta_{i_k}^k\|, \\ 1588 \implies \|\theta^{k+1} - \theta^k\| &\leq \frac{2}{\rho} (\|\nu_{i_k}^k\| + \|\hat{u}_{i_k}^k - \nu_{i_k}^k\|), \\ 1590 &\leq \frac{2}{\rho} (\|\nu^k\| + \|\hat{u}_{i_k}^k - \nu_{i_k}^k\|), \end{aligned}$$

1591
1592

1593 where $\nu^k \in \partial f(\theta^k)$, $\nu_{i_k}^k \in \partial_{i_k} f(\theta^k)$, $\hat{u}_{i_k}^k \in \partial_{i_k} \hat{f}(\theta^k)$, and the second to last line holds due to the
1594 fact that (4.7) updates only the i_k^{th} block at each iteration. This implies the desired result.
15951596 B.10 PROOF OF LEMMA A.7
15971598 By assumption, we know that $g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - g^* \leq G$ and $\|\nabla \hat{g}_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \hat{u}_{i_k}^k - (\nabla_{i_k} g(\theta^k) - u_{i_k}^k)\| \leq F'$ for $G, F' > 0$. Since this result holds for any k , through Corollary A.11 we have
1599 $\|\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)\| \leq E$. Recall that g_{i_k} is ℓ -smooth with a subquadratic ℓ . Using Proposition A.10,
1600 g is also (r, m) -smooth with $r(u) = \frac{a}{m(u)}$ and $m(u) := \ell(u + a)$ for some $a > 0$. Therefore, we
1601 can use Lemma A.9 if we ensure the updates are inside $\mathcal{B}(\theta^k, r(E))$. From the proof of Lemma A.6
1602 (Appendix B.9), we know
1603

1604
$$\|\theta^{k+1} - \theta^k\| \leq \sup_{u \in \partial h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)} \frac{2(\|\nabla g_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k)\| + \|u\| + F')}{\rho} \leq \frac{2(E + R + F')}{\rho}.$$

1605

1606 As a result taking $\rho \geq \frac{2(E+R+F')}{r(E)} = \ell(2E) \frac{2(E+R+F')}{E}$ will satisfy the conditions in Lemma A.9.
1607 This implies the desired result.
16081611 B.11 PROOF OF THEOREM A.1
16121613 For any $\theta_{i_k} \in \mathcal{M}^{i_k}$, Consider the surrogate function
1614

1615
$$\hat{f}(\theta_{i_k}; \bar{\theta}_{i_k}^k) := g_{i_k}(\theta_{i_k}; \bar{\theta}_{i_k}^k) + r_{i_k}(\theta_{i_k}) - h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \langle u_{i_k}^k, \theta_{i_k} - \theta_{i_k}^k \rangle.$$

1616

1617 where $u_{i_k}^k \in \partial h_{i_k}(\theta_{i_k}; \bar{\theta}_{i_k}^k)$. Also, it is important to mention that $f(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) = f(\theta^k)$ and
1618 $\hat{f}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) = \hat{f}(\theta^k)$. From (A.4) we know that
1619

1620
$$\hat{f}(\theta^{k+1}) \leq \hat{f}(\theta_{i_k}; \bar{\theta}_{i_k}^k) = g_{i_k}(\theta_{i_k}; \bar{\theta}_{i_k}^k) + r_{i_k}(\theta_{i_k}) - h_{i_k}(\theta_{i_k}^k; \bar{\theta}_{i_k}^k) - \langle u_{i_k}^k, \theta_{i_k} - \theta_{i_k}^k \rangle,$$

1620 and further considering the smoothness of g , we get
1621

$$1622 \hat{f}(\boldsymbol{\theta}^{k+1}) \leq g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) + \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k), \theta_{i_k} - \theta_{i_k}^k \rangle + \frac{L}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 + r_{i_k}(\theta_{i_k}^k) - h_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - \langle u_{i_k}^k, \theta_{i_k} - \theta_{i_k}^k \rangle.$$

1624 By (A.2), we get
1625

$$1626 \hat{f}(\boldsymbol{\theta}^{k+1}) \leq f(\boldsymbol{\theta}^k) + \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k} - \theta_{i_k}^k \rangle + \frac{L}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 + r_{i_k}(\theta_{i_k}^k) - r_{i_k}(\theta_{i_k}^k) \quad (B.33)$$

1628 Therefore,
1629

$$1630 \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle - r_{i_k}(\theta_{i_k}^k) + r_{i_k}(\theta_{i_k}^k) \leq f(\boldsymbol{\theta}^k) - \hat{f}(\boldsymbol{\theta}^{k+1}) + \frac{L}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \\ 1631 \\ 1632 \leq g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) + \frac{L}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 \\ 1633 \\ 1634 + \langle u_{i_k}^k, \theta_{i_k}^{k+1} - \theta_{i_k}^k \rangle + r_{i_k}(\theta_{i_k}^k) - r_{i_k}(\theta_{i_k}^{k+1}). \quad (B.34)$$

