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Abstract—Dexterous manipulation of deformable objects re-
mains a core challenge in robotics due to complex contact
dynamics and high-dimensional control. While humans excel
at such tasks, transferring these skills to robots is hindered
by embodiment gaps. In this work, we propose using particle-
based dynamics models as an embodiment-agnostic interface,
enabling robots to learn directly from human-object interaction
data. By representing both manipulators and objects as particles,
we define a shared state and action space across embodiments.
Using human demonstrations, we train a graph neural network
dynamics model that leverages spatial locality and equivariance
to generalize across differing embodiment shapes and structures.
For control, we convert embodiment-specific joint actions into
particle displacements via forward kinematics, enabling model-
based planning in the shared representation space. We demon-
strate that our approach transfers manipulation skills from
humans to both low-DoF and high-DoF robot hands, achieving
real-world clay reshaping without motion retargeting, expert
demonstrations, or analytical simulation.

I. INTRODUCTION

Dexterous manipulation of deformable objects is a fun-
damental yet unsolved problem in robotics. The challenge
arises from the need to coordinate a high-dimensional action
space, often involving many joints and coupled contacts,
with complex object dynamics that are difficult to model or
predict [5]. Humans perform such tasks effortlessly, adapting
finger motions to stabilize, reorient, or reshape objects in-
hand. Replicating this level of fine-grained control in robotic
systems, however, remains elusive. This gap raises a natural
question: Can we learn from human behavior to endow robots
with similar dexterous capabilities, particularly for deformable
object manipulation?

Leveraging human experience offers a promising path to-
ward dexterous manipulation, but the embodiment gap remains
a central challenge. Common strategies involve using motion
retargeting to convert human motion into robots’ action space,
followed by imitation learning from expert demonstrations
in the task domain [14, 3, 9], or reinforcement learning
that treats natural human-object interaction as a prior or
guidance signal [2, 13, 8, 7]. However, these approaches face
key limitations: optimization-based retargeting is often impre-
cise, imitation learning depends on curated demonstrations,
and reinforcement learning requires reward design and high-
fidelity simulation, which are especially difficult in contact-
rich deformable object manipulation tasks where fine motion
control is essential.

In this work, we seek to enable robots to learn directly
from human experience. The core idea is to define a universal
state and action representation shared across human and
robot embodiments. We propose to represent both human and
robot hands as particles, and actions are defined as particle
displacements. We train a graph-based dynamics model [10,
1, 11, 12, 16] to predict particle motion from human-object
interaction data, leveraging spatial locality and equivariance
to promote generalization across morphologies. For control,
joint actions are sampled and mapped to particle motions
via forward kinematics, enabling model-predictive planning
through dynamics inference in the shared representation space.
This structured approach allows robots to perform fine-grained
manipulation of deformable objects directly from human-
object interaction data, without requiring motion retargeting,
expert demonstrations, or analytical simulation.

We evaluate our approach on two robotic hands with distinct
kinematics, a 6-DoF PSYONIC Ability Hand and a 12-DoF
Robot Era XHand, on real-world dough reshaping tasks. A
single dynamics model trained solely on human-object inter-
action data enables both embodiments to perform fine-grained
manipulation without additional robot data. These results pro-
vide preliminary findings that particle-based dynamics models
can serve as a generalizable interface for cross-embodiment
dexterous manipulation.

II. METHOD

A. Problem Formulation

Our goal is to learn dexterous deformable object manipula-
tion skills that can generalize across robotic hands.

We formalize the general problem as follows. At each
time step t, the end effector is in configuration qt ∈ Rne ,
where ne is the number of degrees of freedom specific to
embodiment e. The system transitions to a new state after
executing control ut, and the objective is to find a control
sequence {ut}H−1

t=0 that minimizes a cost function over a finite
horizon H . While conventional learning focuses on optimizing
performance within a fixed embodiment, cross-embodiment
skill learning introduces the additional challenge of bridging
structural and dimensional mismatches in both configuration
qt and action ut across different morphologies.

