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Abstract
Masked diffusion large language models (dLLMs) are emerging as promising alter-1

natives to autoregressive LLMs, offering competitive performance while supporting2

unique generation capabilities such as inpainting. We explore how inpainting can3

inform RL algorithm design for dLLMs by addressing a key challenge: sparse4

reward signals and sample waste when LLMs fail to discover correct solutions. We5

introduce IGPO (Inpainting Guided Policy Optimization), an RL framework that6

strategically injects partial ground-truth reasoning traces during online sampling7

to guide exploration toward promising trajectory spaces while preserving self-8

generated reasoning. Applied to group-based optimization methods like GRPO,9

IGPO restores meaningful gradients when exploration failures cause zero advan-10

tages. Combined with supervised fine-tuning on synthetically rewritten concise11

traces and entropy-based filtering, our approach achieves state-of-the-art perfor-12

mance on four mathematical benchmarks across full-attention based dLLMs.13

(a) Masked dLLM Inpainting-Guided Sampling 

At Denoising Step 0:

Problem: "Joy can read 8 pages of a book in 20 minutes.  How many hours will it take her
to read 120 pages?"

[MASK] ... [MASK]

8*3=24

will take her 120/

[MASK] ... [MASK]

Fixed Hint Chunks Inpainted Generation

[MASK] ... [MASK]

[MASK] Tokens

[MASK] ... [MASK]

(b) IGPO Performance & All-Wrong Groups Reduction

There are 3 x 20 minutes in an hour, so Joy will read

pages per hour. So,it 24 = 5 hours to will take her 120/

read all pages. Therefore, the answer to this problem is 5.

8*3=24

Final Generation:

Iterative Denoising Steps ... (c) Comparison with Prior Methods 

Figure 1: (a) Unlike autoregressive LLMs, diffusion LLMs can be conditioned on future reasoning
hints during generation through inpainting via bidirectional attention, enabling guided exploration
toward correct solutions. (b) Applying inpainting-guided exploration in policy optimization outper-
forms standard GRPO sampling and reduces all-wrong groups occurrences. (c) Our full training
recipe combining Length-Aligned SFT on concise reasoning traces with IGPO achieves SoTA perfor-
mance among full-attention masked dLLMs across four mathematical reasoning benchmarks.

1 Introduction14

Recent works have shown that masked diffusion large language models (dLLMs) [Austin et al.,15

2021, Shi et al., 2024, Nie et al., 2025, Ye et al., 2025] can achieve performance competitive16

with autoregressive LLMs of similar size. Their capabilities can be further enhanced via RL post-17

training [Zhao et al., 2025, Gong et al., 2025b, Yang et al., 2025]. Unlike autoregressive LLMs,18

which decode left-to-right, dLLMs iteratively unmask tokens in parallel, enabling faster inference as19

shown in Mercury [Inception Labs et al., 2025] and Gemini Diffusion [DeepMind, 2025], along with20

flexible operations such as inpainting—the ability to fill missing content within existing text. Recent21
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Figure 2: Overview of IGPO: When
sampled responses yield identical in-
correct rewards, we generate addi-
tional responses using ground truth
hints via inpainting and replace some
with correct inpainted ones to create
non-zero advantage.

post-training work for dLLMs has adopted approaches similar to autoregressive LLMs, applying22

RLVR methods [Zhao et al., 2025, Yang et al., 2025, Gong et al., 2025b]. In RLVR, a fundamental23

exploration challenge persists: for difficult tasks, policies struggle to discover correct solutions and24

binary rewards provide minimal learning signal when most generated solutions are incorrect, leading25

to substantial sample waste and poor training efficiency.26

The bidirectional structure of dLLMs provides a unique mechanism to address this challenge. Since27

dLLMs are trained through stochastic masking, they possess inherent capability for inpainting with28

externally provided partial hints. We leverage this to introduce IGPO (Inpainting Guided Policy29

Optimization), a novel RL framework that strategically guides exploration by injecting reasoning hints30

for difficult problems. When the policy is unlikely to generate correct solutions, partial reasoning31

traces are injected into the generation region, and the dLLM completes the remaining sequence. Only32

successful inpainting completions are used for policy optimization. This approach is particularly33

effective for group-based methods like GRPO [Shao et al., 2024], where all-wrong groups collapse34

advantage to zero. By reducing all-wrong groups, IGPO restores gradient signals and enables more35

effective RL. In summary, our work makes the following key contributions:36

• We propose IGPO, the first work to utilize the unique inpainting capabilities of diffusion LLMs37

for RL. By strategically injecting partial reasoning traces during exploration, IGPO alleviates sparse38

reward inefficiency and mitigates the zero-advantage dilemma in group-based policy optimization39

methods, reducing all-wrong groups by approximately 60% ( Figure 1 (b)).40

• We propose Length-Aligned SFT for full-attention based dLLMs using synthetically rewritten,41

concise reasoning traces. This design better aligns SFT data length with RL sampling and evaluation42

length, avoiding verbose trace limitations and providing stronger initialization for RL.43

• Our training recipe achieves substantial improvements on mathematical benchmarks: +5.3% on44

GSM8K, +8.4% on Math500, +11.4% on AMC, and +4.0% on Minerva relative to LLaDA-45

Instruct, achieving SoTA performance among full-attention based dLLMs.46

• We conduct comprehensive ablation studies disentangling IGPO mechanisms. We show that partial47

inpainting consistently outperforms full ground-truth inpainting by staying closer to the policy48

distribution in online RL, and propose entropy-based gradient filtering that stabilizes training.49

2 Methods50

IGPO: Inpainting Guided Policy Optimization In GRPO, when all G responses {o1, . . . , oG}51

for prompt q receive identical rewards, advantages become zero: Ai = r(oi) − 1
G

∑G
j=1 r(oj) =52

0, making the policy gradient degenerate. To address this all-wrong case, we introduce IGPO,53

which modifies masked dLLM generation. In full-attention masked dLLM generation such as54

