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ABSTRACT

Currently, there is no mathematical analytical form for a general posterior. We
have discovered a new theory to address this issue, which is called Indeterminate
Probability Theory. This is a big discovery in the field of probability, and it
is an extension of classical probability theory, and makes classical probability
theory a special case to our theory. In this paper, we propose a new perspective for
understanding probability theory by introducing Observers and treating the outcome
of each random experiment as an indeterminate probability distribution, which leads
to probability calculations being a combination of ground truth and observation
errors. We then discover three conditional mutual independent assumptions as
Candidate Axioms and divide the probability process into two phase: observation
phase and inference phase. In the observation phase, a general equation for any
complex posterior is derived. In the inference phase, the inference probability
equation with the posterior is derived. Base on this theory, we propose a new general
model called IPNN – Indeterminate Probability Neural Network to validate our
theory. Furthermore, in one of our another papers, this new theory is successfully
applied to the task of multivariate time series (MTS) forecasting without relying on
any neural models, and it outperforms LSTM models as well as some transformer-
based models. Anonymous (2024b) In addition, further applications of this new
theory are also discussed in this paper. Validations of this theory are reflected in
experimental results.

1 INTRODUCTION

Currently, for a general posterior P
(
Y = yl | A1 = a1i1 , . . . , A

N = aNiN
)

or more compactly written
as P

(
yl|a1i1 , a

2
i2
, . . . , aNiN

)
1, the status of analytical solutions are as below:

Table 1: Reading Symbols

Symbol Description

X = xk kth random experiment, k = 1, 2, . . . , n
Y = yl event of random variable Y, l = 1, 2, . . . ,m

Aj = ajij event of random variable Aj , ij = 1, 2, . . . ,Mj , j = 1, 2, . . . , N

A = (A1, A2, . . . , AN ) joint (multivariate) random variables

General Probability Form

• Equation:

number of event (Y = yl, A
1 = a1i1 , . . . , A

N = aNiN ) occurs
number of event (A1 = a1i1 , . . . , A

N = aNiN ) occurs
(1)

• Assumption: No assumption.

1Most of probabilities are formulated compactly in this paper.
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• Limitations:
1. Not applicable if Aj is continuous.
2. Not applicable for indeterminate case.
3. Joint sample space is exponentially large.

• Space Size: m ·
∏N

j=1 Mj

Naı̈ve Bayes Form

• Equation:
P (Y = yl) ·

∏N
j=1 P (Aj = ajij | Y = yl)

P (A1 = a1i1 , . . . , A
N = aNiN )

(2)

• Assumption: Given Y , A1, A2, . . . , AN conditionally independent.
• Limitations:

1. Assumption is strong.
2. P (Aj = ajij | Y = yl) is not always solvable.

• Space Size: m ·
∑N

j=1 Mj

Indeterminate Probability Form

• Equation: Equation (10)
• Assumption: Given X , A1, A2, . . . , AN and Y conditionally independent. see Candidate

Axiom 1 and Candidate Axiom 2.
• Limitations: No. (Joint sample space is exponentially large only when Monte Carlo method

is not used.)

• Space Size: m · n ·N · C (or m ·
∏N

j=1 Mj without Monte Carlo method, see Section 3.4.)

Due to the limitations of general probability form and Naı̈ve Bayes form, MCMC Robert & Casella
(2004) and variational inference methods Jordan et al. (1999) as approximate solutions are well
developed in the past.

In this paper, we propose a new probability theory as the analytical solution to address the aforemen-
tioned limitations.

2 BACKGROUND

Let’s first introduce a small game – coin toss: a child and an adult are observing the outcomes of
each coin toss and record the results independently (heads or tails), the child can’t always record the
results correctly and the adult can record it correctly, in addition, the records of the child are also
observed by the adult. After several coin tosses, the question now is, suppose the adult is not allowed
to watch the next coin toss, what is the probability of his inference outcome of next coin toss via the
child’s record?

As shown in Figure 1, random variables X is the random experiment itself, and X = xk represent the
kth random experiment. Y and A are defined to represent the adult’s record and the child’s record,
respectively. And hd, tl is for heads and tails. For example, after 10 coin tosses, the records are
shown in Table 2.

We formulate X compactly with the ground truth, as shown in Table 3.

Through the adult’s record Y and the child’s records A, we can calculate P (Y |A), as shown in
Table 4. We define this process as observation phase.

For next coin toss (X = x11), the question of this game is formulated as calculation of the probability
PA(Y |X), superscript A indicates that Y is inferred via record A, not directly observed by the adult.
For example, given the next coin toss X = hd = x11, the child’s record has then two situations:
P (A = hd|X = hd = x11) = 4/5 and P (A = tl|X = hd = x11) = 1/5. With the adult’s
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Heads Tails Heads Tails

X 

A Y

Figure 1: Example of coin toss game.

Table 2: Example of 10 times coin toss outcomes

Experiment Truth A Y
X = x1 hd A = hd Y = hd
X = x2 hd A = hd Y = hd
X = x3 hd A = hd Y = hd
X = x4 hd A = hd Y = hd
X = x5 hd A = tl Y = hd
X = x6 tl A = tl Y = tl
X = x7 tl A = tl Y = tl
X = x8 tl A = tl Y = tl
X = x9 tl A = tl Y = tl
X = x10 tl A = tl Y = tl
X = x11 hd A =? Y =?

Table 3: The adult’s and child’s records: P (Y |X) and P (A|X)

#(Y,X)
#(X)

Y = hd Y = tl #(A,X)
#(X)

A = hd A = tl

X = hd 5/5 0 X = hd 4/5 1/5
X = tl 0 5/5 X = tl 0 5/5

observation of the child’s records, we have P (Y = hd|A = hd) = 4/4 and P (Y = hd|A = tl) =
1/6. Therefore, given next coin toss X = hd = x11, PA(Y = hd|X = hd = x11) is the summation
of these two situations: 4

5 · 4
4 + 1

5 · 1
6 . Table 4 answers the above mentioned question.

Table 4: Results of observation and inference phase: P (Y |A) and PA(Y |X)

#(Y,A)
#(A)

Y = hd Y = tl
∑

A

(
#(A,X)

#X
· #(Y,A)

#A

)
Y = hd Y = tl

A = hd 4/4 0 X = hd = x11
4
5
· 4
4
+ 1

5
· 1
6

4
5
· 0 + 1

5
· 5
6

A = tl 1/6 5/6 X = tl = x11 0 · 4
4
+ 5

5
· 1
6

0 · 0 + 5
5
· 5
6

Let’s go one step further, we can find that even the child’s record is written in unknown language
(e.g. A ∈ {ZHENG,FAN}), Table 4 can still be calculated by the man. The same is true if the
child’s record is written from the perspective of attributes, such as color, shape, etc.

The most important difference between classical probability theory and indeterminate probability
theory is that indeterminate probability theory introduces an Observer to observe the outcome of
random experiments. For this example, the child and adult act as two different observers, which
leads to different records for the same random experiments. This is the core idea of Indeterminate
Probability Theory.

