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Abstract

Active Learning (AL) addresses the high costs001
of collecting human annotations by strategi-002
cally annotating the most informative samples.003
However, for subjective NLP tasks, incorporat-004
ing a wide range of perspectives in the annota-005
tion process is crucial to capture the variability006
in human judgments. We introduce Annotator-007
Centric Active Learning (ACAL), which incor-008
porates an annotator selection strategy follow-009
ing data sampling. Our objective is two-fold:010
(1) to efficiently approximate the full diversity011
of human judgments, and (2) to assess model012
performance using annotator-centric metrics,013
which emphasize minority perspectives over014
a majority. We experiment with multiple an-015
notator selection strategies across seven sub-016
jective NLP tasks, employing both traditional017
and novel, human-centered evaluation metrics.018
Our findings indicate that ACAL improves data019
efficiency and excels in annotator-centric per-020
formance evaluations. However, its success de-021
pends on the availability of a sufficiently large022
and diverse pool of annotators to sample from.023

1 Introduction024

A challenging aspect of natural language under-025

standing (NLU) is the variability of human judg-026

ment and interpretation in subjective tasks (e.g.,027

hate speech detection) (Plank, 2022). In a subjec-028

tive task, a data sample is typically labeled by a029

set of annotators, and differences in annotation are030

reconciled via majority voting, resulting in a single031

(supposedly, true) “gold label” (Uma et al., 2021).032

However, this approach has been criticized for treat-033

ing label variation exclusively as noise, which is034

especially problematic in sensitive subjective tasks035

(Aroyo and Welty, 2015) since it can lead to exclu-036

sion of minority voices (Leonardelli et al., 2021).037

Subjectivity can be addressed by modeling the038

full distribution of annotations for each data sam-039

ple instead of employing gold labels (Plank, 2022).040

However, resources for such approaches are scarce,041
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Figure 1: Active Learning (AL) approaches (left) use
a sample selection strategy to pick samples to be an-
notated by an oracle. The Annotator-Centric Active
Learning (ACAL) approach (right) extends AL by in-
troducing an annotator selection strategy to choose the
annotators who annotate the selected samples.

as most datasets do not (yet) make fine-grained an- 042

notation details available (Cabitza et al., 2023), and 043

representing a full range of perspectives is contin- 044

gent on obtaining costly annotations from a diverse 045

set of annotators (Bakker et al., 2022). 046

One way to handle a limited annotation budget is 047

to use Active Learning (Settles, 2012, AL). Given 048

a pool of unannotated data samples, AL employs 049

a sample selection strategy to obtain maximally 050

informative samples, retrieving the corresponding 051

annotations from a ground truth oracle (e.g., a sin- 052

gle human expert). However, in subjective tasks, 053

there is no such oracle. Instead, we rely on a set 054

of available annotators. Demanding all available 055

annotators to annotate all samples would provide 056

a truthful representation of the annotation distribu- 057

tion, but is often unfeasible, especially if the pool 058

of annotators is large. Thus, deciding which anno- 059

tator(s) should annotate is as critical as deciding 060

which samples to annotate. 061

In most practical applications, annotators are 062

randomly selected. This results in an annotation 063

distribution insensitive to outlier annotators —most 064

annotations reflect the majority voices and fewer 065

reflect the minority voices. This may not be desir- 066

able in applications such as hate speech, where the 067

opinion of majority and minority should be valued 068
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equally. In such cases, a more deliberate anno-069

