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Abstract
How can we know whether new mechanistic inter-
pretability methods achieve real improvements?
In pursuit of lasting evaluation standards, we pro-
pose MIB, a Mechanistic Interpretability Bench-
mark, with two tracks spanning four tasks and
five models. MIB favors methods that precisely
and concisely recover relevant causal pathways or
causal variables in neural language models. The
circuit localization track compares methods that
locate the model components—and connections
between them—most important for performing
a task (e.g., attribution patching or information
flow routes). The causal variable localization
track compares methods that featurize a hidden
vector, e.g., sparse autoencoders (SAEs) or dis-
tributed alignment search (DAS), and align those
features to a task-relevant causal variable. Us-
ing MIB, we find that attribution and mask op-
timization methods perform best on circuit lo-
calization. For causal variable localization, we
find that the supervised DAS method performs
best, while SAE features are not better than neu-
rons, i.e., non-featurized hidden vectors. These
findings illustrate that MIB enables meaningful
comparisons, and increases our confidence that
there has been real progress in the field.

1. Introduction
To understand how and why language models (LMs) behave
the way they do, we must understand the underlying causes
of their behavior. To this end, mechanistic interpretability
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Figure 1. Overview of MIB. We compare different circuit (§3) and
causal variable (§4) localization methods on their ability to faith-
fully represent a model’s behavior on a given task. We provide
standardized datasets and metrics for this purpose, and accept user
submissions for display on two public leaderboards.

(MI) methods have proliferated quickly. MI methods can
yield deep insights into LM behaviors (Räuker et al., 2023;
Ferrando et al., 2024; Sharkey et al., 2025, i.a.), and some-
times yield more fine-grained control over LM behaviors
than standard training or inference techniques (Meng et al.,
2022; Marks et al., 2025). However, it is difficult to directly
compare the efficacy of MI methods. New methods are of-
ten compared to prior methods via ad hoc evaluations using
metrics that may not produce generalizable insights. Thus,
how can we know whether new methods are producing real
advancements over prior work?

We propose a benchmark to provide a basis for comparisons.
A benchmark is a claim as to what should be considered im-
portant to a field. In our case, the ability to precisely locate,
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and causally validate, task mechanisms or specific concepts
in a neural network is the key goal of (at least some part of)
many MI pipelines. In fact, some have argued that causal
analysis and localization are what differentiate MI from
other types of interpretability work (Mueller et al., 2024;
Geiger et al., 2024a; Saphra & Wiegreffe, 2024). Exist-
ing benchmarks compare within a specific class of methods
(Karvonen et al., 2025; Schwettmann et al., 2023), or on
specific tasks and models (Arora et al., 2024; Huang et al.,
2024a; Miller et al., 2024; Gupta et al., 2024).

We propose MIB to encourage stable standards for com-
paring across MI methods—specifically, localization and
featurization methods—in a principled way. MIB encour-
ages evaluation across a standard suite of models, datasets
with fixed counterfactual inputs used for interventions (§2),
and principled metric definitions—including novel metrics
(§3.1). It includes two public leaderboards that accept sub-
missions for evaluation on a private test set (§2.4).

MIB contains two tracks based on two prominent paradigms
in mechanistic interpretability: circuit localization (§3) and
causal variable localization (§4). The circuit localization
track benchmarks how well methods can locate the most
important subset of model components for performing a
given task (Cao et al., 2020; Wang et al., 2023; Conmy et al.,
2023). The causal variable localization track benchmarks
methods for featurizing hidden vectors (e.g., mapping them
to an alternative vector space) and selecting features that
implement specific causal variables or concepts (Vig et al.,
2020; Geiger et al., 2021; 2024a; Mueller et al., 2024).

Beyond standardizing evaluations, MIB yields several sci-
entific insights. For instance, using MIB, we find that at-
tribution and mask optimization methods outperform other
approaches to circuit localization. We find that supervised
methods provide better features for causal variable localiza-
tion, but the popular method of sparse autoencoders (SAEs)
fails to provide better features than standard dimensions
of hidden vectors. This is evidence that (1) there is clear
differentiation between methods, and (2) there has been real
progress in mechanistic interpretability.

Our datasets are available on HuggingFace. Code is avail-
able on GitHub. The leaderboard is hosted at this URL.

2. Materials
2.1. Tasks

Both tracks evaluate across four tasks. The tasks are se-
lected to represent various reasoning types, difficulty levels,
and answer formats. Two of the tasks—Indirect Object Iden-
tification and Arithmetic—were chosen because they have
been extensively studied, while the others—Multiple-choice
Question Answering and the AI2 Reasoning Challenge—

were chosen precisely because they have not been studied.1

The number of instances in each dataset and split is summa-
rized in Table 5 (App. D). Each task comes with a training
split on which users can discover circuits or causal variables,
and a validation split on which users can tune their meth-
ods or hyperparameters. We also create two test sets per
task: public and private. The public test set enables faster
iteration on methods. We release the train, validation, and
public test sets on Huggingface. The private test set is not
visible to users; they must upload either their circuits or
their locations and featurizers to an API (see §2.4).

Indirect Object Identification (IOI). This is one of the
most studied tasks in MI, first proposed by Wang et al.
(2023). IOI has sentences like “When Mary and John went
to the store, John gave an apple to ”, containing a subject
(“John”) and an indirect object (“Mary”), which should
be completed with the indirect object. As even small LMs
can achieve high accuracy, it has been well studied (Huben
et al., 2024; Conmy et al., 2023; Merullo et al., 2024). We
generate 40,000 instances. See App. D.1 for details.

Arithmetic. Math-related tasks are common in MI (Stolfo
et al., 2023; Nanda et al., 2023; Zhang et al., 2024; Nikankin
et al., 2025) and interpretability research more broadly (Liu
et al., 2023; Huang et al., 2024b). We follow Stolfo et al.
in defining the task as performing operations with two
operands of up to two digits each. Given a pair of num-
bers and an operator, the model must predict the result of
the operation, e.g., “What is the sum of 13 and 25?”. To cre-
ate the dataset, we enumerate all possible pairs of one-digit
and two-digit numbers and generate queries for addition
and subtraction, yielding about 75,000 instances. Following
Karpas et al. (2022) and Stolfo et al. (2023), we use six
natural language templates for each operand pair to ensure
we are isolating robust behavior. See App. D.2 for details.

Multiple-choice question answering (MCQA). MCQA
is a common task format for LM benchmarks, though only
a few MI works have studied it (Lieberum et al., 2023a;
Wiegreffe et al., 2025; Li & Gao, 2024). We expand an ex-
isting synthetic dataset designed to isolate a model’s MCQA
ability from any task-specific knowledge (Wiegreffe et al.,
2025). We generate 260 instances. All questions have four
choices and are about the color of an object, such as: “Ques-
tion: A box is brown. What color is a box?\nA. gray\nB.
black\nC. white\nD. brown\nAnswer: ” with answer “D”.

AI2 Reasoning Challenge (ARC). Finally, we analyze
the ARC dataset (Clark et al., 2018), which contains grade-
school-level multiple-choice science questions. This is a

1Studying the same tasks can lead to hill-climbing on narrow
distributions. Insights from novel models and task settings could
verify that previous advancements are real.
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representative task for evaluating basic scientific knowledge
in LMs (Brown et al., 2020; Jiang et al., 2023; Dubey et al.,
2024). Our work presents the first mechanistic investigation
of LM performance on this dataset. We follow the dataset’s
original partition into Easy and Challenge subsets (5000 and
2500 instances, respectively) and analyze them separately,
due to models’ large accuracy differences on them (Table 1).
We maintain the original 4-choice multiple-choice prompt
formatting (see App. D.4), making this dataset related in
format to, but more challenging than, MCQA.

2.2. Counterfactual Inputs

For both MIB tracks, counterfactual interventions on model
components2 provide the basis for all evaluations. Here,
components are set to the value they would have taken if a
counterfactual input were provided. Activation patching is
a popular term for this method.3 Several studies (Vig et al.,
2020; Geiger et al., 2021; Chan et al., 2022) have argued
that this type of intervention is a useful analysis tool because
components are only ever fixed to values that they would
actually realize (as opposed to interventions that add noise
or fix components to constants).

In the circuit localization track, activation patching is used
to push models towards answering in an opposite manner to
how they would naturally answer given the input. Success
is achieved in this setting when counterfactual interven-
tions to components outside the circuit minimally change
the model’s predictions. In the causal variable localization
track, activation patching is used to precisely manipulate
specific concepts. Success is achieved in this setting when
a variable in a causal model is a faithful summary of the
role a model component plays in input-output behavior—
i.e., interventions on the variable have the same effect as
interventions on the model component.

The counterfactual defines the task to a large extent (Miller
et al., 2024);4 thus, it is crucial that the mapping from a
dataset instance to its counterfactual counterpart is fixed.
For each task, we define a set of meaningful counterfactual
inputs to help localize model behaviors. Some of these

2We use “component” as a generic term to refer to any (part of
a) hidden representation in a model. When referring to submodules
like full MLP blocks, we refer to the output vectors of these blocks.

3The term activation patching includes not only interventions
from counterfactual inputs, but also interventions that zero out
activations, inject noise, or steer activations to off-distribution
values (Wang et al., 2023; Zhang & Nanda, 2024); we use this term
because we use mean ablations and optimal ablations as baselines
in §3.2. Terms like resampling ablations (Chan et al., 2022) or
interchange interventions (Geiger et al., 2021) more narrowly refer
to interventions from counterfactual inputs.

4For example, given IOI, if the counterfactual entails replacing
a name with a randomly selected one, then the task is now to
choose the correct indirect object over a random name; this is
distinct from simply generating the correct indirect object.