LLaDA [Zhu et al., 2025], the model input at denoising step 0 is the concatenation [q; zmask], where55

q represents the prompt and zmask denotes a fully masked completion sequence of predetermined56

length. The generation process progressively unmasks these positions through iterative denoising57

until producing the final output. IGPO fixes selected positions of zmask to ground-truth tokens from58

reasoning trace y∗. As shown in Figure 2, IGPO triggers hint injection only when all responses59

yield incorrect rewards, segmenting y∗ into variable-length chunks with sizes from U [smin, smax] and60

randomly selecting ⌊η ·N⌋ chunks for injection with ratio η ∼ U [ηlow, ηhigh]. We generate additional61

responses {õ1, . . . , õG} through inpainting, then replace K = min(|{õi : r(õi) = 1}|, ⌊λG⌋)62

original responses with correct inpainted ones. The IGPO objective modifies GRPO by including63

verified correct inpainted responses. We also design an entropy-based gradient filtering technique64

for learning stability, where we only apply gradient updates on hint tokens where the model exhibits65

sufficient uncertainty, updating only the top τ percentile of hint positions with highest entropy. A66

detailed method description is in Appendix A.1.67
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Length-Aligned SFT via Concise Reasoning Trace Rewriting Full-attention masked dLLMs68

lack KV cache optimization by default, requiring full-sequence attention at every denoising step. We69

restrict RL rollouts to 256 tokens, but popular reasoning SFT corpora contain verbose traces often70

exceeding 10k tokens and evaluation of recent dLLMs often only requires less than 1024 tokens on71

mathmatical benchmarks [Zhu et al., 2025], creating distribution mismatch. We systematically rewrite72

verbose traces into concise forms using LLaMA-4-Maverick [Meta, 2025], removing redundant73

reflections while preserving essential reasoning. Our Length-Aligned SFT trains exclusively on74

rewritten traces, providing better RL initialization within fixed computational bounds.75

3 Experiments76

To investigate how the inpainting capabilities of masked dLLMs can address exploration challenges77

in RL and how Length-Aligned SFT improves performance, we conduct comprehensive experiments78

using a two-stage training pipeline. Stage 1: Supervised Fine-Tuning with Rewritten Traces. We79

begin with Length-Aligned SFT on the LLaDA-8B-Instruct model using the OpenR1-Math-220K80

dataset [Cobbe et al., 2021] with all reasoning traces rewritten to ensure consistency between training81

distribution and downstream RL/evaluation phases. Stage 2: Reinforcement Learning with IGPO.82

Following Length-aligned SFT, we apply IGPO using reasoning traces from the MetaMathQA83

dataset [Yu et al., 2023] for strategic inpainting-guided policy optimization. We evaluate our approach84

on four mathematics benchmarks: GSM8K [Cobbe et al., 2021], MATH500 [Hendrycks et al., 2021],85

AMC [LI et al., 2024] and Minerva Math [Lewkowycz et al., 2022]. Experiments are conducted using86

LLaDA-8B-Instruct as the base model with sampling temperature of 1.2 for RL online generation,87

with detailed hyperparameters and experimental setup provided in Appendix J.88

3.1 Main Results and Ablation Studies89

Table 1: Performance across
multiple mathematics tasks.
Underlined scores indicate
the best within each initial-
ization group. Parenthe-
sized deltas typeset via (+)

denote absolute percentage-
point improvements relative
to the LLaDA-8B-Instruct
baseline.

Model
GSM8K
(pass@1)

MATH500
(pass@1)

AMC
(avg@16)

Minerva
(pass@1) Average

Similar-sized autoregressive LLMs

LLaMA3-8B [AI@Meta, 2024] 79.6 30.0 – – –
Qwen2.5-7B [Team, 2024] 85.4 49.8 – – –

Prior masked dLLM baselines

Dream-7B [Ye et al., 2025] 77.2 39.6 – – –
d1-LLaDA [Zhao et al., 2025] 82.1 40.2 – – –
wd1 [Tang et al., 2025] 82.3 39.0 – – –
LLaDA-1.5 [Zhu et al., 2025] 83.3 42.6 13.6 8.8 37.1
LLaDA-Instruct [Nie et al., 2025] 81.5 (+0) 39.0 (+0) 14.5 (+0) 9.2 (+0) 36.0 (+0)

RL from LLaDA-Instruct

LLaDA-Instruct + UniGRPO [Yang et al., 2025] 82.2 (+0.7) 39.2 (+0.2) 15.0 (+0.5) 11.0 (+1.8) 36.9 (+0.9)

LLaDA-Instruct + DiffuGRPO [Zhao et al., 2025] 82.4 (+0.9) 40.2 (+1.2) 15.5 (+1.0) 10.3 (+1.1) 37.1 (+1.1)

LLaDA-Instruct + IGPO (ours) 83.1 (+1.6) 42.8 (+3.8) 17.5 (+3.0) 12.1 (+2.9) 38.9 (+2.9)

Length-aligned SFT on LLaDA-Instruct and RL on the SFT checkpoint

LLaDA-Instruct + Length-aligned SFT (ours) 83.6 (+2.1) 45.2 (+6.2) 22.3 (+7.8) 10.3 (+1.1) 40.4 (+4.4)

LLaDA-Instruct + Length-aligned SFT + IGPO (ours) 86.8 (+5.3) 47.4 (+8.4) 25.9 (+11.4) 13.2 (+4.0) 43.3 (+7.3)

Main results. As shown in Table 1, our training recipe demonstrates consistent improvements across90

all mathematical reasoning benchmarks. Length-Aligned SFT on rewritten traces provides substantial91

gains over the base LLaDA-8B-Instruct model, with IGPO delivering additional improvements92

when applied on top of SFT. As shown in Figure 5, IGPO exhibits superior training dynamics93

compared to standard GRPO sampling regardless of initialization point. IGPO effectively reduces94

the all-wrong group ratio, as shown in Figure 1(b). Our final model (LLaDA + Length-Aligned95

SFT + IGPO) outperforms all baseline approaches including the recent LLaDA-1.5 model across all96

evaluated benchmarks. Notably, even without SFT, applying IGPO directly on LLaDA achieves better97

performance than previous LLaDA-1.5 and other RL methods for full-attention dLLMs, establishing98

a new state-of-the-art recipe for mathematical reasoning in masked diffusion language models.99
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Figure 3: Impact of hint injection ratio across 3 datasets (GSM8K,
MATH500, AMC) and 3 seeds with standard error as shaded areas.
Partial hint injection (η ∼ U [0.2, 0.6]) consistently outperforms full
hint injection (η = 1.0), demonstrating benefits of self-generated
reasoning. Both variants outperform baseline without hint injection.
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Figure 4: (a) Impact of entropy clipping threshold on hint tokens. Performance comparison across
different entropy clipping thresholds in IGPO, where τ = 0.2 learns from top 20% highest-entropy
hint positions while τ = 1.0 learns from all positions. (b) SFT and RL dynamics with rewritten vs.
original traces. Models fine-tuned on concise rewritten traces (< 1024 tokens) vs original OpenR1-
Math traces (truncated at 4096 tokens). Rewritten traces yield stronger SFT and RL performance.