3 INDETERMINATE PROBABILITY THEORY

3.1 DEFINITION OF INDETERMINATE PROBABILITY

Define a special random variable X for the random experiments, and X = xk is for kth experiment.
A1, A2, ..., AN and Y are different random variables, details see Table 1. The following equation is
always true:

P (xk) ≡
1

n
, k = 1, 2, . . . , n. (3)
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Actually, we must inevitably use an observer (e.g. a machine, a model, a human, etc.) to observe
the outcome of random experiments, and we may get a probability distribution estimation for kth
experiment. (This part is not focused in the past.)

Therefore, indeterminate probability is for indicating the observed outcome of kth experiment as
random variables Aj (or Y ), which can be mathematically represented as

Indeterminate Probability := P
(
ajij | xk

)
∈ [0, 1] (4)

In classical probability theory, the event state Aj = ajij for kth experiment (or the outcome of kth

experiment for random variable Aj) has only two situations: happened or not happened, which
leads to the indeterminate probability P

(
Aj = ajij | X = xk

)
∈ {0, 1}. For example, in Sec-

tion 2, the third coin toss outcome is head, this is represented as P (Y = hd | X = x3) = 1 and
P (Y = tl | X = x3) = 0.

This difference makes the general probability Equation (1) not applicable anymore.

Besides, the observers also bring observation errors to the probability calculation results, more details
to understand this point, see another coin toss example in Appendix B.

For multivariate variables A =
(
A1, A2, . . . , AN

)
, the observations from different observers are

independent 2 , we find
Candidate Axiom 1. Given X , A1, A2, . . . , AN are conditionally mutually independent.

And according to Candidate Axiom 1, the joint indeterminate probability is

P
(
a1i1 , a

2
i2 , . . . , a

N
iN | xk

)
=

N∏
j=1

P
(
ajij | xk

)
∈ [0, 1] (5)

Where it can be easily proved,∑
A

N∏
j=1

P
(
ajij | xk

)
= 1, k = 1, 2, . . . , n. (6)

In classical probability, the joint indeterminate probability
∏N

j=1P
(
ajij | xk

)
∈ {0, 1}.

3.2 OBSERVATION PHASE

In observation phase, the relationship between all random variables A1, A2, . . . , AN and Y is
established after the whole observations, the posterior is formulated as:

P
(
yl | a1i1 , a

2
i2 , . . . , a

N
iN

)
=

P
(
yl, a

1
i1
, a2i2 , . . . , a

N
iN

)
P
(
a1i1 , a

2
i2
, . . . , aNiN

) (7)

Because the general probability Equation (1) is not applicable for indeterminate case, the joint
probability is calculated according to total probability theorem over all samples X = (x1, x2, . . . , xn),
and with Equation (5) and Equation (3) we have:

P
(
a1i1 , a

2
i2 , . . . , a

N
iN

)
=
∑n

k=1

(
P
(
a1i1 , a

2
i2 , . . . , a

N
iN | xk

)
· P (xk)

)
=
∑n

k=1

(∏N
j=1P

(
ajij | xk

)
· P (xk)

)
=

∑n
k=1

(∏N
j=1P

(
ajij | xk

))
n

(8)
2Empirically, we find that Candidate Axiom 1 and Candidate Axiom 2 are also true for the same observer. Y

and A1, A2, ..., AN , are understood as the same observer with difference perspectives.
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Because Y = yl and Aj = ajij also comes from different observers (or same observer with different
perspectives), we find

Candidate Axiom 2. Given X , Aj and Y are conditionally mutually independent in the observation
phase, j = 1, 2, . . . , N .

Therefore, according to total probability theorem, Equation (5), Equation (3) and Candidate Axiom 2,
we derive

P
(
yl, a

1
i1 , a

2
i2 , . . . , a

N
iN

)
=
∑n

k=1

(
P
(
yl, a

1
i1 , a

2
i2 , . . . , a

N
iN | xk

)
· P (xk)

)
=
∑n

k=1

(
P (yl | xk) ·

∏N
j=1P

(
ajij | xk

)
· P (xk)

)
=

∑n
k=1

(
P (yl | xk) ·

∏N
j=1P

(
ajij | xk

))
n

(9)

Substitute Equation (8) and Equation (9) into Equation (7), we have:

P
(
yl|a1i1 , a

2
i2 , . . . , a

N
iN

)
=

∑n
k=1

(
P (yl | xk) ·

∏N
j=1P

(
ajij | xk

))
∑n

k=1

(∏N
j=1P

(
ajij | xk

)) (10)

Where it can be proved,

∑m
l=1P

(
yl | a1i1 , a

2
i2 , . . . , a

N
iN

)
= 1 (11)

Equation (10) is the analytical solution for any general posterior. If P (ajij | xk) ∈ {0, 1} and P (yl |
xk) ∈ {0, 1}, this equation is mathematically equivalent to the general probability Equation (1).

3.3 INFERENCE PHASE

𝑋

𝐴1

𝑌

𝐴2 𝐴𝑁…

(a) observation phase

𝑋

𝐴1

𝑌

𝐴2 𝐴𝑁…

𝔸

(b) inference phase

Figure 2: Independence illustration with Bayesian network.

Given A, with Equation (10) (passed experience) Y = yl can be inferred, this inferred yl has no
pointing to any specific sample xk, incl. also new input sample xn+1. We find

Candidate Axiom 3. Given
(
A1, A2, . . . , AN

)
, X and Y are conditionally mutually independent in

the inference phase.

The difference between observation and inference phase is that we do not have the outcome of Y = yl
for new experiment X = xn+1 during inference phase, we can reasonably divide the probability
process into these two phases. Otherwise, Candidate Axiom 2 and Candidate Axiom 3 cannot both
be true.

Therefore, for next experiment X = xn+1, according to total probability theorem over joint sample
space

(
a1i1 , a

2
i2
, . . . , aNiN

)
∈ A, with Candidate Axiom 3, Equation (5) and Equation (10), we have

the inference probability with the posterior as
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PA (yl | xn+1) =
∑
A

(
P
(
yl, a

1
i1 , a

2
i2 , . . . , a

N
iN | xn+1

))
=
∑
A

(
P
(
yl | a1i1 , a

2
i2 , . . . , a

N
iN

)
· P
(
a1i1 , a

2
i2 , . . . , a

N
iN | xn+1

))

=
∑
A

∑n
k=1

(
P (yl | xk) ·

∏N
j=1P

(
ajij | xk

))
∑n

k=1

(∏N
j=1P

(
ajij | xk

)) ·
N∏
j=1

P
(
ajij | xn+1

)
(12)

Where superscript A indicates that the inference is based on the latent variables A. PA (yl | xn+1) and
P (yl | xk) are mathematically the same thing. The first one represents the indeterminate probability
for the inferred outcome, while the latter one represents the indeterminate probability for the observed
outcome.

The estimated inference outcome for discrete decision making is

ŷ := argmax
l∈{1,2,...,m}

PA (yl | xn+1) (13)

3.4 COMPLEXITY REDUCTION

According to the idea proposed in Anonymous (2024a), due to the constraint in Equation (6),
Equation (12) can be expressed in the form of an expectation. Consequently, we can utilize the Monte
Carlo method to approximate it, thereby transforming the problem from exponential complexity to
polynomial time and space complexity, that is from m ·

∏N
j=1 Mj to m · n ·N · C.