tator selection is required. To ensure a balanced070

representation of majority and minority voices, we071

can leverage strategies inspired by Rawls’ principle072

of fairness (Rawls, 1973), which advocates that a073

fair society is achieved when the well-being of the074

worst-off members of society (the minority annota-075

tors, in this case) is maximized.076

We introduce Annotator-Centric Active Learn-077

ing (ACAL) to emphasize and control who an-078

notates which sample. In ACAL (Figure 1), the079

sample selection strategy of traditional AL is fol-080

lowed by an annotator selection strategy, indicat-081

ing which of the available annotators should anno-082

tate each selected data sample.083

Contributions (1) We present ACAL as an ex-084

tension of the AL approach and introduce three085

annotator selection strategies aimed at collecting086

a balanced distribution of minority and majority087

annotations. (2) We introduce a suite of annotator–088

centric evaluation metrics to measure how individ-089

ual and minority annotators are modeled. (3) We090

demonstrate ACAL’s effectiveness in three datasets091

with subjective tasks—hate speech detection, moral092

value classification, and safety judgments.093

Our experiments show that the proposed ACAL094

methods can approximate the distribution of human095

judgments similar to AL while requiring a lower096

annotation budget and modeling individual and mi-097

nority voices more accurately. However, our eval-098

uation shows how the task’s annotator agreement099

and the number of available annotations impact100

ACAL’s effectiveness—ACAL is most effective101

when a large pool of diverse annotators is available.102

Importantly, our experiments show how the ACAL103

framework controls how models learn to represent104

majority and minority annotations, which is crucial105

for subjective and sensitive applications.106

2 Related work107

2.1 Learning with annotator disagreement108

Modeling annotator disagreement is garnering in-109

creasing attention (Aroyo and Welty, 2015; Uma110

et al., 2021; Plank, 2022; Cabitza et al., 2023).111

Changing annotation aggregation methods can lead112

to a fairer representation than simple majority113

(Hovy et al., 2013; Tao et al., 2018). Alterna-114

tively, the full annotation distribution can be mod-115

eled using soft labels (Peterson et al., 2019; Müller116

et al., 2019; Collins et al., 2022). Other approaches117

leverage annotator-specific information, e.g., by 118

including individual classification heads per anno- 119

tator (Davani et al., 2022), embedding annotator 120

behavior (Mokhberian et al., 2023), or encoding the 121

annotator’s socio-demographic information (Beck 122

et al., 2023). Representing annotator diversity re- 123

mains challenging. Standard calibration metrics 124

under human label variation may be unsuitable, es- 125

pecially when the variation is high (Baan et al., 126

2022). Trade-offs ought to be made between col- 127

lecting more samples or more annotations (Gruber 128

et al., 2024). Further, solely measuring differences 129

among sociodemographic traits is not sufficient to 130

capture opinion diversity (Orlikowski et al., 2023). 131

We represent diversity based on which annota- 132

tors annotated what and how. We experiment with 133

annotator selection strategies to reveal what aspects 134

impact task performance and annotation budget. 135

2.2 Active Learning 136

AL enables a supervised learning model to achieve 137

high performance by judiciously choosing a few 138

training examples (Settles, 2012). In a typical AL 139

scenario, a large collection of unlabeled data is 140

available, and an oracle (e.g., a human expert) is 141

asked to annotate this unlabeled data. A sampling 142

strategy is used to iteratively select the next batch 143

of unlabeled data for annotation (Ren et al., 2021). 144

AL has found widespread application in NLP 145

(Zhang et al., 2022). Two main strategies are em- 146

ployed, either by selecting the unlabeled samples 147

on which the model prediction is most uncertain 148

(Zhang et al., 2017), or by selecting samples that 149

are most representative of the unlabeled dataset 150

(Erdmann et al., 2019; Zhao et al., 2020). 151

The combination of AL and annotator diversity 152

is a novel direction. Existing works propose to 153

align model and annotator uncertainties (Baumler 154

et al., 2023), adapt annotator-specific classification 155

heads in AL settings (Wang and Plank, 2023), or 156

select texts to annotate based on annotator pref- 157

erences (Kanclerz et al., 2023). These methods 158

ignore a crucial part of learning with human varia- 159

tion: the diversity among annotators. We focus on 160

selecting annotators such that they best inform us 161

about the underlying label diversity. 162

3 Method 163

First, we define the soft-label prediction task we 164

use to train a supervised model. Then, we introduce 165

the traditional AL and the novel ACAL approaches. 166
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3.1 Soft-label prediction167

Consider a dataset of triples {xi, aj , yij}, where xi168

is a data sample (i.e., a piece of text) and yij ∈ C169

is the class label assigned by annotator aj . The170

multiple labels assigned to a sample xi by the dif-171

ferent annotators are usually combined into an ag-172

gregated label ŷi. For training with soft labels, the173

aggregation typically takes the form of maximum174

likelihood estimation (Uma et al., 2021):175

ŷi(x) =

∑N
i=1[xi = x][yij = c]∑N

i=1[xi = x]
(1)176

In our experiments, We use a passive learning177

approach that uses all available {xi, ŷi} to train a178

model fθ with cross-entropy loss as a baseline.179

3.2 Active Learning180

AL imposes a sampling technique for inputs xi,181

such that the most informative sample(s) are picked182

for learning. In a typical AL approach, a set of183

unlabelled data points U is available. At every iter-184

ation, a sample selection strategy S selects samples185

xi ∈ U to be annotated by an oracle O that pro-186

vides the ground truth label distribution ŷi. The187

selected samples and annotations are added to the188

labeled data D, with which the model fθ is trained.189

Alg. 1 provides an overview of the procedure.190

Algorithm 1: AL approach.
input :Unlabeled data U , Data sampling

strategy S, Oracle O
D0 ← {}
for n = 1..N do

sample data points xi from U using S
obtain annotation ŷi for xi from O
Dn+1 = Dn + {xi, ŷi}

train fθ on Dn+1

end

In the sample selection strategies, a batch of data191

of a given size B is queried at each iteration. Our192

experiments compare the following strategies:193

Random (SR) selects a B samples uniformly at194

random from U .195

Uncertainty (SU ) predicts a distribution over196

class labels with fθ(xi) for each xi ∈ U , and se-197

lects B samples with the highest prediction entropy198

(the samples the model is most uncertain about).199

3.3 Annotator-Centric Active Learning 200

ACAL builds on AL. In contrast to AL, which re- 201

trieves an aggregated annotation ŷi, ACAL em- 202

ploys an annotator selection strategy T to select 203

one annotator and their annotation for each selected 204

data point xi. Alg. 2 describes the ACAL approach. 205

Algorithm 2: ACAL approach.
input :Unlabeled data U , Data sampling

strategy S, Annotator sampling
strategy T

D0 ← {}
for n = 1..N do

sample data points xi from U using S
sample annotators aj for xi using T
obtain annotation yij from aj for xi
Dn+1 = Dn + {xi, yij}
train fθ on Dn+1

