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ABSTRACT

Simulation is vital for scientific and engineering disciplines, as it enables the pre-
diction and design of physical systems. However, the computational challenges
inherent to large-scale simulations often arise from complex device models fea-
turing high degrees of nonlinearities or hidden physical behaviors not captured by
first principles. Gray-box models that combine deep neural networks (DNNs) with
physics-based models have been proposed to address the computational challenges
in modeling complex physical systems. A well-crafted gray box model capitalizes
on the interpretability and accuracy of a physical model while incorporating deep
neural networks to capture hidden physical behaviors and mitigate computational
load associated with highly nonlinear components. Previously, gray box models
have been constructed by defining an explicit combination of physics-based and
black-box models to represent the behavior of sub-systems; however this alone
cannot represent the coupled interactions that define the behavior of the entire
physical system. We, therefore, explore an implicit gray box model, where both
DNNs (trained on measurement and simulated data) and physical equations share a
common set of state-variables. While this approach captures coupled interactions
at the boundary of data-driven and physics-based models, simulating the implicit
gray box model remains an open-ended problem. In this work, we introduce a
new hybrid simulation that directly integrates DNNs into the numerical solvers of
simulation engines to fully simulate implicit gray box models of large physical
systems. This is accomplished by backpropagating through the DNN to calculate
specific Jacobian values during each iteration of the numerical method. The hy-
brid simulation of implicit gray-box models improves the accuracy and runtime
compared to full physics-based simulation and enables reusable DNN models with
lower data requirements for training. For demonstration, we explore the advantages
of this approach as compared to physics-based, black box, and other gray box
methods for simulating the steady-state and electromagnetic transient behavior of
power systems.

1 INTRODUCTION

Simulation tools enable the design and verification of critical engineering and scientific systems,
ranging from power grids and circuits to biological networks. However, the complexity of modern
physical systems creates a computational burden on simulation engines’ underlying numerical
methods. This computational challenge arises from two key challenges:
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1. Nonlinearities and Large State Space Models: Accurate physics-based models of complex
sub-systems (such as power grid inverters or an integrated circuit component that is a
combination of nanoscale CMOS transistors) often require several state variables specific
to the sub-system that exhibit highly nonlinear behavior. This expands the mathematical
representation of the entire system and introduces nonlinearities that limit the performance
of numerical solvers, such as Newton-Raphson.

2. Hidden Behavior: Sub-systems often exhibit behavior not captured by the first princi-
ples. Surrogate models are often used to mimic the true behavior but inevitably introduce
inaccuracies to the simulation.

In response to these challenges, black-box models, trained on empirical data, have emerged as poten-
tial solutions to represent complex devices with lower computational effort. Recent advancements in
universal function approximators, particularly deep neural networks (DNNs), have demonstrated the
ability to accurately model complex behavior of specific devices. However, simulation of black box
models lack the ability to guarantee established physical constraints, potentially leading to unrealistic,
infeasible system behavior. Furthermore, DNNs’ practical implementation is often hindered by the
demand for extensive training data characterizing the entire system, as well as lack of generalizability
and explainability.

To combine the explainability of physics-based and computational performance of black-box methods,
DNN-based gray-box models have been proposed to model entire physical systems. This approach
leverages the predictive capabilities of DNNs to model the input-output behavior of a subsystem
while enforcing the rest of the system’s constraints using physics-based models. Specifically, these
methods aim to model a general physical system represented as:

h(z, u) = 0 (1)

where z is the vector of state variables describing the system and u is a vector of inputs. In this
work, we assume h(z, u) represents a set of algebraic constraints or differential equations that can be
separated as follows:

h(z, u) = h1(z, u) + h2(z, u) = 0 (2)

We propose a DNN-based gray box method that models sub-system behavior via physics-based
equations, hph(z, u), or DNNs, hnn(z, u). The entire system is then represented as:

hph(z, u) + hnn(z, u) = 0. (3)

In the proposed method, the DNNs, hnn(z, u), macromodel the input-output relationships of sub-
systems by using state-variables, z, and system inputs, u, to predict the sub-system’s output. The
use of state variables, z, as inputs for both DNN and physics-based models results in an implicit
combination of data-driven and physics-based models. The benefits of a well-crafted implicit gray
box model, (3), for the entire system are:

• Unlike explicit gray box models, we directly capture the coupled interactions between
physics-based and data-driven models

• Compared to a black-box model of the system, our approach improves the generalizability,
explainability and re-usability of DNN models with lower training data requirements

• Accurately model the hidden behavior of sub-systems using observed or simulated data
compared to physics-based models

However, because the implicit gray box model shares state variables between both DNNs and
physics-based equations, it necessitates a new simulation engine capable of solving both models
simultaneously to study the behavior of the entire coupled system.