PA (yl | xn+1) = E
aj
ij
∼P

(
aj
ij
|xn+1

)
∑n

k=1

(
P (yl | xk) ·

∏N
j=1P

(
ajij | xk

))
∑n

k=1

(∏N
j=1P

(
ajij | xk

))


≈ 1

C

C∑
c=1

∑n
k=1

(
P (yl | xk) ·

∏N
j=1P

(
ajij ,c | xk

))
∑n

k=1

(∏N
j=1P

(
ajij ,c | xk

))
 ,

(14)

where ajij ,c ∼ P
(
ajij | xn+1

)
and C is for Monte Carlo number.

Unlike MCMC Robert & Casella (2004), which requires a large number of samples from a complex
and large space. In CIPNN, we only need sample two points (C = 2), even for a 1000-dimensional
latent space. For more details, please refer to CIPNN Anonymous (2024a).

3.5 SUMMARY

Our most important contribution is that we propose a new general analytical and tractable probability
Equation (12), rewritten as:

P A (Y = yl | X = xn+1) =

∑
A



n∑
k=1

(
P (Y = yl | X = xk) ·

N∏
j=1

P
(
Aj = aj

ij
| X = xk

))
n∑

k=1

(
N∏

j=1

P
(
Aj = aj

ij
| X = xk

))
︸ ︷︷ ︸

Observation phase

·
N∏

j=1

P
(
Aj = aj

ij
| X = xn+1

)


︸ ︷︷ ︸
Inference phase

(15)
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Where X = xk denote the kth random experiment, Y and A1:N are different discrete or continu-
ous Anonymous (2024a;b) random variables.

Our proposed theory is derived from three our proposed conditional mutual independent assumptions,
see Candidate Axiom 1, Candidate Axiom 2 and Candidate Axiom 3. However, in our opinion, these
axioms can neither be proved nor falsified, and we do not find any exceptions until now. Since this
theory cannot be mathematically proved, we can only validate it through experiment.

The three Candidate Axioms are the basis of our theory, therefore, we suggest that readers try to find
counterexamples to these axioms. Even if a toy dataset is found that contradicts these axioms, the
validity of our proposed theory shall be significantly diminished.

Finally, our proposed indeterminate probability theory is an extension of classical probability theory,
and classical probability theory is one special case to our theory. More details to understand our
theory intuitively, see Appendix A.

4 APPLICATIONS

4.1 IPNN

For neural network tasks, X = xk is for the kth input sample, P (yl|xk) = yl(k) ∈ [0, 1] is for the
soft/hard label of train sample xk, PA (yl | xt) is for the predicted label of test sample xt.

𝑎𝑖1
1

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑠𝑜𝑓𝑡𝑚𝑎𝑥…

N-dimensional 

Joint Sample Space

𝑦1 … …

𝑃(𝑦𝑙|𝑎𝑖1
1 , 𝑎𝑖2

2 , … , 𝑎𝑖𝑁
𝑁 )

Joint Sample Point 

(𝑎𝑖1
1 , 𝑎𝑖2

2 , … , 𝑎𝑖𝑁
𝑁 )

𝐴1

𝐴2
𝐴𝑁

SPLIT into N-Parts

𝑎𝑖2
2 𝑎𝑖𝑁

𝑁𝐴1 𝐴2 𝐴𝑁

…

Neural 

Network

…

𝑥1 𝑥𝑛𝑥𝑘… …

Random Variable 

Sample Space

…

𝑦2 𝑦𝑙 𝑦𝑚

Figure 3: IPNN model architecture.
P
(
yl|a1i1 , a

2
i2
, . . . , aNiN

)
is statistically

calculated, not model weights.

Figure 3 shows IPNN model architecture, the out-
put neurons of a general neural network (FFN, CNN,
Resnet He et al. (2016), Transformer Vaswani et al.
(2017), Pretrained-Models Devlin et al. (2019), etc.)
is split into N unequal/equal parts, the split shape
is marked as Equation (16), hence, the number of
output neurons is the summation of the split shape∑N

j=1 Mj . Next, each split part is passed to ‘soft-
max’, so the output neurons can be defined as dis-
crete random variable Aj ∈

{
aj1, a

j
2, . . . , a

j
Mj

}
, j =

1, 2, . . . , N , and each neuron in Aj is regarded as
an event. After that, all the random variables to-
gether form the N-dimensional joint sample space,
marked as A = (A1, A2, . . . , AN ), and all the joint
sample points are fully connected with all labels
Y ∈ {y1, y2, . . . , ym} via conditional probability
P
(
yl|a1i1 , a

2
i2
, . . . , aNiN

)
.

Split shape := {M1,M2, . . . ,MN} (16)

Given an input sample xk, let αj
ij
(k) be the model

outputted value after ‘softmax’. With Assumption 1,
the indeterminate probability (model output) is

P
(
ajij | xk

)
:= αj

ij
(k) (17)

Assumption 1. For neural networks, given an input sample X = xk, IF
∑Mj

ij=1α
j
ij
(k) = 1

and αj
ij
(k) ∈ [0, 1], k = 1, 2, . . . , n. THEN,

{
aj1, a

j
2, . . . , a

j
Mj

}
can be regarded as collectively

exhaustive and exclusive events set, they are partitions of the sample space of random variable
Aj , j = 1, 2, . . . , N .

According to Equation (12), the prediction for test sample xt is

7
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PA (yl | xt) =
∑
A

∑n
k=1

(
yl(k) ·

∏N
j=1α

j
ij
(k)
)

∑n
k=1

(∏N
j=1α

j
ij
(k)
) ·

N∏
j=1

αj
ij
(t)

 (18)

We use cross entropy as loss function:

L = −
∑m

l=1

(
yl(k) · logPA (yl | xt)

)
(19)

More details on IPNN, including the introduction, related work, training Strategy, limitations, etc.,
can be found in Appendix E.

4.2 CIPNN AND CIPAE

In Anonymous (2024a), we extended the indeterminate probability distribution to continuous random
variable distribution. We propose a general classification model called CIPNN, which works even for
a 1000-dimensional latent space.

Besides, we propose a general auto-encoder called CIPAE, which do not even have the decoder
component. The framework between CIPAE and VAE Kingma & Welling (2014) is almost the same,
but VAE must use a neural network as the decoder. This is a special ability of our analytical solution.

4.3 MTS FORECASTING

In Anonymous (2024b), it shows how to consider multivariate point value as indeterminate probability
distribution. And the multivariate time series (MTS) forecasting problem is formulated as a complex
posterior without relying on any neural models, and the method even does not need any training
process. With our proposed theory, the complex posterior becomes analytical tractable, even in the
presence of a thousand-dimensional latent space.

Although our proposed theory is motivated by design of new neural network architectures, it is not
limited to neural networks. This is supported by our MTS forecasting method, which serves as strong
evidence.

5 VALIDATIONS

The validations in this section are focusing on our proposed Candidate Axioms. More validations or
usefulness of our theory, you can also find in Anonymous (2024a;b).

5.1 EVALUATION ON DATASETS

Table 5: Test accuracy with 3-D latent space; backbone is
FCN for MNIST and Fashion-MNIST, Resnet50 He et al.
(2016) for CIFAR10 and STL10.

