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ABSTRACT

State Space Models (SSMs) have become the leading alternative to Transform-
ers for sequence modeling tasks. Their primary advantage is efficiency in long-
context and long-form generation, enabled by fixed-size memory and linear scal-
ing of computational complexity. We begin this work by showing a simple the-
oretical result stating that SSMs cannot accurately solve any long-form genera-
tion problem, undermining their main competitive advantage. However, we show
that this limitation can be mitigated by allowing SSMs interactive access to ex-
ternal tools. In fact, we show that given the right choice of tool access and
problem-dependent training data, SSMs can learn to solve any tractable problem
and generalize to arbitrary problem length/complexity (i.e., achieve length gener-
alization). Following our theoretical finding, we demonstrate that tool-augmented
SSMs achieve remarkable length generalization on a variety of arithmetic, rea-
soning, and coding tasks. These findings highlight SSMs as a potential efficient
alternative to Transformers in interactive tool-based and agentic settings.

1 INTRODUCTION

Transformers (Vaswani et al., 2017), the main architecture powering large language models, have
a well-known limitation: due to the attention mechanism, their computational complexity scales
quadratically with the sequence length, and their memory scales linearly with length. This quadratic
dependency becomes a major limitation for tasks that require long-context and long-form generation.
As test-time scaling paradigms that involve the generation of long Chain of Thought (CoT) (Wei
et al., 2022) have become the leading solution for improving reasoning capabilities (Jaech et al.,
2024; Guo et al., 2025), the ability to efficiently generate long sequences becomes even more crucial.

To solve this limitation, various works suggested replacing the attention mechanism with other
modules where memory and per-token compute are fixed as a function of the sequence length
(Choromanski et al., 2020). Examples of such architectures include variants of Linear Transformers
(Katharopoulos et al., 2020) and State Space Models (Gu et al., 2021) such as Mamba (Gu & Dao,
2023; Dao & Gu, 2024), DeltaNet (Yang et al., 2024c) and GatedDeltaNet (Yang et al., 2024b).
These architectures achieve performance similar to Transformers across a wide range of domains
(Qu et al., 2024) at a lower inference cost. However, some works have also pointed out significant
limitations of these architectures in certain tasks that involve memorization of long sequences and
in-context learning (Jelassi et al., 2024; Park et al., 2024; Akyürek et al., 2024). Possibly due to
these limitations, linear-time models are still not widely adopted as a replacement to Transformers.

The goal of this work is to understand the capabilities and limitations of SSMs, focusing on tasks that
require long-form generation. We formally define long-form generation tasks to be problems where
the effective number of outputs grows with the complexity of the problem. We focus on such tasks
as these are the tasks where SSMs display a clear benefit over Transformers in terms of inference
efficiency. However, we show that this efficiency comes at a cost of inherent performance degra-
dation. Namely, we prove that SSMs fail to solve long-form generation tasks when the complexity
of the task increases beyond the capacity of the model, even if the model is allowed to generate
CoT of any length. This limitation arises from the bounded memory of the model, which limits the
expressive power when generating long sequences. This is in contrast with Transformers which,
using CoT, can in principle solve any computationally tractable problem, utilizing their unbounded
memory (Merrill & Sabharwal, 2023). So, to solve long-form generation tasks we can either use
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==> foo.py <==

def foo(v3, v5):
    print(v10)
...

1) Single-Turn Tool-Use:

2) Interactive Tool-Use:

cat *.py

sed –i s/”v5”/”v10”/g foo.py

sed –i s/”v4”/”v10”/g f904.py
⋮

Traceback (most recent ...

  ⋮ 
  File “code/169.py”, ...

python main.py

sed –i s/”v5”/”v10”/g f169.py

python main.py

⋮

Traceback (most recent ...

  ⋮ 
  File “code/f904.py”, ...

3) Distillation:

Fix the bug in main.py. You can use 
bash commands and edit files to 
implement the necessary changes ...

SWE-agent 32B

Let’s start by examining the repository 
structure.

ls -la

total 8

-rw-r--r-- Aug 25 f068.py 
⋮

Now let’s look at the content of 
main.py to understand the issue.

cat main.py

⋮

Figure 1: We finetune Mamba and Pythia (Transformer) on trajectories collected from different tool-
use agents for solving a coding problem. 1) Single-Turn Tool-Use: Hard-coded agent that prints
all the files in the repository and then outputs all the required changes. 2) Interactive Tool-Use:
Hard-coded agent that iteratively runs the code, changes a few files, runs the code again etc. until all
problems are resolved. 3) Distillation: SWE-agent Language Model (Yang et al., 2025) instructed
to solve the bug in the code. Models are trained on codebases of up to 16 files (dashed red line),
with context length 8,192, and evaluated on larger codebases with longer context. While all models
perform well on small codebases, Mamba displays favorable performance on large codebases when
trained to imitate interactive agents (agents 2 and 3), extrapolating beyond the training distribution.

Transformers and suffer quadratic scaling of compute, or use SSMs and suffer performance degra-
dation. Another alternative is to use hybrid models that mix attention and SSM layers and have
been recently shown to achieve state-of-the-art performance at large scale (Blakeman et al., 2025).
However, this ultimately does not eliminate the quadratic dependence on the sequence length.

Following the observation above, we explore another alternative: allowing SSMs to interactively use
external tools. LLMs are now increasingly used as agents that interact with external tools for solving
tasks such as coding, math or question answering (Luo et al., 2025; Yehudai et al., 2025). These tools
can allow agents to query and read from external resources and write information that can be used
later. Therefore, such tool-use can naturally augment the internal memory of the model, allowing
it access to practically unbounded external memory. We introduce a new theoretical framework for
studying ReAct (Yao et al., 2023) agents, and show that allowing SSMs access to external memory
through interactive tool-use makes them much more powerful. We prove that tool-augmented SSMs
trained on task-specific trajectories can achieve length generalization on any tractable long-form
generation task. That is, we show that for any such task we can construct training data with tool-
use trajectories such that a simple training paradigm learns to execute the task with high accuracy,
even when evaluated beyond the length of the training data. Importantly, this result only holds for
interactive tool-use, and we show that single-turn tool-use SSMs are still limited.

Experimentally, we show that SSMs trained to interactively use external memory tools achieve
length generalization on tasks such as arithmetic, logical reasoning and coding. For example, a
Mamba model trained to solve a simple coding task extrapolates to codebases larger than those seen
during training when trained on trajectories with interactive tool-use (Figure 1). Additionally, a
Mamba model trained to execute long-form multi-digit addition using pointer-based memory can
generalize from 5-digit addition to 1,000-digit addition (Figure 2). We observe similar results on
multiplication and on a logical reasoning task, and more modest extrapolation on solving the Tower
of Hanoi task (a task which proved to be difficult for reasoning models, see Shojaee et al. (2025)).
Taken together, our theoretical and experimental results highlight the potential advantage of using
SSMs as agents with interactive tool access, instead of using them as standalone systems.

