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Abstract001

Recent advances in large language models002
(LLMs) have demonstrated the effectiveness003
of chain-of-thought (CoT) prompting. Few-004
Shot-CoT relies on task-specific, manually la-005
beled demonstrations, limiting its generaliza-006
tion to unseen tasks. While Zero-Shot-CoT007
eliminates this reliance, it often underperforms.008
To address this, existing methods aim to auto-009
matically generate demonstrations in zero-shot010
settings. However, these generated demonstra-011
tions face challenges due to demonstration bias:012
1) selected demonstrations may contain errors,013
and 2) they may not be suitable or representa-014
tive enough for all questions. To mitigate these015
biases, we propose Global Coevolutionary Rea-016
soning (GCR). The method first applies Zero-017
Shot-CoT to answer all questions, then clusters018
the results. For each cluster, a random sample019
is selected, and these selected samples serve as020
demonstrations for each other. The model then021
iteratively re-answers the questions and updates022
their rationales based on these demonstrations,023
enabling coevolutionary reasoning to progres-024
sively improve the quality of the answers. This025
process of random sampling and coevolution-026
ary reasoning is repeated until all questions027
have been re-answered. Experimental results028
on ten datasets using GPT-3.5-turbo and GPT-029
4o-mini show that GCR outperforms baseline030
methods without any performance degradation031
caused by demonstration bias. Additionally,032
GCR is orthogonal to existing methods and can033
be seamlessly integrated with them.034

1 Introduction035

The paradigm of in-context learning (ICL) (Brown036

et al., 2020) has proven effective in large language037

models (LLMs), enabling them to perform reason-038

ing tasks based on a few examples. Among the039

strategies within ICL, chain-of-thought (CoT) (Wei040

et al., 2022) reasoning, including few-shot and zero-041

shot variants, is a cornerstone for tackling complex042

Q: Jim spends 2 hours watching TV and then decides to

go to bed and reads for half as long. He does this 3

times a week. How many hours does he spend on TV

and reading in 4 weeks? 

A: |step|subquestion|process| result|| 1 | How many hours 

does Jim spend watching TV and reading each week? | 2 

hours of watching TV + 1 hour of reading = 3 hours | | 2 

| How many hours does Jim spend on TV and reading in 

4 weeks? | 3 hours/week * 4 weeks = 12 hours | Jim 

spends a total of 12 hours on TV and reading in 4 

weeks.

:1
GSM8K

Demonstration

Q: Tom spends 2 hours playing computer and then 

decides to go to bed and listens to music for half as 

long.  He does this 2 times a week.  How many hours 

does he spend on computer and listening in 5 weeks? 

A: |step…||1|How many hours does Tom spend playing 

computer and listening to music each week?|2 hours of 

playing computer + 1 hour of listening to music = 3 

hours| |2|How many hours does Tom spend on computer 

and listening in 5 weeks?|3 hours/week * 5 weeks = 15 

hours| Tom spends a total of 15 hours on computer and 

listening to music in 5 weeks. 

k

Test Question

Figure 1: An example of the first type of demonstration
bias in GPT-3.5-turbo with Auto-CoT on the GSM8K
dataset, where the selected demonstrations may contain
errors and propagate incorrect reasoning.

problems. Few-Shot-CoT relies on manually la- 043

beled demonstrations, limiting generalization to 044

unseen tasks, while Zero-Shot-CoT (Kojima et al., 045

2022) removes this reliance, offering broader appli- 046

cability but often resulting in suboptimal reasoning. 047

The Auto-CoT (Zhang et al., 2023) framework 048

addresses these challenges by dynamically transi- 049

tioning from zero-shot to Few-Shot-CoT. It clus- 050

ters questions based on semantic similarity and 051

selects representative examples from the cluster 052

centroids to construct a few-shot prompt, combin- 053

ing the strengths of both approaches. However, 054

Auto-CoT faces demonstration bias: 1) selected 055
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Q: A car finishes a journey in 20 hours at the speed

of 60 km/hr. If the same distance is to be covered

in 10 hours, how much speed does the car gain? ...

Q: At what price should the Karan mark a sewing

machine that costs him Rs. 1200/- so that even

after offering a 20% discount, he makes 20%

profit? ...

Q: The capacity of a tank of dimensions (8 m × 6 

m × 2.5 m) is? ...

Q: 900 + 5 × 12 = ? …

Q: Joe's age, Joe's sister's age and Joe's father's 

age sums up to 100. When Joe is as old as his 

father, Joe's sister will be twice as old as now. 

When Joe is as old as his father then his father is 

twice as old as when his sister was as old as her 

father. Find the age of Joe's father?

A: Sorry, I am unable to solve this type of word

problem. 

Auto Demos (AQuA)

Test Question

Figure 2: An example of the second type of demon-
stration bias in GPT-3.5-turbo with Auto-CoT on the
AQuA dataset, where the selected demonstrations may
be unrelated to the question being answered, leading to
incorrect answers.

demonstrations may contain errors, propagating in-056

correct reasoning (Figure 1), and 2) they may not057

be representative of all questions (Figure 2). While058

increasing demonstration diversity can mitigate the059

effect of erroneous demonstrations, it does not fully060

resolve the first bias.061

ECHO (Jin and Lu, 2024) attempts to iteratively062

refine demonstrations by using each as a demonstra-063

tion for the others, fostering coevolutionary reason-064

ing between demonstrations to eliminate the first065

bias. However, this iterative process lacks a mech-066

anism to ensure positive progression, potentially067

exacerbating the first bias (Figure 3), and does not068

address the second bias related to representative-069

ness.070

Coevolutionary reasoning posits that good071

demonstrations are more likely to guide LLMs072

to correct answers. Demonstrations are consid-073

ered "good" when they are both representative and074

accurate. In Shtok et al. (2024), representativeness075

is defined as the proportion of questions in a set that076

can be solved using a specific example as a demon-077

stration, with the set’s problem-solving success rate078

exceeding a threshold. However, obtaining such079

problem sets with known correct answers in prac-080

tice is difficult, limiting the applicability of this081

approach. Auto-CoT clusters questions and selects082
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Figure 3: Comparison of demonstration accuracy across
Auto-CoT, ECHO, and ECHO+Judge. ECHO can
improve demonstration accuracy in some cases but
may also degrade it in others. On the other hand,
ECHO+Judge, which incorporates a judging mecha-
nism during iterative updates and is influenced by judge
bias, can enhance accuracy in certain situations while
occasionally reducing it.