Self-generated inpainted traces provide better learning signal than ground truth traces. Fig-100

ure 3 shows partial hint injection achieves higher performance than full hint injection. With lower101

hint injection ratios, the model generates self-rationalized inpainting traces (Section I), adding only102

those leading to correct solutions for gradient updates. Through inpainting, the model coherently103

connects provided hint chunks with its own reasoning steps. Inpainted generation produces learning104

signals bridging the gap between current capabilities and target behavior. Self-generated portions105

reflect current reasoning patterns and are more "on-policy" while incorporating structural guidance106

from ground truth chunks, resulting in more effective policy optimization than pure supervised107

learning by reducing distributional mismatch. This bridging of SFT and online RL through partial108

self-generation enables more effective policy optimization.109

Entropy clipping prevents training instability from off-policy tokens. Figure 4a shows learning110

from only the top 20% highest-entropy hint token positions (τ = 0.2) achieves the best performance111

and exhibits the most stable training dynamics. In contrast, learning from all hint token positions112

(τ = 1.0) or a large fraction (τ = 0.8) leads to more unstable training with performance fluctuations113

compared to lower values like 0.2. This supports our motivation that restricting gradient updates to114

high-entropy positions prevents the destabilizing effects of large gradients on high-entropy positions115

on hints tokens, since these injected hint tokens are from ground-truth dataset and are “off-policy" to116

the current learning policy.117

Effect of reasoning trace rewriting for SFT and subsequent RL training. Figure 4b shows two118

key findings. First, SFT on rewritten traces produces substantially stronger checkpoints than original119

traces by eliminating verbose reflection and compressing reasoning into concise trajectories aligned120

with LLaDA’s generation budget. Second, while RL training partially compensates for weaker SFT121

checkpoints, stronger rewritten SFT initialization leads to consistently higher final performance.122

IGPO outperforms standard RL across both settings while preserving output diversity and stabilizing123

pass@5 performance, whereas standard GRPO exhibits pass@k decline indicating mode collapse.124

Elastic inpainting outperforms sequential SFT and GRPO We further validate the effectiveness125

of our elastic inpainting approach by comparing it against sequentially performing SFT on the RL126

dataset’s reasoning traces followed by standard GRPO (see Section G for details). This ablation127

confirms that IGPO’s elastic hint injection during zero-advantage scenarios is superior to uniformly128

applying SFT on concise reasoning traces across all prompts before applying GRPO. The uniform129

SFT approach can degrade initial performance due to distribution shift in reasoning patterns, whereas130

injecting partial hints allows dLLMs to inpaint longer, more “on-policy" reasoning traces.131

4 Conclusion132

We introduced IGPO, a reinforcement learning algorithm that leverages masked diffusion language133

models’ inpainting capabilities to address exploration bottlenecks in RL. By injecting ground-truth134

reasoning hints during denoising, IGPO resolves the zero-advantage dilemma and induces reward135

variance for effective policy gradient updates. Combined with Length-Aligned SFT and entropy-based136

gradient filtering, our approach achieves state-of-the-art performance among full-attention masked137

dLLMs on mathematical reasoning benchmarks, demonstrating how architectural properties can be138

systematically exploited for RL optimization.139
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A Detailed Methods293

A.1 IGPO: Inpainting Guided Policy Optimization294

Zero-Advantage Dilemma. In the GRPO framework, when sampling G responses295

{o1, o2, . . . , oG} for a given prompt q, the advantage computation relies on reward variance across296

the group. However, when all responses receive identical rewards—either all correct or all incorrect297

—the advantages become zero: Ai = r(oi)− 1
G

∑G
j=1 r(oj) = 0. This zero-advantage scenario makes298

the policy gradient component degenerate. Specifically, the clipped surrogate objective collapses to299

zero regardless of whether the update lies in the clipped or unclipped region, since both terms contain300

Ai = 0. The policy gradient for this prompt q therefore becomes:301

1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

Ai ρ
k
i ∇θ log πθ(o

k
i | q) = 0 since Ai = 0 ∀i.

As a result, no meaningful policy update can be extracted from the reward signal, wasting compute302

sampling these responses. In this work, we specifically focus on mitigating the all-wrong case.303

Masked dLLM Generation and Inpainting. In full-attention masked dLLM generation, the304

model input at denoising step 0 is the concatenation [q; zmask], where q represents the prompt and305

zmask = [mask, mask, . . . , mask] denotes a fully masked completion sequence of predetermined306

length L. The generation process progressively unmasks these positions through iterative denoising307

until producing the final output.308

Hint injection modifies this formulation by fixing selected positions of zmask to ground-truth tokens.309

During RL training, we assume access to ground-truth reasoning trace y∗ = [y∗1 , y
∗
2 , . . . , y

∗
|y∗|] for310

every question q. For injection, we create a binary mask m ∈ {0, 1}L indicating which positions to311

inject as fixed hints, we construct the hint-injected initialization:312

zhint[i] =

{
y∗i if m[i] = 1 and i ≤ |y∗|,
mask otherwise.

(1)

The masked dLLM then performs bidirectional denoising on [q; zhint] through the inpainting process,313

leveraging both the prompt and injected hint tokens to generate coherent responses. The injected hint314

tokens remain fixed throughout the iterative denoising steps.315

Algorithm 1 IGPO: Inpainting-Guided Policy Optimization for Masked dLLMs

Require: Reference model πref, prompt distribution D, ground-truth reasoning traces {y∗}, number
of completions per prompt G, number of inner updates µ, hint injection ratio range [ηlow, ηhigh],
replacement fraction λ, entropy filter threshold τ , chunk size range [smin, smax]

1: Initialize πθ ← πref
2: while not converged do
3: πold ← πθ; sample prompt q∼D and responses o1:G∼πold(· |q); compute rewards r1:G
4: if all ri = 0 (zero-advantage case) then
5: Segment ground-truth reasoning y∗ into chunks {c1, . . . , cN} with |cj | ∼ U [smin, smax]
6: for i = 1, . . . , G do
7: Sample hint injection ratio η ∼ U [ηlow, ηhigh] and select ⌊ηN⌋ chunks from
{c1, . . . , cN} randomly

8: Inject selected chunk tokens as fixed hints at corresponding positions
9: Generate õi via inpainting: denoise only masked positions, keep hint tokens fixed