1.1 RELATED WORK

Chain-of-Thought and Scratchpad When solving problems that require reasoning, LLMs are
known to significantly benefit from generating a CoT, detailing the step-by-step process required

2
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pointer2.move_left()pointer1.move_left()

pointer1.read() 2 pointer2.read() 4 sum=6,carry=0

8,0 6,0

1 2 3 + 4 5 = 8,0 6,0 1,0 1 6

...
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Figure 2: Left: Illustration of an interactive tool-use agent trajectory with pointer-based memory
tool for solving multi-digit addition. The agent can generate thoughts (blue), outputs (purple) or
commands (orange), and receive observations (green) from the memory tool. At each step, we show
the state of the memory context on the top row, and below it show the sequence of generated tokens.
Right: Accuracy of recurrent/SSM models (Mamba, LSTM, GRU) and Transformers (Pythia, Mis-
tral) trained on trajectories for ≤ 5-digit addition, evaluated on up to 1,000-digits (log scale).

for solving the target task (Wei et al., 2022; Nye et al., 2021). Indeed, many datasets used for
training models on mathematical problems include such CoT in the training data (Toshniwal et al.,
2024b;a; Cobbe et al., 2021). Theoretically, CoT is shown to improve both the expressive power of
language models (Merrill & Sabharwal, 2023) and their optimization and learnability (Wies et al.,
2022; Malach, 2023). Additionally, it was shown that choices of CoT training data that “localize” the
computation enable efficient learning and length generalization (Abbe et al., 2024). In another work,
using CoT that encodes the operation of a Turing machine was used to improve length generalization
on various tasks (Hou et al., 2024). In our work, we follow a similar approach for improving length
generalization capabilities of language models. However, we focus on SSMs instead of Transform-
ers, and study the effect of interactive tool-use for improving learning and generalization.

Emulations and Neural Turing Machines The goal of learning to execute general algorithms
with neural networks has been discussed in various works. Abbe & Sandon (2023) and Abbe et al.
(2021) show universality learning properties of poly-size neural networks trained by stochastic gra-
dient descent. Graves et al. (2014) introduces the Neural Turing Machine (NTM), a neural network
that can simulate Turing machines and thus execute computable algorithms. NTMs were studied
in different settings (Malekmohamadi Faradonbe et al., 2020), with some improvements such as the
Neural GPU (Kaiser & Sutskever, 2015), but were ultimately not widely adopted. Similar works sug-
gested augmenting LSTMs (Hochreiter & Schmidhuber, 1997) with external stack or tape (Delétang
et al., 2022; Joulin & Mikolov, 2015). We use similar ideas to study algorithmic learning and length
generalization capabilities of SSMs in the setting of tool-augmented interactive agents.

Length Generalization The problem of length generalization, training models on short/simple
problems and evaluating them on longer/complex instances, has been studied in many works. These
works often focus on training Transformers on arithmetic or algorithmic tasks such as sorting, copy-
ing or multi-digit addition (Jelassi et al., 2023; Nogueira et al., 2021). Different works suggest var-
ious techniques for improving length generalization capabilities of Transformers, including various
choices of positional embeddings and output format (Zhou et al., 2024; Cho et al., 2024; McLeish
et al., 2024; Kazemnejad et al., 2023; Ruoss et al., 2023), scratchpads (Nye et al., 2021; Lee et al.,
2023; Zhou et al., 2023; Abbe et al., 2024), architecture (Ontanon et al., 2021; Li & McClelland,
2023), mixing different tasks for “task hinting” (Awasthi & Gupta, 2023) or using looped Transform-
ers (Fan et al., 2024). Some works aim to give scientific or theoretical explanation to the capability
and limitation of Transformers in extrapolating beyond the context length (Golowich et al., 2025;
Zhou et al., 2023; Huang et al., 2024; Bhattamishra et al., 2022). SSMs have been shown to display
robust length generalization capabilities in certain cases. Gu & Dao (2023) demonstrate that Mamba
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achieves significantly better length generalization performance compared to Transformers on some
tasks. Other works show that the length extrapolation of SSMs can be significantly improved with
modifications to the model (Ben-Kish et al., 2024) or the training pipeline (Ruiz & Gu, 2025). In this
paper, we study the length generalization of SSMs when trained on data with tool-use trajectories.
We show that SSMs can achieve perfect length generalization in this setting on various tasks.

2 THEORY

In this section we formally define the notion of long-form generation tasks: tasks that require gen-
erating longer output sequences as their complexity increases. Following this, we define a family of
functions that generalizes the class of SSMs, and theoretically analyze their limitation and capabili-
ties in different tool-use settings.

Definitions and Notation. Fix some set Z and some distribution P over Z . For some subset
S ⊆ Z , we denote by P(S) the probability mass of S under P , i.e. P(S) := Prz∼P [z ∈ S]. For
some function f : Z → Z ′, we denote by f(P) the probability distribution of f(z) for z ∼ P . For
some set B, we denote by ∆(B) the set of probability distributions over B.
Definition 2.1. For some finite set Z and some distribution P over Z , we define the minimum
support size of mass 0 ≤ α ≤ 1 for P to be the size of the smallest set that covers α probability
mass: suppα(P) := min{|S| : S ⊆ Z,P(S) ≥ α}.

2.1 LONG-FORM GENERATION

Let Σ be a dictionary of tokens, and denote by Σ∗ the set of strings of tokens. Let X1,X2, · · · ⊆ Σ∗

be a sequence of input spaces, and let Y1,Y2, · · · ⊆ Σ∗ be a sequence of output spaces. We assume
that the input and output spaces are finite, i.e. |Xn| , |Yn| < ∞ for all n. Let D1,D2, . . . be a
sequence of distributions, such that Dn is a distribution over Xn. Finally, let f : Σ∗ → Σ∗ be some
ground-truth function that satisfies, for all n, that f(Xn) ⊆ Yn. We think of the parameter n as a
complexity parameter, and so the distribution Dn generates more complex inputs as n → ∞. We
give the following definition of long-form generation tasks:
Definition 2.2. We say that f , {Dn}∞n=1 is a long-form generation task with coverage α ∈ (0, 1) if
suppα(f(Dn)) is monotonically increasing with n,1 and limn→∞ suppα(f(Dn)) = ∞.

Namely, we require that as the complexity n increases, the effective number of possible outputs (i.e.,
outputs that have non-negligible probability mass) increases as well. We note that many natural
long-form generation tasks indeed satisfy these conditions, for example: 1) Multi-Digit Addition
(or Multiplication): Dn is a distribution over strings of the form a + b = (or a × b =), where a, b
uniformly random numbers with n-digits. The function f maps the input strings to the solution, e.g.
f(“a + b = ”) = c where c = a + b (or c = a · b). 2) Sorting: Dn is a distribution over n items,
f maps to the sorted list of items. 3) Code Fixing: Dn is a distribution over python codes that have
bugs that require changing n lines of code, f maps the code to the necessary changes.

2.2 GENERALIZED STATE SPACE MODELS

In this section, we follow similar definitions and notations as in Jelassi et al. (2024). We define a
state space to be some finite set S with |S| < ∞. A generalized state space model (GSSM) is a
(potentially probabilistic) function h : Σ∗ → ∆(Σ∗) defined by an initial state s0 ∈ S and two
rules: an update rule u : S ×Σ → S, and an output rule r : S → ∆(Σ). Given some input x ∈ Σ∗,
the function h generates a sequence y ∈ Σ∗. We define the state and the output of h at time t
recursively s.t. st = uh(st−1, xt−1) if t ≤ |x| and st = uh(st−1, yt−|x|) if t > |x|, and we sample
yt ∼ r(s|x|+t). We terminate when an end-of-sequence token [EOS] ∈ Σ is observed.

Note that any model that has fixed memory as a function of the sequence length satisfies the defini-
tion of a GSSM. This includes common choices of recurrent models, such as: LSTM (Hochreiter &
Schmidhuber, 1997), Linear Transformers (Katharopoulos et al., 2020), H3 (Fu et al., 2022), RetNet

1The condition that the support size is monotonically increasing makes the theoretical results slightly easier
to introduce, and holds for practically all reasonable long-form generation problems.
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(Sun et al., 2023), Mamba-1 and Mamba-2 (Gu & Dao, 2023; Dao & Gu, 2024) and other variants
(Yang et al., 2024b). Additionally, Transformers where all the attention layers have local (sliding
window) attention with fixed window size, are also GSSMs. Other computational models that use
Transformers to process fixed length sequences and update fixed-size “memory” vectors (Hutchins
et al., 2022) are also GSSMs. Transformers and hybrid-SSM models are not GSSMs, since their
memory increases with the sequence length.

