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Abstract

Anomaly detection focuses on identifying samples that deviate from the norm.
When working with high-dimensional data such as images, a crucial requirement
for detecting anomalous patterns is learning lower-dimensional representations that
capture concepts of normality. Recent advances in self-supervised learning have
shown great promise in this regard. However, many successful self-supervised
anomaly detection methods assume prior knowledge about anomalies to create
synthetic outliers during training. Yet, in real-world applications, we often do not
know what to expect from unseen data, and we can solely leverage knowledge
about normal data. In this work, we propose CON2, which learns representations
through context augmentations that model invariances of normal data while letting
us observe samples from two distinct perspectives. At test time, representations of
anomalies that do not adhere to these invariances deviate from the representation
structure learned during training, allowing us to detect anomalies without relying
on prior knowledge about them.

1 Introduction

Reliably detecting anomalies is essential in many safety-critical fields such as healthcare
[Schlegl et al., 2017, Ryser et al., 2022], finance [Golmohammadi and Zaiane, 2015], industrial fault
detection [Atha and Jahanshahi, 2018, Zhao et al., 2019], or cyber-security [Xin et al., 2018]. In
healthcare, a common real-world example of anomaly detection (AD) is standard screenings, i.e.,
data from doctors who regularly examine the general population for anomalies that would indicate a
health risk. These datasets predominantly comprise samples from healthy people since most screened
individuals do not exhibit any diseases. Detecting anomalies in this setting is challenging, as anoma-
lies can arise from an arbitrary set of potentially rare diseases while we predominantly encounter
normal samples in the dataset. The field of AD tackles this problem by learning representations that
reflect normality during training and, at test time, detecting anomalies as deviations from the learned
normal structure [Ruff et al., 2021].

Recent works have demonstrated that learning a representation space containing features that tightly
represent normality is essential for AD [Ruff et al., 2018, Oza and Patel, 2018, Sabokrou et al., 2020].
Current state-of-the-art methods further carefully design synthetic anomalies and explicitly encourage
anomalous representations to be different from normal ones [Tack et al., 2020, Wang et al., 2023].
However, anomalies can be diverse and unexpected, which can make it difficult to simulate them in
real-world settings.

This work presents a novel AD objective, CON2, which learns informative, tightly clustered repre-
sentations of normal samples without assuming prior knowledge about anomalies. CON2 leverages
context augmentations that let us observe samples in different contexts while preserving their normal
information. Our new CON2 objective clusters representations according to these new contexts while
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encouraging similar representations within each cluster. Our approach ensures a highly informative
structure within each cluster by preserving the relative normality of samples independent of their
context.

In the following, we will provide some intuition behind context augmentations and introduce the
two properties that define them. We then demonstrate how CON2 uses context augmentations to
learn highly informative, tightly clustered representations of normal data. We further define two
anomaly score functions that measure the anomalousness of new samples. Finally, we demonstrate
the advantage of modeling invariances of normal data by detecting anomalies on two medical datasets.

2 Methods

Figure 1: Overview of CON2. Samples get context aug-
mented and passed through an encoder. The context contrast-
ing loss ensures context-specific representations (∎ and ∎
clusters) while the content alignment loss encourages a con-
text independent structure ( ) within each context cluster.
We learn representations in a contrastive fashion, matching
corresponding positive ( ) and discriminating between
negative ( ) pairs of representations separately for context
contrasting and content alignment.

Here, we first introduce the notion
of context augmentations and demon-
strate how to use them for context con-
trasting with CON2. We then present
how to use these representations to de-
tect anomalies at test time.

2.1 Context Augmentation

Our approach leverages the fact that
certain transformations can transform
a sample into another context, creat-
ing a distinct new view without alter-
ing the information content of the sam-
ple. Our goal is to use such transfor-
mations to learn context-specific rep-
resentation clusters that align in con-
tent, letting us detect anomalies as samples that deviate from the learned structure. Here, let X be
our dataset, let tC ∶ X → X be a data augmentation, and let X ′ = {tC(x) ∣ x ∈ X} be the dataset
transformed by tC . The function tC is a context augmentation if it fulfills the following two properties:

Distinctiveness There are no two samples x ∈ X , x′ ∈ X ′ such that x ≈ x′, i.e., there is a clear
distinction between the original and the context augmented distribution after applying tC . For instance,
if our normal class consists of images of melanoma, flipping the image violates distinctiveness, as
melanoma can be photographed from any angle. Conversely, histogram equalizing or color inversion
of the image satisfies distinctiveness, as the resulting color distribution is clearly distinct from the
original samples of such a dataset.

Alignment Let x,x′ ∈X , and let d(x,x′) denote an appropriate similarity measure for samples in
the input space. Then, we require that d(x,x′) ≈ d(tC(x), tC(x′)), i.e., originally similar normal
samples should stay just as similar in the new context, meaning that the original and the context-
augmented normal distributions should align. For instance, masking part of a torso x-ray image
would violate alignment, as we could potentially remove important regions, such as the lungs, from
the image altogether. On the other hand, two vertically flipped x-rays are as similar to each other as
their original counterparts.

While these conditions may be dataset-dependent, some examples of context augmentation that often
fulfill distinctiveness and alignment are vertical flipping (Flip), color inversion (Invert), or histogram
equalization (Equalize). We present some examples of these augmentations in Figure 2.