Dataset CIPNN IPNN Simple-Softmax

MNIST 95.9± 0.3 95.8± 0.5 97.6± 0.2
Fashion-
MNIST 85.4± 0.3 84.5± 1.0 87.8± 0.2

CIFAR10 81.3± 1.6 83.6± 0.5 85.7± 0.9
STL10 92.4± 0.4 91.6± 4.0 94.7± 0.7

Results on MNIST Deng (2012),
Fashion-MNIST Xiao et al. (2017),
CIFAR10 Krizhevsky et al. (2009)
and STL10 Coates et al. (2011) show
that our proposed indeterminate prob-
ability theory is valid, the backbone
between IPNN, CIPNN and ‘Simple-
Softmax’ is the same, the last layer of
the latter one is connected to softmax
function. Although IPNN and CIPNN
does not reach any SOTA, the results
are very important evidences to our
proposed mutual independence assumptions, see Candidate Axiom 1, Candidate Axiom 2 and
Candidate Axiom 3.
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5.2 EVALUATION ON LARGE LATENT SPACE

For IPNN, we cannot use Monte Carlo method to reduce the exponential complexity (Section 3.4),
otherwise, IPNN will be not able to do back-propagation. Hence, we validate IPNN till to 20-D
dimension.

Besides, for larger latent space, IPNN has also over-fitting problem, train accuracy is 98.7% for 10-D
space and 99.5% for 20-D space, this is only the limitation of IPNN, not CIPNN.

Table 6: Average test accuracy of 10 times results on Large Latent Space on MNIST.

Latent space 5-D 10-D 20-D 50-D 100-D 200-D 500-D 1000-D
IPNN 94.8 88.6 80.6 - - - - -

CIPNN 95.6 94.7 94.7 94.9 94.9 94.9 94.7 93.4 (2 times)

5.3 EVALUATION WITH DUPLICATED RANDOM VARIABLE INFERENCE

If the latent variables are the same, i.e., A1 is identical to A2, then this is the most critical case for
Candidate Axiom 1.

In Appendix B.1, we use a coin toss example to show that Candidate Axiom 1 works for this simple
example. Besides, in Anonymous (2024b), we have duplicated the MTS dataset for abuse test of our
theory, and results show that it has no negative effect to the forecasting performance.

6 CONCLUSION

Since we now consider the state of event in an indeterminate way, we have opened the door to the
applicability of indeterminate probability theory in various fields:

For instance, similar to MTS forecasting we can also interpret a point from data clusters as indeter-
minate probability, then we can do supervised classification task. We can interpret the outputs of
multi-models as indeterminate probability, then we can do ensemble learning related task. These
applications are also not neural models. Even in the field of physics, with our limited understanding
of the ‘Uncertainty Principle’ Britannica (2023), we can interpret the position of particles as indeter-
minate probability distribution, similar to MTS forecasting Anonymous (2024b), and then do some
inference or forecasting tasks.

Definitively, our proposed indeterminate theory is not limited to the applications discussed in this
paper. More applications of this theory are worth to be researched in the future.
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A AN INTUITIVE EXPLANATION

Since our proposed indeterminate probability theory is quite new, we will explain this idea by
comparing it with classical probability theory, see below table:

Table 7: An intuitive comparison between classical probability theory and our proposed theory.

Observation
(Classical) P

(
Y = yl | Aj = aj

ij

)
=

number of event (Y =yl,A
j=a

j
ij

) occurs

number of event (Aj=a
j
ij

) occurs

Inference
(Classical) X = xn+1

P

(
Aj=a

j
ij

|X=xn+1

)
=1

−−−−−−−−−−−−−−−−→
Determinate

Aj = aj
ij

P

(
Y =yl|Aj=a

j
ij

)
−−−−−−−−−−−−→

infer
Y = yl

Observation
(Ours) P

(
Y = yl | Aj = aj

ij

)
=

sum of event (Y =yl,A
j=a

j
ij

) occurs, in decimal

sum of event (Aj=a
j
ij

) occurs, in decimal

Inference
(Ours) X = xn+1



P(Aj=a
j
1|X=xn+1)∈[0,1]

−−−−−−−−−−−−−−−−−→ Aj = aj
1

P(Y =yl|Aj=a
j
1)−−−−−−−−−−−→

P(Aj=a
j
2|X=xn+1)∈[0,1]

−−−−−−−−−−−−−−−−−→ Aj = aj
2

P(Y =yl|Aj=a
j
2)−−−−−−−−−−−→

...−→ Aj = . . .
...−→

P

(
Aj=a

j
Mj

|X=xn+1

)
∈[0,1]

−−−−−−−−−−−−−−−−−−−→
Indeterminate

Aj = aj
Mj

P

(
Y =yl|Aj=a

j
Mj

)
−−−−−−−−−−−−−→

infer


Y = yl

Note: Replacing Aj with joint random variable (A1, A2, . . . , AN ) is also valid for above explanation.

In other word, for classical probability theory, perform a random experiment X = xk, the event state
is Determinate (happened or not happened), the probability is calculated by counting the number of
occurrences, we define this process here as observation phase. For inference, perform a new random
experiment X = xn+1, the state of Aj = ajij is Determinate again, so condition on X = xn+1 is

equivalent to condition on Aj = ajij , that may be the reason why condition on X = xn+1 is not
discussed explicitly in the past.

However, for our proposed indeterminate probability theory, perform a random experiment X = xk,
the event state is Indeterminate (understood as partly occurs), the probability is calculated by
summing the decimal value of occurrences in observation phase. For inference, perform a new
random experiment X = xn+1, the state of Aj = ajij is Indeterminate again, each case contributes
the inference of Y = yl, so the inference shall be the summation of all cases. Therefore, condition
on X = xn+1 is now different with condition on Aj = ajij , we need to explicitly formulate it, see
Equation (15).

Once again, our proposed indeterminate probability theory does not have any conflict with classical
probability theory, the observation and inference phase of classical probability theory is one special
case to our theory.

B EXAMPLE OF CONTINUOUS INDETERMINATE PROBABILITY

This section is a copy from CIPNN. Anonymous (2024a)

We will use a simple coin toss example to demonstrate how to use Equation (10) and Eq. Equation (12)
for continuous random variables, see Table 8.

Observer1 Let’s say, Observer1 is an adult and record the outcome of coin toss always correctly, so
the probability of Y can be easily calculated with the general probability form:

P (Y = hd) =
number of (Y = hd) occurs

number of random experiments
=

5

10
(20)
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Table 8: Example of coin toss.

Random Experiment ID X x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

Ground Truth hd hd hd hd hd
tl tl tl tl tl

Record of Observer1 Y hd hd hd hd hd
tl tl tl tl tl

Equivalent Record Y 1, 0 1, 0 1, 0 1, 0 1, 0
0, 1 0, 1 0, 1 0, 1 0, 1

Record of Observer2 A 0.8, 0.2 0.7, 0.3 0.9, 0.1 0.6, 0.4 0.8, 0.2
0.1, 0.9 0.2, 0.8 0.3, 0.7 0.1, 0.9 0.2, 0.8

Record of Observer3 z N (3, 1) N (3, 1) N (3, 1) N (3, 1) N (3, 1)
N (−3, 1) N (−3, 1) N (−3, 1) N (−3, 1) N (−3, 1)

Where hd is for head, tl is for tail. And condition on xk is the indeterminate probability, e.g.
P (Y = hd|X = x3) = 1, P (A = tl|X = x6) = 0.9 and P (z|X = x8) = N (z;−3, 1).

