©® N o g b~ @ N =

w N = o ©

15
16
17
18
19
20
21

Inpainting-Guided Policy Optimization for Diffusion
Large Language Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

Masked diffusion large language models (dLLMs) are emerging as promising alter-
natives to autoregressive LLMs, offering competitive performance while supporting
unique generation capabilities such as inpainting. We explore how inpainting can
inform RL algorithm design for dLLMs by addressing a key challenge: sparse
reward signals and sample waste when LLM:s fail to discover correct solutions. We
introduce IGPO (Inpainting Guided Policy Optimization), an RL framework that
strategically injects partial ground-truth reasoning traces during online sampling
to guide exploration toward promising trajectory spaces while preserving self-
generated reasoning. Applied to group-based optimization methods like GRPO,
IGPO restores meaningful gradients when exploration failures cause zero advan-
tages. Combined with supervised fine-tuning on synthetically rewritten concise
traces and entropy-based filtering, our approach achieves state-of-the-art perfor-
mance on four mathematical benchmarks across full-attention based dLLMs.

(a) Masked dLLM Inpainting-Guided Sampling (b) IGPO Performance & All-Wrong Groups Reduction
, RL from LLaDA-Instruct Al-Wrong Groups Ratio During RL Training
Problem: "Joy can read 8 pages of a book in 20 minutes. How many hours will it take her : o))
10 read 120 pages?"
At Denoising Step o:
[MASK] ... [MASK] 8*3=24

AllWrong Group Ratio

[MASK] ... [MASK] will take her 120/ [MASK] ... [MASK]

[MASK] ... [MASK] RLTraining Steps

|
Iterative Denoising Steps ...

(©C i with Prior hod
Final Generation: LaDA 8. nstruct ream 76w d1LLa0A

GsmaK Maths00
There are 3 x 20 minutes in an hour, so Joy will read 8*3=24
pages per hour. So,it will take her 120/ 24 = 5 hours to

read all pages. Therefore, the answer to this problem is 5. [

Fixed Hint Chunks Inpainted Generation [MASK] Tokens

Score (%)

Figure 1: (a) Unlike autoregressive LLMs, diffusion LLMs can be conditioned on future reasoning
hints during generation through inpainting via bidirectional attention, enabling guided exploration
toward correct solutions. (b) Applying inpainting-guided exploration in policy optimization outper-
forms standard GRPO sampling and reduces all-wrong groups occurrences. (c) Our full training
recipe combining Length-Aligned SFT on concise reasoning traces with IGPO achieves SoTA perfor-
mance among full-attention masked dLLMs across four mathematical reasoning benchmarks.

1 Introduction

Recent works have shown that masked diffusion large language models (dLLMs) [Austin et al.,
2021, Shi et al., 2024, Nie et al., 2025, Ye et al., 2025] can achieve performance competitive
with autoregressive LLMs of similar size. Their capabilities can be further enhanced via RL post-
training [Zhao et al., 2025, Gong et al., 2025b, Yang et al., 2025]. Unlike autoregressive LLMs,
which decode left-to-right, dLLMs iteratively unmask tokens in parallel, enabling faster inference as
shown in Mercury [Inception Labs et al., 2025] and Gemini Diffusion [DeepMind, 2025], along with
flexible operations such as inpainting—the ability to fill missing content within existing text. Recent

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

22
23
24
25
26

27
28
29
30
31
32
33
34
35
36

37
38
39
40

M
42
43

44
45
46

47
48
49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Figure 2: Overview of IGPO: When

Initial RL Sampling Group Inpainting-Guided Policy Optimization : ’ . ‘
Genertion Area A1 1) Toens) sampled responses yield identical in-
C o | {DIDDDMD QDMDPJ (hemmzo] correct rewards, we generate addi-
(BT T tional responses using ground truth
ECEEOCEO0] ey CON@ fesponses using 8

o Groen: Fixed chunke | Red: npalated Generations hints via inpainting and rep]ace some
advantages = 0 esponse 4 (63) i T = . . .
Ground T - Inpainted Generations @ with correct inpainted ones to create
round Truth Reasoning Traces - = — *
e G o mimd) g (s DON-ZeTO advantage.

Green: Selected chunks for inpainting Only successful generations (r > 0) added to group

post-training work for dLLMs has adopted approaches similar to autoregressive LLMs, applying
RLVR methods [Zhao et al., 2025, Yang et al., 2025, Gong et al., 2025b]. In RLVR, a fundamental
exploration challenge persists: for difficult tasks, policies struggle to discover correct solutions and
binary rewards provide minimal learning signal when most generated solutions are incorrect, leading
to substantial sample waste and poor training efficiency.

The bidirectional structure of dLLMs provides a unique mechanism to address this challenge. Since
dLLMs are trained through stochastic masking, they possess inherent capability for inpainting with
externally provided partial hints. We leverage this to introduce IGPO (Inpainting Guided Policy
Optimization), a novel RL framework that strategically guides exploration by injecting reasoning hints
for difficult problems. When the policy is unlikely to generate correct solutions, partial reasoning
traces are injected into the generation region, and the dLLM completes the remaining sequence. Only
successful inpainting completions are used for policy optimization. This approach is particularly
effective for group-based methods like GRPO [Shao et al., 2024], where all-wrong groups collapse
advantage to zero. By reducing all-wrong groups, IGPO restores gradient signals and enables more
effective RL. In summary, our work makes the following key contributions:

* We propose IGPO, the first work to utilize the unique inpainting capabilities of diffusion LLMs
for RL. By strategically injecting partial reasoning traces during exploration, IGPO alleviates sparse
reward inefficiency and mitigates the zero-advantage dilemma in group-based policy optimization
methods, reducing all-wrong groups by approximately 60% (Figure 1 (b)).

* We propose Length-Aligned SFT for full-attention based dLLMs using synthetically rewritten,
concise reasoning traces. This design better aligns SFT data length with RL sampling and evaluation
length, avoiding verbose trace limitations and providing stronger initialization for RL.

¢ QOur training recipe achieves substantial improvements on mathematical benchmarks: +5.3% on
GSMBSK, +8.4% on Math500, +11.4% on AMC, and +4.0% on Minerva relative to LLaDA-
Instruct, achieving SoTA performance among full-attention based dLLMs.

* We conduct comprehensive ablation studies disentangling IGPO mechanisms. We show that partial
inpainting consistently outperforms full ground-truth inpainting by staying closer to the policy
distribution in online RL, and propose entropy-based gradient filtering that stabilizes training.

2 Methods

IGPO: Inpainting Guided Policy Optimization In GRPO, when all G responses {01, ...,0c}
for prompt ¢ receive identical rewards, advantages become zero: A; = r(0;) — é Z]G:l r(o;) =
0, making the policy gradient degenerate. To address this all-wrong case, we introduce IGPO,
which modifies masked dLLM generation. In full-attention masked dLLM generation such as
LLaDA [Zhu et al., 2025], the model input at denoising step 0 is the concatenation [¢; zpask), Where
q represents the prompt and zp,s, denotes a fully masked completion sequence of predetermined
length. The generation process progressively unmasks these positions through iterative denoising
until producing the final output. IGPO fixes selected positions of zy,s to ground-truth tokens from
reasoning trace y*. As shown in Figure 2, IGPO triggers hint injection only when all responses
yield incorrect rewards, segmenting y* into variable-length chunks with sizes from U [Smin, Smax] and
randomly selecting |7 - IV | chunks for injection with ratio 17 ~ U [iw, Thign]. We generate additional
responses {01, ...,0¢} through inpainting, then replace K = min(|{5; : r(6;) = 1}|, | \G])
original responses with correct inpainted ones. The IGPO objective modifies GRPO by including
verified correct inpainted responses. We also design an entropy-based gradient filtering technique
for learning stability, where we only apply gradient updates on hint tokens where the model exhibits
sufficient uncertainty, updating only the top 7 percentile of hint positions with highest entropy. A
detailed method description is in Appendix A.1.