2.2 Context Contrasting

In the following, we demonstrate how to use context augmentations to learn aligned, context-specific
representation clusters with our new CON2 loss. More background and preliminaries on contrastive
learning can be found in Appendix B.1.

Assume a set of normal samples Xtrain, a context augmentation tC , a set of content-preserving
augmentations T like in Chen et al. [2020], and let XC = {(x,0) ∣ x ∈ Xtrain} ∪ {(tC(x),1) ∣
x ∈ Xtrain} denote the context-augmented dataset, labeling each sample with its context.
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Figure 2: Examples of context augmen-
tations for four samples from our experi-
ments.

We then apply augmentations from T to our dataset to
create X̃C , where (x̃2i, yi), (x̃2i+1, yi) ∈ X̃C denote two
transformations of the same context-augmented sample
using random augmentations from T . More specifically,
for t, t′ ∈ T , x̃2i = t(xCi ) and x̃2i+1 = t′(xCi ), where
xCi ∈ XC . Further, let f(X̃C) ∶= {(f(x), y)∣x ∈ X̃C} for
any function f . CON2 then consists of two parts.

First, by leveraging the distinctiveness property of context
augmentations, we can learn tightly concentrated, context-
specific representation clusters with our context contrast-
ing loss. Similar to Chen et al. [2020], let fΦ(x) =
hϕ(gθ(x)) project representations z = gθ(x) with a pro-
jection head hϕ(z) that gets discarded after training and
ℓ is the instance discrimination loss as defined in Ap-
pendix B.1. We then define the context contrasting loss as

LContext(X̃C) = ∑
(x̃i,yi)∈X̃C

1

2N − 1 ∑
(x̃j ,yj)∈X̃C
x̃j≠x̃i∧yi=yj

ℓ(fΦ(x̃i), fΦ(x̃j), fΦ(X̃C)).

Intuitively, context contrasting encourages representations of the same context to be clustered together
while pushing other context clusters away, similar to class representations of supervised contrastive
learning [Khosla et al., 2020].

While LContext allows us to learn context-dependent representation clusters, it does not enforce a
specific structure within each cluster. To make the cluster structure more informative, CON2 leverages
the alignment property of context augmentations to align representations across clusters through
context-independent instance discrimination. More specifically, let Λ(i) = {2i,2i + 1,4i,4i + 1}, i.e.,
Λ(i) corresponds to all indices of samples in X̃C which are augmentations of the original sample
xi ∈X . We then define the content alignment loss as

LContent(X̃C) =
N

∑
k=1

1

12
∑

i∈Λ(k)

∑
j∈Λ(k)∖i

ℓ(fΨ(x̃i), fΨ(x̃j), fΨ(X̃C)),

where fΨ(x) = hψ(gθ(x)), and hψ denotes another projection head that is different from hϕ.
Content alignment ensures that all representations of the same normal sample can be matched across
different contexts, encouraging alignment of the representations within each context cluster.

Finally, we combine context contrasting and content alignment to our loss function CON2, which
enables us to learn context-specific, content-aligned representations of normality:

LCon2(X̃C) = LContext(X̃C) + αLContent(X̃C)
To account for the different scaling of LContext and LContent, we need to introduce a weighting factor
α ∈ R+. We discuss our specific choice for α in Appendix E.

2.3 Anomaly Detection

In the AD setting, we typically assume an unlabeled training set containing predominantly normal
samples, whereas we want to discriminate between normal and anomalous samples at test time
[Ruff et al., 2021]. We provide some additional background on the setting in Appendix B.2.

To detect anomalies, we define two anomaly score functions that measure how well a test sample
adheres to the context representation clusters. The simplest way to achieve this is a simple non-
parametric nearest neighbor approach using the cosine similarity similar to [Bergman et al., 2020,
Sun et al., 2022]. Specifically, we define the cosine distance between the training set Xtrain and a
given test sample x with transformation t as

sNND(x; t) = − max
x′∈Xtrain

⟨gθ(t(x)), gθ(t(x′))⟩
∥gθ(t(x))∥∥gθ(t(x′))∥

While this approach works well in practice, it is rather memory-inefficient, as we need to store the
representations of all samples in Xtrain.
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We address this problem by introducing a likelihood-based score function sLH assuming Gaussian
context clusters. More specifically, let Z(t)train = {

gθ(t(x))
∥gθ(t(x))∥

∣ x ∈Xtrain} , we then compute the

density of a multivariate normal distribution based on the empirical mean µ (Z(t)train) and covariance

Σ (Z(t)train) given a transformation t. We thus define

sLH(x; t) = − log(N (
gθ(t(x))
∥gθ(t(x))∥

∣ µ (Z(t)train) ,Σ (Z
(t)
train))) .

Similar to previous works [Tack et al., 2020, Wang et al., 2023], we leverage test-time augmentations
to improve the anomaly detection performance. More formally, let Ttest = {t1, . . . , tA} be a set of A
test time augmentations. We define our final anomaly score functions SD ∶ X → R as

SD(x) =
1

A

⎛
⎝

A/2

∑
i=1

sD(x; ti) +
A

∑
i=A/2

sD(x; ti ○ tC)
⎞
⎠

, where D ∈ {NND,LH}.