10: Evaluate rewards r(õi) and replace up to ⌊λG⌋ incorrect oi with correct õi
11: Compute advantages Ai on the updated response set
12: for n = 1, . . . , µ do
13: Estimate log πθ, log πold, log πref; apply top-τ entropy filter on hint positions
14: Update πθ via LIGPO(θ) (Eq. 2)
15: return πθ
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Constructing Hint Patterns for Inpainting. To construct meaningful hint patterns for the inpaint-316

ing process, we segment the ground truth reasoning trace y∗ into variable-length contiguous chunks317

C = {c1, c2, . . . , cN}, where each chunk length |cj | is sampled from U [smin, smax]. We explicitly318

exclude the final answer tokens from chunking to prevent reward hacking behaviors where the model319

ignores reasoning and collapses. For a given hint injection ratio η ∈ [0, 1], we randomly select ⌊η ·N⌋320

chunks and set their corresponding positions in the binary mask m to 1 for hint injection.321

Elastic Inpainting-Triggered Sampling. With the above inpainting setup, we design IGPO (as in322

Algorithm 1) to be elastic: hint injection is only triggered when all sampled responses in a group323

yield incorrect rewards (the zero-advantage case), and when activated, both the hint injection ratio η324

and chunk sizes (U [smin, smax]) are randomized to provide diverse training signals. Concretely, when325

detecting that all sampled responses {o1, . . . , oG} for query q yield identical rewards r(oi) = 0, we326

generate an additional set of responses {õ1, . . . , õG} through the inpainting process. Each response327

õi is generated via inpainting with a distinct hint injection ratio ηi ∼ U [ηlow, ηhigh] to ensure diverse328

hint densities. Following inpainting generation, we evaluate the correctness of {õi} and only use the329

correct ones for replacement. Specifically, we replace K = min(|{õi : r(õi) = 1}|, ⌊λG⌋) of the330

original incorrect responses with correct responses generated through inpainting, where λ ∈ (0, 1)331

controls the replacement fraction.332

The complete IGPO objective modifies the GRPO formulation by incorporating the augmented333

sampling procedure:334

LIGPO(θ) = E q∼D
{o1,...,oG−K ,õ1,...,õK}∼IGPO-Sample(πθ,q,y∗)

[(
1

G

G∑
i=1

1

Li

Li∑
k=1

min
(
ρkiA

k
i , clip

(
ρki , 1− ε, 1 + ε

)
Ak

i

))
− βDKL [πθ(·|q)∥πref(·|q)]

]
,

(2)
where IGPO-Sample(πθ, q, y

∗) denotes the augmented sampling procedure that applies inpainting-335

based augmentation when zero-advantage scenarios are detected, producing the augmented RL336

sampling group {o1, . . . , oG−K , õ1, . . . , õK} containing (G−K) original responses and K verified337

correct inpainted responses {õi} after replacement. Li denotes the length of the i-th response (whether338

oi or õi). Crucially, only inpainted responses that pass correctness verification are included in the339

augmented group, satisfying r(õi) = 1. Advantages Ai are computed normally. We built IGPO with340

DiffuGRPO [Zhao et al., 2025]’s log probability estimation methods, where all completion tokens341

are masked during estimation and we remove the random masking applied to prompt tokens as done342

in DiffuGRPO. Since we use a small number of policy iterations (i.e. µ = 4), this alleviates the343

need for random prompt masking to reduce overfitting. Inspired by Zheng et al. [2025], we compute344

sequence-level importance-ratio through mean-field approximation for stability purposes.345

Entropy-based Gradient Filtering for Hint Tokens. When applying IGPO to zero-advantage346

scenarios, the responses generated through inpainting contain ground truth reasoning chunks that347

originate from a different distribution than the current policy πθ. This creates an off-policy learning348

scenario where gradient updates from ground truth tokens can conflict with the model’s current349

beliefs, particularly at positions where the model has high confidence (low entropy). To mitigate350

potential training instability from this distribution mismatch, we implement an entropy-based filtering351

approach that restricts learning to hint token positions where the model exhibits sufficient uncertainty,352

as inspired by Huang et al. [2025]. Specifically, for each hint token position (i.e., positions with353

injected ground-truth tokens) we compute the entropy. We then apply gradient updates only to354

the top τ percentile of hint token positions with highest entropy values. This selective learning355

strategy serves two purposes: high-entropy positions represent genuine decision boundaries where356

the model is naturally uncertain and thus more receptive to external guidance, and they correspond to357

flatter probability distributions that yield more stable gradient updates when incorporating ground358

truth information. This approach controls the policy shift by focusing learning on positions where359

the model is already open to change, rather than forcing updates against strong existing beliefs at360

low-entropy positions.361

A.2 Length-Aligned SFT via Concise Reasoning Trace Rewriting362

To further strengthen our training recipe, we seek better RL initialization via SFT but identified363

generation length mismatches across SFT, RL sampling, and evaluation phases. Full-attention masked364

dLLMs like LLaDA lack KV cache optimization [Wu et al., 2025] by defualt, requiring full-sequence365

attention at every denoising step, which dominates online RL training cost. As a result, we restrict RL366

rollouts to 256 tokens for faster convergence within a reduced exploration space, and evaluation setups367
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in recent work [Zhao et al., 2025, Zhu et al., 2025, Nie et al., 2025] typically use 256–1024 tokens. In368

contrast, popular reasoning SFT corpora (e.g., OpenR1) contain verbose traces often exceeding 10k369

tokens, creating distribution mismatch across SFT, RL, and evaluation, and include repeated reflective370

behaviors unsuited for limited context. To resolve this, we systematically rewrite verbose traces into371

concise, structured forms that preserve logical flow while respecting dLLM computational limits.372

Using LLaMA-4-Maverick [Meta, 2025] with prompts detailed in Section K, we remove redundant373

reflections, condense multi-sentence elaborations into precise, mathematically rigorous statements,374

and retain essential reasoning. Examples of revision length distributions and before/after traces are375

in Sections E and K. Our Length-Aligned SFT trains LLaDA solely on rewritten traces, improving376

RL initialization by avoiding implicit length compression and focusing learning on reasoning quality377

within fixed compute budgets. Empirical results show clear gains over training on verbose traces, and378

we further observe that masked dLLMs benefit from extended training (e.g., 100 epochs) relative to379

AR LLMs, consistent with recent works [Ni and the team, 2025, Prabhudesai et al., 2025].380

B Preliminaries381

B.1 Masked Diffusion Large Language Models382

Masked diffusion LLMs [Austin et al., 2021, Sahoo et al., 2024, Shi et al., 2024, Ou et al., 2024,383