Table 1. Model performance (0-shot, greedy generation) for all
models and tasks on our public test splits. For results using ranked-
choice scoring and more details on evaluation, see App. D.5.

Arithmetic ARC

IOI MCQA (+) (−) (E) (C)

Llama-3.1 8B 0.71 0.92 0.96 0.88 0.93 0.79
Gemma-2 2B 0.83 1.00 0.65 0.43 0.79 0.59
Qwen-2.5 0.5B 0.99 1.00 0.37 0.29 0.73 0.58
GPT2-Small 0.92 0.06 0.00 0.10 0.03 0.03

maintain the same correct answers as the original instances;
some do not. For example, the counterfactual inputs for
ARC and MCQA have different answer symbols or answer
orders than the original instance, which change the correct
answer. Others change the semantics of the input, which
may or may not change the correct answer.

We provide counterfactual inputs for each instance in the
train, validation, and test sets, where the mappings from
the original inputs to the counterfactual inputs are fixed
to ensure consistency in evaluation. These are provided
on Huggingface. See App. D, Tables 6, 8, 9, and 10 for
examples and more details.

2.3. Models

To provide baselines for our paper and to initialize entries
in the public leaderboard, we evaluate a set of open-weight
models. Given the pace of the field, any set of models or
tasks will be incomplete; we select 4 models that cover a
range of model sizes, families, capability levels, and promi-
nence in MI: Llama-3.1 8B (Dubey et al., 2024), Gemma-2
2B (Riviere et al., 2024), Qwen-2.5 0.5B (Yang et al., 2024),
and GPT-2 Small (117M, Radford et al., 2019).

For a mechanistic analysis to be meaningful for a given
model and task, the model generally should be able to per-
form the task well. Performance for all models and tasks
with 0-shot prompts5 and greedy decoding is in Table 1; per-
formance on counterfactual inputs is in App. D.5. Gemma 2
and Llama are capable across the board, performing well on
MCQA and ARC (Easy). GPT-2 Small has been extensively
studied in MI; it is much smaller than the other models we
investigate and less capable (and thus may rely on quali-
tatively different mechanisms). Qwen-2.5 performs well
relative to its size but has not yet been extensively studied.

2.4. Leaderboard

We have constructed two online leaderboards (one for each
track) hosted on Huggingface to receive user submissions

5In-context learning is itself a behavior worth studying mech-
anistically, but one that is challenging to disentangle from task-
specific behavior, leading many MI studies to use 0-shot prompts.
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and display results. We intend for the leaderboards to serve
as a living public artifact that both incentivizes progress
in MI and advises users of MI tools on the state of the art.
More details about the leaderboards are in App. D.6.

We have constructed a submission portal. It will aggregate
required information and links to one’s materials, where they
will be used to run evaluations on the private test set. Users
will be able to use the public test set for fast prototyping
of new methods; the private test set will be the measure by
which the state of the art is benchmarked.

3. Circuit Localization Track
The circuit localization track evaluates how well a method
can discover causal subgraphs C—more commonly known
as circuits (Olah et al., 2020)—that localize the mechanisms
underlying how a full neural networkN performs a task. We
define metrics for comparing circuit localization methods
(§3.1) and compare common methods (§3.2).

Defining circuits. A circuit C is a subgraph of the com-
putation graph of N . Its nodes are typically submodules or
attention heads (e.g., the layer 5 MLP, or attention head 10 at
layer 12); edges are abstract objects that reflect information
flow between a pair of nodes.

3.1. Circuit Metrics

The metrics used to evaluate circuits are largely not standard-
ized. There have been efforts to bring rigor to circuit evalua-
tions (Miller et al., 2024)—and to ascertain whether circuits
are sensible data structures at all (Shi et al., 2024). As far
as we are aware, no large-scale benchmark exists to sys-
tematically compare circuit localization methods. Thus, in
addition to the proposed models and tasks (§2), we propose
two metrics that enable comparison across circuit discovery
methods, rather than across individual circuits.

A common metric for evaluating circuits is faithfulness
(Wang et al., 2023; Miller et al., 2024). It aims to mea-
sure the extent to which a subgraph C of the computation
graph explains the full model N ’s behavior on some task.
Faithfulness is often defined ad hoc. In fact, this metric is
often used for two distinct goals: (i) to measure whether
C contributes to higher performance on a task (e.g., Meng
et al., 2022; Stolfo et al., 2023; Nikankin et al., 2025), or
(ii) to capture any component with measurable impact on a
task, whether positive or negative (e.g., Wang et al., 2023;
Hanna et al., 2024; Marks et al., 2025). Which is the correct
way to measure the quality of a circuit? Many studies work
with either one of the notions, or a mix of the two—e.g.,
discovering components as in (ii) but defining the metric
more in line with (i), or vice versa. This overloads the term.

We claim that both are valid but complementary goals, and

therefore split faithfulness into (i) the integrated circuit
performance ratio (CPR), and (ii) the integrated circuit-
model distance (CMD). CPR prioritizes methods that lo-
cate components that improve model performance; higher
is better. CMD prioritizes methods that locate components
with any effect on model performance, including negative;
0 is best. We operationalize these below.

Discovering a circuit C often involves scoring components in
a computation graph according to their importance, and only
including those that exceed a causal importance threshold
λ (a hyperparameter; Conmy et al., 2023; Marks et al.,
2025). Given C and the full neural network N , we can
define faithfulness f as

f(C,N ;m) =
m(C)−m(∅)

m(N )−m(∅)
, (1)

where m is the logit difference y′ − y between the correct
answer y given the original input x and correct answer y′

given the counterfactual input x′.6 ∅ is the model with all
components ablated (the empty circuit). Conceptually, this
corresponds to the proportion of divergence in m between
the prior and the full model that the circuit recovers (Marks
et al., 2025). There exist other formulations of f , like the
difference (rather than ratio) of m between C and N (Wang
et al., 2023). We opt for the formulation of Marks et al.
(2025), as this gives meaning to the values 0 (C recovers
none of the performance ofN relative to ∅) and 1 (C assigns
identical probability differences to y and y′ relative to N ).

We do not want the threshold λ to affect comparisons be-
tween circuit localization methods. Thus, we propose shift-
ing focus away from the quality of individual circuits, and
toward a method’s Pareto optimality with respect to (i) lo-
calizing task behavior, and (ii) minimizing circuit size.7

Specifically, we quantify CPR as the area under the faithful-
ness curve w.r.t circuit size, and quantify CMD as the area
between the faithfulness curve and 1. Both metrics evalu-
ate faithfulness at many circuit sizes, and can be viewed as
marginalizing over the circuit size hyperparameter.

In their exact form, CPR =
∫ 1

k=0
f(Ck) dk and

CMD =
∫ 1

k=0
|1− f(Ck)| dk, where f is the faithfulness

of circuit Ck and k is the proportion of edges from N in Ck.
We measure faithfulness at a few representative circuit sizes,
and use these to approximate CPR and CMD:

1. For all proportions of components k ∈ {.001, .002,
.005, .01, .02, .05, .1, .2, .5, 1}, discover a circuit Ck

6No choice of m is perfect. Like the counterfactual input, the
metric defines the task. We follow Zhang & Nanda (2024), who
recommend the logit difference based on empirical evidence.

7Prior implementations of minimality require manual circuit
analysis (Wang et al., 2023); our formulation is more general,
though it is useful primarily for relative comparisons, rather than
as an absolute measure.
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Figure 2. Definition of our faithfulness metrics. CPR, in orange,
is the area under the faithfulness curve (the black line); it captures
how well the method finds performant circuits at many circuit
sizes. CMD, in blue, is the area between the faithfulness curve and
the line at f = 1; it captures how closely the circuit’s behavior
resembles the model’s task-specific behavior at many circuit sizes.
Because we define f as a ratio, f = 1 (the horizontal line) means
that the circuit and full model achieve the same logit difference.

such that |Ck||N | ≤ k.
2. Compute the faithfulness f for all Ck.
3. Compute the area under f (CPR) and the area between

f and 1 (CMD) using the trapezoidal rule.

We illustrate CPR and CMD in Figure 2.

In a realistic neural network, it is difficult to anticipate the
best-case and worst-case CPR or CMD values, meaning we
cannot bound the metric without losing information. Thus,
inspired by InterpBench (Gupta et al., 2024), we also train a
model that implements a known ground-truth circuit for IOI.
Because we know which edges are in the circuit, we report
AUROC (∈ [0, 1]) over edges. See App. F for InterpBench
model training and implementation details.

Measuring circuit size. Circuits can be defined at many
levels of granularity: entire layers, submodules in a layer,
neurons in a submodule, etc. One can also define circuits
at the level of nodes (e.g., submodules) or edges (e.g., con-
nections between submodules). Thus, a key challenge is
defining a notion of circuit size that allows comparing across
different types of circuits. To this end, we treat including
a node as equivalent to including all of its outgoing edges.
Including n neurons8 (out of dmodel) from submodule u can
be conceptualized as including all outgoing edges from u,
scaled by a factor of n

dmodel
. Under these assumptions, we

define the weighted edge count:

|C| =
∑

(u,v)∈C

(
|Nu ∩NC |
|Nu|

)
, (2)

where u and v are nodes (submodules), Nu is the set of neu-
rons in u (the size of which is typically dmodel), and NC is
the set of neurons in the circuit. Intuitively, this is the num-

8We use “neuron” to refer to a single dimension of any hidden
vector, regardless of whether it is preceded by a non-linearity.

ber of edges from a submodule weighted by the proportion
of neurons from that submodule in the circuit; we sum this
quantity over all submodules. We then normalize this count
by the number of possible edges to obtain a percentage.