CoT, Single-Turn and Interactive Tool-Use. We analyze multiple settings where the model can
invoke reasoning and tool-use. We follow the popular ReAct framework (Yao et al., 2023) and let
the model generate either thoughts, that capture the internal reasoning of the model, or actions that
are followed by observations from the environment. The thoughts and actions can be interleaved
during the runtime of the model. We specify two types of actions: command actions, that are sent
to a tool-oracle O that returns an observation following the execution of the command, and output
actions that are simply tokens appended to an output stream and do not result in an observation. The
output stream captures the final response of the model which is then evaluated against the ground-
truth2. Thoughts, commands and observations are placed between dedicated open/close tags (e.g.
[THINK], [\THINK]). We define more formally the tool-oracle and the interaction protocol in
Appendix A. We analyze three settings for problem-solving agents. 1) CoT-only: The model is
allowed to use only thoughts or outputs, but cannot issue commands or receive external observa-
tions3. 2) Single-Turn Tool-Use: The model is allowed to issue a single command, followed by an
observation, and then generate the output. The model can use thoughts before and after the tool call,
and during the output generation. 3) Interactive Tool-Use: The model is allowed to use as many
commands as it needs, and freely interleave thoughts, commands and outputs.

2.3 LEARNING ALGORITHMS AND LENGTH GENERALIZATION

Fix some task f, {Dn}∞n=1. We now define training data distributions for learning the task f . We
note that for many downstream tasks, it is common to collect training data that contains CoT rea-
soning and/or tool-use traces for solving the problem. We therefore allow the training distributions
to contain a task-specific reasoning and tool-use trajectories. Given some trajectory z ∈ Σ∗, we
denote by z(out) the value of the output stream after execution of the trajectory. Formally, a training
distribution for the task f, {Dn}∞n=1 is a sequence of distributions {Pn}∞n=1 s.t. Pn is a distribu-
tion over Xn × Σ∗ satisfying that: 1) Dn is the marginal distribution of Pn w.r.t. Xn, and 2) For
(x, z) ∼ Pn, with probability 1 it holds that z(out) = f(x) (i.e. the output stream at the end of
generation evaluates to the correct answer).

A learning algorithm A is an algorithm that, for some given length n, draws a sample of size m from
P1, . . . ,Pn

4, and returns some hypothesis h : Σ∗ → ∆(Σ∗) that, given an input problem, can gen-
erate a reasoning and tool-use trajectory. We denote the output of A in this case by A(P1, . . . ,Pn).
We say that A is a GSSM learning algorithm if it always returns a GSSM. We define the error of h
w.r.t f for some complexity n by errn(h) = Pr

[
h(out)(x) ̸= f(x)

]
, with probability over x ∼ Dn

and the randomness of h. We now define length generalization of an algorithm:

Definition 2.3. We say that A achieves length generalization, if for every ϵ, δ ∈ (0, 1) there ex-
ists some minimal complexity n0 and sample size m s.t. w.p. ≥ 1 − δ we have that hn0 =
A(P1, . . . ,Pn0

) satisfies errn(hn0
) ≤ ϵ for all n ≥ n0.

Namely, we require that the algorithm returns a hypothesis with low-error on problems with arbi-
trarily large complexity n, as long as it sees “complex enough” inputs sequence in the training data
(with complexity larger than n0). This requirement may seem relatively strong, as we could expect
that the error of the learned model would grow with the complexity of the problem. However, we
will show theoretically (and to some extent, empirically) that with a carefully constructed training
data, achieving such “infinite” length generalization is possible.

2We focus on agents for solving input-output problems, where the task of the model is to generate some
output given the input problem (e.g. question answering, coding, mathematical proofs etc.). This is a different
setting from an agent that performs actions and collects rewards, as in many Reinforcement Learning problems.

3This setting also includes the case where the model generates the output immediately, without using CoT.
4We let the algorithm choose freely how to sample from these distributions.
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2.4 MAIN RESULTS

In this subsection, we state the main theoretical results in the paper. We begin by showing a negative
result, stating that GSSMs cannot solve long-form generation tasks, if they operate in the CoT-
only or single-turn tool-use setting. Following this, we show a positive result, proving that for any
computable long-form generation task we can construct training data such that a simple learning
algorithm achieves length generalization on the target task in the interactive tool-use setting.

GSSMs cannot Solve Long-Form Generation Tasks without Interaction. We begin by stating
the negative result. The proof is relatively simple: since the model has a fixed memory, and outputs
are a function of the state of the memory, the model cannot generate all outputs as complexity grows.
Theorem 2.1. Let f be a long-form generation task over {Dn}∞n=1 with coverage parameter α ∈
(0, 1). Then, for any CoT-only or Single-Turn GSSM h there exists some problem complexity n0 s.t.
for all n ≥ n0 the model h has error: errn(h) ≥ 1− α.

The full proof is given in Appendix B. An immediate implication of this result is that GSSM learning
algorithms cannot achieve length generalization on long-form generation tasks without interaction.

GSSMs with Interactive Tool-Use can Length Generalize on Long-Form Generation Tasks.
For some function f : Σ∗ → Σ∗, we say that f is computationally tractable if there exists a Turing
machine T s.t. for any x ∈ Σ∗, if T begins with x written on its tape, it halts with f(x) written on its
tape. The following result shows that a GSSM learning algorithm can achieve length generalization
with interactive tool-use, given proper training data:
Theorem 2.2. There exists memory-tool oracle O and a simple GSSM learning algorithm A s.t.
for any computationally tractable long-form generation task f, {Dn}∞n=1, there exists a sequence of
training distributions {Pn}∞n=1 for which A achieves length generalization in the interactive setting.

To show the above result, we define a simple tool that allows read/write access to some external
memory, using a pointer that can move left or right between the memory cells. Using this tool, we
can simulate the operations of a Turing machine, where we use the external memory as the tape of
the Turing machine, use thoughts to track the state of the machine and commands to move the head
and read/write symbols. Since the transition function of the Turing machine is defined for every pair
of state and symbol, to prove that length generalization is achieved we show that, for large enough
n0, most of these pairs are seen in the training data. We give the complete proof in Appendix B.

To conclude, the above results show that interactive tool-use is both necessary and sufficient for
GSSMs to achieve length generalization on tractable long-form generation problems.

3 EXPERIMENTS

In this section we evaluate the length generalization capabilities of GSSMs and Transformer-based
language models on various tasks, including arithmetic, reasoning and coding. We experiment with
different choices of tools that allow read/write memory access, using either a pointer-based memory
access, search tool, or arbitrary bash commands for reading and changing files. We use both tasks
where we synthetically generate the ground-truth trajectory and tool commands, as well as a cod-
ing task where we collect the trajectories from a SWE coding agent. In our experiments, we largely
follow a similar framework for ReAct agents defined in the previous section, where the model can in-
terleave thoughts, outputs (“final answer” tokens), and commands that are followed by observations
from the environment. In our experiments we use Mamba SSM (Gu & Dao, 2023), LSTM (Hochre-
iter & Schmidhuber, 1997), GRU (Cho et al., 2014), Pythia Transformer (Biderman et al., 2023) and
a Transformer with sliding window (local) attention based on the Mistral architecture (Jiang et al.,
2023). In all experiments, we see that SSMs/RNNs achieve length generalization performance that
is much better compared to Transformers. See Appendix C for experimental details.

3.1 ARITHMETIC TASKS

In the following set of experiments, we augment the model with a pointer-based memory tool that
gives the model access to past tokens in the input/output context. In this setting, the model can
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Table 1: Experimental results for synthetic tasks for different models. The notation n → m(p%)
means a model trained on length n achieves accuracy p on length m (for the largest m s.t. p ≥ 5%).