68
69
70
71
72
73
74
75

76

77
78
79
80
81
82
83
84
85
86
87
88

89

90
91
92
93
94
95
96
97
98
99

Length-Aligned SFT via Concise Reasoning Trace Rewriting Full-attention masked dLLMs
lack KV cache optimization by default, requiring full-sequence attention at every denoising step. We
restrict RL rollouts to 256 tokens, but popular reasoning SFT corpora contain verbose traces often
exceeding 10k tokens and evaluation of recent dLLMs often only requires less than 1024 tokens on
mathmatical benchmarks [Zhu et al., 2025], creating distribution mismatch. We systematically rewrite
verbose traces into concise forms using LLaMA-4-Maverick [Meta, 2025], removing redundant
reflections while preserving essential reasoning. Our Length-Aligned SFT trains exclusively on
rewritten traces, providing better RL initialization within fixed computational bounds.

3 Experiments

To investigate how the inpainting capabilities of masked dLLMs can address exploration challenges
in RL and how Length-Aligned SFT improves performance, we conduct comprehensive experiments
using a two-stage training pipeline. Stage 1: Supervised Fine-Tuning with Rewritten Traces. We
begin with Length-Aligned SFT on the LLaDA-8B-Instruct model using the OpenR 1-Math-220K
dataset [Cobbe et al., 2021] with all reasoning traces rewritten to ensure consistency between training
distribution and downstream RL/evaluation phases. Stage 2: Reinforcement Learning with IGPO.
Following Length-aligned SFT, we apply IGPO using reasoning traces from the MetaMathQA
dataset [Yu et al., 2023] for strategic inpainting-guided policy optimization. We evaluate our approach
on four mathematics benchmarks: GSMS8K [Cobbe et al., 2021], MATHS500 [Hendrycks et al., 2021],
AMC [LI et al., 2024] and Minerva Math [Lewkowycz et al., 2022]. Experiments are conducted using
LLaDA-8B-Instruct as the base model with sampling temperature of 1.2 for RL online generation,
with detailed hyperparameters and experimental setup provided in Appendix J.

3.1 Main Results and Ablation Studies

GSMSK MATHS500 AMC Minerva

Table 1: Performance across Medel (pass@1) (pass@l) (avg@16) (pass@l) AVerage
multlple mathematics taSkS Similar-sized autoregressive LLMs
. L " LLaMA3-8B [Al@Meta, 2024] 79.6 30.0 _ _ _
Underlined scores indicate gwen2.5-78 [Team, 2024] 85.4 198 - -
the best Wlthln each initial- Prior masked dLLM baselines
ization group. Parenthe_ Dream-7B [Ye et al., 2025] 7.2 39.6 - - -
. . d1-LLaDA [Zhao et al., 2025] 82.1 0.2 - - -
sized deltas typeset via (+) wdl [Tangetal,2025] 82.3 39.0 - - -
LLaDA-1.5 [Zhu et al., 2025] 83.3 426 13.6 8.8 37.1
denote absolute percentage- 1apa imsmct [Nie et al., 2025] 81500 39.000 14.5 9200 36.0
point improvements relative RL from LLaDA-Instruct
to the LLaDA-8B-Instruct LLaDA-Instruct+UniGRPO [Yang et al., 2025] 82.2 150005 11.0¢1s
. aDA-Instruct + Difful ao et al., B 9.9(+1.0) L3 (+1.1)
LLaDA-I; DiffuGRPO [Zh 1., 2025] 82 15.5 10.3
baseline. LLaDA-Instruct + IGPO (ours) 8310116 175030 121409
Length-aligned SFT on LLaDA-Instruct and RL on the SFT checkpoint
LLaDA-Instruct + Length-aligned SFT (ours) 83.6¢21 452062 22.3¢78) 10.3¢1 40.4¢40
LLaDA-Instruct + Length-aligned SFT + IGPO (ours) 86.8+53 47.4¢:s4) 259114 132400 433+
Main results. As shown in Table 1, our training recipe demonstrates consistent improvements across

all mathematical reasoning benchmarks. Length-Aligned SFT on rewritten traces provides substantial
gains over the base LLaDA-8B-Instruct model, with IGPO delivering additional improvements
when applied on top of SFT. As shown in Figure 5, IGPO exhibits superior training dynamics
compared to standard GRPO sampling regardless of initialization point. IGPO effectively reduces
the all-wrong group ratio, as shown in Figure 1(b). Our final model (LLaDA + Length-Aligned
SFT + IGPO) outperforms all baseline approaches including the recent LLaDA-1.5 model across all
evaluated benchmarks. Notably, even without SFT, applying IGPO directly on LLaDA achieves better
performance than previous LLaDA-1.5 and other RL methods for full-attention dLLMs, establishing
a new state-of-the-art recipe for mathematical reasoning in masked diffusion language models.

Hint Inject Ratio Comparison

0470 — Hint Inject Ratio = 1.0
Hint Inject Ratio ~ U[0.2, 0.6]
~e= without Inpaint

Figure 3: Impact of hint injection ratio across 3 datasets (GSM8K,
MATHS500, AMC) and 3 seeds with standard error as shaded areas.
_.-== | Partial hint injection (1 ~ U[0.2, 0.6]) consistently outperforms full
hint injection (n = 1.0), demonstrating benefits of self-generated
/ - | reasoning. Both variants outperform baseline without hint injection.

04451 J

5
& &
g &

& &
g &
,
Y

Average Accuracy across 3 Benchmarks

0 200 400 600 800 1000 1200 1400
RL Training Steps

100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117

118
119
120
121
122
123
124

125
126
127
128
129
130
131

132

133
134
135
136
137

139

Entropy-based Gradient Filtering for Hint Tokens (on GSM8K) Length-Aligned SFT vs SFT on orginial traces (on GSM8K)
0.89

0.88

e o —e
082
e/ 2 0.84 =\./ \. 0.87
088 e—®7 \ \./‘ -0/ ¢ 06| ® 0.80
) . * | g0 r— g 3
2 g / 2085 Qo078
£ Y H 7 8

0.82 / 0.84 076
1 SFT o
0.861 —®= All positions (1=100%) ~®- Al positions (t=100%) 083 SFT or
Top 20% entropy positions / Top 20% entropy positions 082 SFTo

-~ Top 80% entropy positions d @~ Top 80% entropy positions SFTo
085 081
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

RL Training Steps RL Training Steps RLTraining Steps RL Training Steps

SFT on rey
0.74 SFT o
SFTon
0.72 SFT on

(a) (b)
Figure 4: (a) Impact of entropy clipping threshold on hint tokens. Performance comparison across
different entropy clipping thresholds in IGPO, where 7 = 0.2 learns from top 20% highest-entropy
hint positions while 7 = 1.0 learns from all positions. (b) SFT and RL dynamics with rewritten vs.
original traces. Models fine-tuned on concise rewritten traces (< 1024 tokens) vs original OpenR1-
Math traces (truncated at 4096 tokens). Rewritten traces yield stronger SFT and RL performance.

Self-generated inpainted traces provide better learning signal than ground truth traces. Fig-
ure 3 shows partial hint injection achieves higher performance than full hint injection. With lower
hint injection ratios, the model generates self-rationalized inpainting traces (Section I), adding only
those leading to correct solutions for gradient updates. Through inpainting, the model coherently
connects provided hint chunks with its own reasoning steps. Inpainted generation produces learning
signals bridging the gap between current capabilities and target behavior. Self-generated portions
reflect current reasoning patterns and are more "on-policy" while incorporating structural guidance
from ground truth chunks, resulting in more effective policy optimization than pure supervised
learning by reducing distributional mismatch. This bridging of SFT and online RL through partial
self-generation enables more effective policy optimization.