end

We propose three annotator selection strategies 206

to gather a distribution that uniformly contains all 207

possible (majority and minority) labels, inspired 208

by Rawls’ principle of fairness (Rawls, 1973). The 209

strategies vary in the type of information used to 210

represent differences between annotators, including 211

what or how the annotators have annotated thus far. 212

Our experiments compare the following strategies: 213

Random (TR) randomly selects an annotator aj . 214

Label Minority (TL) considers only the labels 215

that annotators have assigned. The minority label 216

is selected as the class with the smallest annotation 217

count in the available dataset Dn thus far. Given a 218

new sample xi, TL selects the available annotator 219

that has the largest bias toward the minority label 220

compared to the other available annotators, i.e., 221

who has annotated other samples with the minority 222

label the most. 223

Semantic Diversity (TS) considers only informa- 224

tion on what each annotator has annotated so far 225

(i.e., the samples that they have annotated). Given 226

a new sample xi selected through S , TS selects the 227

available annotator for whom xi is semantically the 228

most different from what the annotator has labeled 229

so far. To measure this difference for an annotator 230

aj , we employ a sentence embedding model to mea- 231

sure the cosine distance between the embeddings 232

of xi and embeddings of all the samples annotated 233

by aj . We then take the average of all semantic 234

similarities. The annotator with the lowest average 235

similarity score is selected. 236
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Representation Diversity (TD) selects the anno-237

tator that has the lowest similarity with the other238

annotators available for that item. We create a sim-239

ple representation for each annotator based on the240

items together with the respective label that they241

have annotated, followed by computing the pair-242

wise cosine similarity between all annotators.243

4 Experimental Setup244

We describe the experimental setup for the compar-245

isons between ACAL strategies. In all our experi-246

ments, we employ a TinyBERT model (Jiao et al.,247

2019) to reduce the number of trainable parameters.248

Appendix A includes a detailed overview of the249

computational setup and hyperparameters. We will250

provide our codebase upon publication.251

4.1 Datasets252

We use three datasets which vary in domain, anno-253

tation task (in italics), annotator count, and annota-254

tions per instance.255

The DICES Corpus (Aroyo et al., 2023) is com-256

posed of 990 conversations with an LLM where257

172 annotators provided judgments on whether a258

generated response can be deemed safe (3-way259

judgments: yes, no, unsure). Samples have 73260

annotations on average. We perform a multi-class261

classification with the scores.262

The MFTC Corpus (Hoover et al., 2020) is com-263

posed of 35K tweets that 23 annotators annotated264

with any of the 10 moral elements from the Moral265

Foundation Theory (Graham et al., 2013). We266

select the elements of loyalty (lowest annotation267

count), care (average count), and betrayal (highest268

count). Samples have 4 annotations on average.269

We create three binary classifications to predict270

the presence of the respective elements. As most271

tweets were labeled as non-moral (i.e., with no272

moral element), we balanced the datasets by sub-273

sampling the non-moral class.274

The MHS Corpus (Sachdeva et al., 2022)275

consists of 50K social media comments on276

which 8K annotators judged three hate speech277

aspects—dehumanize (low inter-rater agreement),278

respect (medium agreement), and genocide (high279

agreement)—on a 5-point Likert scale. Samples280

have 3 annotations on average. We perform a multi-281

class classification with the annotated Likert scores282

for each task.283

The datasets and tasks differ in levels of anno-284

tator agreement, measured via entropy of the an-285

notation distribution. DICES and MHS generally 286

have medium entropy scores, whereas the MFTC 287

entropy is highly polarized (divided between sam- 288

ples with very high and very low agreement). Ap- 289

pendix A.5 provides details of the entropy scores. 290

4.2 Evaluation metrics 291

The ACAL strategies aim to guide the model to 292

learn a representative distribution of the annota- 293

tor’s perspectives while reducing annotation effort. 294

To this end, we evaluate the model both with a tra- 295

ditional evaluation metric and a metric aimed at 296

comparing predicted and annotated distributions: 297

Macro F1-score (F1) For each sample in the test 298

set, we select the label predicted by the model with 299

the highest confidence, determine the golden la- 300

bel through a majority agreement aggregation, and 301

compute the resulting macro F1-score. 302

Jensen-Shannon Divergence (JS) The JS mea- 303

sures the divergence between the distribution of 304

label annotation and prediction (Nie et al., 2020). 305

We report the average JS for the samples in the test 306

set to measure how well the model can represent 307

the annotation distribution. 308

Further, since ACAL shifts the focus to annota- 309

tors, we introduce novel annotator-centric evalua- 310

tion metrics. First, we report the average among 311

annotators. Second, in line with Rawls’ principle 312

of fairness, the result for the worst-off annotators: 313

Per-annotator F1 (F a
1 ) and JS (JSa) We com- 314

pute the F1 (or JS) for each annotator in the test set 315

using their annotations as golden labels (or target 316

distribution), and average it. 317

Worst per-annotator F1 (Fw
1 ) and JS (JSw) 318

We compute the F1 (or JS) for each annotator in 319

the test set using their annotations as golden labels 320

(or target distribution), and report the average of 321

the lowest 10% (to mitigate noise). 322

These metrics allow us to measure the trade- 323

offs between modeling the majority agreement, a 324

representative distribution of annotations, and ac- 325

counting for minority voices. In the next section, 326

we describe how we obtained the results. 327

4.3 Training procedure 328

We test the annotator selection strategies proposed 329

in Section 3.3 by comparing all combinations of 330

the two sample selection strategies (SR and SU ) 331

and the four annotator selection strategies (TR, TL, 332

TS , and TD). At each iteration, we use S to select 333

B unique samples from the unlabeled data pool 334

U . We select B as the smallest between 5% of the 335
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number of available annotations and the number336