In this work, we introduce a hybrid simulation engine that directly integrates DNN models into
the underlying numerical methods of simulation engines to efficiently solve the gray box system
expressed in (3). The proposed methodology simulates the coupled system via a Newton-Raphson
(NR) method and extracts specific values of the Jacobian for the NR using backpropagation of trained
DNN models. This enables simulating an implicit gray-box model of full physical systems to achieve
the advantages of the proposed model.
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We demonstrate the capabilities of the implicit DNN-based gray box model in conjunction with
our hybrid simulation engine by studying the steady-state and electromagnetic transient behavior
of power systems. Unlike traditional physics-based simulations, our approach not only accurately
predicts hidden physical behaviors overlooked by pure physics-based models, but also significantly
reduces the simulation runtime for complex subsystems. Furthermore, in comparison to other gray
box and black box methods, our methodology guarantees that established physical constraints are
met and directly captures the interactions between coupled subsystems.

2 RELATED WORKS

Previous studies have explored different approaches, such as white box, black box, and gray box
methods, for simulating physical systems. In the domain of physics-based simulation engines,
considerable efforts have been dedicated to developing numerical techniques and exploiting a physical
systems’ structure to the efficiency of simulating large and intricate systems in various fields, including
circuits Pillage (1998), biology Hines & Carnevale (1997). Although a wide range of methods is
available for physics-based simulations, here we primarily focus on the use of black box and gray
box models for simulating physical systems.

Black Box Simulations: Black box simulation engines are trained using observed or simulated data
to approximate a system’s input-output behavior. These black box methods, such as artificial neural
networks Zurada (1992) and their specialized variant, convolutional neural networks Krizhevsky et al.
(2012), have been widely employed for various applications including fault diagnosis Aminian &
Aminian (2000) Aminian et al. (2002) and component modeling Wang et al. (2021) in electronic
circuits, vision Redmon & Angelova (2015) and manipulator control Lewis et al. (1998) He et al.
(2018) in robotics, as well as cancer diagnosis Abbass (2002) Munir et al. (2019). Time series models,
such as the Recurrent Neural Network Elman (1990), Long Short-Term Memory (LSTM) Hochreiter
& Schmidhuber (1997) and Gated Recurrent Unit (GRU) Chung et al. (2014), have been used to
predict the behavior of renewable energy sources Abdel-Nasser & Mahmoud (2019) Wang et al.
(2019). Compared to physics-based models, black box methods have been shown to reduce the
computational load of simulating systems Gensler et al. (2016), and modeling hidden behaviors Liu
et al. (2017), however, often require large amounts of data Reichstein et al. (2019). To address this
issue, methods such as data augmentation Wong et al. (2016) and meta learningVinyals et al. (2016)
Finn et al. (2017) have been utilized to reduce the amount of required data. Furthermore, physics-
inspired neural networks such as PINNs Raissi et al. (2019), DeepOnets Lu et al. (2019),Fourier
neural operators Li et al. (2020) and JAX-CFD Toshev et al. (2024) have emerged as a promising
method to learn behavior of physical systems by modifying the neural network structure based
on physics-based equations. However, black-box simulation engines cannot guarantee physical
constraints Ljung (2001), Camporeale (2019), and their limited explainability poses challenges in
engineering and scientific applications Loyola-Gonzalez (2019).

Gray box Simulations: Gray box methods have been widely proposed to combine the benefits of
black box and physics-based models by incorporating data-driven techniques to identify hidden or
complex behavior into physical knowledge of a system’s structure.