If we represent Observer1’s record with equivalent form of P (Y = hd|X = xk), the probability is:

P (Y = hd) =

10∑
k=1

P (Y = hd|X = xk) · P (X = xk) =
5

10
(21)

Observer2 Let’s say, Observer2 is a model, it takes the image of each coin toss outcome as inputs,
and it’s outputs are discrete probability distribution.

The Observer2’s record probability is

P (A = hd) =

10∑
k=1

P (A = hd|X = xk) · P (X = xk) =
4.7

10
(22)

This calculation result is a combination of ground truth and observation errors.

Observer3 Let’s say, Observer3 is a strange unknown observer, it always outputs a Gaussian
distribution for each coin toss with a ‘to-be-discovered’ pattern. How can we find this pattern?

P (z) =

10∑
k=1

P (z|X = xk) · P (X = xk) =
5 · N (z; 3, 1) + 5 · N (z;−3, 1)

10
(23)

We get a complexer P (z) distribution here, it’s form is still analytical. And this distribution have
two bumps, how can we know the representation of each bump mathematically? We need to use the
Observer1’s record Y . With Equation (10) we have

P (Y = hd|z) =
∑10

k=1 P (Y = hd|X = xk) · P (z|X = xk)∑10
k=1 P (z|X = xk)

=
N (z; 3, 1)

N (z; 3, 1) +N (z;−3, 1)
(24)

For next coin toss, let P (z|X = x11) = N (z; 3, 1), With Equation (12) and Monte Carlo method,
we have
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P z(Y = hd|X = x11) =

∫
z

(P (Y = hd|z) · P (z|X = x11))

= Ez∼P (z|X=x11) [P (Y = hd|z)] ≈ 1

C

C∑
c=1

P (Y = hd|zc)

=
1

C

C∑
c=1

N (zc; 3, 1)

N (zc; 3, 1) +N (zc;−3, 1)
≈ 1, zc ∼ N (z; 3, 1)

(25)

Where C is for Monte Carlo number. In this way, we know that the bump with mean value 3 is for
Y = hd. Note: this issue cannot be analytically solved with current other probability theories.

If we use a neural network to act as observer3 to output multivariate Gaussian distributions, this is the
core idea of our CIPNN and CIPAE model, and their forms are still analytical.

B.1 EXAMPLE OF DUPLICATED RANDOM VARIABLES INFERENCE

This section is a most critical example to Candidate Axiom 1.

Let z = (z, z, ...)N , we use N same random variable z for the inference, with Equation (10) we have

P (Y = hd|z, z, ...) =
∑10

k=1 P (Y = hd|X = xk) · P (z|X = xk)
N∑10

k=1 P (z|X = xk)N

=
N (z; 3, 1)N

N (z; 3, 1)N +N (z;−3, 1)N

(26)

For next coin toss, let P (z|X = x11) = N (z; 3, 1), with Equation (12), similar to Equation (25), we
have

P z(Y = hd|X = x11) =
1

C

C∑
c=1

N (zc; 3, 1)
N

N (zc; 3, 1)N +N (zc;−3, 1)N
≈ 1, zc ∼ N (z; 3, 1) (27)

We can see that even for duplicated random variables, our calculation results are also almost not
effected.

C PROPERTIES OF INDETERMINATE PROBABILITY THEORY

The indeterminate probability theory (see Equation (15)) may have the following properties, some
have not been proved mathematically due to our limited knowledge.

Proposition 1. IF given A, B and Y is independent, we have P (Y | A,B) = P (Y | A), THEN:

P (A,B) (Y | X = xn+1) = PA (Y | X = xn+1) (28)

This property is understood as: Suppose given A, B and Y is independent, so B does not contribute
for the inference.
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Proof.
P (A,B) (Y | X = xn+1)

=
∑
A,B

(P (Y | A,B) · P (A,B | X = xn+1))

=
∑
A,B

(P (Y | A) · P (A | X = xn+1) · P (B | X = xn+1))

=
∑
A

(P (Y | A) · P (A | X = xn+1)) ·
∑
B

P (B | X = xn+1)

=
∑
A

(P (Y | A) · P (A | X = xn+1))

= PA (Y | X = xn+1)

(29)

Hypothesis 1. Let Y, V be any two different random variables, Similarly, according to Candidate
Axiom 1, we have P (Y, V | X = xn+1) = P (Y | X = xn+1) · P (V | X = xn+1). Our hypothesis
is:

PA (Y, V | X = xn+1) = PA (Y | X = xn+1) · PA (V | X = xn+1) (30)

This property is understood as: Given X , Y and V is independent, so the inference outcome is also
independent.

Hypothesis 2. Let P (A | X = xn+1) ∈ [0, 1) and

P
(
Y 0 = yl | X = xn+1

)
= PA (Y = yl | X = xn+1)

P
(
Y 1 = yl | X = xn+1

)
= PY 0

(Y = yl | X = xn+1)

P
(
Y 2 = yl | X = xn+1

)
= PY 1

(Y = yl | X = xn+1)

. . .

(31)

Our hypothesis is:

PY ∞
(Y = yl | X = xn+1) =

1

m
, l = 1, 2, . . . ,m. (32)

This property is understood as: The inference accuracy will become poor as the information is
transmitted one after another (from Y i−1 to Y i).

Hypothesis 3. Let P (Y = yl | X = xn+1) ∈ {0, 1} and P (A | X = xn+1) ∈ [0, 1). Our hypothe-
sis is:

max
l=1,2,...,m

P (A,A) (Y = yl | X = xn+1) > max
l=1,2,...,m

P (A) (Y = yl | X = xn+1) (33)

This property is understood as: The inference tendency will get more stronger with more same
information (A,A).

D WHY IS INDETERMINATE PROBABILITY THEORY IS GOOD?

Table 9: Comparison of independence assumptions

Assumption Validity Assumption Range

Example A1, . . . , AN independent Strongest assumption all samples
Naı̈ve Bayes Given Y , A1, . . . , AN independent Strong assumption few samples

Ours See our Candidate Axioms. No exception one sample

Let’s think the independent assumption in another way. Sometimes, A1, A2, . . . , AN independence
assumption is strong. Nevertheless, in the case of Naı̈ve Bayes, the whole samples are partitioned into
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small groups due to condition on Y = yl, the conditional independence maybe not strong anymore.
This maybe the reason why Naı̈ve Bayes is successful for many applications.

For our proposed Candidate Axioms, the whole samples are partitioned into a single sample due to
X = xk, our assumptions are the most weak one. For example, even if A1 is identical to A2, our
independent assumptions still hold true. Furthermore, we have already conducted tests with thousand
of latent variables in CIPNN, these assumptions have proven to remain valid. In IPNN, you can test
with a few variables due to the exponentially large space size during the training phase, but not during
the prediction phase (Monte Carlo).

E IPNN

E.1 INTRODUCTION

Humans can distinguish at least 30,000 basic object categories Biederman (1987), classification of
all these would have two challenges: It requires huge well-labeled images; Model with softmax
for large scaled datasets is computationally expensive. Zero-Shot Learning – ZSL Lampert et al.
(2009); Fu et al. (2018) method provides an idea for solving the first problem, which is an attribute-
based classification method. ZSL performs object detection based on a human-specified high-level
description of the target object instead of training images, like shape, color or even geographic
information. But labelling of attributes still needs great efforts and expert experience. Hierarchical
softmax can solve the computationally expensive problem, but the performance degrades as the
number of classes increase Mohammed & Umaashankar (2018).