Entropy clipping prevents training instability from off-policy tokens. Figure 4a shows learning
from only the top 20% highest-entropy hint token positions (7 = 0.2) achieves the best performance
and exhibits the most stable training dynamics. In contrast, learning from all hint token positions
(7 = 1.0) or a large fraction (7 = 0.8) leads to more unstable training with performance fluctuations
compared to lower values like 0.2. This supports our motivation that restricting gradient updates to
high-entropy positions prevents the destabilizing effects of large gradients on high-entropy positions
on hints tokens, since these injected hint tokens are from ground-truth dataset and are “off-policy” to
the current learning policy.

Effect of reasoning trace rewriting for SFT and subsequent RL training. Figure 4b shows two
key findings. First, SFT on rewritten traces produces substantially stronger checkpoints than original
traces by eliminating verbose reflection and compressing reasoning into concise trajectories aligned
with LLaDA’s generation budget. Second, while RL training partially compensates for weaker SFT
checkpoints, stronger rewritten SFT initialization leads to consistently higher final performance.
IGPO outperforms standard RL across both settings while preserving output diversity and stabilizing
pass@5 performance, whereas standard GRPO exhibits pass@k decline indicating mode collapse.

Elastic inpainting outperforms sequential SFT and GRPO We further validate the effectiveness
of our elastic inpainting approach by comparing it against sequentially performing SFT on the RL
dataset’s reasoning traces followed by standard GRPO (see Section G for details). This ablation
confirms that IGPO’s elastic hint injection during zero-advantage scenarios is superior to uniformly
applying SFT on concise reasoning traces across all prompts before applying GRPO. The uniform
SFT approach can degrade initial performance due to distribution shift in reasoning patterns, whereas
injecting partial hints allows dLLMs to inpaint longer, more “on-policy" reasoning traces.

4 Conclusion

We introduced IGPO, a reinforcement learning algorithm that leverages masked diffusion language
models’ inpainting capabilities to address exploration bottlenecks in RL. By injecting ground-truth
reasoning hints during denoising, IGPO resolves the zero-advantage dilemma and induces reward
variance for effective policy gradient updates. Combined with Length-Aligned SFT and entropy-based
gradient filtering, our approach achieves state-of-the-art performance among full-attention masked
dLLMs on mathematical reasoning benchmarks, demonstrating how architectural properties can be
systematically exploited for RL optimization.

140

141
142
143

144
145

146
147
148
149

150
151
152
153

154
155
156

157
158
159

160
161

162
163
164

165
166

167
168
169

170
171
172
173

174
175
176

177
178
179

181
182

183
184
185

186
187
188

References

Arash Ahrpadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/llama3/blob
/main/MODEL_CARD.md.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu,
Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scaling
reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.github.
io/blog/2025/Polaris.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured

denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981-17993, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Ting Chen, Ruixiang Zhang, and Geoffrey E. Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. ArXiv, abs/2208.04202, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepMind. Gemini diffusion, 2025. URL https://deepmind.google/models/gemini-diffu
sion/.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq: Sequence
to sequence text generation with diffusion models. In International Conference on Learning
Representations, ICLR, 2023.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
models via adaptation from autoregressive models. In The Thirteenth International Conference on
Learning Representations, 2025a.

Shansan Gong, Huangjie Zheng Ruixiang Zhang, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code
generation. 2025b. URL https://arxiv.org/abs/2506.20639.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in Ilms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jiagi Han, Austin Wang, Minkai Xu, Wenda Chu, Meihua Dang, Yisong Yue, and Stefano Ermon.
Discrete diffusion trajectory alignment via stepwise decomposition, 2025. URL https://arxiv.
org/abs/2507.04832.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Zhanqgiu Hu, Jian Meng, Yash Akhauri, Mohamed S. Abdelfattah, Jae sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion, 2025. URL https://arxiv.org/abs/2505.21467.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
https://arxiv.org/abs/2506.20639
https://arxiv.org/abs/2507.04832
https://arxiv.org/abs/2507.04832
https://arxiv.org/abs/2507.04832
https://arxiv.org/abs/2505.21467

189
190
191

192
193
194
195

210
211
212

213
214
215

216
217
218

219
220

221
222

223
224

225
226
227

228
229

230
231
232

234
235

Zeyu Huang, Tianhao Cheng, Zihan Qiu, Zili Wang, Yinghui Xu, Edoardo M. Ponti, and Ivan
Titov. Blending supervised and reinforcement fine-tuning with prefix sampling, 2025. URL
https://arxiv.org/abs/2507.01679.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, and
Volodymyr Kuleshov. Mercury: Ultra-fast language models based on diffusion. 2025. URL
https://arxiv.org/abs/2506.17298.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding, 2025. URL https://arxiv.org/abs/2506.00413.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai
Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems
with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview
.net/forum?id=IFXTZERXdM7.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. Numinamath. https://github.com/project-numin
a/aimo-progress-prize/blob/main/report/numina_dataset.pdf, 2024.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-Im
improves controllable text generation. ArXiv, abs/2205.14217, 2022.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
arXiv preprint arXiv:2310.10505, 2023.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
arXiv preprint arXiv:2506.06295, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Forty-first International Conference on Machine Learning, 2024.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models, 2025. URL https://arxiv.org/abs/2505.15781.

Al Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai. meta. com/blog/llama-4-multimodal-intelligence/, 2025.

Jinjie Ni and the team. Diffusion language models are super data learners. https://jinjieni.n
otion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8£f03a86
6800ab196e49928c019ac, 2025. Notion Blog.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://arxiv.
org/abs/2502.09992.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv:2406.03736, 2024.

https://arxiv.org/abs/2507.01679
https://arxiv.org/abs/2506.17298
https://arxiv.org/abs/2506.00413
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://arxiv.org/abs/2505.15781
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992

236
237
238
239

240
241
242

243
244
245
246
247
248
249

251
252

253
254

255
256
257

259
260
261
262
263
264

265
266
267

268
269
270

271
272

273
274
275

276
277
278

279

281
282
283

284
285

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffusion
beats autoregressive in data-constrained settings, 2025. URL https://arxiv.org/abs/2507.1
5857.

Subham S. Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T. Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models.
In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang, editors, Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems 2024, NeurlPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/p
aper/2024/hash/eb0b13cc515724ab8015bc978fddeOad-Abstract-Conference.html.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models, 2025.
URL https://arxiv.org/abs/2506.01928.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information Processing
Systems 2024, NeurlPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024. URL
http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aeadbebc
c60cef70f-Abstract-Conference.html.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wdl: Weighted policy
optimization for reasoning in diffusion language models, 2025. URL https://arxiv.org/abs/
2507.08838.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.g
ithub.io/blog/qwen2.5/.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding, 2025. URL https://arxiv.org/abs/2505.22618.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. ArXiv preprint, abs/2505.15809, 2025. URL
https://arxiv.org/abs/2505.15809.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

https://arxiv.org/abs/2507.15857
https://arxiv.org/abs/2507.15857
https://arxiv.org/abs/2507.15857
http://papers.nips.cc/paper_files/paper/2024/hash/eb0b13cc515724ab8015bc978fdde0ad-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/eb0b13cc515724ab8015bc978fdde0ad-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/eb0b13cc515724ab8015bc978fdde0ad-Abstract-Conference.html
https://arxiv.org/abs/2506.01928
http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aead5e5cc60cef70f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aead5e5cc60cef70f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aead5e5cc60cef70f-Abstract-Conference.html
https://arxiv.org/abs/2507.08838
https://arxiv.org/abs/2507.08838
https://arxiv.org/abs/2507.08838
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2505.15809
https://hkunlp.github.io/blog/2025/dream