Model n× 1 n× 2 Logical Graph Hanoi
Mamba 10→1K (100%) 10→1K (100%) 10→1K (98%) 7→8 (100%)
LSTM 10→500 (100%) 10→100 (100%) 10→1K (100%) 7→9 (83%)
GRU 10→500 (100%) 10→100 (100%) 10→1K (100%) 7→8 (100%)
Pythia 10→20 (79%) 10→14 (12%) 10→1K (5%) 7→7 (100%)
Mistral 10→13 (25%) 10→20 (33%) 10→500 (9%) 7→8 (87%)

execute the following commands: 1) initialize a new pointer, 2) move the pointer left or right by a
single token and 3) read the token under a given pointer. By default, a new pointer is initialized to the
first token position of the input context. The thoughts and outputs are appended to the context, and
are therefore accessible by the pointers (if they reach beyond the length of the input), but commands
and observations are discarded (i.e., they are not appended to the context memory and cannot be
read by the pointers). We give a detailed description of how thoughts, commands and outputs are
specified in Appendix D. The final answer is written in the output stream at the end of the generation.

We train the model using the standard next-token prediction objective with teacher-forcing, while
masking from the loss the input question and the observations (the outputs of a read operation, which
will be generated by the memory tool). For the training data, we construct synthetic trajectories that
simulate the desired algorithm, and train the model to exactly execute the algorithm required for
solving the problem using the memory-tool interaction.

Multi-Digit Addition. For this task, we train the model to perform multi-digit addition. We fix
some maximal training length n, and for each training example we sample uniformly n1, n2 ∼
{1, . . . , n}, then sample two numbers x1, x2 where xi is a uniformly random ni-digit number. We
construct a training example with the trajectory for solving x1 + x2, essentially mimicking the long
addition algorithm (see Appendix F for details). For evaluation, we choose n′ ≥ n and evaluate on
addition of two n′-digit numbers. In evaluation, we measure the accuracy of exact-recovery of the
trajectory and the final answer (i.e., we measure the probability of generating a solution that exactly
matches the desired algorithm). Figure 2 (right) shows the results of this experiment. We observe
that Mamba and LSTM trained on 5-digit demonstrations learn to perfectly perform 1,000-digit
addition (we did not measure the accuracy beyond this). A Transformer trained in the same setting
fails to extrapolate. Additional ablations, such as training with no CoT, no tool-use and single-turn
tool-use, result in little to no length generalization, and are discussed in Appendix G.

Multi-Digit Multiplication. For this task we use the same pointer-based memory tool described
above for learning the multiplication algorithm. In this task, we increase the length of only the first
operand, keeping the second operand fixed. Specifically, we fix some maximal training length n,
choose n1 ∼ {1, . . . , n} to be the length of the first operand and choose n2 ∼ {1, 2} to be the
length of the second operand (i.e. we multiply an n1-digit number by a 1-digit or 2-digit number).
We sample x1, x2 where xi is a uniformly random ni-digit number, and construct the trajectory
for solving x1 × x2 (see details in Appendix F). We then evaluate on n′ × 1 and n′ × 2 digit
multiplication, for some n′ ≥ n, and report exact recovery accuracy. We train different SSMs/RNNs
and Transformers where first operand has n ≤ 10 digits, and evaluate on multiplications of numbers
with up to 1,000-digits (Table 1). Here too we see that Mamba models maintain high accuracy when
evaluated on numbers that have orders of magnitude more digits than in the training data (also see
Appendix I for ablations on training steps and maximum number of digits seen during training).

Task Mixture. We examine whether co-training a primary task with an auxiliary task that shares
a related computational structure yields synergistic benefits (Awasthi & Gupta, 2023). Our exper-
iments indicate that such co-training improves the length generalization of the primary task under
limited training budgets. In our experiments, the primary task is multiplication (n-digit × 2-digit),
co-trained with addition (n + n digits) as an auxiliary task. Both tasks share structural similarities
when expressed as sequences of tool calls. The training distribution for multiplication contains sam-
ples up to 20 digits. We compare the accuracy as a function of test length for various training budgets
(250, 500 or 800 steps) and various choices of task mixtures (see Appendix J). We observe that un-
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der limited budgets (250 steps), introducing auxiliary addition samples yields minor improvements.
At intermediate budgets (500 steps), the benefit becomes more pronounced, with certain weights
extending generalization to much larger n. However, with sufficient training (800 steps), all settings
converge to strong generalization, and the auxiliary data provides no additional gain.

3.2 ALGORITHMIC/REASONING TASKS

We next turn to evaluate the tool-use paradigm on tasks that test certain “reasoning” capabilities.

Tower of Hanoi. This task is based on the popular puzzle game, which was also recently used
for testing reasoning capabilities of frontier LLMs, showing that they struggle to solve this task as
complexity increases (Shojaee et al., 2025). In our setup, we randomly sample (without replacement)
n disks of sizes ∈ {1, . . . , 100}. These disks are placed on the first rod (labeled A), ordered from
the largest to the smallest, with rods B and C being empty. The input to the model is the list of
disks, which captures the initial state of the game. The model then needs to output a sequence of
valid moves that result in placing the pile on rod C. We use the same pointer-based memory tool as
in the previous experiments, and train the model trajectories with up to n disks, evaluating on larger
n′ (see Appendix F). In this experiment we observe more limited length generalization (Table 1),
but note that unlike other experiments, here the length of the output increases exponentially with n.

Logical Graph. In this task, we construct a directed-acyclic computation graph with n nodes.
The graph has k input nodes (for some fixed k), and each internal node node computes a Boolean
operation (AND/OR) on one or two input variables or their negations. We construct the graph
by iteratively adding new internal nodes and randomly choosing their Boolean operation and their
connectivity to existing nodes in the graph. We take the last node that is added to be the output node.
All nodes are randomly labeled, and the model receives the graph structure and an assignment for
the input variables as a python code (see Appendix E). In this task, instead of using the pointer-based
memory tool as in previous tasks, we use a search tool: the model can issue a command find(x),
and gets a list of all occurrences of the pattern x in the context. As before, all thoughts and outputs
generated by the model are appended to the context and are therefore searchable in future iterations.
We fix k = 3 and train the model on trajectories for solving this problem for graphs with up to
n = 10 nodes. We then evaluate on graphs with n′ ≥ n nodes, and report the exact-match accuracy
in Table 1. Again, we see that Mamba and recurrent models can solve this problem, extrapolating to
graphs with n = 1, 000 nodes.

3.3 CODING TASK

For the previous tasks, we trained models “from scratch” on synthetic trajectories that invoke tool
use for solving arithmetic and algorithmic problems. This allowed us to demonstrate the length
generalization capability of SSMs equipped with tool-use in a clean and controlled setting, resulting
in perfect recovery of the underlying algorithm in many cases. We now turn to study extrapolation of
tool-use agents in a more realistic coding setting. Importantly, this setting will allow us to go beyond
programmatically generated trajectories and collect trajectories from an existing SWE coding agent.
This demonstrates that our results and observations can also be applicable in settings where the
underlying algorithm/method for solving the task are not known or well-specified.