Probability theory has not only achieved great successes in the classical area, such as Naı̈ve Bayesian
method Cao (2010), but also in deep neural networks (VAE Kingma & Welling (2014), ZSL, etc.)
over the last years. However, both have their shortages: Classical probability can not extract features
from samples; For neural networks, the extracted features are usually abstract and cannot be directly
used for numerical probability calculation. What if we combine them?

There are already some combinations of neural network and bayesian approach, such as probability
distribution recognition Su & Chou (2006); Kocadağlı & Aşıkgil (2014), Bayesian approach are
used to improve the accuracy of neural modeling Morales & Yu (2021), etc. However, current
combinations do not take advantages of ZSL method.

We propose an approach to solve the mentioned problems, and we propose a novel unified combination
of (indeterminate) probability theory and deep neural network. The neural network is used to extract
attributes which are defined as discrete random variables, and the inference model for classification
task is derived. Besides, these attributes do not need to be labeled in advance.

E.2 RELATED WORK

Tractable Probabilistic Models. There are a large family of tractable models including probabilistic
circuits Choi et al. (2020); Dang et al. (2022), arithmetic circuits Darwiche (2002); Lowd & Domingos
(2008), sum-product networks Poon & Domingos (2011), cutset networks Rahman et al. (2014),
and-or search spaces Marinescu & Dechter (2005), and probabilistic sentential decision diagrams Kisa
et al. (2014). The analytical solution of a probability calculation is defined as occurrence, P (A =

a) = number of event (A=a) occurs
number of random experiments , which is however not focused in these models. Our proposed IPNN is

fully based on event occurrence and is an analytical solution.

Deep Latent Variable Models. DLVMs are probabilistic models and can refer to the use of neural
networks to perform latent variable inference Kim et al. (2018). Currently, the posterior calculation
of continuous latent variables is regarded as intractable Kingma & Welling (2019), VAEs Kingma &
Welling (2014); Titsias & Lázaro-Gredilla (2014); Rezende et al. (2014); Gregor et al. (2013) use
variational inference method Jordan et al. (1999) as approximate solutions. Our proposed IPNN is
one DLVM with discrete latent variables and the intractable posterior calculation is now analytically
solved with our proposed theory.
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E.3 TRAINING

E.3.1 TRAINING STRATEGY

Given an input sample xt from a mini batch, with a minor modification of Equation (18):

PA (yl | xt) ≈
∑
A

max(H + h(t̄), ϵ)

max(G+ g(t̄), ϵ)
·

N∏
j=1

αj
ij
(t)

 (34)

h(t̄) =
∑b·t̄

k=b·(t̄−1)+1

(
yl(k) ·

∏N
j=1α

j
ij
(k)
)

(35)

g(t̄) =
∑b·t̄

k=b·(t̄−1)+1

(∏N
j=1α

j
ij
(k)
)

(36)

H =
∑t̄−1

k=max(1,t̄−T )h(k), for t̄ = 2, 3, . . . (37)

G =
∑t̄−1

k=max(1,t̄−T )g(k), for t̄ = 2, 3, . . . (38)

Algorithm 1 IPNN training
Input: A sample xt from mini-batch
Parameter: Split shape, forget number T , ϵ, learning rate η.
Output: Posterior PA (yl | xt)

1: Declare default variables: H,G, hList, gList
2: for t̄ = 1, 2, . . . Until Convergence do
3: Compute h, g with Equation (35) and Equation (36)
4: Record: hList.append(h), gList.append(g)
5: if t̄ > T then
6: Forget: H = H − hList[0], G = G− gList[0]
7: Remove first element from hList, gList
8: end if
9: Compute posterior with Equation (34): PA (yl | xt)

10: Compute loss with Equation (19): L(θ)
11: Update model parameter: θ = θ − η∇L(θ)
12: Update for next loop: H = H + h,G = G+ g
13: end for
14: return model and the posterior

Where b is for batch size, t̄ =⌈
t
b

⌉
, t = 1, 2, . . . , n. Hyper-

parameter T is for forgetting use, i.e.,
H and G are calculated from the re-
cent T batches. Hyper-parameter T
is introduced because at beginning
of training phase the calculated re-
sult with Equation (10) is not good
yet. And the ϵ on the denominator
is to avoid dividing zero, the ϵ on
the numerator is to have an initial
value of 1. Besides, H and G are not
needed for gradient updating during
back-propagation. The detailed algo-
rithm implementation is shown in Al-
gorithm 1.

With Equation (34) we can get that
PA (yl | x1) = 1 for the first input
sample if yl is the ground truth and
batch size is 1. Therefore, for IPNN
the loss may increase at the beginning and fall back again while training.

E.3.2 MULTI-DEGREE CLASSIFICATION (OPTIONAL)

In IPNN, the model outputs N different random variables A1, A2, . . . , AN , if we use part of them to
form sub-joint sample spaces, we are able of doing sub classification task, the sub-joint spaces are
defined as Λ1 ⊂ A,Λ2 ⊂ A, . . . The number of sub-joint sample spaces is:

N∑
j=1

(
N

j

)
=

N∑
j=1

(
N !

j!(N − j)!

)
(39)

If the input samples are additionally labeled for part of sub-joint sample spaces3, defined as Y τ ∈
{yτ1 , yτ2 , . . . , yτmτ }. The sub classification task can be represented as

〈
X,Λ1, Y 1

〉
,
〈
X,Λ2, Y 2

〉
, . . .

With Equation (19) we have,

Lτ = −
∑mτ

l=1

(
yτl (k) · logPΛτ

(yτl | xt)
)
, τ = 1, 2, . . . (40)

3It is labelling of input samples, not sub-joint sample points.
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Together with the main loss, the overall loss is L + L1 + L2 + . . . In this way, we can perform
multi-degree classification task. The additional labels can guide the convergence of the joint sample
spaces and speed up the training process, as discussed later in Appendix E.7.1.

E.3.3 MULTI-DEGREE UNSUPERVISED CLUSTERING

If there are no additional labels for the sub-joint sample spaces, the model are actually doing
unsupervised clustering while training. And every sub-joint sample space describes one kind of
clustering result, we have Equation (39) number of clustering situations in total.

E.3.4 DESIGNATION OF JOINT SAMPLE SPACE

As in Appendix E.6 proved, we have following proposition:
Proposition 2. For P (yl|xk) = yl(k) ∈ {0, 1} hard label case, IPNN converges to global minimum
only when P

(
yl|a1i1 , a

2
i2
, . . . , aNiN

)
= 1, for

∏N
j=1 α

j
ij
(t) > 0, ij = 1, 2, . . . ,Mj . In other word,

each joint sample point corresponds to an unique category. However, a category can correspond to
one or more joint sample points.
Corollary 1. The necessary condition of achieving the global minimum is when the split shape
defined in Equation (16) satisfies:

∏N
j=1Mj ≥ m, where m is the number of classes. That is, for a

classification task, the number of all joint sample points is greater than the classification classes.