286
287
288

289
290
291
292

@

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqgiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
optimization for large language diffusion models. ArXiv preprint, abs/2505.19223, 2025. URL
https://arxiv.org/abs/2505.19223.

https://arxiv.org/abs/2505.19223

293

294

295

297
298
299
300
301

302
303

304

311

313
314
315

A Detailed Methods

A.1 IGPO: Inpainting Guided Policy Optimization

Zero-Advantage Dilemma. In the GRPO framework, when sampling G responses
{01,092, ...,0¢} for a given prompt ¢, the advantage computation relies on reward variance across
the group. However, when all responses receive identical rewards—either all correct or all incorrect
—the advantages become zero: A; = r(0;)— é 2?21 r(0;) = 0. This zero-advantage scenario makes
the policy gradient component degenerate. Specifically, the clipped surrogate objective collapses to
zero regardless of whether the update lies in the clipped or unclipped region, since both terms contain
A; = 0. The policy gradient for this prompt ¢ therefore becomes:

[o;]

G

1 1

Ie g g A; pfiVglogme(of | q) = 0 since A; = 0 Vi.
i=1 k=1

Joi] £

As a result, no meaningful policy update can be extracted from the reward signal, wasting compute
sampling these responses. In this work, we specifically focus on mitigating the all-wrong case.

Masked dLLM Generation and Inpainting. In full-attention masked dLLLM generation, the
model input at denoising step O is the concatenation [g; zpasx|, Where ¢ represents the prompt and
Zmask = |[mask,mask,...,mask| denotes a fully masked completion sequence of predetermined
length L. The generation process progressively unmasks these positions through iterative denoising
until producing the final output.

Hint injection modifies this formulation by fixing selected positions of zy,sx to ground-truth tokens.
During RL training, we assume access to ground-truth reasoning trace y* = [y}, 5, - . - ’yl*y* |] for

every question ¢. For injection, we create a binary mask m € {0, 1} indicating which positions to
inject as fixed hints, we construct the hint-injected initialization:

hintr:7 _ y;‘ lfm[l] =1landi < |y*‘,

2] = : ey
mask otherwise.

The masked dLLM then performs bidirectional denoising on [g; 2] through the inpainting process,
leveraging both the prompt and injected hint tokens to generate coherent responses. The injected hint
tokens remain fixed throughout the iterative denoising steps.

Algorithm 1 IGPO: Inpainting-Guided Policy Optimization for Masked dLLMs

Require: Reference model 7r, prompt distribution D, ground-truth reasoning traces {y* }, number
of completions per prompt G, number of inner updates y, hint injection ratio range [%iow, Mhigh)»
replacement fraction A, entropy filter threshold 7, chunk size range [Smin, Smax)

1: Initialize 7y < Tref
2: while not converged do
3: Told <— Tp; sample prompt g~ D and responses 01.G ~ Tod(+ | q); compute rewards 1.
4: if all r; = 0 (zero-advantage case) then
5: Segment ground-truth reasoning y* into chunks {c1, ..., cx} with |¢;| ~ U[Smin, Smax]
6: fori=1,...,Gdo
7: Sample hint injection ratio 7 ~ U[Niow, Thign) and select |nN| chunks from
{c1,...,cn} randomly
8: Inject selected chunk tokens as fixed hints at corresponding positions
9: Generate 0, via inpainting: denoise only masked positions, keep hint tokens fixed
10: Evaluate rewards 7(6;) and replace up to | \G | incorrect o; with correct o;
11: Compute advantages A; on the updated response set
12: forn=1,...,udo
13: Estimate log 7y, log moid, log Trer; apply top-7 entropy filter on hint positions
14: Update 7y via Ligpo(#) (Eq. 2)

15: return 7y

316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332

333
334

335
336
337
338
339
340
341
342
343
344
345

346
347
348
349
350
351
352
353

355
356
357
358
359
360
361

362

363
364
365
366
367

Constructing Hint Patterns for Inpainting. To construct meaningful hint patterns for the inpaint-
ing process, we segment the ground truth reasoning trace y* into variable-length contiguous chunks
C = {c1,¢2,...,cn}, where each chunk length |c¢;]| is sampled from U [Smin, Smax]. We explicitly
exclude the final answer tokens from chunking to prevent reward hacking behaviors where the model
ignores reasoning and collapses. For a given hint injection ratio n € [0, 1], we randomly select |n- N |
chunks and set their corresponding positions in the binary mask m to 1 for hint injection.

Elastic Inpainting-Triggered Sampling. With the above inpainting setup, we design IGPO (as in
Algorithm 1) to be elastic: hint injection is only triggered when all sampled responses in a group
yield incorrect rewards (the zero-advantage case), and when activated, both the hint injection ratio n
and chunk sizes (U [Smin, Smax]) are randomized to provide diverse training signals. Concretely, when
detecting that all sampled responses {01, . .., 0¢ } for query ¢ yield identical rewards r(o;) = 0, we
generate an additional set of responses {01, ..., 0¢} through the inpainting process. Each response
0; is generated via inpainting with a distinct hint injection ratio 7; ~ U [Miow, nhigh] to ensure diverse
hint densities. Following inpainting generation, we evaluate the correctness of {0;} and only use the
correct ones for replacement. Specifically, we replace K = min(|{6; : r(6;) = 1}|, | \G]) of the
original incorrect responses with correct responses generated through inpainting, where A € (0, 1)
controls the replacement fraction.

The complete IGPO objective modifies the GRPO formulation by incorporating the augmented
sampling procedure:

ﬁ](;P()(e) =E

anD
{01,-:,0G - K ,01,...6 } ~IGPO-Sample(7g,q,y*)

G L
1 1 & 5 .
(5 > > min (pfAlclip (pF,1—e.14¢) Af)) — 8D [m<»|q>um<»\q>]] :
i=1 "' k=1

@)
where IGPO-Sample(7y, ¢, y*) denotes the augmented sampling procedure that applies inpainting-
based augmentation when zero-advantage scenarios are detected, producing the augmented RL
sampling group {o1,...,06—k,01,...,0x } containing (G — K) original responses and K verified
correct inpainted responses {6; } after replacement. L; denotes the length of the i-th response (whether
o0; or 0;). Crucially, only inpainted responses that pass correctness verification are included in the
augmented group, satisfying 7(6;) = 1. Advantages A; are computed normally. We built IGPO with
DiffuGRPO [Zhao et al., 2025]’s log probability estimation methods, where all completion tokens
are masked during estimation and we remove the random masking applied to prompt tokens as done
in DiffuGRPO. Since we use a small number of policy iterations (i.e. ;1 = 4), this alleviates the
need for random prompt masking to reduce overfitting. Inspired by Zheng et al. [2025], we compute
sequence-level importance-ratio through mean-field approximation for stability purposes.

Entropy-based Gradient Filtering for Hint Tokens. When applying IGPO to zero-advantage
scenarios, the responses generated through inpainting contain ground truth reasoning chunks that
originate from a different distribution than the current policy 7g. This creates an off-policy learning
scenario where gradient updates from ground truth tokens can conflict with the model’s current
beliefs, particularly at positions where the model has high confidence (low entropy). To mitigate
potential training instability from this distribution mismatch, we implement an entropy-based filtering
approach that restricts learning to hint token positions where the model exhibits sufficient uncertainty,
as inspired by Huang et al. [2025]. Specifically, for each hint token position (i.e., positions with
injected ground-truth tokens) we compute the entropy. We then apply gradient updates only to
the top 7 percentile of hint token positions with highest entropy values. This selective learning
strategy serves two purposes: high-entropy positions represent genuine decision boundaries where
the model is naturally uncertain and thus more receptive to external guidance, and they correspond to
flatter probability distributions that yield more stable gradient updates when incorporating ground
truth information. This approach controls the policy shift by focusing learning on positions where
the model is already open to change, rather than forcing updates against strong existing beliefs at
low-entropy positions.