centroids as demonstrations, assuming these are 083

representative. However, semantic similarity does 084

not necessarily imply similar reasoning methods 085

(Xu et al., 2024b; An et al., 2023), and centroids 086

may not adequately represent points that are far 087

from them. (Figure 2). Zhang and Ding (2024) 088

emphasizes the need to explore the prompt space 089

in addition to the answer space. While traditional 090

methods (Yao et al., 2024; Besta et al., 2024) adopt 091

a "one prompt for all" approach, a single prompt 092

or set of demonstrations cannot effectively address 093

all questions. As noted in Yuan et al. (2024), find- 094

ing a universally applicable prompt for every ques- 095

tion remains a challenging task. The ideal solution 096

would involve designing a specific prompt for each 097

question, but manually creating such prompts is 098

impractical. Thus, coevolutionary reasoning fo- 099

cuses on optimizing demonstrations for greater 100

accuracy. While manually created demonstrations 101

do not require validation of their correctness, con- 102

structing task-specific demonstrations for new tasks 103

is often time-consuming and labor-intensive. This 104

has led to the consideration of automatically gen- 105

erated demonstrations. However, without external 106

feedback, these auto-generated demonstrations are 107

prone to errors. For instance, Auto-CoT gener- 108

ates cluster centroids using Zero-Shot-CoT, but the 109

rationales for these centroids may be flawed. In co- 110

evolutionary reasoning, examples iteratively serve 111

as demonstrations for each other, refining and up- 112

dating their rationales. Through this process, the 113

accuracy of the demonstrations is gradually im- 114
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proved.115

We address the first bias by introducing coevo-116

lutionary reasoning with judge to ensure iterative117

refinement progresses positively. To address the118

second bias, we balance “one demonstration for119

all” and “one demonstration for one” by randomly120

selecting examples from each cluster for iteration.121

Employing a judging process (e.g., ECHO+Judge)122

is expected to improve demonstration accuracy.123

However, due to judge bias—arising from poten-124

tial errors in the judge’s assessments—it does not125

always achieve this improvement (Figure 3). To al-126

leviate judge bias, we propose P-sampling, where a127

sample is selected either from already chosen exam-128

ples or new ones with probabilities P and 1−P , re-129

spectively. This combination of P-sampling, global130

random sampling, and the judge mechanism ad-131

dresses all three biases. We evaluate GCR on132

ten datasets across three reasoning problems. Ex-133

periments with GPT-3.5-turbo and GPT-4o-mini134

demonstrate that GCR consistently outperforms135

Auto-CoT on average while avoiding performance136

degradation caused by demonstration bias. Addi-137

tionally, GCR is orthogonal to existing methods138

and can be seamlessly integrated with them.139

2 Global Coevolutionary Reasoning140

Overview The schematic illustration of our pro-141

posed approach is shown in Figure 4. GCR first142

uses Zero-Shot-CoT to generate answers for all143

N questions. Then, it applies K-means cluster-144

ing to the (question, rationale) pairs, where the145

rationale derived from Zero-Shot-CoT serves as146

the basis for clustering. The intuition behind this147

approach is that we want the LLM to explore dif-148

ferent reasoning paths when answering questions.149

By clustering based on the rationale, we aim to pre-150

vent reasoning errors from accumulating due to the151

lack of certain reasoning strategies. Next, a sam-152

ple (question, rationale) is randomly selected from153

each cluster using P-sampling. These k samples154

are then subjected to T rounds of coevolutionary155

reasoning, where the question is re-answered, and156

the judge decides whether to update the rationale.157

This process, including both the sampling and the158

coevolutionary reasoning steps, is repeated until all159

samples have been re-answered. The total number160

of calls to the LLM in GCR is given by N + N×T
1−P161

(see Appendix C for the proof), and the intermedi-162

ate process of coevolutionary reasoning is detailed163

in Appendix F.164

2.1 Coevolutionary Reasoning 165

During the coevolutionary reasoning process, multi- 166

ple samples serve as demonstrations for each other. 167

Each question is iteratively re-answered, and the 168

newly generated rationale is assessed to determine 169

whether it should replace the existing rationale. If 170

the new rationale demonstrates superior quality, it 171

is updated; otherwise, the previous rationale is re- 172

tained. The updated (question, rationale) pairs are 173

then used as demonstrations for subsequent itera- 174

tions of re-answering. The process of re-answering 175

and updating all samples constitutes one iteration, 176

and this procedure is repeated for T rounds to en- 177

sure convergence. The algorithm for coevolution- 178

ary reasoning is presented in Algorithm 1. See 179

Appendix B for illustration of coevolutionary rea- 180

soning. 181

Algorithm 1 Coevolutionary Reasoning
Require: Question set Q = {q1, q2, . . . , qk}, initial ratio-

nalesR = {r1, r2, . . . , rk}, number of iterations T
Ensure: Updated rationales R∗, where R∗ is the final up-

dated set of rationales.
1: for t = 1 to T do ▷ Iterate for T rounds
2: for i = 1 to k do ▷ Re-answer one by one
3: Build demonstration set Di = {(qj , rj) | j ̸= i}
4: Generate new rationale: r′i ← LLM(qi | Di)
5: Evaluate new rationale: tag← Judge(qi, r′i, ri)
6: if tag == True then ▷ If new rationale is better
7: Update rationale: ri ← r′i
8: end if
9: end for

10: end for
11: returnR∗

2.2 Key Components of GCR 182

Judge The judge process evaluates whether a 183

new rationale improves upon the original in the 184

coevolutionary reasoning process. It serves two 185

purposes: 186

• To eliminate the first type of bias, ensuring 187

correct progression in iterations. 188

• To mitigate erroneous reasoning by reducing 189

the impact of randomly sampling irrelevant 190

demonstrations. 191

In this paper, we choose the judge method as 192

follows: 193

1. Self Judge: Let the LLM judge whether 194

the generated rationale is correct (prompting 195

LLM to identify the specific reasons behind 196

errors proves to be more difficult (Huang et al., 197

2024)). See Appendix A for the prompts. If 198

3



LLMsZero-Shot-CoT

Q: Mitchell is making nachos for his family. He …

Q: Jim spends 2 hours watching TV and then …  

:

Q: Mitchell is making nachos for his … A: Let’s …

Q: Jim spends 2 hours watching TV … A: Let’s …

:

R = 0%

End

:

Clustering
1 k

P-sampling (random)

Put Back

Coevolution Reasoning

(T iterations)

𝑄1: Mitchell is making nachos … 𝐴1
0 : Let’s …

𝑄𝑘: Jim spends 2 hours … 𝐴𝑘
0 : Let’s …

:

R : re-answered ratio 

𝑒𝑖
𝑡

The t-th iteration

The i-th cluster

Re-answered

Re-answered

𝑒1
0

𝑄1: Mitchell is making … 𝐴1
𝑇 : Let’s …

𝑄𝑘: Jim spends 2 hours  … 𝐴𝑘
𝑇: Let’s …

:
𝑒1
𝑇

𝑒𝑘
𝑇

𝑒𝑘
0

:1 k
R<100%

R=100%

Figure 4: Illustrations of GCR. The process begins by generating initial answers for all N questions using Zero-Shot-
CoT. Then, (question, rationale) pairs are encoded and clustered using K-means, where the rationale derived from
Zero-Shot-CoT serves as the clustering basis. Next, a sample (question, rationale) is randomly selected from each
cluster through P-sampling. These k selected samples undergo T rounds of coevolutionary reasoning, where the
questions are re-answered and their rationales are iteratively refined. This process of sampling and coevolutionary
reasoning continues until all samples have been re-answered, ensuring a more effective reasoning evolution.

the rationale is judged to be correct, the ra-199

tionale is updated directly. Unless otherwise200

stated, the judge method used in this paper201

follows this approach for the sake of conve-202

nience. Note that the judge model should be203

identical to the generation model to ensure a204

fair comparison.205

2. Answer Entropy: In line with the Self-206

Consistency (Wang et al., 2023b) idea, ask207

the large model to answer multiple times and208

use the entropy of the answers to judge. The209

smaller the entropy of the answers, the more210

accurate the demonstrations is considered. In211

this case, a majority voting mechanism is used212

to select the best answer and rationale, which213

are then updated.214

3. Probability Disparity: Use the probability215

disparity (Wang and Zhou, 2024) of the gener-216

ated rationale to judge (this needs to be done217

in the context of open-source models). If the218

disparity is higher than before, the rationale is219

updated.220

4. Oracle Labels: Use ground truth to judge (it221

should be the performance upper bound for222

coevolutionary reasoning). If the answer cor- 223

responding to the generated rationale matches 224

the ground truth, the rationale is updated. 225

From 1 to 4, the cost of the judge increases gradu- 226

ally, but so does the effectiveness of the judge (see 227

Table 3). 228

Global random sampling Global random sam- 229

pling differs from previous methods by not relying 230

on a fixed set of demonstrations. Instead, for each 231

question, demonstrations are randomly sampled 232

from a global set, broadening the exploration of 233

the prompt space. This approach has two main 234

benefits: 235

• It eliminates the second type of bias by ex- 236

panding the prompt space, preventing failures 237

due to irrelevant demonstrations. 238

• It mitigates errors caused by judge bias, avoid- 239

ing a significant performance drop in a "one 240

prompt for all" scenario. 241

P-sampling Each time data is sampled for co- 242

evolutionary reasoning, there is a probability P of 243

sampling from previously selected data and 1− P 244

from new data. P-sampling serves two purposes: 245
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• It allows previously selected samples, which246