One approach to gray box modeling is through parameter fitting techniques, where sub-systems are
represented by a surrogate model whose parameters are optimized to match simulated or observed data
Law & Hutson (1997)Sebastião (2013). The surrogate model is then integrated into physics-based
equations and are used to model transistors in BSIM Cheng & Hu (2007), renewable energy sources
in power systems Rodriguez et al. (2019), as well as biochemical reactions Goulet (2016). However,
parameter fitting relies on a highly accurate surrogate model to precisely capture a sub-system’s
behavior and sensitivity. This work explores the consequences of inaccurate surrogate predictions
and sensitivities.

Alternatively, to reduce reliance on accurate surrogate models, gray box methods have adopted DNNs
to model sub-system behavior. The challenge, however, is integrating DNNs with the system’s
physics-based equations. One approach is through a serial architecture, where system inputs are first
processed by a black-box model, and then its outputs feed into a physics-based model. This has been
successful in applications with well-defined physical equations, allowing the black box to fine-tune
parameters of these equations using historical data. This has been used for thermal storage tanks
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Arahal et al. (2008), thermal error modeling Zhang et al. (2012), mold cooling simulations Everett &
Dubay (2017), and engine control Bidarvatan et al. (2014). However, the serial architecture is limited
to systems with well-defined structures that only need fine-tuning.

A parallel architecture is another approach to integrating DNNs in gray box methods, where system
inputs are fed into both black-box and physics-based models simultaneously. Each model represents
a sub-system, and their outputs are combined to replicate the entire system’s behavior. This method
is useful when data-driven techniques accurately capture complex or hidden behaviors in coupled
subsystems. This has been applied to simulating decanter centrifuges Menesklou et al. (2021),
predictive analytics in intelligent manufacturing Yang et al. (2017), chemical process modeling Xiong
& Jutan (2002), and thermal error management Zhang et al. (2012). However, past applications
Menesklou et al. (2021)Xiong & Jutan (2002),Li et al. (2021) focus on the explicit combination of
both models defined as:

0 = hph(z, u) + hnn(u). (4)

This explicit combination eliminates the reliance on state variables in the black-box models (denoted
by hnn). As a result, this method cannot capture the coupled interactions between physics-based,
hph, and data-driven models, hnn.

Contributions: Our work builds on the parallel gray box architecture, but we introduce a new
approach that solves the implicit combination, expressed in (3), and reproduced below:

hph(z, u) + hnn(z, u) = 0 (5)

This equation represents an implicit coupling of physics-based and DNN models, both sharing the
same state-space variables, z. As a result, simulating (3) requires solving the DNNs and physics-based
equations simultaneously. We introduce a technique that directly integrates data-driven models into
physics-based simulations for efficient and accurate analysis of the coupled system.

3 CONSTRUCTING IMPLICIT DNN-BASED GRAY-BOX MODELS

We begin by constructing the implicit DNN-based gray box model to effectively capture the complex
behaviors of physical systems. To capitalize on the advantages of this model, we partition the physical
system into coupled sub-systems, each represented by either a physics-based or a data-driven model.

The physical system is represented by S(z, u, h), where z → Rn is a vector of state variables, u is
a vector of system inputs, and h : Rn ↑ Rn is the set of characteristic equations in (1) that define
the behavior of the system. The system is then partitioned into sub-systems, Si ↓ S, represented
as Si ({xi, yi}, u, {fi, gi}) where xi → Rni are the internal state variables that are exclusive to the
sub-system Si, and yi → Rbi are the state variables shared among neighboring sub-systems. The
internal state variables are governed by the characteristic function fi(xi, yi, u) = 0 and the interaction
between neighboring sub-systems are captured by

gi(x1, · · · , xm, yi, u) = 0, (6)

where gi : Rbi+ni ↑ Rb is a function of internal state variables, xi, of m connected subsystems and
shared boundary variables, yi. In this framework, we assume the boundary equation is separable with
respect to each internal state-variable, xi, leading to the following:

m∑

k=1

gki (xk, yi, u) = 0. (7)

Therefore, the behavior of the entire system, S, is now described as a collection of subsystems, Si,
governed by internal, fi(xi, yi, u), and boundary behavioral equations, gi(xi, yj , u), as:

fi(xi, yi, u) = 0 ↔i → [1,M ] (8)
m∑

k=1

gki (xk, yi, u) = 0 ↔i → [1, B]. (9)
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3.1 SUB-SYSTEMS IN GRAY BOX SIMULATIONS

Using a system-level partitioning, we introduce a DNN-based gray-box methodology that models
each subsystem, Si, using physics-based equations or DNNs. In cases where first-principles are
well understood, the characteristic functions, fi, and boundary interactions, gi, are modeled by
physics-based equations. However, for more complex or poorly understood subsystems, trained
DNNs can macromodel the input-output behavior without explicitly modeling the internal dynamics.