3.2. Circuit Localization Baselines

Here, we evaluate common circuit localization methods. We
evaluate each model9 and method10 in §2 where possible.
We compare across multiple axes of variation, including
(a) circuit localization method (see below), (b) granularity,
including edge-level and neuron-level circuits, and (c) ab-
lation type, including counterfactual (CF) ablations, mean
ablations, and “optimal ablations” (OA; Li & Janson, 2024).
For all methods, we assign importance scores to all edges
or nodes, and either include the top-scoring components or
perform greedy search; see App. E.1 for details.

As a sanity check, we compare to random control circuits
(RANDOM). We operationalize this by uniformly sampling
an importance score in [−1, 1] for all edges in the model.
We take the mean CPR and CMD across 3 random seeds.

One way to find circuits is to filter model components by
their indirect effects (IE; Pearl, 2001). The IE is defined
as the change in m caused by replacing a component’s
activation with its activation on another input, typically one
where the expected output differs. We follow the procedure
of Vig et al. (2020) and (Finlayson et al., 2021). However,
computing IE in exact form (ACTIVATION PATCHING, or
ActP) is expensive, requiring O(n) forward passes, where
n is the number of possible edges in N .

Attribution methods aim to reduce the cost of computing
IE by approximating it. Nanda (2023) and Syed et al. (2024)
propose ATTRIBUTION PATCHING (AP), which linearly
approximates the IE for all nodes or edges in O(1) forward
passes. When performed at the node level, we call this
NODE AP (NAP); at the edge level, it is EDGE AP (EAP).

Unfortunately, AP approximates IE poorly (Syed et al.,
2024). AP WITH INTEGRATED GRADIENTS (AP-IG; Sun-
dararajan et al. 2017) improves on AP by performing multi-
ple steps of AP, trading off speed for approximation qual-
ity. We test two AP-IG variants: (i) AP-IG-inputs (Hanna
et al., 2024) and (ii) AP-IG-activations (Marks et al., 2025).
AP-IG-inputs requires O(Z) forward passes, while AP-IG-
activations requires O(Z · L), where Z is the number of
AP steps, and L is the number of model layers. We use
Z = 5, following Hanna et al. (2024). We explore AP-IG
at the node level (NAP-IG) and edge level (EAP-IG). See

9We do not evaluate Gemma or Qwen on Arithmetic, as they
tokenize numbers such that each digit has its own token.

10Exact activation patching and optimal ablations become in-
tractable with respect to runtime as models scale. UGS becomes
intractable with respect to memory requirements as models scale.
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Table 2. CMD scores across circuit localization methods and ablation types (lower is better), and AUROC scores for InterpBench (higher
is better). All evaluations were performed using counterfactual ablations. Arithmetic scores are averaged across addition and subtraction;
see Table 17 (App. E.3) for separate scores. We bold and underline the best and second-best methods per column, respectively.

IOI Arithmetic MCQA ARC (E) ARC (C)

Method InterpBench (↑) GPT-2 Qwen-2.5 Gemma-2 Llama-3.1 Llama-3.1 Qwen-2.5 Gemma-2 Llama-3.1 Gemma-2 Llama-3.1 Llama-3.1

Random 0.44 0.75 0.72 0.69 0.74 0.75 0.73 0.68 0.74 0.68 0.74 0.74

EActP (CF) 0.28 0.02 0.49 - - - 0.36 - - - - -

EAP (mean) 0.78 0.29 0.18 0.25 0.04 0.07 0.21 0.20 0.16 0.22 0.28 0.20
EAP (CF) 0.73 0.03 0.15 0.06 0.01 0.01 0.07 0.08 0.09 0.04 0.11 0.18
EAP (OA) 0.77 0.30 0.16 - - - 0.11 - - - - -

EAP-IG-inp. (CF) 0.71 0.03 0.02 0.04 0.01 0.00 0.08 0.06 0.14 0.04 0.11 0.22
EAP-IG-act. (CF) 0.81 0.03 0.01 0.03 0.01 0.00 0.05 0.07 0.13 0.04 0.30 0.37

NAP (CF) 0.30 0.38 0.33 0.37 0.29 0.28 0.30 0.35 0.32 0.33 0.69 0.69
NAP-IG (CF) 0.62 0.27 0.20 0.26 0.19 0.18 0.18 0.29 0.33 0.28 0.67 0.67

IFR 0.71 0.42 0.69 0.75 0.83 0.22 0.60 0.62 0.48 0.66 0.64 0.76

UGS 0.74 0.03 0.03 - - - 0.20 - - - - -

App. E.2 for definitions and details.

Information flow routes (IFR; Ferrando & Voita, 2024)
is a non-counterfactual-based and non-causal method that
includes edge (u, v) in C if the output vector of u and input
vector of v are highly similar; this is taken as evidence of
a writing operation. See App. E.2 for details on how we
adapted IFR to our formalization of circuits.

Mask-based methods aim to learn a pruning mask on the
edges of the computational graph. During training, masks
are continuous. Edges with low mask values are ablated
more often or more fully; edges with high values are likely
in the circuit. The mask’s training objective aims to maintain
model behavior (often measured by KL-divergence with the
unablated model) while keeping the mask sparse (measured
by its L1 norm). After training, the mask can be converted
into a binary mask indicating which edges are in the circuit.

As a mask-based method, we employ UNIFORM GRADI-
ENT SAMPLING (UGS; Li & Janson, 2024), which uses
CF ablations. Li & Janson also propose optimal ablations
(OA), in which the mask is learned jointly with the value
used to ablate non-circuit edges; they prefer OA as it is
both independent of the example being ablated (unlike CF
ablations) and minimally harmful (unlike mean ablations).
Due to computational constraints, we do not do this, but
instead learn OA vectors by optimizing them to minimize
the expected cross-entropy loss on the task dataset. We then
use these vectors as ablation values when running circuit
localization with EAP. See App. E.2 for details.

3.3. Results

We present CMD and AUROC scores (Table 2) for each
method and task where it is tractable to run; see Table 14
in App. E for CPR scores. On both metrics, EAP-IG-
inputs with CF ablations generally performs best. EAP-IG-
activations and UGS are competitive with EAP-IG-inputs

w.r.t. CMD, but have higher runtime and memory usage
respectively. For CPR, they are less competitive; this is un-
surprising for UGS, as it directly optimizes for maintaining
model behavior, rather than finding performant components.

More surprisingly, edge activation patching (EActP) does
not always perform best, despite computing exact IEs for
each edge: it dominates for IOI on GPT-2, but not Qwen-2.5
or InterpBench. This could stem from our use of fewer ex-
amples to run EActP due to its long runtime. But EActP also
has deeper limitations: like attribution methods, it estimates
the effect of ablating each edge independently; this may
imperfectly predict the effect of ablating multiple edges in
tandem (Mueller, 2024). That said, UGS, which considers
many edges at once, is also not the top performer.

Circuits found with CF ablations outperform those found
with mean or optimal ablations; the latter two score similarly
to each other. This is expected, as CF ablations more closely
resemble the evaluation setting, and more precisely localize
the distinction captured by the CF input pairs.

Certain methods underperform on all metrics: node-level
circuits do poorly, likely because each node “costs” many
edges—they are not as sparse as edge circuits. IFR achieves
lower performance than attribution methods, but still signifi-
cantly better than random circuits.

In summary, EAP-IG-inputs achieves the highest per-
formance on average on both CMD and CPR. However,
other techniques, like EAP-IG-activations, EAP, and UGS,
remain competitive.

4. Causal Variable Localization Track
The circuit localization track evaluates methods that localize
behaviors to model components that form end-to-end path-
ways from input to output. In contrast, the causal variable
localization track evaluates methods that localize specific
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concepts along causally active paths. Figure 6 (App. G)
illustrates an example evaluation in this track, while Table 3
contains results for causal variable localization methods.

4.1. Causal Abstraction

A basic assumption in mechanistic interpretability is that
models implement intelligent behaviors by representing and
manipulating concepts.11 We operationalize such hypothe-
ses by encoding the reasoning process as a causal model
H with variables corresponding to concepts. The task is to
align these high-level conceptual variables in a causal model
with low-level features in a neural model that have the same
mechanistic role, i.e., the high-level causal model is a causal
abstraction of the LM (Geiger et al., 2021; 2024a).

LM Features. What should be the atomic units of analysis,
or features, for mechanistic interpretability? The answer is
hotly debated and not currently clear (Mueller et al., 2024),
so we design this track to incentivize investigation of this
fundamental question. We adopt the framework of Geiger
et al. (2024a) in which any hidden vector h ∈ Rd con-
structed by a model N during inference can be mapped
into a new feature space Fk (e.g., a rotated vector space)
using an invertible function F : Rd → Fk (e.g., multipli-
cation with an orthogonal matrix). Features Π are a set of
indices between 1 and k, i.e., a set of dimensions in Fk. This
framework supports a variety of features, including neurons,
orthogonal directions, SAE features, and non-linear features.
The vector h might come from the residual stream between
transformer layers or the output of an attention head.

Alignments. Alignments between high-level conceptual
variables and low-level features will not be static, even
in the simplest cases. For instance, in MCQA, the index
of the token corresponding to the correct multiple choice
answer will change depending on the number of tokens in
the question. As such, submissions to MIB can provide an
alignment that aligns a variable X with features ΠX of
a dynamically selected hidden vector h, e.g., the residual
stream of the correct answer token in the MCQA task.

Faithfulness metrics. We quantify the degree to which a
variable X ∈ H faithfully abstracts the features ΠX using
interchange interventions. Given base and counterfactual in-
puts (b, c), the interchange interventionHX←Get(H(c),X)(b)
runs H on base input b while fixing the variable X to the
value it takes when H is run on a counterfactual input c
(Vig et al., 2020; Geiger et al., 2020). The distributed in-
terchange intervention NΠX←Get(N (c),ΠX)(b) runs N on b
while fixing the features ΠX of the hidden vector h passed
through F to the value they take for counterfactual input c
(Wu et al., 2023; Amini et al., 2023; Geiger et al., 2024b).