Theoretically, if model with 100 output nodes are split into 10 equal parts, it can classify 10 billion cat-
egories, validation result see Appendix E.7.1. Besides, the unsupervised clustering (Appendix E.3.3)
depends on the input sample distributions, the split shape shall not violate from multi-degree cluster-
ing. For example, if the main attributes of one dataset shows three different colors, and your split
shape is {2, 2, . . . }, this will hinder the unsupervised clustering, in this case, the shape of one random
variable is better set to 3. And as in Appendix E.7 also analyzed, there are two local minimum
situations, improper split shape will make IPNN go to local minimum.

In addition, the latter part from Proposition 2 also implies that IPNN may be able of doing further
unsupervised classification task, this is beyond the scope of this discussion.

E.4 RESULTS OF IPNN

E.4.1 UNSUPERVISED CLUSTERING
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Figure 4: Unsupervised clustering results on MNIST: test accuracy 95.1 ± 0.4, ϵ = 2, batch size
b = 64, forget number T = 5, epoch is 5 per round. The test was repeated for 876 rounds with same
configuration (different random seeds) in order to check the stability of clustering performance, each
round clustering result is aligned using Jaccard similarity Raff & Nicholas (2017).

As in Appendix E.3.3 discussed, IPNN is able of performing unsupervised clustering, we evaluate it
on MNIST. The split shape is set to {2, 10}, it means we have two random variables, and the first
random variable is used to divide MNIST labels 0, 1, . . . 9 into two clusters. The cluster results is
shown in Figure 4.

We find only when ϵ in Equation (34) is set to a relative high value that IPNN prefers to put number
1,4,7,9 into one cluster and the rest into another cluster, otherwise, the clustering results is always
different for each round training. The reason is unknown, our intuition is that high ϵ makes that each
category catch the free joint sample point more harder, categories have similar attributes together will
be more possible to catch the free joint sample point.
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E.4.2 HYPER-PARAMETER ANALYSIS

IPNN has two import hyper-parameters: split shape and forget number T. In this section, we have
analyzed it with test on MNIST, batch size is set to 64, ϵ = 10−6. As shown in Figure 5a, if the
number of joint sample points is smaller than 10, IPNN is not able of making a full classification and
its test accuracy is proportional to number of joint sample points, as number of joint sample points
increases over 10, IPNN goes to global minimum for both 3 cases, this result is consistent with our
analysis. However, we have exceptions, the accuracy of split shape with {2, 5} and {2, 6} is not high.
From Figure 4 we know that for the first random variable, IPNN sometimes tends to put number
1,4,7,9 into one cluster and the rest into another cluster, so this cluster result request that the split
shape need to be set minimums to {2,≥ 6} in order to have enough free joint sample points. That’s
why the accuracy of split shape with {2, 5} is not high. (For {2, 6} case, only three numbers are in
one cluster.)

Another test in Figure 5b shows that IPNN will go to local minimum as forget number T increases
and cannot go to global minimum without further actions, hence, a relative small forget number T
shall be found with try and error.
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Figure 5: (a) Impact Analysis of split shape with MNIST: 1D split shape is for {τ}, τ = 2, 3, . . . , 24.
2D split shape is for {2, τ}, τ = 2, 3, . . . , 12. 3D split shape is for {2, 2, τ}, τ = 2, 3, . . . , 6. The
x-axis is the number of joint sample points calculated with

∏N
j=1Mj , see Equation (16).

(b) Impact Analysis of forget number T with MNIST: Split shape is {10}.

E.5 CONCLUSION

For a classification task, we proposed an approach to extract the attributes of input samples as random
variables, and these variables are used to form a large joint sample space. After IPNN converges
to global minimum, each joint sample point will correspond to an unique category, as discussed in
Proposition 2. As the joint sample space increases exponentially, the classification capability of IPNN
will increase accordingly.

We can then use the advantages of classical probability theory, for example, for very large joint
sample space, we can use the Bayesian network approach or mutual independence among variables
(see Appendix E.8) to simplify the model and improve the inference efficiency, in this way, a more
complex Bayesian network could be built for more complex reasoning task.

E.6 GLOBAL MINIMUM ANALYSIS

Proof of Proposition 2. Equation (18) can be rewritten as:

PA (yl | xt) =
∑
A

(
pA ·

∏N
j=1 α

j
ij
(t)
)

(41)

Where,

pA = P
(
yl | a1i1 , a

2
i2 , . . . , a

N
iN

)
(42)
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Theoretically, for P (yl|xk) = yl(k) ∈ {0, 1} hard label case, model converges to global minimum
when the train and test loss is zero Li & Yuan (2017), and for the ground truth yl(t) = 1, with
Equation (19) we have:

∑
A

(
pA ·

∏N
j=1 α

j
ij
(t)
)
= 1 (43)

Subtract the above equation from Equation (6) gives:

∑
A

(1− pA) ·
N∏
j=1

αj
ij
(t)

 = 0 (44)

Because
∏N

j=1 α
j
ij
(t) ∈ [0, 1] and (1− pA) ∈ [0, 1], The above equation is then equivalent to:

pA = 1, for
N∏
j=1

αj
ij
(t) > 0, ij = 1, 2, . . . ,Mj . (45)

E.7 LOCAL MINIMUM ANALYSIS

Equation (41) can be further rewritten as:

PA (yl | xt) =

Mτ∑
iτ=1

(
ατ
iτ (t) ·

∑
Λ

(
pA ·

∏N
j=1,j ̸=τ α

j
ij
(t)
))

=
∑Mτ

iτ=1

(
ατ
iτ
(t) · piτ

)
(46)

Where Λ = (A1, . . . , Aj , . . . , AN ) ⊂ A, j ̸= τ and,

piτ =
∑
Λ

(
pA ·

∏N
j=1,j ̸=τ α

j
ij
(t)
)

(47)

Substitute Equation (46) into Equation (19), and for the ground truth yl(t) = 1 the loss function can
be written as:

L = − log(
∑Mτ

iτ=1

(
ατ
iτ
(t) · piτ

)
) (48)

Let the model output before softmax function be zij , we have:

ατ
iτ (t) =

eziτ∑Mj

ij=1 e
zij

(49)

In order to simplify the calculation, we assume pA defined in Equation (42) is constant during
back-propagation. so the gradient is:

∂L
∂ziτ

= −
ατ
iτ
(t) ·

∑Mj

ij=1,ij ̸=iτ

(
ezij · (piτ − pij )

)∑Mj

ij=1

(
ezij · pij

) (50)

Therefore, we have two kind of situations that the algorithm will go to local minimum:
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∂L
∂ziτ

=


→ 0, if

∣∣ziτ − zij
∣∣→ ∞

0, if piτ = pij
Nonezero, o.w.

(51)

Where iτ = 1, 2, . . . ,Mτ .

The first local minimum usually happens when Corollary 1 is not satisfied, that is, the number of joint
sample points is smaller than the classification classes, the results are shown in Figure 5a.

If the model weights are initialized to a very small value, the second local minimum may happen
at the beginning of training. In such case, all the model output values are also small which will
result in αj

1(t) ≈ αj
2(t) ≈ · · · ≈ αj

Mj
(t), and it will further lead to all the piτ be similar among each

other. Therefore, if the model loss reduces slowly at the beginning of training, the model weights is
suggested to be initialized to an relative high value. But the model weights shall not be set to too
high values, otherwise it will lead to first local minimum.