of unique samples in the training set. For each se-337

lected sample xi, we use T to select one annotator338

and retrieve their annotation yij .339

We split each dataset into 80% train, 10% valida-340

tion, and 10% test. We start the training procedure341

with a warmup iteration of B randomly selected342

annotations (Zhang et al., 2022). We proceed with343

the ACAL iterations by combining S and T . We344

select the model iteration that led to the best JS345

performance on the validation set and evaluate it346

on the test set. We repeat this process across three347

data splits and model initializations. We report the348

average scores on the test set. Appendix A contains349

additional details on training.350

We compare ACAL with traditional oracle-based351

AL approaches (SRO and SUO), which use the352

data sampling strategies but obtain all possible an-353

notations for each sample as in Alg. 1. Further, we354

employ a passive learning (PL) approach as an up-355

per bound by training the model on the full dataset,356

thus observing all available samples and annota-357

tions. Similar to ACAL, the AL and PL baselines358

are averaged over three seeds.359

5 Results360

We start by highlighting the benefits of ACAL over361

AL and PL (Section 5.1). Next, we closely exam-362

ine ACAL on efficiency and fairness (Section 5.2).363

Then, we select a few cases of interest and dive364

deeper into the strategies’ behavior during training365

(Section 5.3). Finally, we investigate ACAL across366

varying levels of subjectivity (Section 5.4).367

5.1 Highlights368

Our experiments show that ACAL can have a ben-369

eficial impact over using PL and AL. Figure 2370

highlights two main findings: (1) ACAL strategies371

can more quickly learn to represent the annotation372

distribution with a large pool of annotators, and373

(2) when agreement between annotators is polar-374

ized, ACAL leads to improved results compared to375

learning from aggregated labels. In the next sec-376

tions, we provide a deeper understanding of the377

conditions in which ACAL works well.378

5.2 Efficiency and Fairness379

Table 1 presents the results of evaluating the best380

models on the test set. We analyze the results along381

two dimensions: (a) efficiency: what is the impact382

of the different strategies on the trade-off between383
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Figure 2: Learning curves showing model performance
on the validation set. On DICES, ACAL approaches
are quicker than AL in obtaining similar performance
to passive learning. On MHS, ACAL surpasses passive
learning in F1 when data has high disagreement.

annotation budget and performance? (b) fairness: 384

do the selection strategies that aim for a balanced 385

consideration of minority and majority views lead 386

to better performance in the human-centric evalua- 387

tion metrics? For MFTC we focus on care because 388

it has an average number of samples available, and 389

for MHS we focus on dehumanize because it has 390

high levels of disagreement. Appendix B presents 391

additional results. 392

Efficiency We discuss the performance on F1 393

and JS to measure how well the proposed strate- 394

gies model label distributions and examine the used 395

annotator budget. Across all tasks and datasets, 396

ACAL and AL consistently yield comparable or 397

superior F1 and JS with a lower annotation bud- 398

get than PL. When comparing ACAL with AL, 399

the results vary depending on the task and dataset. 400

For DICES, there is a significant benefit to using 401

ACAL, as it can save up to∼40% of the annotation 402

budget while yielding better scores across all met- 403

rics than AL. With AL, we observe only a small 404

reduction in annotation cost. For MFTC, AL with 405

SU leads to the largest cost benefits (∼12% less an- 406

notation budget), but at a cost in terms of absolute 407

JS and F1. ACAL slightly outperforms AL but 408

does not lead to a decrease in annotation budget. 409
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Average Worst-off
App. F1 JS F a

1 JSa Fw
1 JSw ∆%

D
IC

E
S

SRTR 53.2 .100 43.2 .186 16.7 .453 -36.8
SRTL 55.5 .101 42.4 .187 15.5 .450 -32.7
SRTS 61.0 .103 44.2 .186 16.4 .447 -35.5
SRTD 58.9 .142 43.1 .203 16.9 .370 -30.0
SUTR 53.2 .100 43.2 .186 16.7 .453 -36.8
SUTL 55.5 .101 42.4 .187 15.5 .450 -32.7
SUTS 63.1 .098 43.9 .187 18.4 .447 -38.2
SUTD 58.9 .142 43.1 .203 16.9 .370 -30.0

SRO 59.1 .112 41.4 .191 13.3 .425 -0.1
SUO 46.2 .110 38.4 .192 11.7 .427 -0.1
PL 59.0 .105 37.1 .211 12.3 .479 –

M
FT

C
(c

ar
e)

SRTR 78.9 .038 61.1 .141 37.7 .247 -1.6
SRTL 78.5 .037 61.6 .142 39.2 .249 -0.4
SRTS 78.1 .039 60.0 .145 35.1 .248 -1.7
SRTD 76.6 .040 60.4 .144 35.7 .243 -1.7
SUTR 79.4 .038 61.2 .143 37.7 .252 -5.6
SUTL 80.7 .037 58.9 .142 42.3 .248 -2.5
SUTS 79.1 .037 60.8 .143 39.9 .258 -1.1
SUTD 78.1 .040 58.6 .145 35.7 .253 -2.5

SRO 79.0 .037 58.6 .141 39.2 .255 -0.2
SUO 79.4 .037 58.3 .144 35.7 .253 -12.7
PL 81.1 .032 51.2 .179 37.7 .251 –

M
H

S
(d

eh
um

an
iz

e)