11Crucially, the concepts employed by an LM may not relate to
those employed by a human on the same task (Hewitt et al., 2025).

Given a counterfactual dataset D and a high-level causal
model H aligned to an LM N , we measure whether in-
terchange interventions on a variable X in H and aligned
features ΠX in N produce the same output:

Faith(X,ΠX ,H,D) =∑
(b,c)∈D

[
HX←Get(H(c),X)(b) = NΠX←Get(N (c),ΠX)(b)

]
.

This metric of interchange intervention accuracy (IIA) is for
all tasks except IOI, which has a logit-based metric (§4.4).

For each task, we have base and counterfactual input pairs
(§2.1). We use interchange interventions on these pairs to
isolate variables in H; interventions to a variable should
result in predictable changes to a model’s outputs. This
is not as obvious as it first appears; naı̈ve approaches to
sampling counterfactual inputs used for intervention can
undersample or exclude crucial settings. We filter out all
examples where the model predicts the incorrect output for
the base input or any of the counterfactuals used.

Featurizers and feature selection. We consider five base-
lines for constructing the featurizer F and selecting the
features ΠX . See App. G for further details.

We evaluate three unsupervised featurization methods that
provide features without access to a high-level causal model.
The most naı̈ve one is the “Full Vector” baseline; this entails
using an identity featurizer and selecting all features—i.e.,
intervening on the full untransformed hidden vector h. We
also evaluate PRINCIPAL COMPONENT ANALYSIS (PCA;
Tigges et al. 2023; Marks & Tegmark 2024) and SPARSE
AUTOENCODERS (SAE; Bricken et al. 2023; Huben et al.
2024), which encode into very high-dimensional spaces with
many features. For SAEs, we use GemmaScope (Lieberum
et al., 2024) and LlamaScope (He et al., 2024).

To select SAE features, principal components, or standard di-
mensions of hidden vectors that are aligned with high-level
causal variables, we use DESIDERATA-BASED MASKING
(DBM; Cao et al. 2020; 2022; Csordás et al. 2021; Davies
et al. 2023; Chaudhary & Geiger 2024) to learn a binary
mask over features using a high-level causal model as a
source of supervision. The masks are trained to maximize
the faithfulness metric on training data.

We also evaluate a supervised featurization method DIS-
TRIBUTED ALIGNMENT SEARCH (DAS; Geiger et al.
2024b) that learns a featurizer with supervision from the
high-level causal model. First, a variable in the high-level
causal model is aligned with features that are randomly
initialized orthogonal directions that define a linear sub-
space of a hidden vector. Then, the features are trained to
maximize the faithfulness metric. There is no need for a
separate feature selection procedure because the features
are constructed specifically for the high-level variable.
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For tasks other than IOI, we brute-force search over a few
manually selected token locations. For each layer and token
location, we search for features of the residual stream vector
corresponding to variables in the high-level causal model.
For each causal variable, we use training data to create and
select features, and then evaluate the faithfulness of aligning
those features with the causal variable. We take the token
location with the highest score at each layer, and report the
best layer and average across layers. Future submissions
may target any token(s). For IOI, we focus our experiments
on the attention heads identified by Wang et al. (2023) in
GPT2-small, but we will allow for future submissions to
identify new attention heads in the other three models.

4.2. MCQA and ARC (Easy)

Causal model. For the two multiple-choice datasets, we hy-
pothesize LMs compute the position of the answer token in
context before retrieving the answer token itself. HMCQA

is an algorithm with three variables: a text input variable
T , an ordering ID XOrder (Dai et al., 2024) storing the po-
sition of the answer, and the answer token OAnswer. This
model abstracts away the details of how the answer position
is computed; the mechanism for XOrder is a lookup table
from inputs to the index of the answer token, i.e., a number
between 1 and 4 because there are four choices. Instead, the
focus is on the retrieval of the correct choice; the mechanism
for OAnswer dereferences the index stored in XOrder.

Counterfactuals. We use counterfactuals where the answer
position is changed, where the choice letters are randomized,
or both. When both the answer position and the choice
letters are different in the counterfactual, a different output
is expected when localizing the ordering id XOrder versus
the answer token OAnswer. If the ordering ID is targeted,
then the expected output is the choice token in the base at
the answer position from the counterfactual. If the answer
token is targeted, then the expected output is the answer
token from the counterfactual, regardless of position.

Results. We target the residual stream of the last token of
the input and the correct choice letter token at each layer. We
generally see strong evidence (Tables 3a and 3c; App. G.5.1)
of the causal model HMCQA being a faithful abstraction,
with DAS successfully disentangling the ordering ID vari-
able XOrder from the output token OAnswer in many layers.
Even the full vector baseline successfully localizes the vari-
able in some layers, though it performs poorly on average
because both variables are aligned with the same features.

4.3. Two-Digit Addition

Causal model. For the two-digit addition task, we hypothe-
size that LMs use a “carry-the-one” algorithm, as illustrated
in Figure 6. The causal modelH+ has a text input variable
T that is parsed into the variables X1, X10, Y1, and Y10,

representing the ones and tens digits of each two-digit input.
The variable XCarry is a child of X1 and Y1 and takes value 1
if X1+Y1 > 10. The output variable O110 has all inputs and
XCarry as parents and takes on the value XCarry +X10+Y10.
The output variable O1 has X1 and Y1 as parents and takes
on the value (X1 + Y1)%10. For the benchmark, we report
results for localizing the variable XCarry.
Counterfactual dataset. We use equal parts random
counterfactuals and counterfactuals that do not change the
carry-the-one variable (e.g., base 17+75 and counterfactual
11+71). Interchange interventions on XCarry inH+ with ran-
dom counterfactuals will cause the output variable O110 to
increase or decrease by 1 half the time and have no effect the
other half. The carry-the-one counterfactual inputs always
require a change in the output, but hold the input and parts of
the output fixed so that low-level interchange interventions
are less likely to have unintended consequences.

Results. For each baseline, we target the last token and the
last token of the second operand. We see poor performance
across the board (Table 3b; App. G.5.2). The Gemma-2
results are at chance and the Llama-3.1 results have only
faint signs of success. The difference in results is likely
due to only Llama-3.1 tokenizing multi-digit numbers as
single tokens. There may be no “carry-the-one” variable
present in these models. Alternatively, the variable might
be represented in a non-linear features space, e.g., an onion
representation (Csordás et al., 2024). Future submissions
that beat baselines will require genuine progress.

4.4. Indirect Object Identification

App. A of Wang et al. (2023) describes an experiment where
the four “S-Inhibition” heads that decrease the probability of
the subject token are intervened upon to invert the subject’s
position or token identity. The heads contain token and
position signals that make roughly linear contributions to
the difference between the indirect object and subject logits.
However, they did not try to disentangle the hidden vector
outputs of those heads to align each signal with LM features.

Causal model. First, we replicate these experiments on our
datasets and fit a linear model; we use this to define a causal
model HIOI that predicts the logit difference between the
indirect object and subject. HIOI takes a text input T and
computes the token and positional information STok and SPos
of the subject. Then, the output variable O: (i) checks if the
token and position variables STok and SPos match the input
T and inverts the signal if a mismatch is detected, and (ii)
computes the logit difference between the indirect object
and subject as a linear function of these binary variables.

Counterfactuals. We use counterfactuals where the subject
and indirect object tokens are inverted, their position is
inverted, or both. We align each variable with features of
the four heads. These counterfactuals test the ability of

8



MIB: A Mechanistic Interpretability Benchmark

Table 3. Baseline results for the causal variable localization track. In each table, the first row is the task, the second row is the model,
and the third row is the causal variable. For Arithmetic, MCQA, and ARC (Easy), we report interchange intervention accuracy, i.e., the
proportion of aligned interventions on the causal model and deep learning model that result in the same output token(s); higher is better.
For each method of aligning a causal variable to LM features, we report the mean across counterfactual datasets and layers in the low-level
model. In parenthesis and bold, we report the best alignment across all layers. For IOI, we report the mean-squared error between the
causal model logit and the deep learning model logit; lower is better. See App. G.5 for more detailed results by task.

ARC (Easy)

Gemma-2 Llama-3.1

Method OAnswer XOrder OAnswer XOrder

DAS 88 (94) 76 (88) 88 (99) 74 (84)
DBM 82 (99) 63 (80) 85 (100) 69 (82)
+PCA 78 (98) 64 (81) 84 (100) 72 (83)
+SAE 70 (89) 54 (70) 74 (94) 55 (67)
Full Vector 63 (100) 43 (74) 68 (100) 47 (72)

(a) The ARC (Easy) task with a high-level model that computes the
ordering of the answer XOrder and then the answer token OAnswer.

Arithmetic (+)

Gemma-2 Llama-3.1

Method XCarry XCarry

DAS 31 (35) 54 (65)
DBM 33 (43) 47 (58)
+PCA 32 (44) 37 (56)
+SAE 32 (44) 38 (55)
Full Vector 29 (35) 35 (45)

(b) The two-digit arithmetic task with a variable that computes
the carry-the-one variable XCarry.

MCQA

Gemma-2 Llama-3.1 Qwen-2.5

Method OAnswer XOrder OAnswer XOrder OAnswer XOrder

DAS 95 (97) 77 (93) 94 (100) 77 (91) 86 (95) 78 (100)
DBM 84 (99) 63 (84) 86 (100) 66 (73) 46 (94) 60 (99)
+PCA 57 (96) 52 (81) 65 (99) 53 (74) 22 (76) 54 (100)
+SAE 73 (90) 51 (65) 80 (99) 58 (65) – –
Full Vector 61 (100) 44 (77) 77 (100) 46 (68) 35 (99) 49 (99)

(c) The MCQA task with variables for the ordering of the answer XOrder and then
the answer token OAnswer. This is a low-data regime (≈100 examples).