As shown in Figure 6, if model weights are initialized to uniform distribution of
[
−10−6, 10−6

]
, its

convergence speed is slower than the model weights initialized to uniform distribution of [−0.3, 0.3].
Besides, model weights initialized to uniform distribution of [−3, 3] get almost stuck at local minimum
and cannot go to global minimum. This result is consistent with our analysis.
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Figure 6: Model weights initialization impact analysis on MNIST. Split shape is {2, 10}, batch size
is 64, forget number T = 5, ϵ = 10−6.

E.7.1 AVOIDING LOCAL MINIMUM WITH MULTI-DEGREE CLASSIFICATION

Another experiment is designed by us to check the performance of multi-degree classification
(see Appendix E.3.2): classification of binary vector into decimal value. The binary vector is the
model inputs from ‘000000000000’ to ‘111111111111’, which are labeled from 0 to 4095. The
split shape is set to {M1 = 2,M2 = 2, . . . ,M12 = 2}, which is exactly able of making a full
classification. Besides, model weights are initialized as uniform distribution of [−0.3, 0.3], as
discussed in Appendix E.7.

The result is shown in Figure 7, IPNN without multi degree classification goes to local minimum
with only 69.5% train accuracy. We have only additionally labeled for 12 sub-joint spaces, and IPNN
goes to global minimum with 100% train accuracy.

Therefore, with only
∑12

1 2 = 24 output nodes, IPNN can classify 4096 categories. Theoretically,
if model with 100 output nodes are split into 10 equal parts, it can classify 10 billion categories.
Hence, compared with the classification model with only one ‘softmax’ function, IPNN has no
computationally expensive problems (see Section 1).
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Figure 7: Loss of multi-degree classification of ‘binary to decimal’ on train dataset. Input samples are
additionally labeled with Y i ∈ {0, 1} for ith bit is 0 or 1, respectively. Y i corresponds to sub-joint
sample space Λi with split shape {Mi = 2}, i = 1, 2, . . . 12. Batch size is 4096, forget number
T = 5, ϵ = 10−6.

E.8 MUTUAL INDEPENDENCY

If we want the random variables A1, A2, . . . , AN partly or fully mutually independent, we can use
their mutual information as loss function:

L∗ = KL

P (A1, A2, . . . , AN ),

N∏
j=1

P (Aj)

 =
∑
A

(
P
(
a1i1 , . . . , a

N
iN

)
· log

P
(
a1i1 , . . . , a

N
iN

)∏N
j=1 P (ajij )

)
(52)

=
∑
A


∑n

k=1

(∏N
j=1α

j
ij
(k)
)

n
· log


∑n

k=1

(∏N
j=1α

j
ij
(k)

)
n∏N

j=1

∑n
k=1 α

j
ij
(k)

n




E.9 LIMITATIONS

Indeterminate Probability Theory. As we summarized in Section 3.5, we do not find any excep-
tions for our proposed three conditional mutual independency assumptions, see Candidate Axiom 1
Candidate Axiom 2 and Candidate Axiom 3. And our proposed Equation (15) is derived from these
assumptions, in our opinion, this equation can be applied to any general random experiment.

IPNN. IPNN is one neural network framework based on indeterminate probability theory, it has
three limitations: (1) The split shape need to be predefined, a proper sample space for an unknown
dataset can only be found with try and error. The latent variables are continuous in CIPNN Anonymous
(2024a), therefore this issue does not exist in CIPNN. (2) It sometimes converges to local minimum,
but we can avoid this problem with a proper model weights initialization, as discussed in Appendix E.7.
(3) As joint sample space increases exponentially, the memory consumption and computation time
also increase accordingly. This issue only exist during training, and can be avoided through monte
carlo method for prediction task, as discussed in CIPNN Anonymous (2024a), this paper will not
further discuss it.

E.10 PSEUDO CODE PYTORCH IMPLEMENTATION OF IPNN

’’’
Pseudo code of calculation of the loss and the inference posterior

Pˆ{A}(Y|X).
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b --> batch size
y --> number of classification classes
[M_1, M_2, ..., M_N] --> split shape

inputs:
logits: [b, M_1 + M_2 +, ..., M_N] # neural network outputs
y_true: [b,y] # labels

outputs:
probability: [b,y] # the inference posterior Pˆ{A}(Y|X)
loss

’’’

logits = torch.split(logits, split_shape, dim = -1)
# Shape of variables: [[b, M_1], [b, M_2], ..., [b, M_N]]
variables = [torch.softmax(_,dim = -1) for _ in logits]

# Joint sample space calculation
# Shape of joint_variables: [b, M_1, M_2, ..., M_N]
for i in range(len(variables)):
if i == 0 :

joint_variables = variables[i]
else:

r_ = EINSUM_CHAR[:joint_variables.dim()-1]
joint_variables = torch.einsum(’b{},ba->b{}a’.format(r_,r_),

joint_variables,variables[i]) # see Equation (5)

# OBSERVATION PHASE
r_ = EINSUM_CHAR[:joint_variables.dim()-1]
num_y_joint_current = torch.einsum(’b{},by->y{}’.format(r_,r_),

joint_variables,y_true) # # see Equation (35)
num_joint_current = torch.sum(joint_variables,dim = 0) # see

Equation (36)

# numerator and denominator of conditional probability P(Y|Aˆ1,A
ˆ2,...,AˆN)

num_y_joint += num_y_joint_current # see Equation (37)
num_joint += num_joint_current # see Equation (38)

# Shape of prob_y_joint: [y, M_1, M_2, ..., M_N]
prob_y_joint = num_y_joint / num_joint # see Equation (10)

# INFERENCE PHASE
# Shape of probability: [b,y]
r_ = EINSUM_CHAR[:joint_variables.dim()-1]
probability = torch.einsum(’y{},b{}->by’.format(r_,r_),

prob_y_joint,joint_variables) # see Equation (34)

# loss function
loss = cross_entropy_loss(probability,y_true) # see Equation (19)

23


	Introduction
	Background
	Indeterminate Probability Theory
	Definition of Indeterminate Probability
	Observation Phase
	Inference Phase
	Complexity Reduction
	Summary

	Applications
	IPNN
	CIPNN and CIPAE
	MTS forecasting

	Validations
	Evaluation on Datasets
	Evaluation on Large Latent Space
	Evaluation with Duplicated Random Variable Inference

	Conclusion
	An Intuitive Explanation
	Example of Continuous Indeterminate Probability
	Example of Duplicated Random Variables Inference

	Properties of Indeterminate Probability Theory
	Why is Indeterminate Probability Theory is Good?
	IPNN
	Introduction
	Related Work
	Training
	Training Strategy
	Multi-degree Classification (Optional)
	Multi-degree Unsupervised Clustering
	Designation of Joint Sample Space

	Results of IPNN
	Unsupervised Clustering
	Hyper-parameter Analysis

	Conclusion
	Global Minimum Analysis
	Local Minimum Analysis
	Avoiding Local Minimum with Multi-degree Classification

	Mutual Independency
	Limitations
	Pseudo Code Pytorch implementation of IPNN