3 Medical Anomaly Detection Experiment

Table 1: Anomaly detection results on two real-
world medical imaging datasets. We train each
model with three different seeds and report mean
± standard deviation.

Method Score S Pneumonia Melanoma

SimCLR SNND 91.0 ±0.9 72.9 ±2.8
SSD SMahalanobis 90.9 ±0.2 79.0 ±2.2
CSI SCSI 73.9 ±1.6 92.3±0.02
UniCon-HA SUniCon 86.4 ±0.1 91.1 ±0.8

CON2 (Equalize)
SLH

93.3 ±0.6 93.1 ±0.04
CON2 (Invert) 90.6 ±1.0 91.7 ±0.2
CON2 (Flip) 91.5 ±0.6 80.5 ±3.0

CON2 (Equalize)
SNND

93.9 ±3.1 90.5 ±0.9
CON2 (Invert) 91.1 ±0.7 91.8 ±0.2
CON2 (Flip) 92.8 ±1.1 83.3 ±1.3

We compare the performance of CON2 with re-
cent unsupervised AD methods on two challeng-
ing medical imaging datasets. We train CON2

on the healthy samples of a real-world medical
chest x-ray dataset [Kermany et al., 2018] and
a melanoma imaging dataset [Javid, 2022], dis-
criminating between unseen healthy and anoma-
lous samples at test time. Here, we model in-
variances of normal samples with the three con-
text augmentations Flip, Invert, and Equalize
described in Section 2.1. Note that Flip vio-
lates distinctiveness on melanoma images as
they could be taken from any angle. See Appen-
dices D and E for more details on the datasets,
the experimental setup, and baselines.

Table 1 contains the results of this experiment, including a comparison to our baselines. While most
of our runs perform similarly, we indeed see that CON2 with Flip performs drastically worse on
melanoma, demonstrating that fulfilling distinctiveness and alignment is indeed crucial for context
augmentations. Further, we observe that our method outperforms our baselines, confirming that
modeling invariances of normal data offers an advantage over simulating anomalies for learning
normal representations. We provide additional ablations on more traditional AD benchmark datasets
in Appendix F.

4 Conclusion

In this work, we focused on anomaly detection by learning representations that capture normality.
We identified that although methods based on self-supervised representation learning show promising
results in this area, their reliance on prior knowledge of the structure of anomalies is a limitation.
As such knowledge might not be available in real-world settings, we proposed CON2 instead. Our
CON2 approach lets us learn representations of normal data by leveraging context augmentations.
These transformations set the normal space into a new context, allowing us to observe normal data
from different perspectives and thus learn context-specific representation clusters that are aligned
according to the properties of the normal samples in the dataset. We demonstrated how our new
representation learning method allows us to detect anomalies by introducing two anomaly scores
that measure sample anomalousness by how much a representation deviates from the learned context
cluster. Finally, we presented the applicability of our method in two experiments where we performed
anomaly detection on real-world medical datasets. In conclusion, CON2 is a reliable approach to
learning highly informative representations of normality across various settings without making any
assumption about anomalies, which is especially useful in safety-critical domains such as healthcare.
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A Related Work

Recently, learning useful normal representations of high-dimensional data to perform anomaly de-
tection has become a popular line of research. Prior work has tackled the problem from various
angles, for instance, using hypersphere compression [Ruff et al., 2018]. Other popular methods
define pretext tasks such as learning reconstruction models [Chen et al., 2017, Zong et al., 2018,
You et al., 2019] or predicting data transformations [Golan and El-Yaniv, 2018, Hendrycks et al.,
2019b, Bergman and Hoshen, 2019]. While these approaches had some success in the past, the
learned representations are not very informative. On the other hand, methods learning more in-
formative representations have recently been shown to improve over prior work [Sun et al., 2022,
Sehwag et al., 2021].

Another line of work focused on estimating the training density with the help of generative models,
detecting anomalies as samples from low probability regions [An and Cho, 2015, Schlegl et al., 2019,
Nachman and Shih, 2020, Mirzaei et al., 2022]. However, these methods tend to generalize better to
unseen distributions than to the observed training distribution [Nalisnick et al., 2018].

In addition to the traditional setting, where we assume training data without any labels, some works
have slightly weakened this restriction and assumed access to a limited number of labeled samples.
This setting is called anomaly detection with Outlier Exposure (OE) [Hendrycks et al., 2019a], and it
has been shown that even just a few labeled samples can greatly boost performance over an unlabeled
dataset [Ruff et al., 2020, Qiu et al., 2022, Liznerski et al., 2022]. Using large, pretrained models
as feature extractors is a special case of OE, as additional data is not explicitly accessible. Some
approaches have been introduced that use representations from pretrained models directly in zero-
shot fashion[Bergman et al., 2020, Liznerski et al., 2022], while others demonstrate the benefit of
fine-tuning [Cohen and Avidan, 2022, Reiss and Hoshen, 2023]. OE has been very successful in the
past, often outperforming traditional AD settings across many benchmarks, though at the cost of
either requiring labeled samples or vast amounts of data for pretraining, which are both often not
available or hard to obtain in more specialized domains.