IOI

GPT-2

Method SPos STok

DAS 2.20 2.08
DBM 2.22 2.35
+PCA 2.24 2.33
Full Vector 2.45 2.82

(d) The IOI task with variables for the position
SPos and token STok of the subject. The metric
is mean-squared error; lower is better.

methods to disentangle the token and position variables.

Results. Broadly, we find evidence that the position and
token variable can be disentangled (Table 3d; App. G.5.4).
For the full vector baseline, we conduct a brute force search
and find an alignment of position to heads 7.3, 7.9 (ΠSPos ),
and 8.6 and token to head 8.10 (ΠSTok ), to be better than
other alignments to entire heads. While the variables can
be disentangled at the level of heads, even better results are
achieved when each variable is aligned to features of heads.

4.5. General Discussion

Distributed alignment search (DAS) consistently
achieves the best results. DAS is the only method that
learns features with supervision from the high-level causal
model, so this is not surprising. DBM on standard hidden
dimensions is often successful; This shows that the dimen-
sions of untransformed hidden vectors can be useful units
of analysis; nonetheless, DAS outperforming DBM shows
that non-basis-aligned directions in activation space are gen-
erally better units of analysis than basis-aligned directions.

DBM on PCA or SAE features is not better than DBM
on standard dimensions. SAE and PCA features generally
fail to improve upon neurons, i.e., standard dimensions of
hidden vectors, as a unit of analysis. The especially poor
performance of PCA on MCQA may be due to the low-

data regime of ≈100 examples. This is in line with results
from AxBench, where SAEs struggle against simple steering
baselines (Wu et al., 2025).

We include an additional task on disentangling factual
knowledge from the RAVEL benchmark (Huang et al.,
2024a). See Appendix G.5.3 for baseline results and details.

There is room for future submissions to establish state-
of-the-art results on the benchmark. First, our baselines
provide weak evidence for the carry-the-one variable in the
addition task. Second, we only run baselines for IOI on
the GPT-2 attention heads identified by (Wang et al., 2023);
we encourage future submissions to locate and featurize
attention heads in the other three models. Third, we did not
conduct exhaustive hyperparameter searches for any of the
baseline methods, so there is likely room for improvement.

5. Conclusion
We have proposed MIB, a Mechanistic Interpretability
Benchmark, and demonstrated its value for directly compar-
ing mechanistic interpretability methods. MIB corroborates
recent findings, like the value of attribution methods, and
challenges others, like the utility of SAEs as featurizers for
known causal variables. MIB is not in its final form: as
progress in MI is rapid, we intend this as a living bench-
mark that scales to incorporate new advances in the field.
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A. Table of Notation
In Table 4, we summarize the mathematical notation used throughout the paper, grouped by the track(s) they appear in.

B. Related Work
Circuit discovery evaluation. While there do not exist benchmarks for circuit discovery methods in general, there do exist
targeted tests of whether the concept of circuits is sensible (Shi et al., 2024). There are also benchmarks designed with
ground-truth circuits in mind (Gupta et al., 2024), though the tasks in this benchmark are relatively simple, as the circuits
are hand-crafted. Methods and metrics papers tend to focus on only one or two tasks and only one or two models (Miller
et al., 2024; Ferrando & Voita, 2024; Conmy et al., 2023); these can function as strong proofs of concept, but limit our
understanding of the generalizability and scalability of these methods and metrics.

Causal variable localization evaluations. The RAVEL (Huang et al., 2024a) and CausalGym benchmarks (Arora et al.,
2024) both enable comparisons across featurization methods, though in more narrow domains. The SAEBench (Karvonen
et al., 2025) is similar in concept, though much narrower in scope w.r.t. the kinds of methods that can be evaluated (i.e., only
SAEs). Our benchmark compares across a range of tasks, models, and methods.

Other evaluations. There exist benchmarks that do not fall cleanly within these two camps. An impactful application of MI
is targeted model editing (Meng et al., 2022), for which there now exist multiple benchmarks (Cohen et al., 2024; Abraham
et al., 2022; Zhong et al., 2023). An emerging paradigm is evaluating automated interpretability agents; for example, FIND
(Schwettmann et al., 2023) evaluates whether interpretability agents correctly describe latent functions implemented by
model components. Other benchmarks focus on benchmarking explanations of LM behaviors (Mills et al., 2023; Atanasova
et al., 2023).

C. Limitations
Our two tracks separate the problems of featurization and causal dependency location for cleaner evaluation. However,
these are mutually influential problems: one could potentially locate better circuits by first decomposing MLPs into sparse
features, for example (Marks et al., 2025). The featurization method one uses should also be informed by the downstream
task; for example, the outputs of DAS are not immediately applicable to finding circuits. Future work should consider the
joint problem of (1) building causal dependency graphs from (2) more meaningful units, where these units may potentially
exist at various levels of granularity.

For circuit localization, there exist metrics such as completeness that cannot be tractably computed without access to the
ground-truth set of causally relevant components. This motivated our inclusion of the InterpBench model, whose AUROC
metric includes completeness. Some work has attempted to measure completeness as the faithfulness of the circuit’s
complement (Marks et al., 2025), but as it is easy to reduce performance even without ablating the full circuit, this may not
be a good signal for when one has recovered the full set of causally relevant dependencies. We acknowledge that a fully
automated completeness score is absent for the remaining models.

For causal variable localization, our faithfulness metric captures the extent to which the causal variable—not the entire
high-level model—aligns with the representation. The high-level model may differ from than the hypothesis, but it would
still be possible to modify the model’s behavior in a predictable way, and we believe this will be reflected in the scores.
Nonetheless, this paradigm presumes the existence of the high-level model in the computation graph. We have mainly
included graphs for which there exists evidence from past work, but we acknowledge that these graphs may not always exist
in the models we evaluate in the exact forms shown here.

Finally, our benchmark focuses solely on large language models. Given that this is the current focus of the vast majority of
mechanistic interpretability research, we believe that this gives a broad-coverage sample of models commonly studied in the
literature. It would be helpful in future work to expand the scope of these evaluations to include other modalities.

D. Further Details on Materials
Table 5 contains dataset statistics.
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Table 4. The notation used throughout the paper, grouped by track.

Track Symbol Meaning

Shared N The full computation graph; a neural network
dmodel The size of (i.e., number of neurons in) the output vector of each layer

Circuit
Localization

C A circuit ∈ N
k The proportion of edges in a circuit. If a circuit has ≤ k × 100 edges,

this is sometimes expressed as Ck
u A node in the computation graph. Could be an MLP or an attention head

(u, v) An edge from node u to node v
m The metric used to evaluate a circuit. Usually the logit difference between

a correct and incorrect answer
f The faithfulness of a single circuit. Defined as a ratio of m given C and

m given N
CPR Circuit performance ratio (higher is better). Defined as the area under the

faithfulness curve. An aggregation over f values at many circuit sizes
CMD Circuit-model distance (0 is best). Area between the faithfulness curve

and 1. An aggregation over f values at many circuit sizes
Nu The number of neurons in node u, usually equal to dmodel
NC The set of all neurons in C

Causal
Variable
Localization

H A high-level causal model
X A variable inH
b An base input to the neural network
c An counterfactual input to the neural network that differs from b in some

systematic way
h The output activation vector of a node in the computation graph
F The featurization function that transforms h to a new space where the

causal variable X is easier to isolate
ΠX A set of “features” in a hidden vector h abstracted by a variable X , i.e.,

dimensions in the range of F that encode X
D A dataset containing (b, c) pairs

HX←get(H(c),X)(b) An interchange intervention on the high-level modelH which is run on
the input b while the variable X is fixed to the value it takes whenH is
run on input c.

NΠX←get(N (c),ΠX)(b) A distributed interchange intervention on the LM N which is run on the
input b while the features ΠX of a hidden vector h are fixed to the value
they take when N is run on input c.
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Table 5. Information about datasets and their splits.

Dataset Train Validation Test (Public/Private)

IOI 10000 10000 1000/1000
MCQA 110 50 50/50
Arithmetic (+) 34400 4920 1000/1000
Arithmetic (−) 17400 2484 1000/1000
ARC (Easy) 2251 570 1188/1188
ARC (Challenge) 1119 299 586/586
RAVEL 100000 16000 1000

D.1. Indirect Object Identification (IOI)

To generate IOI examples, we collect sets of templates and attributes—namely, common English first names, common place
names, and everyday objects. We separate the templates and attributes into four disjoint groups and use them to generate the
four splits (public train/validation/test and private test sets). This means that different splits do not share any attributes. We
generate 10,000 IOI examples per split using 43 templates, 166 first names, 319 object names, and 247 place names. The
templates and attributes used in the public sets partly overlap with the original dataset by Wang et al. (2023). The rest of the
public attributes and the additional private attributes were generated using ChatGPT (OpenAI, 2022) and manually verified.
We verify that all names are tokenized to a single token using the test prompt ”I am {name}” across our models.

In Figure 3, we provide an example from our IOI dataset. Each example includes a prompt, a prompt template, metadata, a
list of choices, and the index of the correct completion (answer key) from the list of choices.

Counterfactuals. For each instance, we create eight counterfactuals: the six counterfactuals described by Wang et al.
(2023), an additional counterfactual which is the composition of all three transformations proposed by Wang et al. (2023),
and a counterfactual where the second instance of the subject is replaced with a third random name that did not appear in the
first clause of the sentence (“ABC”). Table 6 contains an example of each counterfactual type.