Lou et al., 2024] employ a forward diffusion process that progressively corrupts token sequences x0384

through introduction of mask tokens. This corruption process is parameterized by time t ∈ [0, 1]. At385

any given timestep t, the resulting sequence xt contains partial masking, where each token maintains a386

probability αt of remaining unmasked. The noise schedule αt exhibits strict monotonic decrease with387

respect to t. Complete masking occurs at t = 1, where all tokens in x1 become masked. The training388

procedure for masked dLLMs follows a forward process through definition of αt and a bidirectional389

unmasking predictor fθ with learnable parameters. During each training step, we stochastically390

sample timestep t ∈ [0, 1) and apply token masking according to the designated forward process.391

Given these corrupted sequences, the training objective seeks to recover the original tokens. The392

standard optimization criterion employs the negative evidence lower bound (NELBO), which provides393

an upper bound for the negative log-likelihood (NLL) of the training data. For masked dLLMs,394

this NELBO reduces to a weighted NLL formulation, with weighting coefficients derived from395

transformations of αt [Sahoo et al., 2024, Equation (10)]. For example, LLaDA [Nie et al., 2025]396

specifies the forward process through αt = 1− t, yielding the following NELBO formulation:397

−Et∼U [0,1), x0∼pdata, xt∼qt|0(xt|x0)

1
t

|xt|∑
k=1

1[xk
t = mask] log fθ(xk

0 | xt)

 , (3)

where |xt| denotes the sequence length of x, and xk represents the k-th token position. The loss398

computation is restricted to tokens masked at timestep t.399

During prompt conditional generation, the model starts with a sequence where prompt tokens remain400

unmasked and continuation tokens are initially masked, then progressively unmasks the continuation401

tokens through ancestral sampling from the reverse process pθ(xs | xt) for timesteps t > s, where402

the model fθ provides the denoising predictions for masked positions. The reverse process maintains403

the property that unmasked tokens are carried over unchanged throughout all denoising steps.404

B.2 Policy Optimization for Masked Diffusion Large Language Models405

Policy-gradient methods have gained widespread adoption for post-training LLMs [Ouyang et al.,406

2022, Bai et al., 2022, Li et al., 2023, Ahmadian et al., 2024]. Online RL—particularly Group407

Relative Policy Optimization (GRPO)—has proved effective for improving language models [Shao408

et al., 2024, Guo et al., 2025, Team et al., 2025]. GRPO [Shao et al., 2024] offers a computationally409

efficient alternative to PPO [Schulman et al., 2017] by using group-based statistics for advantage410

estimation, avoiding separate value-function training.411

The GRPO objective integrates clipping for stability and reverse KL regularization:412

LGRPO(θ) = E q∼D
o1,...,oG∼πθold (·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

min
(
ρkiAi, clip

(
ρki , 1− ε, 1 + ε

)
Ai

)
− βDKL [πθ(·|q)∥πref(·|q)]

 , (4)
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where ρki =
πθ(o

k
i |q,o

<k
i )

πθold (o
k
i |q,o

<k
i )

is the likelihood ratio.413

For a query q, GRPO samples G responses {o1, . . . , oG} from the behavior policy πθold and assigns a414

single sequence-level advantage per response. Following Liu et al. [2025b], we use the unnormalized415

group-relative advantage Ai = r(oi) − 1
G

∑G
j=1 r(oj), where r is the reward function. This scalar416

Ai is shared by all tokens in oi when forming the tokenwise objective.417

Applying Policy Gradient Methods to Diffusion LLMs Applying GRPO to dLLMs is nontriv-418

ial. The objective in Equation (4) requires (i) token-level probabilities for importance ratios and419

(ii) sequence-level probabilities for KL regularization. Autoregressive models provide per-token420

conditionals via sequential factorization, enabling one-pass sequence scoring by the chain rule:421

log πAR(o | q) =
∑|o|

k=1 log πAR(o
k | q, o<k). Accordingly, the reverse-KL decomposes as422

DKL

[
πθ(· | q)

∥∥πref(· | q)
]
= Eo∼πθ(·|q)

 |o|∑
k=1

log
πθ(o

k | q, o<k)

πref(ok | q, o<k)

 . (5)

In contrast, dLLMs do not admit a sequential factorization of π(o | q). dLLM’s generation invokes the423

unmasking predictor fθ across M denoising steps, making πθ a composition of M mappings. Exact424

tokenwise probabilities would require marginalization over denoising trajectories and maintaining425

(and differentiating through) full denoising trajectories, which is computationally prohibitive. To426

address this, recent work develops efficient approximations for policy optimization in masked427

diffusion LLMs. DiffuGRPO [Zhao et al., 2025] employs a mean-field approximation that yields428

single-pass estimates of both token-level and sequence-level terms, replacing explicit multi-step429

unrolling with a single-sample Monte Carlo estimate. While this introduces bias relative to the430

exact diffusion policy, it provides a practical framework for GRPO-style optimization on dLLMs.431

In our method, we adopt the mean-field estimators of Zhao et al. [2025] to compute the token-level432

importance ratios ρki and the reverse-KL term with one forward pass per policy.433

C Related Work434

C.1 Diffusion Language Models435

Diffusion language models was first explored through continuous approaches that map discrete text436

to continuous representations, including learned embeddings, sequence-to-sequence conditioning,437

and binary bit representations [Chen et al., 2022, Li et al., 2022, Gong et al., 2023]. Recently, discrete438

diffusion language models have been scaled up significantly, with masked diffusion established as a439

specific instance of discrete diffusion [Austin et al., 2021, Sahoo et al., 2024, Shi et al., 2024, Ou440

et al., 2024, Nie et al., 2024]. Notable developments include DiffuLLaMA [Gong et al., 2025a] and441

Dream [Ye et al., 2025], both adapted from pretrained autoregressive LLMs. LLaDA [Nie et al.,442

2025] represents a breakthrough as a masked diffusion LLM trained from scratch using full-attention,443

achieving performance comparable to similarly-sized autoregressive models. These approaches are444

predominantly based on masked modeling. Unlike these full-attention dLLMs, Block Diffusion445