A.2 Length-Aligned SFT via Concise Reasoning Trace Rewriting

To further strengthen our training recipe, we seek better RL initialization via SFT but identified
generation length mismatches across SFT, RL sampling, and evaluation phases. Full-attention masked
dLLMs like LLaDA lack KV cache optimization [Wu et al., 2025] by defualt, requiring full-sequence
attention at every denoising step, which dominates online RL training cost. As a result, we restrict RL
rollouts to 256 tokens for faster convergence within a reduced exploration space, and evaluation setups

10

368
369
370
371
372
373
374
375
376
377
378
379
380

381

382

383
384
385
386
387
388
389
390

392
393
394
395
396
397

398
399

401
402
403
404

405

411

in recent work [Zhao et al., 2025, Zhu et al., 2025, Nie et al., 2025] typically use 256—-1024 tokens. In
contrast, popular reasoning SFT corpora (e.g., OpenR1) contain verbose traces often exceeding 10k
tokens, creating distribution mismatch across SFT, RL, and evaluation, and include repeated reflective
behaviors unsuited for limited context. To resolve this, we systematically rewrite verbose traces into
concise, structured forms that preserve logical flow while respecting dLLM computational limits.
Using LLaMA-4-Maverick [Meta, 2025] with prompts detailed in Section K, we remove redundant
reflections, condense multi-sentence elaborations into precise, mathematically rigorous statements,
and retain essential reasoning. Examples of revision length distributions and before/after traces are
in Sections E and K. Our Length-Aligned SFT trains LLaDA solely on rewritten traces, improving
RL initialization by avoiding implicit length compression and focusing learning on reasoning quality
within fixed compute budgets. Empirical results show clear gains over training on verbose traces, and
we further observe that masked dLLMs benefit from extended training (e.g., 100 epochs) relative to
AR LLMs, consistent with recent works [Ni and the team, 2025, Prabhudesai et al., 2025].

B Preliminaries

B.1 Masked Diffusion Large Language Models

Masked diffusion LLMs [Austin et al., 2021, Sahoo et al., 2024, Shi et al., 2024, Ou et al., 2024,
Lou et al., 2024] employ a forward diffusion process that progressively corrupts token sequences xg
through introduction of mask tokens. This corruption process is parameterized by time ¢ € [0, 1]. At
any given timestep ¢, the resulting sequence z; contains partial masking, where each token maintains a
probability a; of remaining unmasked. The noise schedule «; exhibits strict monotonic decrease with
respect to t. Complete masking occurs at ¢ = 1, where all tokens in x; become masked. The training
procedure for masked dLLMs follows a forward process through definition of «; and a bidirectional
unmasking predictor fy with learnable parameters. During each training step, we stochastically
sample timestep ¢ € [0, 1) and apply token masking according to the designated forward process.
Given these corrupted sequences, the training objective seeks to recover the original tokens. The
standard optimization criterion employs the negative evidence lower bound (NELBO), which provides
an upper bound for the negative log-likelihood (NLL) of the training data. For masked dLLMs,
this NELBO reduces to a weighted NLL formulation, with weighting coefficients derived from
transformations of o [Sahoo et al., 2024, Equation (10)]. For example, LLaDA [Nie et al., 2025]
specifies the forward process through o; = 1 — ¢, yielding the following NELBO formulation:

[z

_EtNU[OJ)a Z0~Paaas Tt ~qejo(Tt|T0) i Z]l[l’f = maSk] log fe(xlg | xt)) 3
k=1

where || denotes the sequence length of -, and x* represents the k-th token position. The loss
computation is restricted to tokens masked at timestep ¢.

During prompt conditional generation, the model starts with a sequence where prompt tokens remain
unmasked and continuation tokens are initially masked, then progressively unmasks the continuation
tokens through ancestral sampling from the reverse process py(x | x;) for timesteps ¢ > s, where
the model fy provides the denoising predictions for masked positions. The reverse process maintains
the property that unmasked tokens are carried over unchanged throughout all denoising steps.

B.2 Policy Optimization for Masked Diffusion Large Language Models

Policy-gradient methods have gained widespread adoption for post-training LLMs [Ouyang et al.,
2022, Bai et al.,, 2022, Li et al., 2023, Ahmadian et al., 2024]. Online RL—particularly Group
Relative Policy Optimization (GRPO)—has proved effective for improving language models [Shao
et al., 2024, Guo et al., 2025, Team et al., 2025]. GRPO [Shao et al., 2024] offers a computationally
efficient alternative to PPO [Schulman et al., 2017] by using group-based statistics for advantage
estimation, avoiding separate value-function training.

The GRPO objective integrates clipping for stability and reverse KL regularization:

G 0
1 |oi]

Loreo(6) =E a2 ﬁ " min (pf Ay, clip (pf,1 — ,1 +¢) A;) — BDxe [mo (o) [mer(C10)] |, (4)
i=1 " =1

g~D
015,06~ (1)

11

413

414
415

416
417

418
419
420
421

422

423
424
425
426
427
428
429
430
431
432

434

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

455

457
458

klg,05k) . 1 .
where pF = % is the likelihood ratio.
For a query ¢, GRPO samples G responses {01, . .., 0¢q} from the behavior policy 7y, and assigns a

single sequence-level advantage per response. Following Liu et al. [2025b], we use the unnormalized
group-relative advantage A; = 7(0;) — & Zle r(0;), where r is the reward function. This scalar
A; is shared by all tokens in 0; when forming the tokenwise objective.

Applying Policy Gradient Methods to Diffusion LLMs Applying GRPO to dLLMs is nontriv-
ial. The objective in Equation (4) requires (i) token-level probabilities for importance ratios and
(ii) sequence-level probabilities for KL regularization. Autoregressive models provide per-token
conditionals via sequential factorization, enabling one-pass sequence scoring by the chain rule:

logmar(o | q) = Lil log mar (0" | ¢,0<F). Accordingly, the reverse-KL decomposes as

mo(0" | g,0F)

&)

lol

Dx1, [We(' | Q) H Tret (- \ Q)] = EONWQ(-\q) ;105 W
In contrast, dLLMs do not admit a sequential factorization of 7(o | ¢). dLLM’s generation invokes the
unmasking predictor fy across M denoising steps, making 7wy a composition of M mappings. Exact
tokenwise probabilities would require marginalization over denoising trajectories and maintaining
(and differentiating through) full denoising trajectories, which is computationally prohibitive. To
address this, recent work develops efficient approximations for policy optimization in masked
diffusion LLMs. DiffuGRPO [Zhao et al., 2025] employs a mean-field approximation that yields
single-pass estimates of both token-level and sequence-level terms, replacing explicit multi-step
unrolling with a single-sample Monte Carlo estimate. While this introduces bias relative to the
exact diffusion policy, it provides a practical framework for GRPO-style optimization on dLLMs.
In our method, we adopt the mean-field estimators of Zhao et al. [2025] to compute the token-level
importance ratios p¥ and the reverse-KL term with one forward pass per policy.