In the circuit localization track, we use the ABC counterfactual. In the causal variable track, we use the IO↔ S1 Flip, IO↔
S2 Flip, and IO↔ S1 Flip + IO↔ S2 Flip counterfactuals.
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” prompt ” : ” A f t e r Nick and John s p e n t some t ime
a t t h e c a r d e a l e r s h i p , Nick o f f e r e d a n a i l t o ” ,
” t e m p l a t e ” : ” A f t e r {name A} and {name B} s p e n t some t ime
a t t h e { p l a c e } , {name C} o f f e r e d a { o b j e c t } t o ” ,
” m e t a d a t a ” : {

” i n d i r e c t o b j e c t ” : ” John ” ,
” s u b j e c t ” : ” Nick ” ,
” o b j e c t ” : ” n a i l ” ,
” p l a c e ” : ” c a r d e a l e r s h i p ” ,
” random a ” : ”Max” ,
” random b ” : ” Fred ” ,
” random c ” : ”Bob”

} ,
” c h o i c e s ” : [

” John ” ,
” Nick ”

] ,
” answerKey ” : 0 ,
” a b c c o u n t e r f a c t u a l ” : {

” prompt ” : ” A f t e r Nick and John s p e n t some t ime
a t t h e c a r d e a l e r s h i p , Bob o f f e r e d a n a i l t o ” ,
” c h o i c e s ” : [

” John ” ,
” Nick ” ,
”Bob”

] ,
” answerKey ” : −1

} ,
” r a n d o m n a m e s c o u n t e r f a c t u a l ” : {

” prompt ” : ” A f t e r Max and Fred s p e n t some t ime
a t t h e c a r d e a l e r s h i p , Max o f f e r e d a n a i l t o ” ,
” c h o i c e s ” : [

”Max” ,
” Fred ”

] ,
” answerKey ” : 1

} ,
. . .

Figure 3. An IOI example. Each input is paired with a set of templatically generated counterfactuals.
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Table 6. An IOI example and its 8 associated counterfactuals.

Prompt / Counterfactual Name A Name B Name C Text Correct
Completion

Original Prompt Nick John Nick
After Nick and John spent some time
at the car dealership, Nick offered a nail to John

ABC Nick John Bob
After Nick and John spent some time
at the car dealership, Bob offered a nail to N/A

Random Names Max Fred Max
After Max and Fred spent some time
at the car dealership, Max offered a nail to Fred

IO↔ S1 Flip John Nick Nick
After John and Nick spent some time
at the car dealership, Nick offered a nail to John

IO↔ S2 Flip Nick John John
After Nick and John spent some time
at the car dealership, John offered a nail to Nick

Random Names + IO↔ S1 Flip Fred Max Max
After Fred and Max spent some time
at the car dealership, Max offered a nail to Fred

Random Names + IO↔ S2 Flip Max Fred Fred
After Max and Fred spent some time
at the car dealership, Fred offered a nail to Max

IO↔ S1 Flip + IO↔ S2 Flip John Nick John
After John and Nick spent some time
at the car dealership, John offered a nail to Nick

Random Names + IO↔ S1 Flip +
IO↔ S2 Flip Fred Max Fred

After Fred and Max spent some time
at the car dealership, Fred offered a nail to Max

D.2. Arithmetic

We list the templates used to format the arithmetic queries in Table 7. We consider four text-based prompts and two Arabic
numeral-based prompts. The prompts are modified from Stolfo et al. (2023). An example instance and its associated
counterfactuals are in Table 8. Subtraction queries are constrained to cases with positive results to maintain single-token
answers when possible. Of the four models we investigate, two (Llama and GPT-2) tokenize numeric answers as single
tokens and two (Qwen and Gemma) tokenize numbers into their respective digits (meaning that correct answers will often
be more than one token in length). In the latter case, we generate the oracle number of tokens corresponding to the number
of digits in the correct answer and then check for exact-match correctness.

Counterfactuals. We create counterfactuals by adjusting the operands in ways that will affect not only the correct answer,
but also the addition or subtraction process (see Table 8). In our experiments, we primarily use the random operands
counterfactual for baseline comparison, but we provide the additional counterfactuals for further analysis.

Table 7. Prompt templates for single-operator two-operand arithmetic operations.
Template Addition Subtraction

1 Q: How much is n1 plus n2? A: Q: How much is n1 minus n2? A:
2 Q: What is n1 plus n2? A: Q: What is n1 minus n2? A:
3 Q: What is the result of n1 plus n2? A: Q: What is the result of n1 minus n2?
3 The sum of n1 and n2 is: The difference between n1 and n2 is:
5 n1+n2= n1−n2=
6 n1 + n2 = n1 − n2 =

D.3. Multiple-choice question answering (MCQA)

We expand the dataset of Wiegreffe et al. (2025), itself based on Norlund et al. (2021), by adding 102 additional instances
from Paik et al. (2021) whose object group is “0”, indicating that participants agreed on a prototypical color for that
object—for example, that bananas are yellow. We randomly sample 3 incorrect colors from a set of 11 and pair them with
the correct answer choice in a random position to create each instance. By design, each answer in this task is a single token
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Table 8. An Arithmetic example and its 7 associated counterfactuals.

Prompt / Counterfactual Text Correct
Completion

Original Prompt The sum of 27 and 64 is: 91
Random Operands The sum of 42 and 29 is: 71
Different ones digit in operand 1 The sum of 24 and 64 is: 88
Different ones digit in operand 2 The sum of 27 and 61 is: 88
Different tens digit in operand 1 The sum of 47 and 64 is: 111
Different tens digit in operand 2 The sum of 27 and 44 is: 71
Different ones digit carry value The sum of 21 and 60 is: 81
Different tens digit carry value The sum of 77 and 64 is: 141

(e.g., A, B, C, D).

In the paper, we report on 4-choice MCQA, as this is a standard number of choices and allows comparison with the ARC
dataset. We also create versions of the dataset with 2, 3, 5, 6, 7, 8, 9, and 10 answer choices, in order to allow for future
investigation into how mechanisms change as the result of having fewer or more choices.

Counterfactuals. We create two semantic counterfactuals and three format counterfactuals for each instance (and four
combinations of these, resulting in 9 counterfactuals total). Semantic perturbations involve replacing the noun in the question
(such as “banana”) with a different noun from another instance in the same split, or the correct color of the noun mentioned
in the question (such as “yellow”) with another color (such as “brown”). The latter changes the correct answer; the former
does not.

Format perturbations do not change the correct color itself, but do change the symbol that represents that color, and
therefore, change the correct answer. We follow a similar design to Lieberum et al. (2023a). We change the position of
the correct answer, the symbols representing the answer choices (i.e., 1/2/3/4 instead of A/B/C/D), or the letters (i.e., the
randomly selected sequence E/Z/F/L instead of A/B/C/D). See Table 9 for an example dataset instance and its associated
counterfactuals.

D.4. AI2 Reasoning Challenge (ARC)

By design, each answer in this task is a single token (e.g., A, B, C, D), making the prompt format similar to MCQA
(Appendix D.3).

Counterfactuals. The counterfactual types and generation process are identical to the MCQA counterfactual generation
process (described in Appendix D.3). Due to the varying content of each ARC prompt and the lack of a token-level template
between prompts, we include only the format-based counterfactuals, omitting semantic counterfactuals such as “Noun” and
“Color” from MCQA. For an example prompt and its counterfactuals, see Table 10.

D.5. Model Performance

For all tasks, we report accuracy given greedy generations in Table 1. For tasks that involve selecting between a fixed set of
answer choices (IOI, MCQA, and ARC), we additionally report ranked-choice accuracy in Table 11. Ranked-choice scoring
computes a model’s prediction as the token that is assigned the highest probability within the set of answer choices; this is
an upper bound on greedy generation performance. Ranked-choice scoring is more in line with the metric m used for circuit
localization (§3.1); greedy scoring is more in line with the prerequisite of causal variable localization (§4).

In Table 12 and Table 13 we report the results for each counterfactual type in the MCQA and ARC tasks, respectively. For
the IOI and Arithmetic tasks, we found that due to the counterfactual format, all counterfactual types lead to the same
performance as the original prompts (except for the “ABC” counterfactual in IOI, which has no correct answer).
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Table 9. An MCQA example and its 9 associated counterfactuals.

Prompt / Counterfactual Text Correct
Completion

Original Prompt
Question: Salmon meat is pink. What color is salmon meat?
A. gray\nB. black\nC. white\nD. pink\nAnswer: D

Noun
Question: A banana is pink. What color is a banana?
A. gray\nB. black\nC. white\nD. pink\nAnswer: D

Color
Question: Salmon meat is yellow. What color is salmon meat?
A. gray\nB. black\nC. white\nD. yellow\nAnswer: D

Noun+Color
Question: A banana is yellow. What color is a banana?
A. gray\nB. black\nC. white\nD. yellow\nAnswer: D

Answer Position
Question: Salmon meat is pink. What color is salmon meat?
A. gray\nB. black\nC. pink\nD. white\nAnswer: C

Symbol
Question: Salmon meat is pink. What color is salmon meat?
1. gray\n2. black\n3. white\n4. pink\nAnswer: 4

Random Letter
Question: Salmon meat is pink. What color is salmon meat?
E. gray\nZ. black\nF. white\nL. pink\nAnswer: L

Answer Position + Random Letter
Question: Salmon meat is pink. What color is salmon meat?
E. gray\nZ. black\nF. pink\nL. white\nAnswer: F

Answer Position + Symbol
Question: Salmon meat is pink. What color is salmon meat?
1. gray\n2. black\n3. pink\n4. white\nAnswer: 3

Answer Position + Color
Question: Salmon meat is yellow. What color is salmon meat?
A. gray\nB. black\nC. yellow\nD. white\nAnswer: C
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Figure 4. Leaderboard for the circuit localization track.