are assumed to be more accurate, to act as247

demonstrations, increasing the likelihood of248

correct answers for new samples.249

• By enabling global random sampling, P-250

sampling lets samples re-enter the reason-251

ing process with different demonstrations, ex-252

panding the exploration of the prompt space253

and improving the chance of correct answers.254

Therefore, the three mechanisms work in syn-255

ergy to perform reasoning and eliminate the three256

types of bias.257

3 Experimental Setup258

3.1 Benchmarks259

Following Wang et al. (2023a) and Zhang et al.260

(2023), we evaluate GCR on ten benchmark261

datasets, categorized into three types of reasoning262

tasks: (i) arithmetic reasoning, comprising Multi-263

Arith (Roy and Roth, 2015), GSM8K (Cobbe et al.,264

2021), AddSub (Hosseini et al., 2014), AQUA-RAT265

(Ling et al., 2017), SingleEq (Koncel-Kedziorski266

et al., 2015), and SVAMP (Patel et al., 2021); (ii)267

commonsense reasoning, including CSQA (Tal-268

mor et al., 2019) and StrategyQA (Geva et al.,269

2021); and (iii) symbolic reasoning, with tasks like270

Last Letter Concatenation and CoinFlip (Wei et al.,271

2022). See statistical details in Table 5.272

3.2 Baselines273

We compare our proposed method, GCR, with three274

baseline methods: (1) Zero-Shot-CoT. Zero-Shot-275

CoT (Kojima et al., 2022) does not require any276

demonstrations, instead relying solely on a prompt277

to trigger the CoT reasoning. (2) Auto-CoT. Auto-278

CoT (Zhang et al., 2023) automatically selects ex-279

amples by clustering with diversity and generates280

reasoning chains using Zero-Shot-CoT to construct281

demonstrations. (3) ECHO. ECHO (Jin and Lu,282

2024) performs additional coevolutionary iterations283

on the demonstrations selected by Auto-CoT with-284

out any judgment.285

3.3 Implementations286

We conduct our experiments using GPT-3.5-turbo287

as the base language model. For validation, we288

also use GPT-4o-mini and mistral_7b_instruct_v3.289

To ensure the completeness of the response, we290

set a maximum CoT length of 1024 tokens, and291

for clustering, we apply Sentence-BERT with K- 292

means. For a complete description of the experi- 293

mental setup, including hyperparameters and addi- 294

tional implementation specifics, please refer to the 295

Appendix D. 296

4 Experimental Results 297

The experimental results are displayed in Table 1. 298

Overall, GCR outperforms Auto-CoT by a large 299

margin and is more robust than ECHO. Across 300

ten benchmark datasets, GCR achieves superior 301

results with an average improvement of 6.1% and 302

2.1% over Auto-CoT on GPT-3.5-turbo and GPT- 303

4o-mini, respectively. This demonstrates the effec- 304

tiveness of our proposed approach in enhancing 305

reasoning capabilities. However, as observed from 306

Table 1, demonstration bias has a smaller impact 307

on models with stronger reasoning capabilities. Ad- 308

ditionally, due to the influence of judge bias, GCR 309

exhibits a slight performance decline on certain 310

datasets. In this section, we discuss the results of 311

arithmetic reasoning, commonsense reasoning, and 312

symbolic reasoning. 313

Arithmetic Reasoning: GCR achieves the best 314

average performance compared with all base- 315

line models, indicating the superiority of our 316

method. Compared with the competitive base- 317

line ECHO, GCR outperforms it by an average 318

of 4.9% with GPT-3.5-turbo and 0.6% with GPT- 319

4o-mini. The largest improvement is observed 320

in GSM8K (+10.8%) and AQuA (+10.6%) under 321

GPT-3.5-turbo, and in AQuA (+3.2%) under GPT- 322

4o-mini. One possible reason is that these datasets 323

suffer from two types of demonstration bias in 324

the demonstrations automatically selected by Auto- 325

CoT, namely, the selected demonstrations are not 326

sufficiently representative or contain errors. 327

Commonsense Reasoning: Consistent improve- 328

ment is observed in commonsense reasoning tasks. 329

GCR outperforms all baseline models across both 330

CSQA and StrategyQA. Compared with Auto-CoT, 331

GCR improves the average performance by 7.1% 332

under GPT-3.5-turbo and 0.5% under GPT-4o-mini, 333

demonstrating its effectiveness in leveraging ex- 334

ternal knowledge and logical inference. These 335

results suggest that GCR enhances the ability to 336

reason about implicit knowledge and abstract re- 337

lationships, making it more robust for real-world 338

commonsense tasks. 339
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Method
Arithmetic Commonsense Symbolic

Overall
MultiArith GSM8K AddSub AQuA SingleEq SVAMP avg. CSQA StrategyQA avg. LastLetter Coin avg.

GPT-3.5-turbo

Zero-Shot-CoT 94.2 71.7 81.3 54.3 89.4 73.9 77.5 74.1 60.8 67.5 56.6 71.0 63.8 72.7
Auto-CoT 92.8 72.0 80.5 59.4 89.4 74.8 78.2 74.0 59.7 66.8 82.6 92.2 87.4 77.7
ECHO 93.3 70.2 86.6 59.1 90.6 85.1 80.8 74.4 62.5 68.4 66.4 91.2 78.8 77.9
ECHO+Judge 90.7 67.9 87.1 58.3 88.8 85.3 79.7 57.4 70.0 63.7 87.4 99.8 93.6 79.3
GCR 97.7 81.0 89.4 69.7 92.5 83.9 85.7 78.7 69.2 73.9 84.6 91.0 87.8 83.8

GPT-4o-mini

Zero-Shot-CoT 98.2 88.2 88.9 67.7 91.3 92.6 87.8 79.6 75.6 77.6 69.0 97.2 83.1 84.8
Auto-CoT 98.7 86.8 90.4 75.2 91.3 92.7 89.2 83.1 78.4 80.8 79.6 99.8 89.7 87.6
ECHO 99.2 90.4 90.4 79.1 91.7 92.9 90.6 82.9 79.0 81.0 88.4 100.0 94.2 89.4
ECHO+Judge 97.8 90.9 90.1 77.6 92.3 94.0 90.5 83.0 79.2 81.1 83.0 100.0 91.5 88.8
GCR 98.8 91.0 89.9 82.3 91.5 93.8 91.2 82.5 80.1 81.3 88.6 98.4 93.5 89.7

Table 1: Accuracy comparison across datasets using GPT-3.5-turbo and GPT-4o-mini, with avg representing average
performance. Bold values indicate the best performance. ECHO+Judge incorporates a judging mechanism during
iterative updates.

Symbolic Reasoning: GCR also achieves bet-340

ter results than Auto-CoT in symbolic reasoning341

tasks. Notably, due to the absence of a Judge mech-342

anism to ensure the iterative process moves in the343

correct direction in ECHO (as shown in Figure 3),344

ECHO experiences a sharp performance drop on345

the LastLetter dataset in GPT-3.5-turbo compared346

to Auto-CoT (82.6 % → 66.4 %). However, GCR347

and ECHO+Judge, which incorporate the Judge348

process during iterations, do not exhibit such a per-349

formance decline. These results indicate that GCR350

addresses the demonstration bias present in Auto-351

CoT and exhibits strong robustness, avoiding sharp352

performance declines.353

5 Analysis354

Another Way to Judge To further validate the355

generalizability of GCR, we replaced the closed-356

source model’s direct judgment-based method with357

the judge method designed for open-source mod-358

els. We adopt the probability disparity proposed359

in Wang and Zhou (2024) to assess the quality360

of a rationale. The open-source model used is361

mistral_7b_instruct_v3. The probability dis-362

parity of a rationale is defined as:363

∆r =
1

|r|
∑
xt∈r

(
p(x1

t |x<t)− p(x2
t |x<t)

)
(1)364

Here, r represents a rationale, and x1t and x2t are365

the top two tokens at the t-th decoding step, chosen366

based on their maximum post-softmax probabili-367

ties from the vocabulary, with xt being part of the368

answer tokens. To avoid blind confidence, if the369

probability disparity for a token exceeds a thresh-370

old (in this section, 0.75), it is disregarded in the371

calculation. Table 2 presents a comparison of meth-372

ods on different datasets. GCR achieves the best373

Method AQuA GSM8K StrategyQA avg

Zero-Shot-CoT 29.9 45.8 63.1 46.3
Auto-CoT 36.6 55.7 68.0 53.4
ECHO 33.1 56.8 68.6 52.8
GCR 39.4 57.4 69.7 55.5

Table 2: Accuracy comparison of methods on different
datasets using mistral_7b_instruct_v3 with probability
disparity to judge in GCR. Bold values indicate the best
performance.