C Related Work

C.1 Diffusion Language Models

Diffusion language models was first explored through continuous approaches that map discrete text
to continuous representations, including learned embeddings, sequence-to-sequence conditioning,
and binary bit representations [Chen et al., 2022, Li et al., 2022, Gong et al., 2023]. Recently, discrete
diffusion language models have been scaled up significantly, with masked diffusion established as a
specific instance of discrete diffusion [Austin et al., 2021, Sahoo et al., 2024, Shi et al., 2024, Ou
et al., 2024, Nie et al., 2024]. Notable developments include DiffuLLaMA [Gong et al., 2025a] and
Dream [Ye et al., 2025], both adapted from pretrained autoregressive LLMs. LLaDA [Nie et al.,
2025] represents a breakthrough as a masked diffusion LLM trained from scratch using full-attention,
achieving performance comparable to similarly-sized autoregressive models. These approaches are
predominantly based on masked modeling. Unlike these full-attention dLL.Ms, Block Diffusion
[Arriola et al., 2025] introduced a hybrid approach that models sequences block-by-block while
applying diffusion within each block, enabling flexible length generation and improved inference
efficiency through kv-caching. Recent commercial models like Mercury [Inception Labs et al., 2025]
and Gemini Diffusion [DeepMind, 2025] have demonstrated the practical viability of diffusion-based
code generation, achieving performance comparable to leading autoregressive models while offering
significantly faster inference. More recent works have introduced caching and parallel decoding
algorithms [Wu et al., 2025, Liu et al., 2025a, Ma et al., 2025, Israel et al., 2025, Sahoo et al., 2025,
Hu et al., 2025] that significantly improve inference efficiency for masked diffusion language models.
In this work, we focus on full-attention masked dLLM:s.

C.2 Reinforcement Learning for Diffusion Language Models
Applying reinforcement learning to diffusion language models presents unique challenges compared

to autoregressive models. The primary obstacle is the intractability of likelihood functions in
diffusion models, which necessitates approximating response likelihoods for policy optimization. This

12

459
460
461
462
463
464

466
467
468
469

470
471
472
473

474

475

476
477
478
479
480
481
482
483
484
485

requirement introduces computational overhead and potential bias, particularly when approximation
errors occur in policy ratios used for importance sampling. d1 proposed diffu-GRPO [Zhao et al.,
2025] which adopts an efficient approximation through mean-field approximation. MMaDA [Yang
et al., 2025] and diffucoder’s coupled-GRPO [Gong et al., 2025b] further improve the masking
strategy in log probabilities estimation to achieve better learning efficiency. LLaDA 1.5 [Zhu et al.,
2025] tackles the variance issues in ELBO-based likelihood estimates through preference optimization.
Recently, wdl [Tang et al., 2025] addresses these challenges by reformulating policy optimization as
a weighted likelihood objective that eliminates the need for policy ratios. SDPO [Han et al., 2025]
decomposes the diffusion trajectory alignment problem into stepwise subproblems that align the
posterior at each diffusion step. Our inpainting method can also be applicable to some of the above
online RL methods.

Additionally, a closely related work in RL for AR LLMs is Prefix-RFT [Huang et al., 2025], which
samples prefixes from demonstrations to guide online exploration, though this is limited to left-
to-right sequential generation that does not leverage the bidirectional conditioning capabilities of
diffusion LLMs.

D Detailed Experiments Results

RL from LLaDA-Instruct RL after Length-Aligned SFT

LLaDA + IGPO
0.380 LLaDA + GRPO

LLaDA + SFT + IGPO
LLaDA + SFT + GRPO

0.375
S

0.370 © 0.420

0.365

0.360

Average Accuracy across Benchmarks

o 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400
RL Training Steps RL Training Steps

Figure 5: RL training curves of IGPO versus normal GRPO sampling. (a) Starting from LLaDA-
8B-Instruct. (b) Starting from the length-aligned SFT checkpoint. IGPO exhibits superior and
more stable training performance under both initialization checkpoints compared to standard GRPO
sampling. Results are averaged over 3 random seeds across four mathematical reasoning benchmarks
(GSM8K, MATHS500, AMC and Minerva Math), with standard errors shown as shaded regions.

E Length-Aligned SFT: SFT trace revision length distribution comparison

As illustrated in Figure 6, the original OpenR1-Math-220K dataset exhibits substantial token length
diversity, with reasoning traces extending beyond 10,000 tokens while LLaDA’s maximum context
length is only 4096 tokens. Naively applying SFT on this dataset would result in many truncated
sequences, and even for samples within the 4096-token limit, significant distribution mismatch
persists across training phases—we use 256 tokens for RL sampling and 512 tokens for evaluation.
Our rewriting using LLaMA-4-Maverick successfully constrains all traces to under 1500 tokens,
creating alignment between SFT training, RL sampling, and evaluation phases. Additionally, while
reflective behavior has been found helpful for LLaDA in prior work [Zhao et al., 2025], the excessive
repeated reflective patterns in the original dataset are unsuitable for its constrained generation space.
The rewriting process eliminates this redundancy while preserving essential reasoning structure.

13

487
488
489
490
491
492

494
495
496
497

SFT traces before rewriting SFT traces after rewriting

0.00015 0.0025
2 2 A
@ @ 0.0020 A
@ @ \
o 0.00010 [a
- = 0.0015 \
° o
3 3 0.0010 ’ \
£ 0.00005 £ / \
) wn
a A 0.0005

0.00000 0.0000

0 10000 20000 0 500 1000 1500
Token Count Token Count

Figure 6: Token Length Distribution of SFT Dataset Before and After Revision. Comparison of
token length distributions for the OpenR1-Math-220K dataset (94k math problems). After revision
using LLaMA-4-Maverick, token lengths are constrained to below 1500 tokens, eliminating the
extreme range of the original dataset where traces could exceed 20,000 tokens. This addresses the
generation length mismatch across SFT training, RL sampling (256 tokens), and evaluation (512
tokens) phases.

F Temperature Selection for RL Training

Following the methodology established by Polaris An et al. [2025] for scaling reinforcement learning
on advanced reasoning models, we conduct a systematic analysis to determine the optimal sampling
temperature for our RL training process. We evaluate our model’s performance across different
sampling temperatures by analyzing both Pass@5 and Average @5 scores on the MATH500 dataset.
We also divide three temperature regions: low temperatures (< 0.8) yield high accuracy but reduced
diversity in generated rollouts, restricting the model’s ability to explore diverse reasoning paths; high
temperatures (> 1.6) preserve rollout diversity but significantly degrade accuracy due to increased
noise in token generation; and the middle Controlled Exploration Zone (0.9-1.5) provides the optimal
trade-off between maintaining reasonable accuracy and achieving sufficient diversity for effective RL
training. Based on this analysis, we select temperature 7' = 1.2 to balance exploration with sample
quality and provide sufficient diversity for RL training.

Pass@5 Accuracy vs. Temperature Average@5 Accuracy vs. Temperature

0.32 0.32
0.31

0.51
° Diversity S 3o S Diversity

0.47 o, ..
0.47 Quality X 0.30 029 Quality X
143
0.4 > 0.25
o
z g
o .. B . 3 o . . .
5 | Diversity X Diversity S 0.0 | Diversity X Diversity
§ 031 Quality Quality g Quality Quality
2 ¢
(g) g o1s
v ©
@© 0.2 GLJ
e >
< 0.10
0.1
0.05
.02 0.00
0.0 0.00
03 05 07 09 11 13 15 17 19 21 23 0.3 05 07 09 11 13 15 17 19 21 23
Temperature Temperature

Figure 7: Performance analysis across different sampling temperatures on MATH500. The plot shows
Pass@5 and Average @5 scores, revealing three distinct regions: low temperatures with high accuracy
but low diversity, high temperatures with preserved diversity but degraded accuracy, and the middle
region offering the desired trade-off. We select 7' = 1.2 for our RL training.