Another setting that has recently gained popularity is out-of-distribution (OOD) detection. In OOD
detection, we have additional information about our dataset in the form of labels. Anomaly detection
is thus a special case of OOD detection with only a single label. While the problem is similar, most
approaches that tackle OOD detection make specific use of a classifier trained on the dataset labels
[Hendrycks and Gimpel, 2017, Lee et al., 2018, Wang et al., 2022], which AD.

In comparison, our method operates in the traditional anomaly detection setting and can be applied to
datasets without any knowledge about anomalies. Further, while we do assume access to a dataset
containing only normal samples, our method does not rely on any additional labels, as they are
potentially difficult and expensive to obtain, particularly in more specialized settings.

B Background

In this section, we provide some terminology for contrastive learning and background about the
anomaly detection setting.

B.1 Contrastive Learning

Recently, contrastive learning has emerged as a popular approach for representation learning
[van den Oord et al., 2019, Chen et al., 2020]. By design, contrastive learning has the capabil-
ity to learn representations that are agnostic to certain invariances [von Kügelgen et al., 2021,
Daunhawer et al., 2023], which makes contrastive learning a particularly interesting choice to learn
informative representations of normal samples [Tack et al., 2020, Wang et al., 2023], as it allows us
to incorporate prior knowledge about our data into the representing learning process in the form of
data augmentations. More specifically, invariances are learned by forming positive and negative pairs
over the training dataset by applying data augmentations that should retain the relevant content of a
sample.

The goal of contrastive learning is to learn an encoding function gθ(x), where representations of
positive pairs of samples are close and negative pairs are far from each other. For a given pair of
samples x,x′ ∈ X , we can define the instance discrimination loss as [Sohn, 2016, Wu et al., 2018,
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van den Oord et al., 2019]

ℓ(x,x′,X) = − log exp (sim(x,x′)/τ)
∑

x′′∈X ∶ x′′≠x

exp (sim(x,x′′)/τ) .

Here, the function sim(x,x′) corresponds to a function that measures the similarity between x and
x′. For the rest of our work, we assume sim(x,x′) to be the cosine similarity between the two input
vectors, as this is one of the most popular choices in the contrastive learning literature.

One of the most prominent contrastive methods is SimCLR [Chen et al., 2020], which creates positive
pairs through sample augmentations. There exists a supervised extension called SupCon [Khosla et al.,
2020], which incorporates class labels into the SimCLR loss. For a given set of augmentations T , a
dataset X = {(xi, yi)}Ni=1, and an augmented dataset X̃ where ∣X̃ ∣ = 2N and (x̃2i, yi), (x̃2i+1, yi) ∈
X̃ denote two transformations of the same sample using random augmentations from T , SimCLR
and SupCon introduce the following loss functions:

LSimCLR(X̃) =
1

2N

N

∑
i=1

(ℓ(fΘ(x̃2i), fΘ(x̃2i+1), fΘ(X̃)) + ℓ(fΘ(x̃2i+1), fΘ(x̃2i), fΘ(X̃)) ,

LSupCon(X̃) = ∑
(x̃i,yi)∈X̃

1

N(yi) − 1
∑

(x̃j ,yj)∈X̃ ∶
x̃j≠x̃i∧yi=yj

ℓ(fΘ(x̃i), fΘ(x̃j), fΘ(X̃)) .

Here, Θ = {θ, θ′} and N(y) = ∣{(x̃i, yi) ∣ (x̃i, yi) ∈ X̃ ∧ yi = y}∣ denotes the number of samples in
X̃ with label y. We further denote fΘ(X̃) = {fΘ(x̃) ∣ (x̃, y) ∈ X̃} and fΘ(x) = hθ′(gθ(x)), where
z = gθ(x) is a feature extractor and hθ′(z) is a projection head that is typically only used during
training [Chen et al., 2020].

B.2 Anomaly Detection

In the anomaly detection setting, we are given an unlabeled dataset {x1, . . . ,xn} = X ⊂ X , while
assuming that most samples are normal, i.e., the dataset is practically free of outliers [Ruff et al.,
2021]. The goal is to learn a model from the given dataset that discriminates between normal and
anomalous data at test time.

In this work, we assume the challenging case where our dataset is completely free of anomalies.
Hence, we aim to discriminate between the normal class and a completely unobserved set of anomalies
at test time. This setting is sometimes called one-class classification or novelty detection.

To achieve this goal, one straightforward approach is to approximate the distribution pX (x) directly
using generative models [An and Cho, 2015, Schlegl et al., 2019]. Because we assume normal data
to lie in high-density regions of pX , we can discriminate between normal and anomalous samples by
applying a threshold function pX (x) ≤ τ , where τ ∈ R is an often task-specific threshold [Bishop,
1994]. As density-based approaches are often difficult to apply to high-dimensional data directly
[Nalisnick et al., 2018], we follow a slightly different line of work.

In this paper, we focus on learning a function gθ ∶ X → Z that provides us with representations
that capture the normal attributes of samples in the dataset [Sehwag et al., 2021, Tack et al., 2020,
Wang et al., 2023], by mapping normal samples close to each other in representation space. On the
other hand, anomalies that lack the learned normal structure should be mapped to a different part of
the representation space.

Given gθ(x), a popular approach to detect anomalies is by defining a scoring function S ∶ Z →
R [Breunig et al., 2000, Schölkopf et al., 2001, Tax and Duin, 2004, Liu et al., 2008]. The score
function maps a representation onto a metric that estimates the anomalousness of a sample. To
identify anomalies at test time, we can use S similarly to the density pX , i.e., we consider a new
sample x to be normal if S(gθ(x)) ≤ τ , whereas S(gθ(x)) > τ means x is an anomaly.