1635 Therefore, by convexity of $h_{i_k}(\cdot; \bar{\boldsymbol{\theta}}_{i_k}^k)$ we have:
1636

$$1637 \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle - \frac{L}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 - r_{i_k}(\theta_{i_k}^k) + r_{i_k}(\theta_{i_k}^k) \leq g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - g_{i_k}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) \\ 1638 \\ 1639 + h_{i_k}(\theta_{i_k}^{k+1}; \bar{\boldsymbol{\theta}}_{i_k}^k) - h_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) + r_{i_k}(\theta_{i_k}^k) - r_{i_k}(\theta_{i_k}^{k+1}), \\ 1640 \\ 1641 \langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle - \frac{L}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 - r_{i_k}(\theta_{i_k}^k) + r_{i_k}(\theta_{i_k}^k) \leq f(\boldsymbol{\theta}^k) - f(\boldsymbol{\theta}^{k+1}). \quad (B.35)$$

1643 Let us denote by $\mathbb{E}_{|k}$ the conditional expectation with respect to the random selection of i_k , given all
1644 the random choices in the previous iterations. Then, we have
1645

$$1646 \mathbb{E}_{|k} \left[\langle \nabla g_{i_k}(\theta_{i_k}^k; \bar{\boldsymbol{\theta}}_{i_k}^k) - u_{i_k}^k, \theta_{i_k}^k - \theta_{i_k} \rangle - \frac{L}{2} \|\theta_{i_k} - \theta_{i_k}^k\|^2 - r_{i_k}(\theta_{i_k}^k) + r_{i_k}(\theta_{i_k}^k) \right] \\ 1647 \\ 1648 = \frac{1}{n} \sum_{i=1}^n \left(\langle \nabla g_i(\theta_i^k; \bar{\boldsymbol{\theta}}_i^k) - u_i^k, \theta_i^k - \theta_i \rangle - \frac{L}{2} \|\theta_i - \theta_i^k\|^2 - r_i(\theta_i) + r_i(\theta_i^k) \right) \quad (B.36) \\ 1649 \\ 1650 \\ 1651 = \frac{1}{n} \left(\langle \boldsymbol{\nu}^k, \boldsymbol{\theta}^k - \boldsymbol{\theta} \rangle - \frac{L}{2} \|\boldsymbol{\theta} - \boldsymbol{\theta}^k\|^2 - r(\boldsymbol{\theta}) + r(\boldsymbol{\theta}^k) \right),$$

1653 for every $\boldsymbol{\nu}^k \in \partial f(\boldsymbol{\theta}^k)$. We have used the block separability of the function $r(\boldsymbol{\theta})$. Using (B.36) we
1654 have
1655

$$1656 \langle \boldsymbol{\nu}^k, \boldsymbol{\theta}^k - \boldsymbol{\theta} \rangle - \frac{L}{2} \|\boldsymbol{\theta} - \boldsymbol{\theta}^k\|^2 - r(\boldsymbol{\theta}) + r(\boldsymbol{\theta}^k) \leq n f(\boldsymbol{\theta}^k) - n \mathbb{E}_{|k} [f(\boldsymbol{\theta}^{k+1})].$$

1657 Now, we maximize this inequality over $\boldsymbol{\theta} \in \mathcal{M}$ to get
1658

$$1659 \text{gap}_{\mathcal{M}}^L(\boldsymbol{\theta}^k) \leq n f(\boldsymbol{\theta}^k) - n \mathbb{E}_{|k} [f(\boldsymbol{\theta}^{k+1})]. \quad (B.37)$$

1660 Now, taking expectation w.r.t. all the iterations we have
1661

$$1662 \mathbb{E} [\text{gap}_{\mathcal{M}}^L(\boldsymbol{\theta}^k)] \leq n \mathbb{E} [f(\boldsymbol{\theta}^k)] - n \mathbb{E} [f(\boldsymbol{\theta}^{k+1})]. \quad (B.38)$$

1664 Finally, we take the average of this inequality over $k = 1, \dots, K$:
1665

$$1666 \frac{1}{K} \sum_{k=1}^K \mathbb{E} [\text{gap}_{\mathcal{M}}^L(\boldsymbol{\theta}^k)] \leq \frac{n}{K} (f(\boldsymbol{\theta}^1) - \mathbb{E} [f(\boldsymbol{\theta}^{K+1})]) \leq \frac{n}{K} (f(\boldsymbol{\theta}^1) - f^*). \quad (B.39)$$

1669 We complete the proof by noting that the minimum of $\text{gap}_{\mathcal{M}}^L(\boldsymbol{\theta}^k)$ over $k = 1, \dots, K$ is smaller than
1670 or equal to the average gap.

1671
1672
1673