SRTR 33.6 .081 31.5 .394 0.0 .489 -50.0
SRTL 33.1 .081 32.2 .397 0.0 .478 -62.5
SRTS 30.5 .079 31.3 .397 0.0 .480 -62.5
SRTD 32.4 .081 31.8 .398 0.0 .479 -62.5
SUTR 32.4 .080 32.2 .389 0.0 .508 -7.8
SUTL 33.1 .080 32.8 .388 0.0 .507 -7.8
SUTS 33.6 .080 32.6 .388 0.0 .506 -7.8
SUTD 33.0 .079 32.6 .384 0.0 .513 -3.0

SRO 32.8 .077 33.9 .387 0.0 .496 -60.1
SUO 33.3 .080 33.1 .390 0.0 .497 -24.7
PL 28.0 .075 20.2 .424 0.0 .547 –

Table 1: Test set results on the DICES, MFTC (care),
and MHS (dehumanize) datasets. ∆% denotes the re-
duction in the annotation budget with respect to passive
learning. In bold, the best performance per column and
per dataset (higher F1 are better, lower JS are better).

For MHS, both AL and ACAL significantly reduce410

the annotation cost (∼60%) while yielding better411

scores than PL—however, AL and ACAL do not412

show substantial performance differences.413

Overall, we conclude that ACAL is most effi-414

cient when the pool of available annotators for415

one sample is large (as with the DICES dataset),416

whereas the difference between ACAL and AL is417

negligible with a small pool of annotators per data418

sample (as with MFTC and MHS).419

Fairness We investigate the extent to which the420

models represent individual annotators fairly and421

capture minority opinions via the annotator-centric422

evaluation metrics (F a
1 , JSa, Fw

1 , and JSw). We423

observe a substantial improvement when using AL424

or ACAL over PL. Further, we observe no single425

winner-takes-all approach: high F1 and JS scores 426

do not consistently cooccur with high scores for 427

the annotator-centric metrics. This highlights the 428

need for a more comprehensive evaluation to as- 429

sess models for subjective tasks. We observe that 430

ACAL slightly outperforms AL in modeling in- 431

dividual annotators (JSa and F a
1 ). This trend is 432

particularly evident with DICES, again likely due 433

to the large pool of annotators available per data 434

sample. Lastly, ACAL is best in the worst-off met- 435

rics (JSw and Fw
1 ), showing the ability to better 436

represent minority opinions as a direct consequence 437

of the proposed annotator selection strategies on 438

DICES and MFTC. However, all approaches score 439

0 for Fw
1 on MHS. This is due to the high disagree- 440

ment in this dataset: the 10% worst-off annotators 441

always disagree with a hard label derived from the 442

predicted label distribution. 443

In conclusion, our experiments show that, when 444

a large pool of annotators is available, a targeted 445

sampling of annotators requires fewer annotations 446

and is fairer. That is, minority opinions are better 447

represented without large sacrifices in performance 448

compared to the overall label distribution. 449

5.3 Convergence 450

The evaluation on the test set paints a general pic- 451

ture of the advantage of using ACAL over AL or 452

PL. In this section, we assess how different ACAL 453

strategies converge over iterations. We describe 454

the major patterns across our experiments by ana- 455

lyzing six examples of interest with F a
1 and JSw 456

(Figure 3). We select F a
1 because it reveals how 457

well individual annotators are modeled on average, 458

and JSw to measure how strategies deviate from 459

modeling the majority perspective. Appendix B.2 460

provides an overview of all metrics. 461

First, we notice that the trends for F a
1 and JSw 462

are both increasing—the first is expected, but the 463

second requires an explanation. As the model is 464

exposed to more annotations over the training it- 465

erations, the predicted label distribution starts to 466

fit the true label distribution. However, here we 467

consider each annotator individually: JSw reports 468

the average of the 10% lowest JS scores per an- 469

notator. The presence of disagreement implies the 470

existence of annotators that annotate differently 471

from the majority. Since our models predict the 472

full distribution, they assign a proportional proba- 473

bility to dissenting annotators. Thus, learning to 474

model the full distribution of annotations leads to 475
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Figure 3: Selected plots showing the F a
1 and JSw performance on the validation set through the ACAL and AL

iterations for DICES, MFTC (care), and MHS (dehumanize). Higher F a
1 is better, lower JSw is better.