[Arriola et al., 2025] introduced a hybrid approach that models sequences block-by-block while446

applying diffusion within each block, enabling flexible length generation and improved inference447

efficiency through kv-caching. Recent commercial models like Mercury [Inception Labs et al., 2025]448

and Gemini Diffusion [DeepMind, 2025] have demonstrated the practical viability of diffusion-based449

code generation, achieving performance comparable to leading autoregressive models while offering450

significantly faster inference. More recent works have introduced caching and parallel decoding451

algorithms [Wu et al., 2025, Liu et al., 2025a, Ma et al., 2025, Israel et al., 2025, Sahoo et al., 2025,452

Hu et al., 2025] that significantly improve inference efficiency for masked diffusion language models.453

In this work, we focus on full-attention masked dLLMs.454

C.2 Reinforcement Learning for Diffusion Language Models455

Applying reinforcement learning to diffusion language models presents unique challenges compared456

to autoregressive models. The primary obstacle is the intractability of likelihood functions in457

diffusion models, which necessitates approximating response likelihoods for policy optimization. This458
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requirement introduces computational overhead and potential bias, particularly when approximation459

errors occur in policy ratios used for importance sampling. d1 proposed diffu-GRPO [Zhao et al.,460

2025] which adopts an efficient approximation through mean-field approximation. MMaDA [Yang461

et al., 2025] and diffucoder’s coupled-GRPO [Gong et al., 2025b] further improve the masking462

strategy in log probabilities estimation to achieve better learning efficiency. LLaDA 1.5 [Zhu et al.,463

2025] tackles the variance issues in ELBO-based likelihood estimates through preference optimization.464

Recently, wd1 [Tang et al., 2025] addresses these challenges by reformulating policy optimization as465

a weighted likelihood objective that eliminates the need for policy ratios. SDPO [Han et al., 2025]466

decomposes the diffusion trajectory alignment problem into stepwise subproblems that align the467

posterior at each diffusion step. Our inpainting method can also be applicable to some of the above468

online RL methods.469

Additionally, a closely related work in RL for AR LLMs is Prefix-RFT [Huang et al., 2025], which470

samples prefixes from demonstrations to guide online exploration, though this is limited to left-471

to-right sequential generation that does not leverage the bidirectional conditioning capabilities of472

diffusion LLMs.473

D Detailed Experiments Results474
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Figure 5: RL training curves of IGPO versus normal GRPO sampling. (a) Starting from LLaDA-
8B-Instruct. (b) Starting from the length-aligned SFT checkpoint. IGPO exhibits superior and
more stable training performance under both initialization checkpoints compared to standard GRPO
sampling. Results are averaged over 3 random seeds across four mathematical reasoning benchmarks
(GSM8K, MATH500, AMC and Minerva Math), with standard errors shown as shaded regions.

E Length-Aligned SFT: SFT trace revision length distribution comparison475

As illustrated in Figure 6, the original OpenR1-Math-220K dataset exhibits substantial token length476

diversity, with reasoning traces extending beyond 10,000 tokens while LLaDA’s maximum context477

length is only 4096 tokens. Naively applying SFT on this dataset would result in many truncated478

sequences, and even for samples within the 4096-token limit, significant distribution mismatch479

persists across training phases—we use 256 tokens for RL sampling and 512 tokens for evaluation.480

Our rewriting using LLaMA-4-Maverick successfully constrains all traces to under 1500 tokens,481

creating alignment between SFT training, RL sampling, and evaluation phases. Additionally, while482

reflective behavior has been found helpful for LLaDA in prior work [Zhao et al., 2025], the excessive483

repeated reflective patterns in the original dataset are unsuitable for its constrained generation space.484

The rewriting process eliminates this redundancy while preserving essential reasoning structure.485
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Figure 6: Token Length Distribution of SFT Dataset Before and After Revision. Comparison of
token length distributions for the OpenR1-Math-220K dataset (94k math problems). After revision
using LLaMA-4-Maverick, token lengths are constrained to below 1500 tokens, eliminating the
extreme range of the original dataset where traces could exceed 20,000 tokens. This addresses the
generation length mismatch across SFT training, RL sampling (256 tokens), and evaluation (512
tokens) phases.

F Temperature Selection for RL Training486

Following the methodology established by Polaris An et al. [2025] for scaling reinforcement learning487

on advanced reasoning models, we conduct a systematic analysis to determine the optimal sampling488

temperature for our RL training process. We evaluate our model’s performance across different489

sampling temperatures by analyzing both Pass@5 and Average@5 scores on the MATH500 dataset.490

We also divide three temperature regions: low temperatures (≤ 0.8) yield high accuracy but reduced491

diversity in generated rollouts, restricting the model’s ability to explore diverse reasoning paths; high492

temperatures (≥ 1.6) preserve rollout diversity but significantly degrade accuracy due to increased493

noise in token generation; and the middle Controlled Exploration Zone (0.9-1.5) provides the optimal494

trade-off between maintaining reasonable accuracy and achieving sufficient diversity for effective RL495

training. Based on this analysis, we select temperature T = 1.2 to balance exploration with sample496

quality and provide sufficient diversity for RL training.497

Figure 7: Performance analysis across different sampling temperatures on MATH500. The plot shows
Pass@5 and Average@5 scores, revealing three distinct regions: low temperatures with high accuracy
but low diversity, high temperatures with preserved diversity but degraded accuracy, and the middle
region offering the desired trade-off. We select T = 1.2 for our RL training.
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G Ablation: SFT on hint traces then apply GRPO vs IGPO498

In our RL training setup, we assume access to ground-truth reasoning traces for every query in499

the training dataset. To investigate whether direct supervised fine-tuning on these traces provides500

comparable benefits to our elastic inpainting approach, we conduct an ablation study comparing501

two strategies: (1) applying SFT on the RL dataset’s reasoning traces followed by standard GRPO502

sampling, versus (2) directly applying IGPO with elastic hint injection only when all generated503

responses are incorrect.504

Specifically, we first fine-tune the LLaDA-8B-Instruct model on the MetaMath dataset’s reasoning505

traces for 20 epochs, then apply standard GRPO sampling. We compare this against our IGPO506

approach, which selectively injects partial reasoning hints from the same MetaMath dataset only507

when zero-advantage scenarios occur (i.e., when all sampled responses yield incorrect rewards).508

The results in Figure 8 demonstrate that IGPO consistently outperforms the SFT-first variant. Notably,509

after SFT on the MetaMath dataset for 20 epochs, the model’s initial performance drops significantly510

compared to the original LLaDA-8B-Instruct baseline. This degradation occurs because the MetaMath511

dataset contains very concise reasoning traces, many shorter than our 256-token generation length512

limit. Consequently, the model adopts overly concise reasoning patterns that prove insufficient for513

the challenging problems in our evaluation benchmarks (such as AMC and Minerva).514