The inputs to the DNN are the system inputs, u, and the shared state-space variables, y. The DNN
then predicts the output behavior of the subsystem, gi, as perceived by the rest of the system. By
doing so, the DNN eliminates the need to explicitly define internal state variables, opting to model the
relationships between the inputs and the boundary conditions that govern interactions with adjacent
subsystems. The boundary equations for a sub-system, gi(xi, yi, u), are then approximated as:

gnn(yi, u) ↗ gi(xi, yi, u). (10)
The boundary conditions are now partitioned according to:

mp∑

j=1

gph(xj , yj , u) +
mn∑

j=1

gnn(yj , u) = 0. (11)

By macromodeling the input-output behavior of sub-systems, the implicit gray box model decreases
the number of state-variables and equations. To best utilize the benefits of the gray box model, users
are encouraged to model a subsystem, Si, using a DNN under the following conditions:

1. Complexity of the physics-based equations: A complex white-box model introducing large
nonlinearities can hinder simulation performance, suiting a DNN for reducing run-time and
masking internal state variables.

2. Hidden behavior: If a sub-system’s behavior is better captured through data rather than
physical equations (e.g., weather-dependent renewable energy sources), DNN models may
provide better accuracy.

3. Data availability: Abundant and accurate data can allow DNNs to effectively capture the
sub-system behavior.

An example of constructing an implicit gray box model that capitalizes on the benefits of DNNs is
demonstrated for a power grid, shown in Appendix 7.1.

Training DNN to Model Subsystems The proposed gray box methodology independently trains
each DNN using experimental and simulated data to accurately capture the input-output behavior of a
sub-system, gi. One of the key advantages of this approach is that the training dataset is localized to
model the input-output behavior of each sub-system, (10). Unlike full black-box models that require
data for the entire system, this method eliminates the need for data samples from other subsystems.

Another benefit of this approach is the reusability of DNN models. Physical systems often feature
multiple instances of a device, and with the gray box paradigm, a single trained DNN can be used to
model each device instance. This reduces the size of the required training dataset, compared to full
black-box methods, and helps lower the barrier to implementing DNNs in low-observable systems.

4 SIMULATING THE IMPLICIT DNN-BASED GRAY BOX MODELS

Using the implicit gray box methodology, the entire system behavior is described as:
fph(x, y, u) = 0 (12)

gph(x, y, u) + gnn(y, u) = 0, (13)
where fph(x, y, u) captures the behavior of the physics-based subsystems with internal state variables,
x, and shared variables of all subsystems, y. The boundary conditions between the physics-based
models, gph(x, y, u), and DNN, gnn(y, u), are captured by (11). Since both DNNs and physics-based
equations share the state variables yi, simulating the system behavior requires solving the full set
of behavioral equations, (13) simultaneously within a numerical solver. We introduce a hybrid
simulation engine that effectively simulates gray box models where the system behavior can be
represented by both algebraic and differential equations.
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4.1 HYBRID SIMULATION FOR SOLVING ALGEBRAIC CONSTRAINTS

We begin by demonstrating the hybrid simulation of gray box models where the system behavior
is governed by algebraic equations (e.g., for simulating steady-state conditions). The system is
simulated using the Newton-Raphson (NR) method, which is ideal for analyzing physical systems
due to their inherent sparsity. This helps reduce the computational cost associated with building and
inverting the NR Jacobian matrix in each iteration.

At each iteration, NR updates the system states of the gray box model, [xk+1, yk+1] , by utilizing the
partial derivatives of both physics-based (fph, gph) and DNN (gnn) components according to:

[
ω
ωxfph(x

k, yk) ω
ωyfph(x

k, yk)
ω
ωxgph(x

k, yk) ω
ωy gph(x

k, yk) + ω
ωy gnn(y

k)

] [
!xk

!yk

]
= ↘ω

[
fph(xk, yk)

gph(xk, yk) + gnn(yk)

]
, (14)

where ω is a scalar step size that dampens the NR step to improve convergence. The key additions
for simulating gray box models involve computing the output of the DNN model gnn(yk), and the
respective sensitivity term ω

ωy gnn(y
k).