an increase in JSw.476

Second, we notice a difference between ACAL477

and AL. On MFTC and MHS, ACAL, compared478

to AL, yields overall smaller JSw at the cost of479

a slower convergence in F a
1 , showing the trade-480

off between modeling all annotators and represent-481

ing minorities. However, with DICES the trend482

is the opposite. This is due to AL having access483

to the complete label distribution: it can model a484

balanced distribution, leading to lower worst-off485

performance. With a large number of annotations,486

ACAL requires more iterations to get the same bal-487

anced predicted distribution.488

Third, we observe differences among the anno-489

tator selection strategies (T ). TD shows the most490

differences—both JSw and F a
1 increase slower491

than for the other strategies. This suggests that492

selecting annotators based on the average embed-493

ding of the annotated content strongest emphasizes494

diverging label behavior.495

Finally, we analyze the impact of the sample496

selection strategies (S , dotted vs. solid lines in Fig-497

ure 3). For DICES, SR and SU lead to comparable498

results, likely due to the low number of samples.499

Using SU in MFTC leads to F a
1 performance de-500

creasing at the start of training. The strategy pri-501

oritizes obtaining annotations for already added502

samples to lower their entropy, while the variation503

in labels is irreconcilable (since there are limited504

labels available, and they are in disagreement). We505

see a similar pattern for MHS.506

These results further underline our main find-507

ing that ACAL is effective in representing diverse508

annotation perspectives when there is a (1) het- 509

erogeneous pool of annotators, and (2) a task that 510

facilitates human label variation. 511

5.4 Impact of subjectivity 512

We further investigate ACAL strategies on (1) label 513

entropy, and (2) cross-task performance. 514

Alignment of ACAL strategies during training 515

We want to investigate how well the ACAL strate- 516

gies align with the overall subjective annotations: 517

do they drive the model entropy in the right direc- 518

tion? We measure the entropy of the samples in the 519

labeled training set at each iteration and compare 520

it to the actual entropy of those samples. Higher 521

entropy suggests that the selection strategy overesti- 522

mates uncertainty. Lower entropy indicates that the 523

model may not sufficiently account for disagree- 524

ment. When the entropy matches the true entropy, 525

the selection strategy is well-calibrated. We focus 526

on DICES as a case study due to the wide range 527

of entropy scores. We group each sample based 528

on the true label entropy into low, medium, and 529

high1. We apply the same categorization at each 530

training iteration for samples labeled thus far. Sub- 531

sequently, we plot the proportion of data points for 532

which the selection strategy results in excessively 533

high or excessively low entropy. 534

Figure 4 visualizes the proportions. At the begin- 535

ning of training, entropy is generally low because 536

samples have few annotations. Over time, the se- 537

lected annotations better align with the true entropy. 538

1Entropy bins: low (< 0.43), medium (0.43− 0.72) high
(> 0.72).
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Figure 4: Proportion of data samples that result in higher
or lower entropy than the target label distribution per
ACAL strategy.

However, when and how much strategies succeeded539

in representing the true label distribution differs:540

TS and TR take longer to increase label entropy541

than the other two strategies. They are conserva-542

tive in adding diverse labels. TL and TD increase543

the proportion of well-aligned data points earlier in544

the training process, achieving a balanced entropy545

alignment sooner. However, both strategies start546

to overshoot the target entropy, whereas the others547

show a more gradual alignment with the true en-548

tropy. This effect is strongest for TD. This finding549

suggests that minority-aware annotator-selection550

strategies achieve the best results in the early stages551

of training. They are effective for quickly raising552

entropy but can lead to overrepresentation.553

Cross-task performance Figure 5 compares the554

two annotator-centric metrics on the three tasks of555

MFTC and MHS—the datasets for which we have556

seen the least impact of ACAL over AL and PL. We557

select a data sampling (SR) and annotator sampling558

strategy (TS), based on its strong performance on559

DICES for comprehensive comparison.560

When evaluating MFTC loyalty, which has the561

highest disagreement, JSw is more accurately ap-562

proximated with PL. Similarly, ACAL is outper-563

formed by AL on F a
1 for the dehumanize (high dis-564

agreement) task. However, for the less subjective565

task genocide, ACAL leads to higher F a
1 . This sug-566

gests that the effectiveness of annotation strategies567

varies depending on the task’s degree of subjectiv-568

ity and the available pool of annotators. The more569

heterogeneous the annotation behavior, indicative570

of a highly subjective task, the larger the pool of571

annotators required for each sample selection. We572

also observe that there is a trade-off between mod-573

eling the majority of annotators equally (F a
1 ) and574

prioritizing the minority (JSw).575

SRTS SRO PL
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0.6

F
a 1
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care betrayal
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J
S
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Figure 5: Comparison of ACAL, AL, and PL across
different MFTC and MHS tasks. Higher F a

1 is better,
and lower JSw is better.

6 Conclusion 576

We present ACAL as an extension of AL to em- 577

phasize the selection of diverse annotators. We 578

introduce three novel annotator selection strate- 579

gies and four annotator-centric metrics and experi- 580

ment with tasks across three different datasets. We 581

find that the ACAL approach is especially effec- 582

tive in reducing the annotation budget when the 583

pool of available annotators is large. However, its 584

effectiveness is contingent on data characteristics 585

such as the number of annotations per sample, the 586

number of annotations per annotator, and the na- 587

ture of disagreement in the task annotations. Fur- 588

thermore, our novel evaluation metrics display the 589

trade-off between modeling overall distributions of 590

annotations and adequately accounting for minor- 591

ity voices, showing that different strategies can be 592

tailored to meet different goals. Especially early 593

in the training process, strategies that are aggres- 594

sive in obtaining diverse labels have a beneficial 595

impact Furthermore, we recognize that gathering 596

a distribution that uniformly contains all possible 597

(minority and majority) labels can be overly sen- 598

sitive to small minorities or noise. Future work 599

can integrate methods that account for noisy anno- 600

tations (Weber-Genzel et al., 2024) or that strike 601

a balance between egalitarian and utilitarian ap- 602

proaches (Lera-Leri et al., 2024). 603

Limitations 604

The main limitation of this work is that the experi- 605

ments are based on simulated AL which is known 606
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to bear potential issues (Margatina and Aletras,607