Our task will be fixing a “bug” in a given codebase. To construct the codebase we generate n python
functions, each function saved in a separate python file. The functions form a dependency graph,
with one root function called main (stored in main.py). Each function declares variables (named
v0,v1, . . . ,v9), gets some variables as inputs and passes some variables to other functions it im-
ports. We generate this codebase by randomly generating a dependency graph, iteratively adding
nodes (functions) to this graph and connecting each node to existing nodes, where each edge rep-
resents a parent function importing a child function. Function names are randomly selected from
f0, . . . ,f999, except for the last function added to the graph which is called foo. We then ran-
domly assign variables and print them and/or pass them from parent functions to child functions. The
code always has the following “bug”: there is a special variable v10 that is declared in main.py
and is called in foo.py without properly passing it from main. In order to fix the code, we need
to pass the variable v10 through all the dependency paths from main to foo (ideally without
changing other functions, though we do not enforce this).
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We start by running a coding agent and collecting its trajectories when attempting to solve this code-
fixing task, as we are varying the number of functions n in the codebase (choosing n ∈ {4, . . . , 16}).
We use three types of agents for generating trajectories, (illustrated in Figure 1): 1) Single-Turn
Agent: Hard-coded agent that prints all the files and immediately generates the correct code edits.
2) Interactive Agent: Hard-coded agent that iteratively runs the code, resolves the issue in up to 3
files, then runs the code again, and keeps going until the code runs without errors. 3) Distillation:
An agent based on SWE-agent-LM-32B (Yang et al., 2025), a capable open-source coding model
that we couple with mini-SWE-agent5 (Yang et al., 2024a) as a simple agent environment which
gives the model access to the code through bash commands. We instruct the model to fix the bug in
the code, specifically telling it what the bug is and how it should fix it (pass the variable v10 from
main to foo). See the full prompt and further details in Appendix H. We observe that while this
task is relatively simple, the model’s performance degrades as the complexity (number of functions)
in the codebase increases (see statistics in Appendix H). We therefore filter the trajectories to include
only trajectories that correctly fixed the code, and also filter for short trajectories (shorter than the
average length for a given size n).

After collecting around 100K trajectories from each coding agent, we finetune two comparable
models on these trajectories: Pythia-1.4B (Transformer-based model, Biderman et al. (2023)) and
Mamba-1.4B (Gu & Dao, 2023), both pretrained on The Pile (Gao et al., 2020). We train both
models with context length 8,192, on codebases of up to 16 functions (if the trajectory is longer
than the context length, we train only on the first 8,192 tokens). We then evaluate both models on
codebases of different sizes, letting the models generate beyond the context length.6 We measure
the probability of correctly fixing the code (using the same environment used for collecting the
trajectories). As shown in Figure 1, we observe that for codebases with small number of functions,
both Transformer and Mamba models perform well in all settings. Notably, the Transformer-based
model outperforms the Mamba SSM for small codebases in the agent distillation setting, achieving
over 90% pass rate. However, for larger codebases, beyond the training distribution (both in terms
of number of functions and trajectory length), we see that the Mamba model maintains much better
accuracy as the complexity increases when trained to imitate interactive agents (agents 2 and 3), but
fails on complex codebases when trained in the single-turn setting (agent 1). This finding aligns
with our theoretical results, and also matches the previous synthetic experiments.

4 CONCLUSION AND DISCUSSION

We started this work by comparing two families of models for long-form generation: Transformers
and SSMs. Transformers are inefficient for long-context and long-form generation, as their compu-
tational complexity scales quadratically with the sequence length. SSMs, on the other hand, offer
linear scaling of compute but, as we showed, cannot accurately solve long-form generation tasks
(without tools). This demonstrates a clear trade-off between efficiency and accuracy that seems to
be inescapable. Indeed, several works have observed that SSMs are inferior to Transformers in var-
ious tasks that require memorization of long sequences (Jelassi et al. (2024); Waleffe et al. (2024)).

On the positive side, we show that in the agentic/tool-use setting, SSMs can leverage tools to over-
come their memory bottleneck, thus offering efficiency, accuracy, and generalization to longer se-
quences. In hindsight, SSMs seem to be a natural fit for tool-use settings: tools often generate large
quantities of content, which SSMs can parse efficiently, and also involve multi-turn interactions that
can quickly overflow the context of a standard Transformer. However, it seems that there is little
work on building SSM-based agents, and thus their evaluation is restricted to the “standalone” set-
ting, where they are inherently limited. We do not believe this is due to any inability of SSMs to
learn tool-use behavior. For example, while Mistral’s Mamba-Codestral-7B-v0.1 model does not
naively support function calling, it is able to achieve comparable tool-use performance to several
function-calling-enabled transformer-based models (Appendix K). We therefore believe this work
should encourage the development of a tool-based SSMs that operate in various agentic settings,
such as coding, search or reasoning. This application could potentially unlock the full capabilities
of these models, making them competitive with, or even superior to, Transformer-based agents.

5https://github.com/SWE-agent/mini-swe-agent
6We experimented with applying RoPE scaling when using the Transformer beyond the training context

length, both in finetuning and evaluation, and observed mixed results. We report the accuracy for the best
choice (with or without RoPE scaling) in each setting.
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A MORE DEFINITIONS

Here we give a more complete and formal definition for models with tool-use. We start by defining
a tool-use oracle, which will receive tool-use commands and will return an observation that corre-
sponds to the execution of the command. This oracle will be stateful, meaning that its responses
can vary depending on the memory of the oracle, which can be updated based on the commands it
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receives7. Let M be some set which will correspond to the set of memories of the oracle. We denote
by Mt ∈ M the memory of the oracle after receiving t commands, and let M0 be the initial memory
of the oracle. Importantly, we let the initial memory of the oracle depend on the input (e.g., the input
can be stored in the memory of the oracle). For some memory Mt ∈ M, we define OMt

: Σ∗ → Σ∗

to be the mapping from tool calls to observations, given memory Mt.

We augment the dictionary with additional tokens: [TOOL], [\TOOL], [OBS], [\OBS],
[THINK], [\THINK] ∈ Σ. At any point in the generation, the model h can issue a call to a tool
by generating a sequence of the form [TOOL], z, [\TOOL], for some z ∈ Σ∗ which encodes the
tool command. The command z is passed to the tool oracle, and the resulting observation that is
then appended to the context of the model, with the format: [OBS],OMt

(z), [\OBS]. The model
can also generate thoughts/reasoning, generated as a sequence [THINK], z, [\THINK]. All other
tokens (tokens that are not tool-commands, observations or thinking tokens) are considered output
tokens, and are appended to the output stream.

In the CoT-only setting, the model is only allowed to use thinking and output tokens. In the single-
turn setting, the model can issue a single tool command, and can start generating the output after
receiving the observation from the command (but can think before, after and during the output
generation). In the interactive setting, a model can issue a tool call at any point in the generation,
possibly interleaved with output tokens and tool commands. When evaluating the output, we ignore
all tool commands, observations and thoughts and only consider the output stream at the end of
generation.

B PROOFS

Proof of Theorem 2.1. Let S be the state space of h, and we assume that h operates either in the
CoT-only or the single-turn setting. Denote by U(x) the state of the model before generating the
first output token. The model h can generate thinking tokens and/or a single tool command before
generating the first output token, and therefore U(x) is a random variable that depends on x and the
randomness of h.8 Let R(s) be the distribution of outputs (i.e. values of the output stream) generated
by the model h if it is at state s before generating the first output token. Treating h(out)(x) as a
random variable over outputs, we note that it depends only on the state after parsing x, and therefore
h(out)(x) = R(U(x)). Additionally, we denote the conditional distribution over outputs induced by
h(out) with p(y|x). Again, since the future generation of the model depends only on the state, we
have p(y|x) = p(y|U(x)).

Now, by definition, there exists some n0 such that for all n ≥ n0 it holds that suppα(f(Dn)) > |S|.
Fix some n ≥ n0. Fix some s ∈ S . Let ys be an output with maximal probability under the
distribution Dn, conditioned on the event that U(x) = s:

ys = argmax
y

Pr
x∼Dn

[f(x) = y|U(x) = s]

Denote by A the set of maximal probability outputs A = {ys : s ∈ S}. Note that |A| ≤ |S| <
suppα(f(Dn)) and so we have

Pr
x∼Dn

[f(x) ∈ A] = Pr
y∼f(Dn)

[y ∈ A] = f(Dn)(A) < α

7For example, the oracle can receive a command for updating the content of a file on disk, which will affect
its memory and hence future requests for reading the contents of the changed file.