To enable generalization across embodiments, we define a
shared action and state space in the form of particles. Let
ϕe : Rne → R3N denote the embodiment-specific forward
kinematics function that maps joint configuration qt to the



Fig. 1: Overall framework. The perception module captures a clear and consistent particle-based representation of the scene using four
RGBD cameras. Leveraging this representation, our method learns a dynamics model from diverse hand-object interactions across multiple
manipulation skills, including Fingers Pinching, Palm Pressing, and Thumb Pinching. During cross-embodiment planning, the learned
dynamics model is employed to manipulate deformable objects toward desired target states.

3D positions of N particles representing the end effector. We
define the action in the particle space as the displacement of
these particles:

at = ϕe(qt+1)− ϕe(qt),

and the state in the particle space as the union of object and
hand particles:

st =
[
sobjt ;ϕe(qt)

]
.

We then train a dynamics model f that operates in this
shared space, predicting the next particle state given the
current particle state and action:

ŝt+1 = f(st, at).

The model can be trained with data from different embod-
iments, including robots and humans, due to the unified
state and action representations. For control, we sample joint
actions, convert them to particle motion using forward kine-
matics, and integrate the learned dynamics model with model-
predictive control to minimize the task cost.

B. Perception

The perception module in our approach aims to uniformly
sample particles from both the human hand and the object. To
achieve this, we utilize 4 well-calibrated cameras for compre-
hensive RGBD images as well as point-cloud information.

For hand perception, we extract hand mesh in 3D space
utilizing a multi-view hand mesh reconstruction model [15].
We then apply farthest point sampling (FPS) on this mesh to
uniformly select 200 representative points, which serve as the
final hand particle representation. For object perception, we
follow the particle sampling procedure in [11].

To mitigate visual occlusion between hand and object dur-
ing data collection, we adopt key-frame perception strategy:
hand mesh is reconstructed before contact and at the deepest
deformation point while object is captured before and after the
interaction.

C. Dynamics Model

To enable generalization across embodiments, we model
the object’s dynamics as a graph-based neural network that
predicts particle motions. We use DPI-Net [6], which lever-
ages message-passing over the particle graph to compute the
object’s forward dynamics.

The GNN implements a message-passing update that ag-
gregates local features over the graph edges to predict each
particle’s motion. Specifically, the graph state at each time step
is represented as st = ⟨Ot, Et⟩ with Ot as vertices and Et as
edges. For each particle in the graph, ot,i = ⟨xi,t, c

o
i,t⟩, where

xi,t is the particle position i at time t, and coi,t is the particle’s
attributes at time t, including the group information (belongs
to hand or object). In addition, edges between particles are
denoted as ek = ⟨uk, vk⟩, where 1 ≤ uk, vk ≤ |Ot| are
the receiver and sender particle indices respectively. Given
the graph, where any particles are connected within a certain
radius, we can first use node encoder fenc

O and edge encoder
fenc
E to extract node and edge features:

coi,t = fenc
O (oi,t), c

e
k,t = fenc

E (ouk,t, ovk,t, d
r
k)

where drk denotes edge’s attributes (e.g. length). Then, the fea-
tures are propagated through edges in multiple steps. Denote
ϵlk,t and hl

i,t are propagating influence from edge k and node i



Fig. 2: Qualitative results of cross-embodiment deployment. (a) Ability Hand (6-DoF) and (b) XHand (12-DoF) utilize the same
particle-space dynamics model learned from human demonstration. For each trial, the hand successfully reshapes the deformable clay
toward the target shape using a combination of Fingers Pinching, Palm Pressing, and Thumb Pinching skills.

at step l, respectively. At step 0, initialize h0
i,t = 0, i = 1...|O|.

For each step 1 ≤ l ≤ L:

ϵlk,t = fE(c
e
k,t, h

l−1
uk,t

, hl−1
vk,t

), k = 1...|E|

hl
i,t = fO(c

o
i,t,

∑
k∈Ni

ϵlk,t, h
l−1
i,t ), i = 1...|O|

where Ni is the neighbor index set of particle i, fO denotes the
node propagator, and fE denotes the edge propagator. Then
the future state at time t+ 1 is predicted as

ôi,t+1 = fdec
O (hL

i,t), i = 1...|O|

The particle-based graph network incorporates strong in-
ductive biases. First, spatial locality is enforced by restricting
message passing to local neighborhoods. Second, equivariance
is achieved through the use of relative coordinates and shared
update functions, making predictions invariant to global trans-
lations and rotations. These properties support generalization
across embodiments when configurations are projected into the
shared particle space.