C Compute & Code

We run all our experiments on single GPUs on a compute cluster using a combination of RTX2080Ti,
RTX3090, and RTX4090 GPUs. Each experiment can be run with 4 CPU workers and 16 GB of
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Table 2: Approximate compute hours for the experiments for each dataset and method. SimCLR and
SSD use the same representations, so we can evaluate both methods in one go and list their compute
hours together.

Method
Dataset CIFAR10 CIFAR100 ImageNet30 Dogs vs. Cats Muffin vs. Chihuahua Pneumonia Melanoma

SimCLR/SSD 35 120 315 60 21 12 15
CSI - - - 81 27 24 19
UniCon-HA - - - 240 108 36 54
CON2 465 135 360 78 40 58.5 63

memory. We provide an overview of the compute for our experiments in Table 2. Our experiments are
written using PyTorch [Ansel et al., 2024] with Lightning [Falcon and The PyTorch Lightning team,
2019].

In the following, we list for each of our methods and baselines how we arrive at results and which
code we use.

CON2: We implement CON2 using PyTorch [Ansel et al., 2024] together with Lightning
[Falcon and The PyTorch Lightning team, 2019]. To evaluate our method, we use various open-
source Python libraries such as NumPy [Harris et al., 2020], scikit-learn [Pedregosa et al., 2011],
Pandas [McKinney, 2010, team, 2020], or SciPy [Virtanen et al., 2020]. Implementation of the
CON2 objective is partially based on code provided by Khosla et al. [2020] (https://github.com/
HobbitLong/SupContrast).

SimCLR: For this baseline, we implement SimCLR [Chen et al., 2020] and compute anomaly scores
in a similar fashion as [Sun et al., 2022]. For this baseline, we rely on similar packages as CON2.

SSD: We take results for SSD on CIFAR10 from Sehwag et al. [2021]. For the other experiments,
we implement the baseline following the paper. Our implementation follows a similar structure as
SimCLR.

CSI: We CSI results on CIFAR10, CIFAR100, and ImageNet30 from Tack et al. [2020]. For all
other experiments, we download the code from https://github.com/alinlab/CSI and run it
with new dataloaders.

UniCon-HA: Similar to CSI, we take results on CIFAR10, CIFAR100, and ImageNet30 from
Wang et al. [2023]. For all other experiments, the authors shared their code with us, such that we
could run the experiments for the other datasets by using the original code with new dataloaders.

D Datasets

In the following, we provide details about preprocessing, sources, and licenses of the datasets we use
in our experiments.

Pneumonia

Our Pneumonia dataset was originally published by Kermany et al. [2018] and consists of 5′863 lung
xrays, which are labeled with Pneumonia and Normal labels. We first resize images to 256 and
apply center-cropping to feed 224 × 224 images to our model. We ran all our experiments on the
Pneumonia dataset with a batch size of 128. The dataset can be downloaded from https://www.
kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia and is published under
CC BY 4.0 license.

Melanoma

We use the Melanoma dataset of Javid [2022], which consists of 10′600 images of Melanoma
labeled with being benign or malignant. We resize each image to size 128 × 128 before passing
them to the model with batch size 128. The dataset is publicly available at https://www.kaggle.
com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images and is
published under the CC0: Public Domain license.
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CIFAR10/CIFAR100

CIFAR10 and CIFAR100 are natural image datasets with 32 × 32 samples. Both datasets consist
of a total of 60′000 samples, with a total of 10 and 100 samples for CIFAR10 and CIFAR100,
respectively. As CIFAR100 comes with only 600 samples per class, the dataset authors additionally
define a set of 20 superclasses, aggregating 5 labels each. In our one-class classification experiments
on CIFAR100 we use the superclasses to ensure a manageable number of runs and a sufficient
amount of training data. We ran all our experiments on CIFAR10 and CIFAR100 with a batch
size of 512. Both datasets were published by Krizhevsky et al. [2009] and can be downloaded
from https://www.cs.toronto.edu/~kriz/cifar.html. To the best of our knowledge, these
datasets come without a license.

Imagenet30

The ImageNet30 dataset is a subset of the original ImageNet dataset [Russakovsky et al., 2015]. It
was created by Hendrycks et al. [2019b] for the purpose of one-class classification. The dataset
consists of 42′000 natural images where each is labeled with one of 30 classes. We preprocess the
dataset by resizing the shorter edge to 256 pixels, from which we randomly crop a 224 × 224 image
patch every time we load an image for training. We ran all our experiments on ImageNet with a batch
size of 128. The dataset can be downloaded from https://github.com/hendrycks/ss-ood,
which comes with the MIT License. Further, while we could not find a license for ImageNet, terms
of use are provided on https://image-net.org/.