8We assume the oracle (e.g., the environment) is deterministic, but we can be easily extend this result to
capture a stochastic oracle.
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Observe that:

Pr[f(x) = h(x)|U(x) = s] =
∑
y∈Yn

E[1h(x)=y · 1f(x)=y|U(x) = s]

=
∑
y∈Yn

E[1R(U(x))=y · 1f(x)=y|U(x) = s]

=
∑
y∈Yn

E[1R(s)=y · 1f(x)=y|U(x) = s]

=
∑
y∈Yn

p(y|s) · Pr
x∼Dn

[f(x) = y|U(x) = s]

≤
∑
y∈Yn

p(y|s) · Pr[f(x) = ys|U(x) = s]

≤ Pr[f(x) = ys|U(x) = s]

Where in the 4th equality we use the fact that the variables are independent. Therefore, we have:

Pr
x∼Dn

[f(x) = h(x)] =
∑
s∈S

Pr[f(x) = h(x)|U(x) = s] Pr[U(x) = s]

≤
∑
s∈S

Pr[f(x) = ys|U(x) = s] Pr[U(x) = s]

≤
∑
s∈S

Pr[f(x) ∈ A|U(x) = s] Pr[U(x) = s] = Pr[f(x) ∈ A] < α

and so errn(h) ≥ 1− α.

Proof of Theorem 2.2. First, let us define the oracle O. The memory of the oracle at iteration t
holds a sequence of tokens mt ∈ Σ∗, and additionally some index it ∈ N. At first iteration, we set
m0 = x and i0 = 0. The oracle O accepts the following commands:

• read: outputs the it-th token in mt. If it > |mt|, output [EOS].

• write σ: updates the it-th token of mt to be σ.

• move left, move right: adds/subtracts 1 from it.

Next, we describe the training distributions Pn. Since f is tractable, there exists some Turing
machine T that computes f . By definition, the machine halts for every input, and we can as-
sume w.l.o.g. that it halts when the head is at position 0. Let Q be the (finite) set of states of
T , and let q0 be the initial state. We assume the dictionary Σ contains the following symbols:
{0, 1, [STATE], [\STATE]} ∈ Σ. For each state q ∈ Q, we define the encoding of the state
enc(q) = [STATE]zq[\STATE], where zq ∈ {0, 1}log(|Q|) is a binary encoding of the state. Then,
for some input x ∼ Dn, we construct a CoT of x, denoted by F (x), that will capture the “trace” of
the machine T :

• The sequence F (x) begins with: [THINK]enc(q0)[\THINK][TOOL]read[\TOOL].

• In each step of the Turing machine processing x, we add to F (x) the sequence:

[THINK]enc(q)[\THINK][TOOL]read[\TOOL]

[OBS]σ[\OBS][TOOL]write σ′[\TOOL]

where q is the current state, and σ′ is the next symbol to write when reading σ in state q.
Additionally, we add [TOOL]move left[\TOOL] if the machine moves the head to the
left, and otherwise [TOOL]move right[\TOOL].

• When the machine reaches a halting state, for every i = 1 . . . |f(x)| we add:

[TOOL]move right[\TOOL][TOOL]read[\TOOL][OBS]f(x)i[OBS]f(x)i
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Note that since the machine computes f(x) it will be written on its tape when it reaches a valid
state. Therefore, it is easy to verify that the memory of the oracle O at step t will hold the state
of the tape and the correct position of the head, and that all the tool observations will be correct.
Finally, x ∼ Dn and F (x) together define the distribution Pn for all n, and it is indeed a training
distribution for the task (since the non-tool tokens after the [ANS] token correspond to the correct
output f(x)).

Next, we will show that a simple tool-SSM algorithm can achieve length generalization on this task.
Let {(x1, F (x1)), . . . , (xm, F (xm)} be the set of examples observed by the algorithm. Let Â be
the set of all pairs of state encodings and symbols that appear together in F (xi) in some xi:

Â := {(q, σ) : ∃i, [THINK]enc(q)[\THINK][TOOL]read[\TOOL][OBS]σ[\OBS] ∈ F (xi)}

Note that for every (q, σ) ∈ Â there is a single symbol σ′ and a single command d ∈
{move left,move right} and a single state q′ that follow (q, σ) in the trace (corresponding
to the operation of the Turing machine). Let R be the function mapping (q, σ) to (q′, σ′,d). Note
that both Â and R can be encoded with fixed (finite) memory. Therefore, we define a GSSM hÂ,R

that generates tokens as follows:

• Immediately after the input, generate: [THINK]enc(q0)[\THINK][TOOL]read[\TOOL].

• Following each response to a read command, generate:

[THINK]enc(q′)[\THINK][TOOL]write σ′[\TOOL][TOOL]d[\TOOL]

where q′, σ′,d = R(q, σ), for the σ returned by the tool oracle.

• When a halting state is reached, generate the sequence:

[TOOL]move right[\TOOL][TOOL]read[\TOOL]

and following the observation [OBS]σ[\OBS], output σ (if σ = [EOS] we halt the genera-
tion).

• If at some point we observe a pair q, σ /∈ Â, output [EOS].

Denote by A(x) ⊆ Q× Σ the set of state-symbol pairs observed by T when processing x. Its easy
to verify that for every x s.t. A(x) ∈ Â, the GSSM hÂ,R will exactly recover F (x). Therefore, the
following lemma suffices for proving the theorem:

Lemma B.1. Fix some ϵ, δ ∈ (0, 1). There exists some n0 s.t. and m s.t. w.p. at least 1 − δ over
sampling from P1, . . . ,Pn0 it holds that:

∀n ≥ n0 Pr
x∼Dn

[
A(x) ⊆ Â

]
> 1− ϵ

Proof. For every pair of symbols σ ∈ Σ and state q ∈ Q, denote pn(σ, q) := Prx∼Dn
[(q, σ) ∈

A(x)] the probability over sampling x ∼ Dn that the machine T reads a symbol σ while it is in
state q, when processing x. Let M := |Q| · |Σ|. Denote:

Aϵ =

{
(q, σ) ∈ Q× Σ s.t. sup

n
pn(q, σ) ≥ 2ϵ/M

}
Now, for every q, σ ∈ Aϵ, let n0(q, σ) be the minimal n s.t. pn(q, σ) ≥ ϵ/M . Let n0 =

max{n0(q, σ)}(q,σ)∈Aϵ
. Let m = n0M log(M/δ)

ϵ , and we will sample m′ = m/n0 = M log(M/δ)
ϵ

examples from each of D1, . . . ,Dn0
. Fix some (q, σ) ∈ Aϵ.

Claim: w.p. at least 1− δ/M we have (q, σ) ∈ Â.

Proof: Note that n0(q, σ) ≤ n0, and therefore we sample m′ examples from Dn0(q,σ). Let p :=
Prx∼Dn0(q,σ)

[(q, σ) ∈ A(x)] and by definition p ≥ ϵ/M . Therefore, for the m′ samples we draw,
the probability that we do not encounter (q, σ) in any of the traces is at most (1 − p)m

′ ≤ (1 −
ϵ/M)m

′ ≤ exp(−m′ϵ/M) ≤ δ/M .
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From the above claim, using the union bound, we get that w.p. at least 1 − δ we have Aϵ ⊆ Â.
Assume this holds, and fix some n ≥ n0. For every (q, σ) ∈ Q × Σ \ Aϵ it holds that
Prx∼Dn

[(q, σ) ∈ A(x)] ≤ ϵ/M . From the union bound, the probability over x ∼ Dn that there
exists some (q, σ) /∈ Aϵ ⊆ Â s.t. (q, ϵ) ∈ A(x) is at most |Q× Σ \Aϵ| ϵ/M ≤ ϵ. Therefore, the
required follows.

From the above lemma the proof of Theorem 2.2 follows.