D. Model-Predictive Control

Human hand motions often lie in low-dimensional man-
ifolds in the entire configuration space [4]. To leverage
this structure, we define low-dimensional action parameteriza-
tions for efficient planning: (i) Fingers Pinching: involving
rotational motion around the z-axis and relative movement
between the index finger and thumb; (ii) Palm Pressing:

characterized by rotational motion around the z-axis and
translational motion along the z-axis; (iii) Thumb Pinching:
composed of rotational motion around the z-axis and actuation
of thumb-specific degrees of freedom.

To perform model-based control, we sample a set of control
sequence {ut}H−1

t=0 from the robot hand’s action space of each
skill, which are then converted to particles in shared state space
through forward kinematics . We evaluate the sampled action
sequences using the dynamics model f learned from human-
object interaction data and execute the lowest-cost actions. The
cost function is defined as the Earth Mover’s Distance (EMD)
between the predicted final object state ŝobj and the target
object state sobjgoal.

III. EXPERIMENTS

In this section, we seek to answer the following key ques-
tions:

i. Does the learned dynamics model generalize across dif-
ferent hand morphologies?

ii. Does the learned dynamics model enable effective plan-
ning and control for dexterous manipulation?

A. Physical Setup

1) Platform.: The experimental platform consists of a
XArm7 robotic arm with an Ability Hand and a XHand. Four
Intel RealSense cameras are utilized for perception.All devices
are connected to a workstation with a NVIDIA RTX 4090
GPU for both data collection and evaluation.



2) Protocols: For dynamics model training, we take 30
minutes to collect human hand demonstrations for Fingers
Pinching skill, and 15 minutes for Palm Pressing and Thumb
Pinching skills. These demonstrations are used to jointly train
a single dynamics model across all skills. During evaluation,
we select 3 alphabet letters ”X”, ”K”, and ”I” as target shapes,
and we run 5 trials per hand (Ability Hand and XHand) for
each target shapes.

B. Real-World Manipulation of Deformable Objects

Methods CD↓ EMD↓

Human Subjects 0.0104 ± 0.0013 0.0077 ± 0.0010
Ability Hand 0.0109 ± 0.0008 0.0080 ± 0.0006
XHand 0.0100 ± 0.0005 0.0076 ± 0.0004

TABLE I: Quantitative results using different embodiments.
Numbers are averaged over all tested shapes.

During real-world cross-embodiment deployment, the robot
hand aims to reshape the deformable clay toward the target
shape using a combination of skills. As shown in Fig. 2, both
(a) Ability Hand and (b) XHand sequences can reshape the
clay well in the use of three learned skills-Fingers Pinching,
Palm Pressing, and Thumb Pinching-to successively carve,
spread, and compress clay. Despite the hands’ kinematic
disparity, the same particle-space dynamics model transfers
with no retraining. This supports the claim that the graph-
based dynamics model enables cross-embodiment planning via
model-predictive control.

In addition, the graph-based dynamics model enables robot
hands a near-human accuracy. We report the evaluation re-
sult in Table I. Our proposed embodiment-agnostic dynamics
model enables robot hand to achieve near-human accuracy
and high repeatability. XHand attains the lowest Chamfer
Distance (0.0100 ± 0.0005) and Earth Mover Distance (0.0076
± 0.0004), edging slightly ahead of human subjects, while the
lower-DoF Ability Hand follows closedly at 0.00109 ± 0.0008
(CD) and 0.0080 ± 0.0006 (EMD).The small performance gap
demonstrates that the learned particle-space dynamics model
transfers effectively across embodiments with very different
kinematics. Notably, the standard deviations shrink as we
move from humans to Ability Hand, and XHand, revealing
that the model-predictive controller generates more consistent
motions than human manipulators.

IV. CONCLUSION

This work demonstrates that a particle-space dynamics
model learned solely from human–object interactions can
serve as an embodiment-agnostic interface for dexterous ma-
nipulation of deformable objects. By projecting both human
and robot hands into a shared particle representation and
combining this with model-predictive control, we successfully
acquire three manipulation skills on two robot hands with
distinct kinematics. These results highlight the potential of
general dynamics models as a unified interface for cross-
embodiment manipulation.
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