Figure 5. Leaderboard for the causal variable localization track.
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Table 10. An ARC example and its 4 associated counterfactuals.

Prompt / Counterfactual Text Correct
Completion

Original Prompt

Question: How does a tiger get stripes?
A. from its environment
B. from its food
C. from its offspring
D. from its parents
Answer:

D

Answer Position

Question: How does a tiger get stripes?
A. from its food
B. from its parents
C. from its environment
D. from its offspring
Answer:

B

Symbol

Question: How does a tiger get stripes?
1. from its environment
2. from its food
3. from its offspring
4. from its parents
Answer:

4

Random Letter

Question: How does a tiger get stripes?
D. from its environment
H. from its food
M. from its offspring
E. from its parents
Answer:

E

Answer Position + Random Letter

Question: How does a tiger get stripes?
D. from its food
H. from its parents
M. from its environment
E. from its offspring
Answer:

H

D.6. Leaderboard

Here, we present screenshots of the MIB leaderboards. The leaderboards for both tracks are hosted on the same webpage;
they are in separate tabs. The circuit localization track’s leaderboard can be viewed in Figure 4. It has two tabs: one for CPR
and one for CMD. Each row displays an Average score, which is a macroaverage of all scores in the row. Each row also
displays a Score column, which is an average of the sigmoid of each score; we apply a sigmoid because each faithfulness
value exists in a separate scale, where the lower and upper bounds may be different. Thus, to prevent any one column from
dominating the score, we normalize each score to a [0, 1] range by applying a sigmoid to each CPR or CMD value before
averaging. Users may filter rows based on model name and/or task name. After filtering, the Average and Score columns are
recomputed dynamically. This allows users to compare performance at varying levels of granularity, or in cases where some
methods are only tractable to run for a subset of the task/model combinations.

The causal variable localization track’s leaderboard can be viewed in Figure 5. It displays results aggregated across all
layers and token positions, and across counterfactual types. As in the circuit localization track, the Average is recomputed
dynamically after filtering.

Our leaderboard will accept user submissions. To submit to the circuit localization track, a user must supply either
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Table 11. Model performance for all models on the public test split of each analyzed task (0-shot) with ranked-choice accuracy.

ARC

IOI MCQA (E) (C)

Llama-3.1 8B 1.00 0.92 0.93 0.79
Gemma-2 2B 1.00 1.00 0.79 0.60
Qwen-2.5 0.5B 1.00 1.00 0.73 0.58
GPT-2 Small 1.00 0.30 0.23 0.23

Table 12. Model accuracy (0-shot, greedy generation) on MCQA counterfactuals. N = Noun, C = Color, AP = Answer Position, S =
Symbol, RL = Random Letter

Model N C N+C AP S RL AP+RL AP + S AP + C

Llama 3.1-8B 0.70 0.72 0.96 0.94 0.94 0.90 0.98 0.98 0.72
Gemma 2-2B 0.92 1.00 1.00 1.00 0.98 0.70 0.74 1.00 0.98
Qwen 2.5-0.5B 1.00 1.00 1.00 1.00 1.00 0.52 0.60 1.00 0.98
GPT2-Small 0.00 0.06 0.00 0.02 0.00 0.00 0.00 0.00 0.02

(i) importance scores ∈ R on each node or edge, or (ii) 9 circuits of different sizes with membership in C given as
Booleans. Recall from §3 that we use circuits containing varying percentages of edges; we will enforce this as a submission
requirement for the circuit localization track. The smallest circuit can contain k edges in the model, where |Ck||N | ≤ 0.001.
The second-smallest can contain any proportion of edges k ≤ 0.2; the largest can contain k ≤ 0.5, and so on.

For the causal variable localization track, a user must provide an invertible featurizer function F and token position functions
specifying where in an input to apply them. These must be provided as Python scripts. The trained featurizer, inverse
featurizer, and token indices must also be provided for each task/model combination. We will evaluate whether interchange
interventions on the features and the variable result in the same behavior for each counterfactual dataset and average the
results across them.

E. Details on Circuit Localization Track
E.1. Methods

Mapping from scores to circuits. All of the techniques that we benchmark produce a set of scores, which must then
be mapped to circuits. To find a circuit with n edges, we can simply take the top-n edges by score—what we call the
top-n method for constructing circuits. However, this approach can often result in a circuit without an end-to-end pathway
from inputs to outputs. Alternatively, we can perform a greedy search starting from the logits as follows. Let our circuit
C = (VC , VE) = ({logits}, ∅). Then for i = 1, . . . , n add the highest-ÎE edge connected to VC that is not currently in VE ,
to VE ; add its parent to VC . For simplicity, we use top-n, except in cases where it tends to not work well; in practice, greedy
circuit construction is only needed for good performance when using information flow routes.

When deciding which components to use, we can either add to the circuit the edges with the highest score. Or, we can first
take the absolute value of each score, adding the highest-magnitude scores. Adding the highest-scoring components is more
likely to yield components that perform the task well, and is better suited to the CPR metric. Adding the highest-magnitude
components is more likely to yield components that have any strong effect on task performance, and is better suited to the
CMD metric. Thus, when we report scores, we use high-value scoring to construct circuits for CPR, and high-magnitude
scoring to construct circuits for CMD.

E.2. Baselines

Attribution patching. Edge attribution patching is computed as follows. Let (u, v) be an edge from component u to v, au
and a′u be the output activations of u on normal and counterfactual inputs, av be the input activations of v, and m be our
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Table 13. Model accuracy (0-shot, greedy generation) on ARC counterfactuals. AP = Answer Position, S = Symbol, RL = Random Letter.

Easy/Challenge Model AP S RL AP+RL

Easy

Llama 3.1-8B 0.93 0.91 0.86 0.85
Gemma 2-2B 0.78 0.78 0.57 0.55
Qwen 2.5-0.5B 0.73 0.66 0.26 0.22
GPT2-Small 0.03 0.00 0.00 0.01

Challenge

Llama 3.1-8B 0.79 0.77 0.69 0.67
Gemma 2-2B 0.60 0.62 0.43 0.41
Qwen 2.5-0.5B 0.56 0.51 0.18 0.19
GPT2-Small 0.04 0.00 0.01 0.00

model performance metric. EAP estimates the indirect effect as

ÎE = (au − a′u)
∂m

∂av

∣∣∣
x
. (3)

That is, we multiply the change in activation of u by the gradient (slope) of the metric m with respect to v’s input, on normal
inputs x.

When performing NAP (at the node level rather than edge level), the ÎE of a node can be computed as in Eq. 3, but replacing
∂m
∂av

with ∂m
∂au

. Note that we always run NAP at the neuron granularity, and not the submodule granularity; this is because
at smaller circuit sizes, including just one submodule puts us over the size threshold, meaning we have multiple points at
which the circuit is empty.

Attribution patching with integrated gradients. Edge attribution patching with IG (EAP-IG) is defined as follows:

ÎE = (a− a′) · 1
Z

Z∑
z=0

∂m(a′ + z
Z · (a− a′))

∂a

∣∣∣
x
. (4)

That is, given input x, we compute ∂d
∂a at Z intermediate points between a and a′. At each intermediate point, we intervene

on a, replacing its activation with what it would have been at the intermediate point. Using this new activation, we recompute
m, and backpropagate from that to obtain a new gradient value. We take the mean over these gradient values to obtain a
more accurate estimate of the slope of m w.r.t. a. This slope is then multiplied by the change in a as before.

EAP-IG-inputs operates under a similar intuition. The key difference is that, instead of interpolating between intermediate
activations at the target neuron, we only interpolate between intermediate activations at the input embeddings, and allow the
network to compute the activations for the target component naturally given each intermediate input embedding. EAP-IG-
activations therefore requires us to perform this interpolation for each layer separately; EAP-IG-inputs only requires us to
perform this interpolation once at the inputs.

IFR. We adapt IFR to output importance scores for our computational graph as follows. Let av be the input to v; if U is
the set of nodes with edges to v, and au is the output of a node u ∈ U , then the importance of a given u to v is

imp(u, v) =
max(||av||1 − ||au − av||1, 0)∑

u′∈U max(||av||1 − ||au′ − av||1, 0)
. (5)

Because important scores are normalized (for any given node, the sum of the scores of edges to it will be 1), we cannot
apply a top-n procedure to find IFR circuits; we must use greedy search.

Uniform Gradient Sampling. UGS maintains a parameter θ̃(u,v) for each edge (u, v), where θ(u,v) = (1 +

exp(−θ̃(u,v)))−1 represents the estimated probability of (u, v) being part of the circuit determined by the pruning mask. The
sampling frequency for α(u,v) is determined by w(θ(u,v)) = θ(u,v)(1− θ(u,v)). Specifically, α(u,v) ∼ Unif(0, 1) with prob-
ability w(θ(u,v)), α(u,v) = 1 with probability θ(u,v) − 1

2w(θ(u,v)), and α(u,v) = 0 with probability 1− θ(u,v) − 1
2w(θ(u,v)).

We use θ(u,v) as the importance scores when constructing circuits.
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Table 14. CPR scores across circuit localization methods and ablation types. All evaluations were performed using counterfactual
ablations. Higher scores are better. Arithmetic scores are averaged across addition and subtraction; see Table 17 for separate scores. We
bold and underline the best and second-best methods per column, respectively.