While subsequent RL training can recover performance to some extent—as evidenced by the rapid515

improvement in early training steps—it ultimately fails to match the effectiveness of IGPO. This516

comparison highlights two key advantages of our approach: (1) the effectiveness of applying inpaint-517

ing guidance selectively only when the model struggles with specific queries, rather than forcing a518

uniform reasoning style through SFT, and (2) the critical importance of reducing all-wrong group519

occurrences, which successfully recovers gradient signals from otherwise degenerate zero-advantage520

scenarios.521
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Figure 8: Comparison of SFT-first approach versus direct IGPO application. The SFT-first strategy
involves fine-tuning on MetaMath reasoning traces for 20 epochs followed by standard GRPO, while
IGPO applies inpainting-guided exploration elastically only during zero-advantage scenarios. IGPO
demonstrates superior and more stable performance, avoiding the performance degradation caused by
overly concise reasoning patterns learned during SFT on short traces. Results are averaged across
four mathematical reasoning benchmarks with standard errors shown as shaded regions.
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H Experiments Hyperparameters522

Table 2: Training Hyperparameters
Parameter Value

SFT Training Parameters
Per Device Train Batch Size 4
Hardware Configuration 8×8 H100 GPUs
Gradient Accumulation Steps 8
Learning Rate 5× 10−6

LR Schedule Warmup-stable-decay
LR Warmup Steps 200
LR Min Value 1× 10−6

LR Decay Period Final 10% of steps
Number of Epochs 100

RL Sampling Parameters
RL Online Sampling Generation Length L 256
Diffusion Steps 128
Block Length 32
Sampling Temperature 1.2
Generations Per Group G 8

RL Training Parameters
Per Device Train Batch Size 8
Hardware Configuration 8×8 H100 GPUs
Gradient Accumulation Steps 1
Effective Batch Size 512
KL Beta β 0.01
Policy Gradient Inner Iterations per Generation µ 4
Learning Rate 5× 10−7

LR Schedule Linear decay to 0
LR Warmup Steps 50
LR Decay Period 10 epochs
Training Steps 1440
Clip Ratio Epsilon ε 0.2

IGPO Specific Parameters
Chunk Size |cj | ∼ U [smin, smax] U [5, 10]
Inpainting Ratio ηi ∼ U [ηlow, ηhigh] U [0.2, 0.6]
replacement fraction λ 0.5
Entropy-based Gradient Filtering for Inpainted Tokens τ 0.2
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I Inpainting Generation Qualitative Examples523

Blue text: Question Prompt Green text: Injected Hints Black text: Inpainted Generation

Problem: Circle C has radius 6 cm. How many square centimeters are in the area of the largest possible
inscribed triangle having one side as a diameter of circle C?

Inpainting Input At Denosing Step 0:

<|start_header_id|>user<|end_header_id|>
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
\ boxed{<Your answer>}
</answer>
Circle $C$ has radius 6 cm. How many square centimeters are in the area
of the largest possible inscribed triangle having one side as a diameter of
circle $C$?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

<|mdm_mask|><|mdm_mask|>...<|mdm_mask|>
Since the diameter is twice the radius, the base of the triangle will have
length $2 \ times 6 = 12$ cm.
To <|mdm_mask|>...<|mdm_mask|> , we want the height to be as large
<|mdm_mask|>...<|mdm_mask|>
of the triangle is the distance from the midpoint of the base to the
circumference of the circle.
This is equal to the radius of the circle, <|mdm_mask|>...<|mdm_mask|>
<|mdm_mask|>...<|mdm_mask|> <|mdm_mask|>...<|mdm_mask|>
12 \ times <|mdm_mask|>...<|mdm_mask|>

Inpainted Generation After Denoising:

<reasoning>
We know to find the largest possible inscribed triangle in circle $C$, the base
of the triangle should be the diameter of the circle.
Since the diameter is twice the radius, the base of the triangle will have
length $2 \ times 6 = 12$ cm.
To find the largest possible area of the triangle, we want the height to be
as large as possible.
The largest possible height of the triangle is the distance from the midpoint of
the base to the
circumference of the circle.
This is equal to the radius of the circle, which is 6 cm.
Therefore, the area of the largest possible inscribed triangle is given by the
formula for the area of a triangle, which is $$\ frac{1}{2} \ times \ textbase
\ times \ textheight = \ frac{1}{2} \ times 12 \ times 6 = 36$$ square centimeters.
</reasoning>
<answer>
\ boxed{36}
</answer>
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J Evaluation Hyperparameters524

We evaluate all models with a fixed decoding setup per benchmark. Unless otherwise noted, the same525

prompts and decoding hyperparameters are applied to both LLaDA-8B-Instruct and LLaDA-1.5.526

Table 3: Evaluation hyperparameters by benchmark.
Benchmark Temp. Block Len. Diffusion Steps Gen. Len. Metric

GSM8K 0.0 32 512 512 pass@1
MATH500 0.0 32 512 512 pass@1
AMC 0.5 128 512 512 avg@16
Minerva 0.0 128 512 512 pass@1

K Prompt for SFT traces revision527

Prompt for SFT traces revision sent to LLaMA 4 Maverick

Please rewrite the original solution to make it more concise and easier to understand without
changing the details. Please put the explanation in the solution between <reasoning> and
</reasoning> and put the final numerical answer between <answer> and </answer> in
boxed format. Please shorten or rewrite the rewritten solution to a random length between
100 and 1000 words while keeping sufficient details of the reasoning steps. Please do not
return anything other than the rewritten solution.
Example:
<reasoning>
xxx
</reasoning>

<answer>
\boxed{14}
</answer>
Original solution: {generations}.
Your response:
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SFT trace before rewritten by LLaMA 4 Maverick
Problem: Find all primes between 1 and 15.