Dogs vs. Cats

The Dogs vs. Cats was originally introduced in a Kaggle challenge by Microsoft Research [Cukierski,
2013] and consists of 25′000 images of cats and dogs. We preprocess the dataset by resizing the
shorter edge to 128 pixels and then perform center cropping, feeding the resulting 128 × 128 image
to our model. We ran all our experiments on Dogs vs. Cats with a batch size of 256. The dataset can
be downloaded from https://www.kaggle.com/competitions/dogs-vs-cats/data. To the
best of our knowledge, there is no official license for the dataset, but the Kaggle page points to the
Kaggle Competition rules https://www.kaggle.com/competitions/dogs-vs-cats/rules in
the license section.

Chihuahua vs. Muffin

The Chihuahua vs. Muffin dataset consists of 6′000 images scraped from Google Images. We
preprocess the dataset similar to ImageNet30, resizing the shorter edge of the images to 128 pixels
while feeding random 128 × 128 sized image crops to the model during training. We ran all our ex-
periments on Chihuahua vs. Muffin with a batch size of 256. The dataset was published by Cortinhas
[2023] and can be downloaded from https://www.kaggle.com/datasets/samuelcortinhas/
muffin-vs-chihuahua-image-classification/data. According to the datasets Kaggle page,
the dataset is licensed under CC0: Public Domain.

In addition to the preprocessing mentioned above, we normalize each image with a mean and standard
deviation of 0.5 after applying the augmentations of CON2.

E Experimental Details

We evaluate our method in the so-called one-class classification setting [Ruff et al., 2021]. More
specifically, during training we assume to have access to only the normal (healthy) class. At test
time, the goal is to detect whether a new sample stems from the normal class seen during training or
whether it seems anomalous, i.e., deviates from the training distribution.

Typically, there is a high-class imbalance between normal and anomalous samples in the one-class
classification setting. Further, setting an appropriate threshold for the anomaly score is often task-
dependent. Therefore, a popular approach to evaluating the performance of anomaly detection
methods is to use the area under the receiver operator characteristic curve (AUROC) [Ruff et al.,
2021]. This metric is threshold agnostic and robust to class imbalance.
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We compare our work to a number of contrastive anomaly detection baselines, such as SSD
[Sehwag et al., 2021], CSI [Tack et al., 2020], and UniCon-HA [Wang et al., 2023]. We further
compare against a baseline that learns SimCLR embeddings and detects samples in nearest neighbor
fashion similar to KNN+ [Sun et al., 2022], which was originally developed for out-of-distribution
detection. To ensure comparability, we run all experiments with the same ResNet18 architecture
[He et al., 2016].

Similar to our method, all baselines make use of test-time augmentations. By default, both CSI and
UniCon-HA use 40 test time augmentations, which we adopt for all baselines. In our experiments,
we set the augmentation class T to the set of augmentations introduced by Chen et al. [2020]. For
the context augmentation, we experiment with vertical flips (Flip), inverting the pixels of an image
(Invert), i.e., tInvert(xij) = 1 − xij , and histogram equalization (Equalize), see Figure 2 for an
illustration.

We choose hyperparameters for CON2 based on their performance on the CIFAR10 dataset and keep
them constant across all experiments. We linearly anneal the hyperparameter α in LCON2 from 0 to 1
over the course of training to encourage the model to first learn the context-specific cluster structure
while gradually aligning representations over the course of training. We optimize our loss using the
AdamW optimizer [Loshchilov and Hutter, 2019] with β1 = 0.9, β2 = 0.999, weight decay λ = 0.001,
and using a learning rate of 10−3 with a cosine annealing [Loshchilov and Hutter, 2017] schedule.
We run all experiments for 2048 epochs.

For all our experiments, we report mean and standard deviation over three seeds per class of the
dataset. Note that the average results of a dataset are aggregated over different one-class classification
settings, one per class of the dataset.

F Ablations

In this section, we provide some additional experiments, illustrating the structure of the learned
representations (Appendix F.1), additional experiments on natural images (Appendix F.2), and
experiments going beyond only two context clusters (Appendix F.3).

F.1 Context Clusters

We illustrate the structure of representations learned by CON2 in Figure 3, demonstrating how our
intuition from Section 2 translates to what our model learns. More specifically, Figure 3 presents the
PCA embeddings of train, normal test, and anomalous test samples when training CON2 on the car
class of CIFAR10.

We see that the normal samples cluster nicely according to their context for both train and unobserved
normal test data. Further, we also observe that normal samples align well across contexts, as their
relative positions within their respective cluster appear consistent from the parallel lines that mark
correspondence. Conversely, anomalous data often fails to adhere to the context clustering structure
or align well across contexts.

F.2 Natural Image Benchmarks

In addition to the experiments on the medical datasets in Section 3, we also train our method in
the common one-class classification setting [Ruff et al., 2021] on different natural imaging datasets
on one-class CIFAR10/CIFAR100 [Krizhevsky et al., 2009], ImageNet30 [Russakovsky et al., 2015,
Hendrycks et al., 2019b], Dogs vs. Cats [Cukierski, 2013], and Muffin vs. Chihuahua [Cortinhas,
2023], and compare to the baselines described in Appendix E. We present the results of this compari-
son in Table 3.

First, we note an interesting discrepancy between the Invert and Flip context augmentations and
Equalize. On average, Equalize seems to perform quite a bit worse than the other two context
augmentations. We suspect that this comes from the fact that Equalize does not always properly
fulfill the distinctiveness assumption of context augmentations, as equalized samples are visually
quite similar to the original sample for natural images (see Figure 2). Therefore, equalized samples
could easily appear as part of the training set, which would violate distinctiveness. In contrast, Flip
and Invert satisfy distinctiveness and alignment on these datasets and consequently perform relatively
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(a) Alignment of normal test samples.