We extract the Jacobian values for the DNN ( ω
ωy gnn(y

k)) by backpropagating through a trained
model, gnn(·), with respect to the input tensor, y, as outlined in Algorithm 1. Additionally, a forward
pass of the DNN using an input of yk determines the corresponding terms in the right-hand side
vector, gnn(yk), of the NR step (14). The workflow for solving nonlinear algebraic constraints within
the proposed gray box framework, in Algorithm 2, seamlessly integrates DNN models within physical
simulation, leveraging backpropagation to construct the Jacobian.

Algorithm 1 Solving Newton-Raphson Step for Hybrid Architecture Using PyTorch Paszke et al.
(2017)
Input: gnn(·), y

1: gnn=gnn(y)
2: gnn.backward(retain_graph=True)
3: ω

ωy gnn=y.grad.detach().clone()
4: return gnn,

ω
ωy gnn

Algorithm 2 Solving Algebraic Constraints with Hybrid Simulation
Input: fph(·),gph(·), x0, y0,gnn(·), ω, ε

1: xk ≃ x0, yk ≃ y0

2: do while:

∥∥∥∥

[
fph(xk, yk)

gph(xk, yk) + gnn(yk)

]∥∥∥∥ > ε

3: Evaluate: fph(xk, yk)
4: Evaluate the sensitivity terms: ω

ωxfph(x
k, yk), ω

ωyfph(x
k, yk), ω

ωxgph(x
k, yk), ω

ωy gph(x
k, yk)

5: Extract Sensitivity Terms from DNN: gnn(yk), ω
ωy gnn ≃ Algorithm 1(gnn(·), yk)

6: Solve NR Step in (14)
7: xk ≃ xk +!xk

8: yk ≃ yk +!yk

9: return xk, yk

4.2 HYBRID ARCHITECTURE FOR DIFFERENTIAL EQUATIONS

Next, we propose a hybrid simulation of the gray box model described by differential equations as:

ẋ(t) = fph(x(t), y(t)) (15)
ẏ(t) = gph(x(t), y(t)) + gnn(y(t)) (16)
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with an initial value at t = 0 denoted by [x0, y0]. To solve for the response of x(t) and y(t),
differential equation solvers employ numerical methods to approximate the state at discrete time-
points. A commonly used numerical method is the trapezoidal integration, which approximates the
system states at a time-point t+!t as:

x(t+!t) = x(t) +
!t

2
fph(x(t+!t), y(t+!t)) +

!t

2
fph(x(t), y(t)) (17)

y(t+!t) = y(t)+
!t

2
[gph(x(t+!t), y(t+!t))+gnn(y(t+!t))]+

!t

2
[gph(x(t), y(t))+gnn(y(t))].

(18)
We determine the system states, x(t+!t), y(t+!t, by solving the following equations:

x(t+!t)↘ x(t)↘ !t

2
fph(x(t+!t), y(t+!t))↘ !t

2
fph(x(t), y(t)) = 0 (19)

y(t+!t)↘y(t)↘!t

2
[gph(x(t+!t), y(t+!t))+gnn(y(t+!t))]↘!t

2
[gph(x(t), y(t))+gnn(y(t))] = 0

(20)

To solve the resulting set of nonlinear equations, we employ an iterative NR method. Similar to
the algebraic constraints in Section 4.1, using the NR requires performing the forward pass and
computing the Jacobian values for a trained DNN model, gnn, at time t+!t. To extract the Jacobian
values, we backpropogate through the DNN using the system state from the previous NR iteration,
[xk(t+!t), yk(t+!t)], as inputs and as described in Algorithm 1. The entire workflow to solve
for the states [x(t), y(t)] is described in Algorithm 3 in Appendix 7.2. By directly integrating DNN
models into the numerical method for solving differential equations, we can efficiently capture
complex system dynamics and leverage the strengths of physics-based and data-driven modeling to
improve the computational performance of physical simulation.