14

498

499
500
501
502
503

505
506
507
508

509
510
511
512
513
514

515
516
517

519
520
521

G Ablation: SFT on hint traces then apply GRPO vs IGPO

In our RL training setup, we assume access to ground-truth reasoning traces for every query in
the training dataset. To investigate whether direct supervised fine-tuning on these traces provides
comparable benefits to our elastic inpainting approach, we conduct an ablation study comparing
two strategies: (1) applying SFT on the RL dataset’s reasoning traces followed by standard GRPO
sampling, versus (2) directly applying IGPO with elastic hint injection only when all generated
responses are incorrect.

Specifically, we first fine-tune the LLaDA-8B-Instruct model on the MetaMath dataset’s reasoning
traces for 20 epochs, then apply standard GRPO sampling. We compare this against our IGPO
approach, which selectively injects partial reasoning hints from the same MetaMath dataset only
when zero-advantage scenarios occur (i.e., when all sampled responses yield incorrect rewards).

The results in Figure 8 demonstrate that IGPO consistently outperforms the SFT-first variant. Notably,
after SFT on the MetaMath dataset for 20 epochs, the model’s initial performance drops significantly
compared to the original LLaDA-8B-Instruct baseline. This degradation occurs because the MetaMath
dataset contains very concise reasoning traces, many shorter than our 256-token generation length
limit. Consequently, the model adopts overly concise reasoning patterns that prove insufficient for
the challenging problems in our evaluation benchmarks (such as AMC and Minerva).

While subsequent RL training can recover performance to some extent—as evidenced by the rapid
improvement in early training steps—it ultimately fails to match the effectiveness of IGPO. This
comparison highlights two key advantages of our approach: (1) the effectiveness of applying inpaint-
ing guidance selectively only when the model struggles with specific queries, rather than forcing a
uniform reasoning style through SFT, and (2) the critical importance of reducing all-wrong group
occurrences, which successfully recovers gradient signals from otherwise degenerate zero-advantage
scenarios.

SFT (metamath) + GRPO vs IGPO

(9]
~
@
c ‘_4__0——0——0-—.__.__.__.__.__.
5 0.35 1 ,r’
g ’
@ Y,
§ 0.30 A /’
> 0.25 1 3
®]
2]
>
0 0.20 A !
g I
<
@ I
o)) 1
© 0154 IGPO
g P == SFT on metamath (20epochs) + GRPO
< T T T T T T T T
0 200 400 600 800 1000 1200 1400

RL Training Steps

Figure 8: Comparison of SFT-first approach versus direct IGPO application. The SFT-first strategy
involves fine-tuning on MetaMath reasoning traces for 20 epochs followed by standard GRPO, while
IGPO applies inpainting-guided exploration elastically only during zero-advantage scenarios. IGPO
demonstrates superior and more stable performance, avoiding the performance degradation caused by
overly concise reasoning patterns learned during SFT on short traces. Results are averaged across
four mathematical reasoning benchmarks with standard errors shown as shaded regions.

15

s22 H Experiments Hyperparameters

Table 2: Training Hyperparameters

Parameter Value
SFT Training Parameters
Per Device Train Batch Size 4
Hardware Configuration 8x8 H100 GPUs
Gradient Accumulation Steps 8
Learning Rate 5x 1076
LR Schedule Warmup-stable-decay
LR Warmup Steps 200
LR Min Value 1x10°°
LR Decay Period Final 10% of steps
Number of Epochs 100
RL Sampling Parameters
RL Online Sampling Generation Length L 256
Diffusion Steps 128
Block Length 32
Sampling Temperature 1.2
Generations Per Group G 8
RL Training Parameters
Per Device Train Batch Size 8
Hardware Configuration 8x8 H100 GPUs
Gradient Accumulation Steps 1
Effective Batch Size 512
KL Beta 8 0.01
Policy Gradient Inner Iterations per Generation x 4
Learning Rate 5x 1077
LR Schedule Linear decay to 0
LR Warmup Steps 50
LR Decay Period 10 epochs
Training Steps 1440
Clip Ratio Epsilon ¢ 0.2
IGPO Specific Parameters
Chunk Size |¢;| ~ U[Smin, Smax] U[5,10]
Inpainting Ratio 7; ~ U [Miow Thigh) U[0.2,0.6]
replacement fraction A 0.5
Entropy-based Gradient Filtering for Inpainted Tokens 7 0.2

16

s2s 1 Inpainting Generation Qualitative Examples

Blue text: Question Prompt Green text: Injected Hints Black text: Inpainted Generation

Problem: Circle C' has radius 6 cm. How many square centimeters are in the area of the largest possible
inscribed triangle having one side as a diameter of circle C'?

Inpainting Input At Denosing Step 0:

<|start_header_id|>user<|end_header_id|>
Respond in the following format:
<reasoning>

</reasoning>

<answer>

\ boxed{<Your answer>}

</answer>

Circle C has radius 6 cm. How many square centimeters are in the area

of the largest possible inscribed triangle having one side as a diameter of
circle C?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Since the diameter is twice the radius, the base of the triangle will have
length $2 \ times 6 = 12§ cm.
To , we want the height to be as large

of the triangle is the distance from the midpoint of the base to the
circumference of the circle.
This is equal to the radius of the circle,

12 \ times

Inpainted Generation After Denoising:

<reasoning>

We know to find the largest possible inscribed triangle in circle C, the base
of the triangle should be the diameter of the circle.

Since the diameter is twice the radius, the base of the triangle will have
length $2 \ times 6 = 12$ cm.

To find the largest possible area of the triangle, we want the height to be

as large as possible.

The largest possible height of the triangle is the distance from the midpoint of
the base to the

circumference of the circle.

This is equal to the radius of the circle, which is 6 cm.

Therefore, the area of the largest possible inscribed triangle is given by the
formula for the area of a triangle, which is $$\ frac{1}{2} \ times \ textbase

\ times \ textheight = \ frac{1}{2} \ times 12 \ times 6 = 36$$ square centimeters.
</reasoning>

<answer>

\ boxed{36}

</answer>

17

s« J Evaluation Hyperparameters

525 We evaluate all models with a fixed decoding setup per benchmark. Unless otherwise noted, the same
s26 prompts and decoding hyperparameters are applied to both LLaDA-8B-Instruct and LLaDA-1.5.

Table 3: Evaluation hyperparameters by benchmark.

Benchmark Temp. Block Len. Diffusion Steps Gen. Len. Metric

GSMSK 0.0 32 512 512 pass@1
MATHS00 0.0 32 512 512 pass@1
AMC 0.5 128 512 512 avg@16
Minerva 0.0 128 512 512 pass@1

s7 K Prompt for SFT traces revision

Prompt for SFT traces revision sent to LLaMA 4 Maverick

Please rewrite the original solution to make it more concise and easier to understand without
changing the details. Please put the explanation in the solution between <reasoning> and
</reasoning> and put the final numerical answer between <answer> and </answer> in
boxed format. Please shorten or rewrite the rewritten solution to a random length between
100 and 1000 words while keeping sufficient details of the reasoning steps. Please do not
return anything other than the rewritten solution.

Example:

<reasoning>
XXX
</reasoning>

<answer>

\boxed{14}

</answer>

Original solution: {generations}.
Your response:

18

SFT trace before rewritten by LLaMA 4 Maverick
Problem: Find all primes between 1 and 15.

<think>

Okay, so I need to find all the prime numbers between 1 and 15. Hmm, let’s start by
remembering what a prime number is. From what I recall, a prime number is a natural
number greater than 1 that has no positive divisors other than 1 and itself. So, numbers like 2,
3, 5, etc., are primes because you can’t divide them evenly by any other number besides 1 and
the number itself. On the other hand, numbers like 4, 6, 8, and so on are not primes because
they can be divided by other numbers. For example, 4 can be divided by 2, so it’s not prime.
Alright, so the task is to list all primes between 1 and 15. Let me list out all numbers from 1
to 15 first to check them one by one. The numbers are: 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13,
14, 15.