(b) Alignment of anomalous test samples.

Figure 3: Two dimensional PCA embedding of the train, normal test (a) and anomalous test samples
(b). Lines connecting representations mark embeddings corresponding to the same sample in different
contexts. Parallel lines indicate that sample representations are positioned approximately at the same
location across context clusters, i.e., are aligned across contexts.

Table 3: One class classification results for CIFAR100, ImageNet30, Dogs vs. Cats, and Muffin vs.
Chihuahua. Results with a * are taken from the original paper. For each dataset, we train models
over three different seeds per dataset class. We report mean and standard deviation over all one-class
settings of each dataset. We bold the best and underline the second best results.

Method Score CIFAR10 CIFAR100 ImageNet30 Dogs vs. Cats Muffin vs. Chihuahua

SimCLR SNND 89.2±6.7 81.5±8.6 74.7±12.2 84.7±2.2 78.6±11.4

SSD SMahalanobis 97.4 ±8.1 79.1±9.5 76.8±13.0 84.5±0.6 75.0±14.0

CSI SCSI 94.3* 89.6* 91.6* 90.3±0.4 95.1±2.4

UniCon-HA SUniCon 95.4* 92.4* 93.2* 67.9±6.2 91.9±1.3

CON2 (Equalize) SLH 91.0±5.4 86.1±5.5 85.2±12.6 77.0±1.1 83.0±12.2

SNND 91.5±5.0 87.5±4.4 86.0±12.0 81.2±1.9 87.5±8.0

CON2 (Invert) SLH 93.0±4.8 89.5±5.4 90.9± 8.8 87.8±1.0 91.4±4.2

SNND 93.9±4.2 90.6±4.9 91.2± 8.4 88.7±1.5 93.8±3.0

CON2 (Flip) SLH 94.0±4.1 89.1±4.6 88.9±11.9 90.0±1.1 92.6±2.9

SNND 94.6±3.7 89.7±4.2 89.8±11.1 90.3±1.7 94.0±1.7

well across all datasets. Our method also compares well against established baselines on natural
images, consistently displaying the best or second-best results among all baselines.

From the relatively low standard deviations, we can further see that we are consistently achieving
high AUROCs across all one-class settings within each dataset. Apart from results with the Equalize
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context augmentation, the highest variability across one-class settings appears in Imagenet30 with
the Flip context augmentation. A closer look at individual performances in Table 6 reveals that this is
mainly due to two one-class settings for which our method seems to produce slightly worse results.
More specifically, the normal classes "nail" and "pillow" perform very poorly with average AUROCs
of 51.8 and 67.3, respectively. We suspect the poor performance is due to using the Flip context
augmentation, which violates the distinctiveness assumption for nails and pillows, as these objects
could be recorded from any arbitrary angle. However, apart from these outliers, we perform very well
on ImageNet30, with a median AUROC of 93.4. For the Flip Context Augmentation, we provide a
detailed overview of all the individual one-class classification results across all datasets in Tables 4
to 8.

Table 4: AUROCs of the experiments on one-class CIFAR10. We compare CON2 with different
context augmentations to pretext and contrastive AD methods. Both the Invert and Flip context
augmentations fulfill our assumptions from Section 2.1, whereas samples in the Equalize context are
sometimes similar to the sample in the original context, violating distinctiveness and thus resulting in
slightly lower performance. For methods with a *, we adopt results from the original paper.

Method Score S Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

SimCLR SNND 78.6±0.6 98.9±0.1 87.1±0.6 84.9±0.3 81.0±1.4 92.3±0.3 94.8±0.5 94.7±0.1 84.7±1.7 95.3±0.6 89.2±6.7

SSD* SMahalanobis 82.7 98.5 84.2 84.5 84.8 90.9 91.7 95.2 92.9 94.4 90.0
CSI* SCSI 89.9±0.1 99.1±0.0 93.1±0.2 86.4±0.2 93.9±0.1 93.2±0.2 95.1±0.1 98.7±0.0 97.9±0.0 95.5±0.1 94.3
UniCon-HA* SUniCon 91.7±0.1 99.2 ±0.0 93.9±0.1 89.5±0.2 95.1±0.1 94.1 ±0.2 96.6±0.1 98.9±0.0 98.1±0.0 96.6±0.1 95.4
CON2 (Equalize)

SLH

89.3±1.0 98.4±0.2 85.6±0.1 77.4±2.1 90.2±0.3 87.9±1.3 95.9±0.2 94.8±0.2 92.1±0.8 93.9±0.7 91.0±5.4

CON2 (Invert) 88.5±0.3 99.0±0.1 87.0±0.4 84.9±0.3 90.0±0.7 93.4±0.5 96.7±0.2 97.3±0.0 95.8±0.1 97.0±0.0 93.0±4.8

CON2 (Flip) 88.9±1.2 99.2±0.0 89.8±0.2 87.0±0.4 92.8±0.9 93.9±0.1 96.3±0.3 98.4±0.1 97.0±0.1 96.9±0.2 94.0±4.1