<think>
Okay, so I need to find all the prime numbers between 1 and 15. Hmm, let’s start by
remembering what a prime number is. From what I recall, a prime number is a natural
number greater than 1 that has no positive divisors other than 1 and itself. So, numbers like 2,
3, 5, etc., are primes because you can’t divide them evenly by any other number besides 1 and
the number itself. On the other hand, numbers like 4, 6, 8, and so on are not primes because
they can be divided by other numbers. For example, 4 can be divided by 2, so it’s not prime.
Alright, so the task is to list all primes between 1 and 15. Let me list out all numbers from 1
to 15 first to check them one by one. The numbers are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15.
Now, let’s go through each number and see if it’s prime. Starting with 1. Wait, I remember
that by definition, prime numbers are greater than 1. So 1 is not considered a prime. So we
can skip 1.
Next up is 2. Let’s check if 2 is prime. The divisors of 2 are 1 and 2. There are no other
divisors, so yes, 2 is a prime number.
Moving on to 3. Similarly, the divisors are 1 and 3. No other numbers divide into 3, so 3 is
prime.
Next is 4. Let’s check divisors. 4 divided by 2 is 2, which is an integer, so 4 is not prime. It
can be divided by 2, so it’s composite.
Then 5. The divisors of 5 are 1 and 5. No other numbers divide into 5, so 5 is prime.
6. Checking divisors. 6 divided by 2 is 3, so it’s divisible by 2 and 3. Not prime.
7. Divisors are 1 and 7. No other divisors, so 7 is prime.
8. Divided by 2 gives 4, so 8 is not prime.
9. Divided by 3 gives 3, so 9 is not prime (since 3 times 3 is 9).
10. Divided by 2 is 5, so 10 is not prime.
11. Let’s see, 11. Divided by 2? 11 divided by 2 is 5.5, not an integer. Divided by 3? 11
divided by 3 is approximately 3.666... Not an integer. Divided by 4? 2.75, nope. 5? 2.2, nope.
Since 11 is a prime number because none of these divisions result in integers, so 11 is prime.
12. Divided by 2 is 6, so composite.
13. Checking divisors. 13 divided by 2 is 6.5, 13 divided by 3 is about 4.333..., 4? 3.25, 5?
2.6, 6? 2.166... None of these are integers. So 13 is prime.
14. Divided by 2 is 7, so composite.
15. Divided by 3 is 5, so composite.
Let me recap the numbers between 1 and 15 and their primality:
1: Not prime
2: Prime
3: Prime
4: Not
5: Prime
6: Not
7: Prime
8: Not
9: Not
10: Not
11: Prime
12: Not
13: Prime
14: Not
15: Not
So compiling the primes from this list: 2, 3, 5, 7, 11, 13.
Wait a second, let me verify each one again just to be sure I didn’t make a mistake.
Starting with 2: Definitely prime. It’s the only even prime.
3: Prime, yes.
5: Prime, yes.
7: Prime. Correct.

19



11: Let’s check again. 11 divided by 2 is not whole. 3? 3*3 is 9, 3*4 is 12. So no. 5? 5*2 is
10, 5*3 is 15. So 11 is prime.
13: Similarly, 13 divided by 2 is 6.5, 3 is 4.333, 5 is 2.6. So, prime.
Yes, those all check out. So primes between 1 and 15 are 2, 3, 5, 7, 11, and 13.
But hold on, sometimes people might make a mistake with 9. Wait, 9 is 3 times 3, so that’s
composite, which I had down. 15 is 3 times 5, composite. So all the non-primes are accounted
for.
Is there any number I might have missed? Let’s see. Let’s list all numbers again:
2, 3, 5, 7, 11, 13. Are there any others?
Well, 1 is excluded. 4,6,8,9,10,12,14,15 are composite. So no, those six numbers are all
primes between 1 and 15.
Wait, but the question says "between 1 and 15." Does that include 15? Hmm, the wording
is "between 1 and 15," which could be a bit ambiguous. But usually, when someone says
"between 1 and 15," they mean including both endpoints. However, since 15 is composite,
it’s excluded either way. So primes are 2,3,5,7,11,13.
Yes, that seems correct. I don’t think I made any mistakes here. Let me cross-verify with
another method, like the Sieve of Eratosthenes. The Sieve is a method where you list all
numbers and cross out multiples.
Starting with 2, cross out multiples: 4,6,8,10,12,14.
Then 3, cross out multiples: 6,9,12,15.
Then 5, cross out 10,15.
7, cross out 14.
11 and 13 are primes, and their multiples are beyond 15. So remaining numbers are
2,3,5,7,11,13. Which matches our previous list.
Therefore, the primes between 1 and 15 are 2,3,5,7,11,13.
**Final Answer**
The primes between 1 and 15 are 2 , 3 , 5 , 7 , 11 , and 13 .
</think>
To find all the prime numbers between 1 and 15, we start by recalling that a prime number is
a natural number greater than 1 that has no positive divisors other than 1 and itself. We then
check each number from 1 to 15:
- **1**: Not a prime number (by definition).
- **2**: Prime (divisors: 1, 2).
- **3**: Prime (divisors: 1, 3).
- **4**: Not prime (divisible by 2).
- **5**: Prime (divisors: 1, 5).
- **6**: Not prime (divisible by 2, 3).
- **7**: Prime (divisors: 1, 7).
- **8**: Not prime (divisible by 2).
- **9**: Not prime (divisible by 3).
- **10**: Not prime (divisible by 2, 5).
- **11**: Prime (divisors: 1, 11).
- **12**: Not prime (divisible by 2, 3, 4, 6).
- **13**: Prime (divisors: 1, 13).
- **14**: Not prime (divisible by 2, 7).
- **15**: Not prime (divisible by 3, 5).
Using the Sieve of Eratosthenes method to cross out non-prime numbers confirms the primes
listed above. Therefore, the prime numbers between 1 and 15 are:

2 , 3 , 5 , 7 , 11 , 13
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SFT trace after rewritten by LLaMA 4 Maverick
Problem: Find all primes between 1 and 15.

<reasoning>
To find all the prime numbers between 1 and 15, we recall that a prime number is a natural
number greater than 1 that has no positive divisors other than 1 and itself.
We then check each number from 1 to 15 to determine if it is prime.
- **1**: Not a prime number (by definition).
- **2**: Prime (divisors: 1, 2).
- **3**: Prime (divisors: 1, 3).
- **4**: Not prime (divisible by 2).
- **5**: Prime (divisors: 1, 5).
- **6**: Not prime (divisible by 2, 3).
- **7**: Prime (divisors: 1, 7).
- **8**: Not prime (divisible by 2).
- **9**: Not prime (divisible by 3).
- **10**: Not prime (divisible by 2, 5).
- **11**: Prime (divisors: 1, 11).
- **12**: Not prime (divisible by 2, 3, 4, 6).
- **13**: Prime (divisors: 1, 13).
- **14**: Not prime (divisible by 2, 7).
- **15**: Not prime (divisible by 3, 5).
The Sieve of Eratosthenes method confirms the primes listed above.
</reasoning>
<answer>
2, 3, 5, 7, 11, 13

</answer>
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