C ARCHITECTURE AND TRAINING DETAILS

We train the following architectures for the synthetic experiments:

• Mamba-130M (https://huggingface.co/state-spaces/
mamba-130m-hf): a selective state-space (SSM) language model. We use a 24-layer,
1536-d intermediate size and 768-d model size configuration to match the Transformer
baselines while retaining linear-time sequence modeling.

• LSTM: a multi-layer recurrent baseline sized to roughly comparable capacity (4 layers,
hidden size 1536) to probe how classical RNNs fare on our trajectory-style tasks.

• GRU: a gated-recurrent baseline (4 layers, hidden size 1536) offering a stronger RNN
comparator with fewer parameters per unit than LSTM.

• Pythia (GPT-NeoX style) (https://huggingface.co/EleutherAI/
pythia-160m): a decoder-only Transformer from the Pythia scaling suite. We
adopt a 24-layer, 1536-d intermediate size, 768-d model size and 8-head model variant
with RoPE, roughly matching Mamba’s scale.

• Mistral-style Transformer (https://huggingface.co/mistralai/
Mistral-7B-v0.1): a modern decoder-only Transformer with sliding-window
(512) sparse attention, utilizing RoPE. We use a scaled-down 8-layer, 1536-d intermediate
size and 768-d model size.

For the synthetic experiment, we perform hyper-parameter search over learning rate, batch size
and weight decay. We choose learning rate ∈ {0.0005, 0.0001, 0.0003, 0.0005, 0.003, 0.005},
batch size ∈ {128, 256, 512, 1024}, weight decay ∈ {0, 0.01} and fix the number training steps
to be 2, 000. We run each experiment with 2 seeds, and report the accuracy of the best model. For
the code fixing experiment, we finetune a pretrained Mamba-1.4b and Pythia-1.4b, both trained on
The Pile (Gao et al., 2020), with learning rate 0.0001, weight decay 0.01, batch size 512 and 200
training steps. For all experiments, we use a single node with 8 H100 GPUs.

D MEMORY TOOL DEFINITIONS

As discussed in Section 3, we use either a pointer-based or a search-based memory tool to augment
the memory of the model. We now describe how the model interacts with the memory tool, and
how we differentiate between thoughts, outputs, commands and observations. We generally try to
reduce the number of tokens by using dedicated command tokens, and differentiate between output,
thoughts and observation tokens based on the context (instead of using open/closing tags).

Pointer-based Memory. The commands for this memory are given as special tokens that the
model can output, e.g. [pointer1.read()] or [pointer2.move left()]. A read command will be im-
mediately followed by a single observation token, that is the token read by the pointer at its current
position. All other tokens (tokens that are not command tokens or observation tokens, which al-
ways immediately follow a read command) are either thoughts or outputs. We use a single token
[ANS] that indicates the final answer of the model, where all tokens before the [ANS] token are
considered thoughts and all tokens after the [ANS] token are considered outputs. Both thoughts and
outputs are appended to the context memory, and the pointers can move beyond the input context,
and start reading thought or output tokens that were previously generated by the model. Commands
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and observations are discarded and are not appended to the external memory (but of course do affect
the internal memory and representation of the model). The model can freely interleave commands,
thoughts and outputs, and therefore the model can interact with the memory while producing the
answers.

Search-based Memory. This memory tool allows the model to search for a given pattern in the
context. A search command is a sequence of tokens of the form: [COMMAND]find[VALUE]x,
where x is some sequence of tokens to search for. Following the search command, the model will
receive a set of observations of the form: [OBSERVATION]z1, . . . ,zk, where z1, . . . ,zk are all the
lines in the memory context that contain the string x (similar to the operation of a grep command).
As before, all other tokens are either thoughts or outputs, and are appended to the memory and can
be searched for in future iterations. In this case we take the output to be the last line generated by
the model.

E LOGICAL REASONING TASK

As described in Section 3, we generate a random logical computation graph with k = 3 input nodes,
where each intermediate node is a boolean expression over one or two variables or their negation.
The graph is encoded as a python code given to the model as input. Illustration of the graph and the
code are shown in Figure 3.

v630 = True
v872 = False
v622 = True
v191 = not v872
v240 = v191
v539 = not v191
v526 = not v872
v792 = v526 and not v630
v054 = not v792 or not v191
v903 = v054 and v622
v903 = ? 

Expected answer: True 

Figure 3: Example of a logical reasoning graph and its encoding.

F TOOL-USE ALGORITHMS

We describe the synthetically generated tool-use trajectories for solving the different tasks presented
in Section 3.

Multi-Digit Addition. We follow the standard long addition algorithm, summing one-digit from
right to left while keeping the “carry” digit. The model uses pointer-based memory with two point-
ers, and performs the following steps:

1. Move each pointer to the least significant digit of each summand, where the first pointer
points to the digit of the first summand, and the second pointer to the second summand. To
do this, we move the first pointer until we read the token +, and move the second pointer
until we read the token =.

2. Read one digit from each summand, compute the sum of the digits and the carry from
previous iteration (if it exists), output the new sum and carry as thoughts, and move both
pointers to the left. Stop each pointer if it reaches a non-digit token. If both pointers reached
non-digit tokens, output [ANS] and move to the next step.
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3. At this step we have the sum written in reverse in memory, along with the carry digits from
each iteration. To write the final output in reverse, we move the second pointer to the right
until it reaches the [ANS] token, then start moving to the left, each iteration outputting the
sum digit, until the pointer reaches the = token.

Multi-Digit Multiplication. We follow the long multiplication algorithm for multiplying an n-
digit number by a k-digit number (for fixed k). We use a pointer-based memory with max(k, 2)
pointers. The algorithm executes the following steps:

1. Move the first pointer to the least significant digit of the first operand, and the second
pointer to the least significant digit of the second operand.

2. Move the first pointer to the left, each time reading a digit and multiplying it with the digit
of the second pointer. Add the result to the previous carry, and write it together with the
new carry. If we reach the most significant digit of the first operand, move the first pointer
back to the least significant digit, move the second pointer one position to the left, output a
+ sign and zeros as required (depending on which digit from the second operand we read).
If the second pointer reached the × sign, move to the next step.

3. At this step we have a summation problem with k summands, where the summands are
written in reverse and also contain carry digits that we should ignore. We move each
pointer to the least significant digit of its respective summand, read all digits, compute the
sum and the carry, and move each pointer to the right and skip carry digits. We continue
until we reach the most significant digit of all summands, and then output an [ANS] token.

4. Finally, we have the answer written in reverse with carry digits. We move the first pointer
to the [ANS] token, then move it one token to the left and output the tokens read by the
pointer, skipping carry digits.

Tower of Hanoi. The Tower of Hanoi puzzle can be solved by a simple recursive algorithm. Let
n be the number of disks in the puzzle. The recursive algorithm involves three steps: (1) recursively
moving the top n − 1 disks from rod A to rod B; (2) moving the largest disk from rod A to rod
C; and (3) recursively moving the n − 1 disks from rod B to rod C. Therefore, the puzzle can be
solved with 2n − 1 moves. Our model uses this recursive algorithm to solve the puzzle and output
the list of moves. For a puzzle with n disks, the model outputs the list of moves for puzzles of size
1, 2, . . . , n sequentially and uses the move list generated for puzzle of size i− 1 to output the list of
moves for puzzle of size i using the recursive pattern. Similar to the previous tasks, the model uses
pointer-based memory with two pointers. While outputting the list of moves for the puzzle of size i,
the first pointer points to the ith disk (largest disk moved in the moves of the puzzle of size i). The
second pointer is used for implementing the recursive pattern and iterating the moves of the puzzle
of size i − 1 while generating the moves for size i. More precisely, the input gives the list of disks
(e.g., (7)(5)(2)) and the model executes the following steps:

1. Both pointers are moved to the smallest (top) disk, and the model outputs the first move,
i.e., moving the top disk from rod A to rod C. This solves the problem for a single disk.
First pointer moves one step back (now pointing to the second smallest disk) and the second
pointer advances, pointing to the beginning of the first move. The model is now ready to
output the moves for solving the puzzle for two disks.