CON2 (Equalize)
SNND

91.2±1.0 98.4±0.1 88.2±0.3 78.5±2.1 90.5±0.2 87.0±2.1 95.3±0.3 94.8±0.6 93.0±0.6 93.4±0.7 91.5±5.0

CON2 (Invert) 90.3±0.3 99.3±0.0 89.3±0.2 87.0±0.1 90.2±1.1 94.0±0.4 96.7±0.2 97.8±0.0 96.6±0.1 97.2±0.1 93.9±4.2

CON2 (Flip) 90.1±0.8 99.3±0.0 91.0±0.2 88.7±0.4 92.8±0.9 94.1±0.2 96.4±0.2 98.5±0.1 97.5±0.1 97.2±0.1 94.6±3.7

F.3 Multiple Context Augmentations

Figure 4: Ablation illustrating the effect of adding more context augmentations. While the per-
formance of well-performing normal classes, such as ImageNet30 Ambulance or CIFAR10 Car
stays consistent when adding more augmentations, we see a decrease for normal classes such as
ImageNet30 Toaster or CIFAR10 Cat that already perform poor to begin with.

Our formulation in Section 2.1 can easily be extended beyond only one additional context by slightly
adjusting LContext. However, in addition to a loss in efficiency due to requiring more memory, we did
not find additional context augmentations to provide a performance benefit, as can be seen in Figure 4.
There, we ran an ablation with different numbers of context augmentations on different classes of
CIFAR10 and ImageNet30. In particular, we trained the adapted CON2 loss for 2, 3, 4, 5, 6, 7, and 8
context augmentations, which we derived by combining Flip, Invert, and Equalize from our previous
experiments. Adding more augmentations does not seem to harm cases where we experience good
performance in the first place, however, we observe a diminishing performance for slightly more
challenging classes.
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Table 5: AUROCS for each superclass of CI-
FAR100 for both of our scores when applying
the Flip context augmentation. For each set-
ting, we evaluated our method across three
seeds.

One Class Index CON2 (Flip)
SNND SLH

0 85.1±0.4 83.3±0.1

1 85.8±0.8 85.5±1.3

2 93.3±1.2 93.7±0.9

3 90.1±0.4 91.1±0.2

4 94.8±0.4 94.2±0.5

5 84.7±0.3 82.5±0.2

6 92.1±0.5 91.7±0.6

7 84.3±0.7 84.4±0.6

8 90.3±0.6 89.2±0.5

9 95.5±0.2 94.6±0.3

10 87.9±1.0 85.9±1.0

11 91.4±0.3 91.0±0.4

12 91.1±0.3 90.5±0.4

13 83.2±0.5 80.8±0.6

14 96.7±0.0 96.4±0.2

15 80.6±0.7 79.4±0.6

16 86.4±0.7 85.7±0.6

17 97.9±0.1 97.4±0.2

18 96.1±0.3 95.8±0.2

19 94.4±0.3 93.5±0.3

Mean 89.7±4.2 89.1±4.6

Table 6: AUROCS for each class of Ima-
geNet30 for both of our scores when applying
the Flip context augmentation. For each set-
ting, we evaluated our method across three
seeds.

One Class Index CON2 (Flip)
SNND SLH

0 95.1±0.5 94.1±0.4

1 99.2±0.3 99.0±0.1

2 99.8±0.0 99.8±0.0

3 88.0±0.2 90.9±0.2

4 95.3±0.2 95.9±0.3

5 98.0±0.4 97.2±0.5

6 95.5±0.3 96.0±0.2

7 64.1±3.5 68.0±2.4

8 94.1±0.3 94.5±0.3

9 84.3±0.5 82.4±0.8

10 97.9±0.1 98.1±0.2

11 87.0±0.7 85.5±0.5

12 97.5±0.1 95.4±0.1

13 92.0±0.9 92.9±0.2

14 87.6±0.3 87.6±1.0

15 90.6±0.7 91.0±0.2

16 99.0±0.2 99.0±0.1

17 51.5±1.7 48.6±1.0

18 90.6±0.9 90.9±1.0

19 65.5±2.2 64.4±1.4

20 90.7±0.6 90.1±0.2

21 94.2±1.3 94.6±0.8

22 95.2±0.1 97.4±0.2

23 95.9±0.2 96.2±0.3

24 85.4±1.1 82.3±1.1

25 81.3±5.0 84.7±3.6

26 88.9±0.3 90.3±0.6

27 96.8±0.3 96.9±0.4

28 74.1±1.5 71.1±0.7

29 90.7±0.3 89.2±0.6

Mean 88.9±11.4 88.8±11.7

Table 7: AUROCS for the two classes "Dog"
and "Cat" for both of our scores when apply-
ing the Flip context augmentation. For each
setting, we evaluated our method across three
seeds.

One Class Index CON2 (Flip)
SNND SLH

0 91.7±0.2 91.0±0.2

1 88.8±0.8 89.1±0.4

Mean 90.3±1.7 90.0±1.1

Table 8: AUROCS for the two classes "Muf-
fin" and "Chihuahua" for both of our scores
when applying the Flip context augmentation.
For each setting, we evaluated our method
across three seeds.

One Class Index CON2 (Flip)
SNND SLH

0 95.7±0.2 95.3±0.1

1 91.9±0.0 89.9±0.2

Mean 93.8±2.1 92.6±2.9
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