2023). In our study, a primary challenge arises608

with two of the datasets (MFTC, MHS), which,609

despite having a large pool of annotators, lack an-610

notations from every annotator for each item. Con-611

sequently, in real-world scenarios, the annotator612

selection strategies for these datasets would benefit613

from access to a more extensive pool of annotators.614

This limitation likely contributes to the underper-615

formance of ACAL on these datasets compared to616

DICES. We emphasize the need for more datasets617

that feature a greater number of annotations per618

item, as this would significantly enhance research619

efforts aimed at modeling human disagreement.620

Since we evaluate four different annotator selec-621

tion strategies and two sample selection strategies622

across three datasets and seven tasks, the amount of623

experiments is high. This did not allow for further624

investigation of other methods for measuring un-625

certainty (such as ensemble methods ()), different626

classification models, the extensive turning of hy-627

perparameters, or even different training paradigms628

(such as low-rank adaptation ()). Lastly, a limita-629

tion of our annotator selection strategies is that they630

rely on a small annotation history. This is why we631

require a warmup phase for some of the strategies,632

for which we decided to take a random sample of633

annotations. Incorporating more informed warmup634

strategies or incorporating ACAL strategies that do635

not rely on annotator history may positively impact636

its performance and data efficiency.637

Ethical Considerations638

Our goal is to approximate a good representation of639

human judgments over subjective tasks. We want to640

highlight the fact that the performance of the mod-641

els differs a lot depending on which metric is used.642

We tried to account for a less majority-focussed643

view when evaluating the models which is very644

important, especially for more human-centered ap-645

plications, such as hate-speech detection. However,646

the evaluation metrics we use do not fully capture647

the diversity of human judgments. The selection of648

metrics should align with the specific goals and mo-649

tivations of the application, and there is a pressing650

need to develop more metrics to accurately reflect651

human variability in these tasks.652

Our experiments are conducted on English653

datasets due to the scarcity of unaggregated654

datasets in other languages. In principle, ACAL655

can be applied to other languages (given the avail-656

ability of multilingual models to semantically em- 657

bed textual items for some particular strategies used 658

in this work). We encourage the community to en- 659

rich the dataset landscape by incorporating more 660

perspective-oriented datasets in various languages, 661

ACAL potentially offers a more efficient method 662

for creating such datasets in real-world scenarios. 663
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A Detailed Experimental Setup868

A.1 Dataset details869

We provide an overview of the datasets used in our870

work in Table A1. We split the data on samples,871

meaning that all annotations for any given sample872

are completely contained in each separate split.873

A.2 Hyperparameters874

We report the hyperparameters for training passive,875

AL, and ACAL in Tables A2, A3, and A4, respec-876

tively. For turning the learning rate for passive877

learning, on each dataset, we started with a learn-878

ing rate of 1e-06 and increased it by a factor of879

3 in steps until the model showed a tendency to880

overfit quickly (within a single epoch). All other881

parameters are kept on their default setting.882

A.3 Training details883

Experiments were largely run between January and884

April 2024. Obtaining the ACAL results for a sin-885

gle run takes up to an hour on a Nvidia RTX4070.886

For large-scale computation, our experiments were887

run on a cluster with heterogeneous computing in-888

frastructure, including RTX2080 Ti, A100, and889

Tesla T4 GPUs. Obtaining the results of all exper-890

iments required a total of 231 training runs, com-891

bining: (1) two data sampling strategies, (2) four892

annotator sampling strategies, plus an additional893

Oracle-based AL approach, (3) a passive learning894

approach. Each of the above were run for (1) three895

folds, each with a different seed, and (2) the seven896

tasks across three datasets. For training all our mod-897

els, we employ the AdamW optimizer (Loshchilov898

and Hutter, 2018). Our code is based on the Hug-899

gingface library (Wolf et al., 2019), unmodified900

values are taken from their defaults.901

A.4 ACAL annotator strategy details902

Some of the strategies used for selecting annotators903

to provide a label to a sample904

TS uses a sentence embedding model to represent905

the content that an annotator has annotated. We906

use all-MiniLM-L6-v22. We select annota-907

tors that have not annotated yet (empty history) be-908

fore picking from those with a history to prioritize909

filling the annotation history for each annotator.910

TL creates an average embedding for the content911

annotated by each annotator and selects the most912

2https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

different annotator. We use the same sentence em- 913

bedding model as TS . To avoid overfitting, we 914

perform PCA and retain only the top 10 most infor- 915

mative principal components for representing each 916

annotator. 917

A.5 Disagreement rates 918

We report the average disagreement rates per 919

dataset and task in Figure A1, for each of the 920

dataset and task combinations. 921

B Detailed results overview 922

B.1 Annotator-Centric evaluation for other 923

MFTC and MHS tasks 924

We show the full annotator-centric metrics results 925

for MFTC betrayal, MFTC loyalty, MHS genocide, 926

and MHS respect in Table B1. This follows the 927

same format at Table 1. The results in this table 928

also form the basis for Figure 5. 929

B.2 Training process 930

In our main paper, we report a condensed version 931

of all metrics during the training phase of the active 932

learning approaches. Below, we provide a complete 933

overview of all approaches over all metrics. The 934

results can be seen in Figures B1 through B7. 935
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Dataset Task (dimension) # Samples # Annotators # Annotations # Annotations per item

DICES Safety Judgment 990 172 72,103 72.83
MFTC Morality (care) 8,434 23 31,310 3.71
MFTC Morality (loyalty) 3,288 23 12,803 3.89
MFTC Morality (betrayal) 12,546 23 47,002 3.75

MHS Hate Speech (dehumanize,
genocide, respect) 17,282 7,807 57,980 3.35

Table A1: Overview of the datasets and tasks employed in our work.

Parameter Value

learning rate 1e-04 (constant)
max epochs 50
early stopping 3
batch size 128
weight decay 0.01

Table A2: Hyperparameters for the passive learning.