5 EXPERIMENTS

This section demonstrates the efficacy of our proposed hybrid simulation engine for simulating
implicit DNN-based gray box models. We first validate the accuracy of the sensitivity extracted by
backpropagation for diode and transistor devices. Then, we apply the hybrid simulation to study the
steady-state and transient simulation of a power systems network where renewable energy sources and
loads are macro-modeled using DNNs and integrated into hybrid simulation engines. We demonstrate
the following benefits of the gray box model:

1. Accurately model the output and sensitivity of devices, unlike explicit gray box methods.
2. Guarantee that established physical constraints are met, unlike black box methods
3. Reduce runtime of physics-based simulators by modeling complex devices with DNNs.

5.1 VALIDATING JACOBIAN ELEMENTS OF THE IMPLICIT DNN-BASED GRAY BOX MODELS

We first verify that backpropagation through a trained DNN using Algorithm 1 extracts Jacobian
values that accurately represent the sensitivity of physical devices. To demonstrate this, we learn
the current-voltage behavior of a diode and a transistor by training DNNs (details in Appendices
7.4.1 and 7.4.2) to a mean absolute error of 2.2e ↘ 5 and 1.3e ↘ 8 amps. The trained DNNs are
integrated into a circuit, shown in Figure 12 (in the Appendix), and the steady-state currents of the
devices are determined at different voltage levels using the hybrid simulation in Algorithm 2. As
shown in Figure 1a, this approach accurately simulates the steady-state device behavior within 1%
of the physics-based simulators. Furthermore, our results demonstrate that the backpropagation
method accurately captures the Jacobian entries (i.e., sensitivities to the device port voltage) with an
average 1% error for the diode as Figure 1a compared to sensitivities derived from physical equations.
Furthermore, for the 45nm NMOS transistor, the backpropagation method reaches a 4% margin for
both VGS and VDS compared to the sensitivities from physics-based BSIM models, as shown in
Figures 1b and 8. The approach is further validated for 90nm NMOS transistors, shown in Appendix
7.3. This confirms that backpropagating through a well-trained DNN can yield precise Jacobian
entries.
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(a) The diode’s voltage is varied from 0 → 1 V.
The current flowing through the diode, ID , and
the sensitivity, dI/dV , is recorded. The DNN
model’s output current and sensitivities extracted
by backpropagating agrees a average error within
1% compared to the calculated diode sensitivity.

(b) The gate-to-source voltage, VGS of a 45nm
NMOS transistor is varied from 0 → 1V and the
output current, IDS , and its sensitivity to the VGS

is measured. The output sensitivities extracted by
backpropagating through the DNN agrees within
4%.

Figure 1

5.2 STEADY-STATE POWER FLOW SIMULATION

In this experiment, we demonstrate the effectiveness of a DNN-based gray box method for accurately
modeling power networks with renewable energy sources and real-time household loads. These
devices, influenced by weather, time of day, and node voltage data, exhibit behavior not solely
captured by conventional current-voltage equations. Since physical equations cannot account for the
impact of weather and time, alternative methods like parameter fitting and black-box simulations
are often used. We compare these with our DNN-based gray box model and highlight its ability to
capture device sensitivity while ensuring network constraints.

5.2.1 COMPARISON WITH EXPLICIT GRAY BOX METHODS

To model the hidden behavior that is not captured by physical equations, prior methods use an explicit
gray box method known as parameter fitting which uses a DNN to forecast the hyperparameters of
the surrogate model to align with past data. The surrogate model with a fixed set of hyperparameters
is then explicitly added to the system equations for simulation.

Parameter fitting relies on a precise surrogate model to depict the device’s behavior under different
operational scenarios; however, inaccurate surrogate models can lead to unreliable simulations. One
significant source of error arises from imprecise sensitivities of the surrogate models, causing the
simulation engine to follow divergent solution paths.