2. At this step, the model copies the last list of moves, swapping rod labels B and C. To
achieve the latter, the second pointer traverses the last list of moves and the model reads
and outputs one token at a time (performing the swap if needed). This step corresponds
to the first step of the recursive algorithm. At the end of copying, the second pointer is
rewound to point to the beginning of the list of moves again.

3. Next, the middle move, i.e., moving the largest disk (ith disk while outputting the moves
of size i) is performed. This disk is identified by the value of the first pointer and the
move is always from rod A to C. This step corresponds to the second step of the recursive
algorithm.

4. Similar to step 2, the model copies the list of moves again, swapping B and A. The second
pointer is used again for iterating the list of moves and copying. This step corresponds to
the third step of the recursive algorithm. After the copying is finished, the second pointer
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advances and points to the beginning of the newly constructed move list. The first pointer
goes one step back so that it points to the next larger disk. This completes the generation for
size i, and the process iterates by returning to step 2 for size i+1. The generation terminates
if there is no disk remaining for the first pointer, indicating that the lists of moves have been
generated for all puzzle sizes 1, . . . , n.

We note that we use a delimiter (e.g., #) between the list of moves for different number of disks so
that they become separable.

Logical Reasoning. We use a search-based memory tool to solve the logical reasoning problem
detailed in Appendix E. We try to resolve variables’ truth value recursively using depth-first-search
(DFS). Namely, starting with the output variable, we recursively search for the values of variables in
a given expression. If we find a variable with a boolean (True/False) value, we update the expression,
replacing the variable’s name by its value. If we find a child variable that is still not resolved, we
search for the variables in the child’s expression, while also logging the value of the parent variable
(that we can use for “backtracking”). When we are done resolving a variable’s value, we backtrack
to its parent, trying to resolve the parent’s value. When we resolved the output nodes value, we
finish the generation.

G ADDITIONAL ABLATIONS

We run the following ablations on the multi-digit addition task:

1. No-CoT: we train the model to directly output the final answer, without any CoT or tool-
use.

2. No-CoT, reversed answer: we train the model to directly output the final answer in reverse
(reverse format was shown to improve length generalization in certain settings, e.g. Zhou
et al. (2024)).

3. No Tool-Use: The model is trained on similar trajectories as in the main experiment, but
now needs to predict the output of the memory tool instead of receiving these as observa-
tions. Namely, the trajectory is used as CoT data.

4. Single-Turn Tool-Use: we train the model with a “calculator”, where the model needs to
generate a single addition command following the input (i.e., given an input a+ b it needs
to generate add(a, b)).

We train the Mamba model in all settings with extensive hyper-parameter tuning on 5-digit addi-
tion. Experiments 1,2 and 4 results in perfect accuracy on 5-digit addition, but little to no length
generalization. Experiment 3 results in poor performance even in-distribution.

H CODE FIXING AGENT SETUP

We use the same system prompt and input prompt as in mini-SWE-agent (Yang et al., 2024a) from:
https://github.com/SWE-agent/mini-swe-agent. We instruct the model to solve
the bug in main.py, and explain how the bug should be solved. We modify the original prompt
of mini-SWE-agent to instruct the model interactively debug the code and generate a fix for up to 3
files at a time.

Please solve this issue: Fix the bug in main.py. Make sure to pass variable v10 too
foo() and all other relevant functions. Pass v10 to ONLY the relevant functions,
do not pass it if it is not needed.
You can execute bash commands and edit files to implement the necessary
changes.
## Recommended Workflow
This workflows should be done step-by-step so that you can iterate on your
changes and any possible problems.
1. Create a script to reproduce the issue and run it
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Figure 4: Pass rate and median sequence length for SWE-agent-LM-32B on the code fixing task.

2. Spot 3 files that might be causing the issue

3. Read the content of these 3 files.

3. Edit the source code of these files resolve the issue. Do not edit more than 3
files before running the script again, even if the code is not completely fixed.

4. Verify your fix works by running your script again, if not - analyze at most 3
more files that might cause the issue and repeat the debugging process

5. Submit your changes and finish your work by issuing the following command:
‘echo COMPLETE TASK AND SUBMIT FINAL OUTPUT‘. Do not combine it
with any other command. ⟨important⟩After this command, you cannot continue
working on this task.⟨/important⟩

We plot the pass rate and generated trajectory length of the SWE agent as a function of the number
of functions in the code in Figure 4.

I ABLATING TRAINING STEPS AND DIGIT LENGTH FOR MULTIPLICATION

In Figure 5 we investigate the impact of different training configurations on generalization for multi-
digit multiplication, varying the training budget (250, 500, or 800 steps) and the maximum number
of digits seen during training for the first operand (5, 10, or 20). For this experiment, the learning rate
was set to 0.003 based on validation. Results indicate that increasing the maximum number of digits
shown during training for the first operand improved stablity of OOD generalization consistently,
with results improving with more training steps. In particular, training with up to 20 digits improves
generalization stability perfectly up to the maximum digit size tested (1000 digits). However, even
training with up to 5 and 10 digits show progressive improvements as the number of training steps
increases.

J TASK MIXTURE

In Figure 6 each panel shows accuracy as a function of test length for various training budgets (250,
500, or 800 steps). The curves correspond to different mixing weights, where w = 0 denotes the
baseline trained only on the main task and higher values indicate a normalized fraction of auxiliary
samples. The error bars indicate variability across random seeds.

The accuracy plots for the main task (multiplication) in the task mixture experiment were presented
in section 3.1. For completeness, we show the auxiliary task accuracy in Figure 7.
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Figure 5: Multiplication generalization performance for Mamba across different training config-
urations. Each subplot shows accuracy as a function of sequence length for a specific maximum
training steps value. Different colored lines represent different training sequence lengths, with error
envelope indicating median absolute discrepancy across 5 runs.
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Figure 6: Multiplication task accuracy under co-training with varying training budgets (see Sec 3.1).

K TOOL USE CAPABILITIES OF PRETRAINED SSMS

At the time of writing, we were unable to find any publicly-available SSM models that were fine-
tuned for function calling. The closest we could find is Mistral’s Mamba-Codestral-7B-v0.1, which
was fine-tuned on coding tasks. We evaluated this model on the Berkeley Function Calling Leader-
board (Patil et al.), and found an overall accuracy of 16.58%, comparable with the reported accura-
cies of 16.22% for Falcon3-3B-Instruct and 15.58% for Llama-3.1-8B-Instruct.
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Figure 7: Addition task accuracy under co-training with varying training budgets (250, 500, 800
steps). Curves show different mixing weights. See (3.1).

K.1 SSMS AND TRANSFORMER BASELINES
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Figure 8: We train various transformer (Pythia, Mistral) and SSM (Mamba, LSTM, GRU) models
on Multi-Digit Multiplication, Logical Graph and Tower of Hanoi tasks, with CoT + pointer-based
memory tool. Multi-Digit Multiplication: We train models on multiplying a number of up to 10-
digit by a 1-digit number or 2-digit number, using the pointer-based memory tool. Logical Graph:
We train models to perform a logical graph reasoning problem using search-based memory tool,
training on graphs with up to 10 variables. Tower of Hanoi: We train models to solve the Tower of
Hanoi reasoning problem using search-based memory tool, training on problems with up to 7 disks.
The first point in each plot is the maximal problem size seen during training (i.e., all other points are
out-of-distribution extrapolation).
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In 8 we report accuracies of our baseline models on the Multi-Digit Multiplication, logical reasoning
and Tower of Hanoi tasks. We train each model on the same trajectories, using CoT and tool use.
We perform hyperparameter optimization for each model as described in C. Our results generally
point to a length generalization advantage for state space models over baseline transformer models.
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