results across all datasets, further validating its ef- 374

fectiveness and generalizability. 375

Effect of Judge To verify the effectiveness of the 376

Judge, we first incorporate the Judge process into 377

ECHO’s iterative rationale updating and observe 378

how the accuracy of the demonstrations changes af- 379

ter iterations. As shown in Figure 3, ECHO+Judge 380

helps mitigate the deviation from the correct direc- 381

tion during the iterative process. However, due to 382

the influence of judge bias, there is a slight decrease 383

in accuracy after the iterations. Additionally, we 384

tested the reasoning performance of ECHO+Judge 385

(see Table 1). Notably, using GPT-3.5-turbo on the 386

LastLetter dataset, the demonstrations derived by 387

ECHO+Judge exhibit higher accuracy compared to 388

ECHO, avoiding the sharp performance drop ob- 389

served in ECHO. However, on the CSQA dataset, 390

ECHO+Judge also suffers a sharp performance de- 391

cline. One possible reason for this is that, compared 392

to the demonstrations derived by ECHO, those pro- 393

duced by ECHO+Judge, due to judge bias, have 394

lower accuracy (see Figure 3). This also under- 395

scores the importance of considering the impact of 396

judge bias. 397
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Figure 5: Impact of question set size on GCR’s rea-
soning performance. The performance improvement
of GCR over Zero-Shot CoT increases as the size of
the question set grows. Larger question sets provide a
broader exploration space for demonstrations, enhanc-
ing the likelihood of correct answers.

Analysis of Global Random Sampling Com-398

pared to ECHO+Judge, GCR includes an additional399

global random sampling process, which allows us400

to assess whether this step contributes to improved401

reasoning performance. As shown in Table 1, GCR402

is more robust than ECHO+Judge. On the CSQA403

dataset with GPT-3.5-turbo, GCR benefits from404

the use of global random sampling, a decentral-405

ized approach that partially mitigates the impact406

of demonstration bias, thus preventing the sharp407

performance decline observed in ECHO+Judge.408

However, since global random sampling may se-409

lect irrelevant or incorrect examples as demonstra-410

tions, and because judge bias cannot be completely411

eliminated, a slight decrease in reasoning perfor-412

mance is observed. Additionally, we investigated413

the impact of the question set size on GCR’s rea-414

soning performance using mistral_7b_instruct_v3415

on the GSM8K dataset. We randomly sampled416

question sets of varying sizes from GSM8K and417

compared the performance improvement of GCR418

over Zero-Shot-CoT in reasoning. As shown in419

Figure 5, as the size of the question set increases,420

the reasoning performance of GCR improves more421

compared to Zero-Shot-CoT. This is because, with422

more questions, GCR has a larger exploration space423

for demonstrations due to global random sampling,424

making it more likely for the model to correctly425

answer the questions.426

Analysis of P-sampling In this study, we inves-427

tigate how to determine the optimal P-value in P-428
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Figure 6: Comparison of GCR and baseline meth-
ods’ reasoning performance at different P-values on
the AQuA dataset using mistral_7b_instruct_v3.

sampling and its impact on GCR’s reasoning per- 429

formance. We validated GCR’s performance at 430

different P-values using the AQuA dataset with 431

the mistral_7b_instruct_v3 model, as shown in Fig- 432

ure 6. As the P-value increases, the probability 433

of sampling previously selected examples during 434

coevolutionary reasoning also rises. This suggests 435

that GCR’s reasoning performance may improve, 436

but at the cost of increased computational over- 437

head. However, as observed in Figure 6, when the 438

P-value is between 0.2 and 0.4, GCR’s reasoning 439

performance is highest. When the P-value reaches 440

0.6, 0.8, or higher, performance does not continue 441

to increase or converge as expected. Therefore, we 442

recommend setting the P-value between 0.2 and 443

0.4 to achieve a balance between computational 444

efficiency and high reasoning performance. 445

Effect of Coevolutionary Reasoning This sec- 446

tion explores the role of coevolutionary reason- 447

ing, which involves multiple answers to the same 448

question, similar to Self-Consistency (Wang et al., 449

2023b), Multiagent Debate (Du et al., 2024), and 450

multiple calls to LLM with a judge. As suggested 451

by Huang et al. (2024), when comparing reason- 452

ing performance, it is important to ensure consis- 453

tent overhead. We first investigate the performance 454

comparison between GCR and Auto-CoT with mul- 455

tiple calls to LLM under two conditions: using 456

oracle labels for judgment and allowing the large 457

model to judge itself, both using GPT-3.5-turbo 458

(see Appendix E for experimental details). From 459

Table 3, we observe that under oracle label judg- 460

ment, GCR and multi-call achieve similar perfor- 461

mance, but GCR requires significantly less over- 462
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Method Judge method GSM8K AQuA SVAMP

Auto-CoT+multi-call (Tmax = 10) Oracle Labels - 93.3 -
GCR (Tmax = 4) Oracle Labels - 92.1 -
GCR (Tmax = 6) Oracle Labels - 93.7 -
Auto-CoT+multi-call (T = 5) Self Judge 71.9 67.3 79.9
GCR (T = 4) Self Judge 81.0 69.7 83.9
Auto-CoT+Self-Consistency (T = 50) N/A - 70.5 -
GCR (T = 4× 10) Answer Entropy - 72.0 -

Table 3: Accuracy comparison of GCR with other meth-
ods that also require multiple answers to the same ques-
tion, using GPT-3.5-turbo. The ’-’ in the table indicates
that no experiments were conducted due to overhead.