Our proposed hybrid simulation integrates DNN models directly into the simulation engine, avoiding
inaccuracies from assumed surrogate model forms. We compare this approach to a parameter-fitting
method by simulating a composite load (capacitor, inductor, and induction motor), shown in Figure 2.
Specifically, we contrast it with the commonly used PQ model:

P + jQ = V I→ (21)

where P and Q are real and reactive powers. and, V and I are the device voltage and current. While
the parameter fitting method uses a DNN, described in Appendix 7.4.3, to forecast P and Q of
the surrogate model using weather and time of day, our approach trains a DNN to directly predict
current, I , using weather, time of day, and node voltage, V . This model is seamlessly integrated into
the power grid’s KCL equations via the steady-state hybrid simulator described in Section 4.1. To
demonstrate the effectiveness of our methodology, we show how the surrogate model can produce
inaccurate device sensitivities, leading to infeasible results in larger steady-state simulations.

Inaccurate Sensitivities The surrogate PQ model implicitly assumes a fixed sensitivity between
node voltage, V , and current, I , which may not match the device’s actual behavior. To illustrate this,
we compare the steady-state current of a trained PQ surrogate model for a composite load with the
ground-truth electromagnetic transient (EMT) simulation. As shown in Table 3, the surrogate PQ
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Figure 2: Simulation of a composite load con-
sisting of a capacitor, resistor and induction
motor that is modeled by a static PQ model
(whose parameters are learned according to
Appendix 7.4.3) and the proposed hybrid sim-
ulation. The current response of both models
is compared against the ground truth of an
electromagnetic transient simulation (EMT).

EMT
(Ground
Truth)

PQ
Model

Hybrid
Simula-
tion

I(pu) at V =
1.0pu

0.032 0.031 0.031

I(pu) at V =
1.2pu

0.037 0.024 0.0364

dI/dV at V =
1.0pu

1.24 -0.179 1.252

Figure 3: The output current, I and sensitivity,
dI/dV , using different models (EMT model, PQ,
hybrid) to represent composite load are recorded
at a node-voltage operating point of V = 1.0pu
and V = 1.2pu. While the PQ and hybrid models
accurately predict the current at V = 1.0pu, they
show different sensitivities, causing the PQ model
to inaccurately predict the current at V = 1.2pu.

Figure 4: Loads and renewables in a 14-
bus test case are modeled by DNNs.

Type of Model Vmax Vmin

PQ Surrogate Model 1.09 0.86
Proposed Hybrid Simulation 1.09 1.038

Ground-Truth EMT Simulation 1.09 1.038

Table 1: The maximum and minimum voltages
(Vmax, Vmin) of a post-contingency 14-bus net-
work is determined using PQ models or DNNs to
represent renewables.

model accurately predicts the composite load’s output current at a nominal voltage of V = 1.0pu,
however, exhibits inaccurate sensitivity to changes in the node voltage. The PQ model incorrectly
predicts a decrease in the output current as the voltage increases, contrary to the behavior observed in
EMT simulations. As a result, when the node voltage increases to V = 1.2pu (20% above nominal),
the PQ model fails to accurately predict the output current, as shown in Figure 2.

In contrast, the implicit gray box model trains a DNN to directly predict the current based on voltage,
and uses Algorithm 1 to accurately compute a sensitivity, which aligns the EMT simulation (as shown
in Table 3). As a result, when the node voltage is increased to V = 1.2pu, the proposed hybrid
simulation accurately predicts the resulting current. This highlights the advantage of the proposed
gray box method, which avoids the potential inaccuracies from a surrogate model.

Simulating System Behavior Inaccurate sensitivities from surrogate models can aggregate in larger
simulations, leading to infeasible solutions. To demonstrate this, we replace renewable energy sources
and household loads in the 14-bus system with surrogate PQ models and study the post-contingency
behavior after removing one line (bus 2 to bus 3). The resulting steady-state simulation converges
to a point where the lowest voltage is at 0.86pu (signficantly below the normal operating limits of
0.95pu). In contrast, we use our proposed implicit gray box model integrates a trained DNN model
of renewable energy sources and household loads into the network, shown in Figure 4, to study the
steady-state behavior. Since our methodology accurately extracts device sensitivities, we converge to
a realistic voltage level, as indicated in Table 1, which aligns with the ground-truth EMT simulation.
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Figure 5: A full black box simulation and
the hybrid architecture are used to simulate
the modified 14-bus network with power set-
points of generators and loads deviating from
the nominal 1.0pu (increasingly outside the
training set). The KCL residue resulting from
both simulators’ output is shown.