Parameter Dataset (task) Value

learning rate all 1e-05
batch size all 128
epochs per
round

all 20

num iterations all 10
sample size DICES 79
sample size MFTC (care) 674
sample size MFTC (betrayal) 1011
sample size MFTC (loyalty) 263

sample size
MHS (dehumanize), MHS
(genocide), MHS (respect)

1728

Table A3: Hyperparameters for the oracle-based active
learning approaches.

Parameter Dataset Value

learning rate all 1e-05
num iterations DICES 50
num iterations MFTC (all), MHS

(all)
20

epochs per
round

DICES, MHS (all) 20

epochs per
round

MFTC (all) 30

sample size DICES 792
sample size MFTC (care) 1250
sample size MFTC (betrayal) 1894
sample size MFTC (loyalty) 512
sample size MHS (dehumanize),

MHS (genocide),
MHS (respect)

2899

Table A4: Hyperparameters for the annotator-centric
active learning approaches.
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Figure A1: Histogram of entropy score over all annotations per sample for each dataset and task combination.
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Figure B1: Validation set performance across all metrics for DICES during training.
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Figure B2: Validation set performance across all metrics for MFTC (care) during training
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Figure B3: Validation set performance across all metrics for MFTC (loyalty) during training
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Figure B4: Validation set performance across all metrics for MFTC (betrayal) during training
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Figure B5: Validation set performance across all metrics for MHS (dehumanize) during training
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Figure B6: Validation set performance across all metrics for MHS (genocide) during training
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Figure B7: Validation set performance across all metrics for MHS (respect) during training

17



Average Worst-off
App. F1 JS F a

1 JSa Fw
1 JSw ∆%

M
FT

C
(b

et
ra

ya
l)

SRTR 71.5 .047 57.8 .147 42.0 .199 -1.6
SRTL 71.2 .046 58.1 .149 43.3 .212 -1.6
SRTS 71.2 .051 59.3 .161 43.0 .239 -5.0
SRTD 71.0 .046 58.3 .148 42.9 .199 -1.6
SUTR 72.6 .042 59.4 .150 41.9 .203 -2.5
SUTL 73.6 .045 58.4 .148 43.4 .200 -1.3
SUTS 74.0 .045 58.8 .149 43.5 .204 -1.0
SUTD 73.2 .044 59.1 .149 42.8 .194 -2.6

SRO 72.1 .046 58.9 .147 43.1 .195 -48.6
SUO 71.8 .047 58.9 .149 43.0 .200 -0.0
PL 75.2 .037 48.1 .199 36.0 .290 0.0

M
FT

C
(b

et
ra

ya
l)

SRTR 66.9 .034 56.4 .177 22.2 .372 -0.4
SRTL 68.9 .032 56.3 .176 22.2 .374 -0.3
SRTS 67.1 .031 57.3 .176 22.2 .370 -0.3
SRTD 68.4 .031 55.1 .175 22.2 .373 -0.3
SUTR 61.3 .032 55.7 .177 21.7 .357 -1.1
SUTL 66.5 .032 54.1 .177 22.2 .355 -0.8
SUTS 62.4 .033 55.6 .177 22.2 .358 -0.9
SUTD 64.4 .031 55.8 .177 22.2 .358 -1.3

SRO 71.5 .030 56.0 .176 22.2 .361 -29.1
SUO 66.5 .033 55.9 .177 22.2 .366 -0.1
PL 62.5 .029 51.2 .183 26.1 .309 0.0

M
H

S
(g

en
oc

id
e)

SRTR 26.5 .050 70.0 .227 0.0 .560 -6.3
SRTL 28.2 .051 69.8 .225 0.0 .565 -1.7
SRTS 28.1 .051 70.0 .224 0.0 .566 -1.7
SRTD 28.3 .050 70.2 .224 0.0 .565 -1.7
SUTR 32.8 .077 71.1 .229 0.0 .549 -12.6
SUTL 27.7 .048 70.7 .231 0.0 .548 -7.9
SUTS 26.7 .048 70.9 .231 0.0 .548 -7.9
SUTD 27.3 .048 71.2 .229 0.0 .547 -12.6

SRO 28.0 .048 33.9 .387 0.0 .496 -60.1
SUO 33.3 .080 33.1 .390 0.0 .497 -24.7
PL 21.6 .044 70.0 .245 0.0 .570 –

M
H

S
(r

es
pe

ct
)

SRTR 41.4 .086 46.0 .331 0.0 .528 -18.8
SRTL 40.8 .087 45.6 .331 0.0 .530 -18.8
SRTS 41.2 .086 46.1 .331 0.0 .529 -18.8
SRTD 40.6 .086 46.0 .331 0.0 .528 -18.8
SUTR 32.8 .077 46.6 .323 0.0 .533 -4.9
SUTL 41.0 .085 46.3 .323 0.0 .532 -4.9
SUTS 41.8 .084 45.9 .324 0.0 .531 -4.9
SUTD 40.6 .085 46.2 .324 0.0 .532 -4.9

SRO 41.7 .085 33.9 .387 0.0 .496 -60.1
SUO 33.3 .080 33.1 .390 0.0 .497 -24.7
PL 41.0 .080 25.9 .405 0.0 .587 –

Table B1: Test set results on the MFTC (betrayal),
MFTC (loyalty), MHS (genocide), and MHS (respect)
datasets. ∆% denotes the reduction in the annotation
budget with respect to passive learning.
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