head. When using Self Judge, GCR outperforms463

multi-call while maintaining the same overhead.464

Moreover, GCR and Self-Consistency are orthogo-465

nal, and when using Answer Entropy for judgment,466

GCR combined with Self-Consistency achieves bet-467

ter performance than Auto-CoT combined with468

Self-Consistency under the same overhead. There-469

fore, coevolutionary reasoning can achieve compa-470

rable performance to multi-call LLM with much471

less overhead. Multiagent Debate involves multi-472

ple agents engaging in a multi-round debate on the473

same question, whereas GCR involves coevolution-474

ary reasoning across multiple questions.475

6 Related Work476

Chain of Thought Prompting Chain-of-477

Thought (CoT) reasoning has been widely478

explored to enhance LLM inference. Wei et al.479

(2022) first introduced CoT prompting in a few-480

shot setting, while Kojima et al. (2022) extended it481

to the zero-shot scenario. Auto-CoT (Zhang et al.,482

2023) automatically constructs demonstrations,483

achieving performance comparable to Few-Shot-484

CoT in a zero-shot setting. Active Prompting485

(Diao et al., 2024) further improves prompting486

by annotating the most important task-specific487

questions as demonstrations.488

Judge To enhance answer verification, Weng489

et al. (2023) treat the conclusion obtained by CoT490

as a condition for solving the original problem,491

performing backward verification. Madaan et al.492

(2024) propose an iterative self-refinement process493

where an LLM generates an initial output, critiques494

its own response, and revises it accordingly. Ling495

et al. (2024) introduce the Natural Program for-496

mat for deductive reasoning, facilitating the struc-497

tured extraction and verification of reasoning steps.498

However, Huang et al. (2024) argue that LLMs still499

struggle with self-correction in the absence of ex-500

ternal feedback. Several works address uncertainty501

estimation in reasoning. Wan et al. (2023) lever- 502

age answer entropy to measure uncertainty and 503

highlight the importance of diverse demonstrations, 504

noting that Auto-CoT, which selects demonstra- 505

tions based solely on question embeddings, lacks 506

control over rationale quality and may produce mis- 507

leading demonstrations. Li et al. (2022) improve 508

reasoning by generating diverse prompts to explore 509

multiple reasoning paths, employing a trained veri- 510

fier with weighted voting to filter incorrect answers, 511

and verifying each reasoning step individually. Ad- 512

ditionally, Kuhn et al. (2023) introduce semantic 513

entropy to quantify uncertainty in natural language 514

generation, while Wang and Zhou (2024) use proba- 515

bility disparity to assess rationale accuracy in open- 516

source settings. 517

Evolve in LLMs Guo et al. (2024) propose an 518

approach where multiple initial prompts are gener- 519

ated, with LLMs acting as evolutionary operators to 520

iteratively refine them based on their performance 521

on a development set. Similarly, Jin et al. (2024) 522

introduce an evolutionary algorithm where CoT 523

prompts undergo crossover, mutation, and rewrit- 524

ing to enhance problem understanding. However, 525

these methods focus solely on prompt evolution, 526

neglecting demonstration refinement. Xu et al. 527

(2024a) propose Reprompting, which iteratively ex- 528

pands an initial set of zero-shot-generated recipes 529

by using previous samples as parent prompts, filter- 530

ing out ineffective ones based on answer correct- 531

ness. While Reprompting can be seen as evolving 532

demonstrations, it relies on ground-truth answers 533

for evaluation. In contrast, GCR evolves demon- 534

strations independently of answer supervision, of- 535

fering a distinct approach to demonstration refine- 536

ment. 537

7 Conclusion 538

This paper presents a method for global coevo- 539

lutionary reasoning, referred to as GCR, where 540

samples are clustered based on rationales obtained 541

through Zero-Shot-CoT. Within each cluster, sam- 542

ples are randomly selected using P-sampling, and 543

coevolutionary iterations are performed where sam- 544

ples act as demonstrations for one another. This 545

approach addresses the demonstration bias inher- 546

ent in Auto-CoT, enhancing reasoning performance 547

in the absence of manually designed demonstra- 548

tions. Furthermore, it can be integrated with exist- 549

ing methods for reasoning tasks. 550
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Limitations551

While our approach demonstrates effectiveness in552

improving reasoning performance, it has several553

limitations:554

1. Computational Cost: The iterative process in555

coevolutionary reasoning increases the num-556

ber of LLM calls, leading to a significant in-557

crease in computational overhead, although558

it maintains less overhead compared to Self-559

Consistency.560

2. Dependence on Judge Quality: The effec-561

tiveness of the coevolutionary process relies562

on the quality of the judge. Although GCR563

mitigates judge bias to some extent through564

global sampling and P-sampling, a stronger565

judge could further enhance reasoning perfor-566

mance. Future work will explore better meth-567

ods for evaluating the quality of rationales in568

both open-source and closed-source settings.569

3. Assumption of a Fixed Dataset: Most CoT570

studies assume access to a complete dataset571

with test questions (Wei et al., 2022; Kojima572

et al., 2022). Future work could extend GCR573

to a streaming setting where data arrives dy-574

namically.575

4. Understanding LLM Limitations: It re-576

mains an open question whether LLMs lack577

the capability to perform a certain class of578

reasoning methods or if they struggle with579

specific problem types. Further research is580

needed to disentangle these factors.581

Ethics Statement582

In this work, we use publicly available bench-583

marks under their respective licenses. GSM8K and584

SVAMP use the MIT License, AQUA and Strat-585

egyQA use the Apache-2.0 License, and the re-586

maining datasets are unspecified. These publicly587

available datasets are checked to ensure that they588

do not contain any offensive or illegal content.589
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A Prompts for Judging779

We use task-specific judgment by querying the780

LLM. The specific prompts are shown in Table 4.781

Although we provide the LLM with a prompt to782

give specific reasons when determining correct-783

ness, we only use the conclusion it provides. This784

is because we found that, compared to directly pro-785

viding the conclusion, asking for specific reasons786

leads to more accurate judgments.787

B Illustration of Coevolutionary788

Reasoning789

The illustration of coevolutionary reasoning is790

shown in Figure 7.791

C Proof of the Expected Number of LLM792

Calls in GCR793

We first consider a scenario where there is a single794

cluster of data, with the cluster containing n data795

points. In each sampling step, there is a probability796

P of selecting a sample from the already sampled797

data, and a probability 1− P of selecting a sample798

from the data that has not been sampled yet. The799

expected number of steps required to sample all n800

data points in this cluster is:801

E =

∞∑
k=n

k

(
k − 1

n− 1

)
(1− P )n−1P k−n(1− P )802

Let t = k − n, then we have:803

E =

∞∑
t=0

(n+ t)

(
t+ n− 1

n− 1

)
(1− P )nP t 804

= (1− P )n

[
n

∞∑
t=0

P t

(
t+ n− 1

n− 1

)
805

+
∞∑
t=0

tP t

(
t+ n− 1

n− 1

)]
806

= (1− P )n

[
n

∞∑
t=0

P t

(
t+ n− 1

t

)
807

+
∞∑
t=0

tP t

(
t+ n− 1

t

)]
(2) 808

Next, we prove the following identity: 809

∞∑
m=0

(
m+ k − 1

m

)
xm =

1

(1− x)k
, 810

0 ≤ x < 1, k ≥ 1 (3) 811

When k = 1, 812

∞∑
m=0

(
m+ k − 1

m

)
xm =

∞∑
m=0

xm =
1

1− x
. (4) 813

This equation holds. When k ≥ 2, we hypothesize 814

that the equation holds for k − 1, then 815

∞∑
m=0

(
m+ k − 2

m

)
xm =

1

(1− x)k−1
. (5) 816

Thus, 817

∞∑
m=0

(
m+ k − 1

m

)
xm =

∞∑
m=0

(
m+ k − 2

m

)
xm 818

+
∞∑

m=1

(
m+ k − 2

m− 1

)
xm.