Figure 6: An EMT simulation of a 14-bus
network is performed using a DNN model of
an induction motor (described in Appendiex
7.4.5) that is integrated into the differential
equations using the hybrid simulation. The
phase A voltage of bus 8 (where an induction
motor is placed), is compared against a full
physics-based EMT simulation.

5.2.2 COMPARISON WITH FULL BLACK BOX SIMULATION

Black box methods have been used to simulate the steady-state of entire power grids, however, cannot
guarantee established physical network constraints are met. We demonstrate this in our experiments,
where we compare a DNN that predicts the network’s steady-state nodal voltages using generator
set-points, weather and time of day, with our proposed hybrid simulation.

In this experiment, we train a DNN, shown in Appendix 7.4.4, to model the 14-bus network across
a voltage range of 0.8 ↘ 1.2pu, and assess its ability to simulate operating conditions beyond the
training set to replicate the process of studying grid failures. We observe that the residues from
the system’s network constraints (i.e., ⇐f(x)⇐) resulting from the black-box’s output increase with
deviations from the nominal set points of the generator powers of 1.0pu (see Figure 5). This indicates
that a full black box simulator fails to ensure physical constraints are met for scenarios outside the
training set. On the other hand, the proposed hybrid simulation is used to simulate the behavior 14 bus
network, with DNNs modeling the behavior of renewables and loads. This approach always satisfy
the network’s KCL constraints, even outside nominal set-points, thus highlighting the advantage over
black box methods.

Another advantage of the implicit gray box model is its efficiency in terms of training data and
reusability. Although the full black-box simulator requires 2000 training samples to accurately model
a single scenario of the 14-bus network, by training DNN models for each individual device types,
our implicit gray box method only 400 training samples to model 14 bus network. This not only
saves training data but also improves the reusability of the DNNs, as changes in network topology
can be handled by the physics-based model without retraining the DNNs.

5.3 IMPROVING THE SIMULATION RUNTIME OF PHYSICS-BASED MODELS

A key advantage of the hybrid simulator over physics-based simulators is that it can reduce the size
of the state-space and simulation runtime by macromodeling the input-output behavior of subsystems
as DNNs. We demonstrate this by using hybrid simulation to solve EMT simulations with a DNN to
model induction motors, as shown in Appendix 7.4.5.EMT simulates the grid’s transient response
by solving differential equations of nonlinear devices, which often introduce many internal state
variables. For example, the differential equations of an induction motor, described in Pandey et al.
(2023), introduce 11 internal state variables and require multiple NR iterations while simulating a
14-bus system. Using the hybrid simulation, we reduce the simulation’s state-space and the overall
runtime by modeling the input-output relation of the induction motor using a DNN. This effectively
masks the device’s internal state variables only requiring a model-call and a single backpropagation
during each NR step, as performed in Algorithm 3. Compared to an EMT simulation of a 14-bus
network with physics-based models of induction motors, the hybrid simulation, in Figure 6,provides
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Number of Buses Runtime Reduction (%) State-Space Reduction (%) Maximum Error (%)
2-Bus 0.95 3.9 1.5
14-Bus 0.87 15.9 3.4
39-Bus 0.81 38.4 5.9

Table 2: Integrating a DNN model of an induction motor into an EMT simulation, we evaluate the
runtime (normalized to the runtime using the physics-based model), reduction in state-space, and
maximum error of the hybrid system using a DNN to model the induction motor.

an accurate transient response of the system (with a 3.4% error), while reducing the state-space by
15.9% and runtime by 13%, as shown in Table 2. We observe similar outcomes for larger networks,
shown in Table 2.

6 CONCLUSION

In this study, we present an implicit DNN-based gray-box model that couples DNNs with physics-
based equations. To simulate the combined system, we introduce a hybrid simulation framework that
incorporates both forward passes and backpropagation of DNNs within the numerical solvers used in
traditional simulation engines. This enhances simulation accuracy and efficiency, outperforming fully
physics-based simulations and black-box methods. We validate the approach by simulating the steady-
state and transient behaviors of a power grid, demonstrating its ability to accurately capture the hidden
dynamics of devices while significantly reducing simulation runtime by macromodeling complex
components using a DNN. This hybrid technique paves the way for more efficient simulations that
leverage the strengths of DNNs with well-established physics-based models.
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