Now, let’s go through each number and see if it’s prime. Starting with 1. Wait, I remember
that by definition, prime numbers are greater than 1. So 1 is not considered a prime. So we
can skip 1.

Next up is 2. Let’s check if 2 is prime. The divisors of 2 are 1 and 2. There are no other
divisors, so yes, 2 is a prime number.

Moving on to 3. Similarly, the divisors are 1 and 3. No other numbers divide into 3, so 3 is
prime.

Next is 4. Let’s check divisors. 4 divided by 2 is 2, which is an integer, so 4 is not prime. It
can be divided by 2, so it’s composite.

Then 5. The divisors of 5 are 1 and 5. No other numbers divide into 5, so 5 is prime.

6. Checking divisors. 6 divided by 2 is 3, so it’s divisible by 2 and 3. Not prime.

7. Divisors are 1 and 7. No other divisors, so 7 is prime.

8. Divided by 2 gives 4, so 8 is not prime.

9. Divided by 3 gives 3, so 9 is not prime (since 3 times 3 is 9).

10. Divided by 2 is 5, so 10 is not prime.

11. Let’s see, 11. Divided by 2?7 11 divided by 2 is 5.5, not an integer. Divided by 3? 11
divided by 3 is approximately 3.666... Not an integer. Divided by 4?7 2.75, nope. 5? 2.2, nope.
Since 11 is a prime number because none of these divisions result in integers, so 11 is prime.
12. Divided by 2 is 6, so composite.

13. Checking divisors. 13 divided by 2 is 6.5, 13 divided by 3 is about 4.333..., 4?7 3.25, 5?
2.6, 6? 2.166... None of these are integers. So 13 is prime.

14. Divided by 2 is 7, so composite.

15. Divided by 3 is 5, so composite.

Let me recap the numbers between 1 and 15 and their primality:

1: Not prime
2: Prime
3: Prime
4: Not
5: Prime
6: Not
7: Prime

8: Not

9: Not

10: Not

11: Prime

12: Not

13: Prime

14: Not

15: Not

So compiling the primes from this list: 2, 3, 5, 7, 11, 13.

Wait a second, let me verify each one again just to be sure I didn’t make a mistake.
Starting with 2: Definitely prime. It’s the only even prime.

3: Prime, yes.

5: Prime, yes.

7: Prime. Correct.

19

11: Let’s check again. 11 divided by 2 is not whole. 3? 3*3 is 9, 3*4 is 12. So no. 5? 5*2 is
10, 5*3 is 15. So 11 is prime.

13: Similarly, 13 divided by 2 is 6.5, 3 is 4.333, 5 is 2.6. So, prime.

Yes, those all check out. So primes between 1 and 15 are 2, 3, 5, 7, 11, and 13.

But hold on, sometimes people might make a mistake with 9. Wait, 9 is 3 times 3, so that’s
composite, which I had down. 15 is 3 times 5, composite. So all the non-primes are accounted
for.

Is there any number I might have missed? Let’s see. Let’s list all numbers again:

2,3,5,7, 11, 13. Are there any others?

Well, 1 is excluded. 4,6,8,9,10,12,14,15 are composite. So no, those six numbers are all
primes between 1 and 15.

Wait, but the question says "between 1 and 15." Does that include 15? Hmm, the wording
is "between 1 and 15," which could be a bit ambiguous. But usually, when someone says
"between 1 and 15," they mean including both endpoints. However, since 15 is composite,
it’s excluded either way. So primes are 2,3,5,7,11,13.

Yes, that seems correct. I don’t think I made any mistakes here. Let me cross-verify with
another method, like the Sieve of Eratosthenes. The Sieve is a method where you list all
numbers and cross out multiples.

Starting with 2, cross out multiples: 4,6,8,10,12,14.

Then 3, cross out multiples: 6,9,12,15.

Then 5, cross out 10,15.

7, cross out 14.

11 and 13 are primes, and their multiples are beyond 15. So remaining numbers are
2,3,5,7,11,13. Which matches our previous list.

Therefore, the primes between 1 and 15 are 2,3,5,7,11,13.

Final Answer

The primes between 1 and 15 are , , , , , and .

</think>

To find all the prime numbers between 1 and 15, we start by recalling that a prime number is
a natural number greater than 1 that has no positive divisors other than 1 and itself. We then
check each number from 1 to 15:

- ®*]**: Not a prime number (by definition).

- #%%%: Prime (divisors: 1, 2).

- *¥*3%%: Prime (divisors: 1, 3).

- #*4%%: Not prime (divisible by 2).

- #%5%%: Prime (divisors: 1, 5).

- ¥*6**: Not prime (divisible by 2, 3).

- **T%%: Prime (divisors: 1, 7).

- #*8**: Not prime (divisible by 2).

- *¥%9%*: Not prime (divisible by 3).

- ¥¥10**: Not prime (divisible by 2, 5).

- *¥*11**: Prime (divisors: 1, 11).

- ¥%12%*: Not prime (divisible by 2, 3, 4, 6).

- *¥*13**: Prime (divisors: 1, 13).

- *¥*14%%:; Not prime (divisible by 2, 7).

- #¥*15%*: Not prime (divisible by 3, 5).

Using the Sieve of Eratosthenes method to cross out non-prime numbers confirms the primes
listed above. Therefore, the prime numbers between 1 and 15 are:

20

SFT trace after rewritten by LLaMA 4 Maverick

Problem: Find all primes between 1 and 15.

<reasoning>

To find all the prime numbers between 1 and 15, we recall that a prime number is a natural
number greater than 1 that has no positive divisors other than 1 and itself.
We then check each number from 1 to 15 to determine if it is prime.
- *¥%1%%: Not a prime number (by definition).

- *®*¥2%%: Prime (divisors: 1, 2).

- *¥*%3%%: Prime (divisors: 1, 3).

- F*4%%: Not prime (divisible by 2).

- *¥*%5%%: Prime (divisors: 1, 5).

- ¥*6**: Not prime (divisible by 2, 3).

- ®F7%%k: Prime (divisors: 1, 7).

- *¥%8**: Not prime (divisible by 2).

- #*%9*%: Not prime (divisible by 3).

- *¥%10**: Not prime (divisible by 2, 5).

- *®*]1%**: Prime (divisors: 1, 11).

- *¥%12%*: Not prime (divisible by 2, 3, 4, 6).

- *®*¥]3%*: Prime (divisors: 1, 13).

- *%14%%*: Not prime (divisible by 2, 7).

- ¥*15%%: Not prime (divisible by 3, 5).

The Sieve of Eratosthenes method confirms the primes listed above.
</reasoning >

<answer>

2,3,5,7,11,13

</answer>

21

	Introduction
	Methods
	Experiments
	Main Results and Ablation Studies

	Conclusion
	Detailed Methods
	IGPO: Inpainting Guided Policy Optimization
	Length-Aligned SFT via Concise Reasoning Trace Rewriting

	Preliminaries
	Masked Diffusion Large Language Models
	Policy Optimization for Masked Diffusion Large Language Models

	Related Work
	Diffusion Language Models
	Reinforcement Learning for Diffusion Language Models

	Detailed Experiments Results
	Length-Aligned SFT: SFT trace revision length distribution comparison
	Temperature Selection for RL Training
	Ablation: SFT on hint traces then apply GRPO vs IGPO
	Experiments Hyperparameters
	Inpainting Generation Qualitative Examples
	Evaluation Hyperparameters
	Prompt for SFT traces revision