(6)

819

Now, we can express the second sum as: 820

∞∑
m=1

(
m+ k − 2

m− 1

)
xm = x

∞∑
m=0

(
m+ k − 1

m

)
xm.

(7)

821

Let T =
∑∞

m=0

(
m+k−1

m

)
xm. Then, we have: 822

T =
1

(1− x)k−1
+ xT, 823
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Figure 7: Illustration of coevolutionary reasoning.

Q: Mitchell is making nachos for his family. 

He buys two bags of chips with 55 chips each. 

If his family has five members, how many 

chips does each person get if they all get the 

same number?

A:|1|How many chips does Mitchell have in 

total?|2 bags of chips x 55 chips each|110 

chips| |2|How many chips does each family 

member get?|Total chips / number of family 

members|110 chips / 5 members|22 chips| 

Therefore, each family member gets 22 chips.

Q: Jim spends 2 hours watching TV and then 

decides to go to bed and reads for half as long.  

He does this 3 times a week.  How many hours 

does he spend on TV and reading in 4 weeks?

A:| 1 | How many hours does Jim spend 

watching TV and reading each week? | 2 hours 

of watching TV + 1 hour of reading = 3 hours | 

| 2 | How many hours does Jim spend on TV 

and reading in 4 weeks? | 3 hours/week * 4 

weeks = 12 hours | Jim spends a total of 12 

hours on TV and reading in 4 weeks.

T = 0

:

:

Q: Mitchell is making nachos for his family. 

He buys two bags of chips with 55 chips each. 

If his family has five members, how many 

chips does each person get if they all get the 

same number?

A:Mitchell buys 2 bags of chips, each with 55 

chips, so he has a total of 2 * 55 = 110 chips. 

Mitchell's family has 5 members. To find out 

how many chips each person gets, we need to 

divide the total number of chips by the number 

of family members: 110 chips / 5 people = 22 

chips per person. Therefore, each person in 

Mitchell's family will get 22 chips.

Q: Jim spends 2 hours watching TV and then 

decides to go to bed and reads for half as long.  

He does this 3 times a week.  How many hours 

does he spend on TV and reading in 4 weeks?

A:Jim watches TV for 2 hours and then reads 

for 2 / 2 = 1 hour. So, in one day, Jim spends a 

total of 2 + 1 = 3 hours on TV and reading.\n- 

Since he does this 3 times a week, in one week 

he spends 3 hours/day x 3 days/week = 9 hours 

on TV and reading. In 4 weeks, he will spend a 

total of 9 hours/week x 4 weeks = 36 hours on 

TV and reading. Therefore, Jim spends 36 

hours on TV and reading in 4 weeks.

T = 1

:

:

Q: Mitchell is making nachos for his family. 

He buys two bags of chips with 55 chips each. 

If his family has five members, how many 

chips does each person get if they all get the 

same number?

A:|1|How many chips does Mitchell have in 

total?|2 bags of chips x 55 chips each|110 

chips| |2|How many chips does each family 

member get?|Total chips / number of family 

members|110 chips / 5 members|22 chips| 

Therefore, each family member gets 22 chips.

Q: Jim spends 2 hours watching TV and then 

decides to go to bed and reads for half as long.  

He does this 3 times a week.  How many hours 

does he spend on TV and reading in 4 weeks?

A:| 1 | How many hours does Jim spend 

watching TV and reading each week? | 2 hours 

of watching TV + 1 hour of reading = 3 hours | 

| 2 | How many hours does Jim spend on TV 

and reading in 4 weeks? | 3 hours/week * 4 

weeks = 12 hours | Jim spends a total of 12 

hours on TV and reading in 4 weeks.

T = 2

:

:

Figure 8: An example of intermediate iteration process in coevolutionary reasoning.
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Task Prompt

Arithmetic Reasoning Input = [instruction, original problem, solution]
Output = [yes or no, reason]
Instruction: Is this solution accurate in terms of calculation
errors, missing-step errors, and semantic misunderstanding
errors? Please answer "yes" or "no" and provide a reason.
Carefully check:
1. Calculation errors: Are there any arithmetic or algebraic
errors in the steps or final result?
2. Missing-step errors: Are there any steps omitted that are
necessary for correctly solving the problem?
3. Semantic misunderstanding errors: Does either solution
misunderstand the problem or apply incorrect methods or formulas?
original problem: <ORG_PROB>
solution: <ORG_SOL>

Commonsense Reasoning Input = [instruction, original problem, solution]
Output = [yes or no, reason]
Instruction: From a common-sense and logical reasoning
perspective, is this solution accurate?
Please answer "yes" or "no", and follow the given output format
without any additional information.
original problem: <ORG_PROB>
solution: <ORG_SOL>

Symbolic Reasoning Input = [instruction, original problem, solution]
Output = [yes or no, reason]
Instruction: From a symbolic and logical reasoning perspective,
is this solution accurate?
Please answer "yes" or "no", and follow the given output format
without any additional information.
original problem: <ORG_PROB>
solution: <ORG_SOL>

Table 4: Prompts for different reasoning tasks to evaluate rationales.
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which simplifies to:824

T =
1

(1− x)k
.825

Thus, the equation 3 holds for k.826

By mathematical induction, we conclude that the827

equation 3 holds for all k ≥ 1.828

From equation 3 and equation 2, we obtain:829

E = (1− P )n
[

n

(1− P )n
+ P · d

dP

(
1

(1− P )n

)]
830

= (1− P )n
[

n

(1− P )n
+

Pn

(1− P )n+1

]
831

= n+ n
P

1− P
832

=
n

1− P
. (8)833

Thus, in a single cluster, the expectation of P-834

sampling is n
1−P .835

Now, assuming the clustering is uniform, the836

expected total number of LLM calls is:837

Etotal =
N
C × T

1− P
× C +N =

NT

1− P
+N,838

where C is the number of clusters, the term N rep-839

resents the initial number of Zero-Shot-CoT calls,840

and the term NT
1−P accounts for the LLM calls dur-841

ing the P-sampling and coevolutionary reasoning842

process.843

D Experimental Details on the main844

experiments845

We mainly use GPT-3.5-turbo as language model.1846

Furthermore, to validate the generalizability of847

our method, we also conducted experiments on848

GPT-4o-mini and mistral_7b_instruct_v3. Except849

for Zero-Shot-CoT, which uses the CoT trigger850

"\n\n|step|subquestion|process|result|",851

all other methods use the CoT trigger "Let’s852

think step by step". For Auto-CoT and853

ECHO, we use Sentence-BERT (Reimers and854

Gurevych, 2019) to encode questions and apply855

K-means for clustering following Zhang et al.856

(2023), and the number of demonstrations k is 8857

except for AQuA and LastLetter(4), CSQA(7), and858

StrategyQA(6) following Wei et al. (2022). Here,859

the number of demonstrations k is equivalent to860

the number of clusters. Due to the observation861

1We conducted the experiments using this model between
October 2024 and November 2024.

that, in the original Auto-CoT paper setup, with 862

a maximum CoT length of 256, the rationale was 863

sometimes incomplete, we set the maximum CoT 864

length to 1024 in all our experiments to ensure the 865

generated rationale is complete. In experiments 866

with GPT-4o-mini and mistral_7b_instruct_v3, 867

demonstrations generated using the original 868

Auto-CoT method (selecting the examples closest 869

to the cluster center with fewer than 6 reasoning 870

steps) sometimes did not meet this condition. 871

Therefore, in the experiments with GPT-4o-mini 872

and mistral_7b_instruct_v3, we removed the 873

restriction of fewer than 6 reasoning steps to obtain 874

the demonstrations. In ECHO, the number of 875

iterations for demonstrations is set to 4. For GCR, 876

we use Sentence-BERT to encode the rationale 877

and apply K-means for clustering. In P-sampling, 878

P is set to 0.2, and the number of coevolutionary 879

reasoning iterations is set to 4. To ensure a fair 880

comparison, the number of clusters is set to 5, so 881

that during the coevolutionary reasoning process, 882

the number of demonstrations when re-answering 883

a question is 4 (which matches the minimum 884

number of demonstrations in Auto-CoT or ECHO). 885

Unless otherwise specified, the temperature is set 886

to 0 for experimental reproducibility. 887

E Experimental Details on the Effect of 888

Coevolutionary Reasoning 889

We investigate the role of coevolutionary reasoning 890

using GPT-3.5-turbo. In the case of using Oracle 891

Labels for judgment, we compare GCR (Tmax = 892

4), GCR (Tmax = 6) with Auto-CoT+multi-call. 893

Here, Tmax refers to the maximum number of co- 894

evolutionary reasoning iterations, which is set to 895

4 or 6, and the iteration stops once the answer is 896

correct. Auto-CoT+multi-call refers to using Auto- 897

CoT to construct a demonstration set, followed by 898

multiple answers. After each answer, Oracle La- 899

bels are used to check if the answer is correct, and 900

if so, the next question is answered. For Auto- 901

CoT+multi-call, the maximum number of answers, 902

T ′
max, is set to 10. To ensure nearly identical com- 903

putational costs, we require that Tmax
1−P must be less 904

than or equal to T ′
max (where P is set to 0.2 by de- 905

fault), meaning Tmax should be less than or equal 906

to T ′
max × (1− P ) = 8. 907

In the case of using Self-Judge for judgment, we 908

again ensure nearly identical computational costs 909

and compare GCR (T = 4) with Auto-CoT+multi- 910

call (T = 5). In this process, the LLM itself de- 911
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cides whether to update the answer after each re-912

sponse.913

To compare with Auto-CoT+Self-Consistency,914

we use Answer Entropy for judgment in GCR. Co-915

evolutionary reasoning iterates for 4 steps, and after916

each question, the LLM answers 10 times to gener-917

ate multiple different answers (to ensure diversity,918

the temperature for GCR is set to 0.7). The en-919

tropy is calculated, and if the entropy is smaller920

than the previous iteration, the answer and ratio-921

nale are updated with the majority-voted answer922

and corresponding rationale (the answer may have923

multiple rationales, and the shortest one is chosen).924

Otherwise, no update is made. Auto-CoT+Self-925

Consistency answers 50 times during question an-926

swering (4× 10/(1− P )).927

Following Wang et al. (2023b), both Auto-928

CoT+multi-call and Auto-CoT+Self-Consistency929

are set with a temperature of 0.7. Unless otherwise930

specified, the temperature for GCR is set to 0.931

F Coevolutionary Example Iteration932

Process933

The iteration of demonstrations in ECHO+Judge934

can be seen as a process of coevolutionary rea-935

soning. Therefore, in this section, we use GPT-936

3.5-turbo to present the intermediate process of937

constructing demonstrations in ECHO+Judge for938

GSM8K as an example of coevolutionary reason-939

ing. As shown in Figure 8, after one round of co-940

evolutionary reasoning, the questions are answered941

correctly. However, due to the influence of judge942

bias, the second iteration results in an incorrect943

answer for a certain question, highlighting the im-944

portance of mitigating judge bias.945

G Details of the Datasets Evaluated946

The details of datasets being evaluated are shown947

in Table 5.948

Dataset Domain # Samples Ave. words Answer

MultiArith Math 600 31.8 Number
AddSub Math 395 31.5 Number
GSM8K Math 1319 46.9 Number
AQUA Math 254 51.9 Option
SingleEq Math 508 27.4 Number
SVAMP Math 1000 31.8 Number
CSQA CS 1221 27.8 Option
StrategyQA CS 2290 9.6 Yes / No
Last Letters Sym. 500 15.0 String
Coin Flip Sym. 500 37.0 Yes / No

Table 5: Details of datasets being evaluated. Math: arith-
metic reasoning. CS: commonsense reasoning. Sym.:
symbolic reasoning.
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