IOI Arithmetic MCQA ARC (E) ARC (C)

Method GPT-2 Qwen-2.5 Gemma-2 Llama-3.1 Llama-3.1 Qwen-2.5 Gemma-2 Llama-3.1 Gemma-2 Llama-3.1 Llama-3.1

Random 0.25 0.28 0.30 0.25 0.25 0.27 0.32 0.26 0.32 0.26 0.25

EActP (CF) 2.30 1.21 - - - 0.85 - - - - -

EAP (mean) 0.29 0.71 0.68 0.98 0.35 0.29 0.33 0.13 0.26 0.34 0.80
EAP (CF) 1.20 0.26 1.29 0.85 0.55 0.85 1.49 1.00 1.08 0.80 0.82
EAP (OA) 0.95 0.70 - - - 0.29 - - - - -

EAP-IG-inputs (CF) 1.85 1.63 3.20 2.08 0.99 1.16 1.64 1.05 1.53 1.04 0.98
EAP-IG-activations (CF) 1.82 1.63 2.07 1.60 0.98 0.77 1.57 0.79 1.70 0.71 0.63

NAP (CF) 0.28 0.30 0.30 0.26 0.27 0.38 1.47 1.69 1.01 0.26 0.26
NAP-IG (CF) 0.76 0.29 1.52 0.42 0.39 0.77 1.71 1.87 1.53 0.26 0.26

IFR 0.58 0.31 0.25 0.09 0.89 0.40 0.38 0.52 0.34 0.36 0.24

UGS 0.97 0.98 - - - 1.17 - - - - -

The loss function comprises two components: (1) a performance metric that measures the discrepancy between the original
model’s predictions and the output of the partially ablated model (here, KL divergence); and (2) a regularization term
that controls the sparsity of the subgraph determined by the pruning mask. The balance between these components is
governed by a hyperparameter λ. For our experiments, we set λ = 10−3, chosen through a hyperparameter search over
{10−2, 10−3, . . . , 10−7} using a validation set. All other hyperparameters were left at their default values, as specified in Li
& Janson (2024).

Optimal ablations. In optimal ablations (Li & Janson, 2024), rather than taking an activation from an example-dependent
counterfactual input, we learn an ablation vector a that is not dependent on the original input. Given submodule u taking
activations u, we initialize the ablation vector to the mean of u over the task dataset D. Then, we optimize a via gradient
descent to minimize

argmin
a
L(N ,D, do(u = a)), (6)

where L is the cross-entropy (language modeling) loss on the task dataset D when we set u to a. We pre-compute this
vector for all u in N , and then use these vectors as the counterfactual activations during circuit discovery.

We use initial learning rate 1× 10−3 and batch size 20. We train for up to 1000 steps on the train split of the task dataset.
We compute loss on the validation split every 50 steps; if the validation loss does not improve from its best value after 150
steps, we stop early and save the ablation vector from the best evaluation step.

E.3. Further Circuit Localization Results

Table 14 presents CPR scores for all valid task-model combinations. Trends are largely similar to those from the CMD
table, except that EAP and UGS are less competitive with EAP-IG-inputs.

We provide scores for all methods where possible. UGS has significant memory requirements; running it on an 80G GPU
is not possible for larger models, even when reducing the batch size to 1. Edge activation patching (EActP) and optimal
ablations–based methods do not scale well time-wise with model size; the number of edges multiplies significantly, meaning
that we must iterate over many more components. We do not include methods that take over 1 week to run.12

In Table 17 we provide scores for each arithmetic operator separately.

F. Details on InterpBench Model Training
Faithfulness is a fuzzy and unbound metric. Ideally, we would like to know which edges or nodes are in the circuit in
advance, such that we can compute more precise metrics such as precision and recall. Inspired by InterpBench (Gupta et al.,
2024), we train a transformer model closely following their methods. The model we use was explicitly trained to predict the

12This is an arbitrary threshold. We do not restrict users from submitting methods that take this long to run if they so choose.
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Table 15. CMD scores for the private test set across circuit localization methods and ablation types (lower is better). All evaluations were
performed using counterfactual ablations. Arithmetic scores are averaged across addition and subtraction. We bold and underline the best
and second-best methods per column, respectively.

IOI Arithmetic MCQA ARC (E) ARC (C)

Method GPT-2 Qwen-2.5 Gemma-2 Llama-3.1 Llama-3.1 Qwen-2.5 Gemma-2 Llama-3.1 Gemma-2 Llama-3.1 Llama-3.1

Random 0.75 0.72 0.70 0.75 0.75 0.73 0.68 0.74 0.68 0.73 0.75

EActP (CF) 0.01 0.48 - - - 0.35 - - - - -

EAP (mean) 0.27 0.24 0.28 0.04 0.07 0.21 0.19 0.17 0.22 0.19 0.20
EAP (CF) 0.03 0.15 0.06 0.01 0.01 0.12 0.08 0.12 0.04 0.20 0.19
EAP (OA) 0.31 0.17 - - - 0.11 - - - - -

EAP-IG-inp. (CF) 0.03 0.02 0.04 0.01 0.01 0.08 0.06 0.14 0.04 0.10 0.22
EAP-IG-act. (CF) 0.02 0.01 0.03 0.01 0.00 0.05 0.07 0.12 0.04 0.30 0.38

NAP (CF) 0.36 0.33 0.40 0.30 0.28 0.24 0.29 0.36 0.33 0.69 0.69
NAP-IG (CF) 0.25 0.19 0.29 0.18 0.17 0.18 0.29 0.33 0.27 0.67 0.67

IFR 0.43 0.70 0.75 0.89 0.22 0.60 0.62 0.49 0.66 0.63 0.53

UGS 0.04 0.02 - - - - 0.19 - - - -

Table 16. CPR scores for the private test set across circuit localization methods and ablation types. All evaluations were performed using
counterfactual ablations. Higher scores are better. Arithmetic scores are averaged across addition and subtraction. We bold and underline
the best and second-best methods per column, respectively.

IOI Arithmetic MCQA ARC (E) ARC (C)

Method GPT-2 Qwen-2.5 Gemma-2 Llama-3.1 Llama-3.1 Qwen-2.5 Gemma-2 Llama-3.1 Gemma-2 Llama-3.1 Llama-3.1

Random 0.25 0.28 0.30 0.25 0.25 0.27 0.32 0.26 0.32 0.26 0.25

EActP (CF) 2.39 1.20 - - - 0.87 - - - - -

EAP (mean) 0.28 0.34 0.64 0.94 0.34 0.29 0.34 0.13 0.26 0.34 0.31
EAP (CF) 1.26 0.27 1.31 0.87 0.54 0.84 1.48 1.06 1.08 0.80 0.26
EAP (OA) 1.07 0.75 - - - 0.29 - - - - -

EAP-IG-inputs (CF) 1.89 1.73 3.03 2.04 0.98 1.61 1.05 0.95 1.53 1.05 0.31
EAP-IG-activations (CF) 1.84 1.61 2.34 1.33 0.98 0.76 1.53 0.83 1.71 0.27 0.28

NAP (CF) 0.27 0.30 0.29 0.25 0.26 0.38 1.46 1.69 1.02 0.26 0.26
NAP-IG (CF) 0.69 0.29 1.42 0.42 0.38 0.77 1.68 1.84 1.54 0.26 0.26

IFR 0.57 0.30 0.25 0.11 0.89 0.40 0.38 0.51 0.34 0.37 0.47

UGS 0.97 1.00 - - - 1.17 - - - - -

indirect objects in the IOI dataset (App. D.1), and implements a simplified version of the IOI circuit described by Gupta
et al. (2024).

The model has 6 layers and 4 heads per layer, dmodel = 64, and dhead = 16. It was trained with mini-batches of varying
lengths using left padding. We performed hyperparameter sweeps to find the best weights for the SIIT algorithm. We use the
three-losses variant of SIIT; see Gupta et al. (2024) for details. The final model was trained for 70 hours on a single H100
GPU.
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Table 17. CPR and CMD scores for Llama-3.1 on the arithmetic public test sets, separated by operator. Scores are generally similar
across operators, and methods follow similar rankings regardless of which operators are used. A notable exception is EAP-IG-activations,
where CPR scores are significantly different.

Arithmetic (+) Arithmetic (−)

Method CPR (↑) CMD (↓) CPR (↑) CMD (↓)
Random 0.25 0.25 0.75 0.75

EAP (mean) 0.40 0.07 0.31 0.07
EAP (CF) 0.49 0.01 0.61 0.01

EAP-IG-inputs 0.96 0.00 1.03 0.00
EAP-IG-activations 0.98 0.00 0.99 0.00

NAP (CF) 0.26 0.29 0.27 0.27
NAP-IG (CF) 0.43 0.18 0.34 0.18

IFR 0.90 0.24 0.87 0.20

G. Details on Causal Variable Localization Track
G.1. Causal Abstraction Analysis

Causal Models and Interventions A deterministic causal modelH has variables that take on values. Each variable has a
mechanism that determines the value of the variable based on the values of parent variables. Variables without parents,
denoted X, can be thought of as inputs that determine the setting of all other variables, denotedH(x). A hard intervention
X ← x overrides the mechanisms of variable X , fixing it to a constant value x.

Interchange Interventions We perform interchange interventions (Vig et al., 2020; Geiger et al., 2020) where a variable
(or set of features) X is fixed to be the value it would take on if the LM were processing counterfactual input c. We write
X ← Get(H(c), X) where Get(H(c), X) is the value of variable X when H processes input c. In experiments, we will
feed a base input b to a model under an interchange interventionHX←Get(H(c),X))(b).

Featurizing Hidden Vectors The dimensions of hidden vectors are not an ideal unit of analysis (Smolensky, 1986), and
so it is typical to featurize a hidden vector using some invertible function, e.g., an orthogonal matrix, to project a hidden
vector into a new variable space with more interpretable dimensions called “features”(Geiger et al., 2024a; Huang et al.,
2024a). A feature intervention Π← Π edits the mechanism of a hidden vector h to fix the value of features Π to Π.

Alignment The LM is a low-level causal model N where variables are dimensions of hidden vectors and the hypothesis
about LM structure is a high-level causal modelH. An alignment assigns each high-level variable X to features of a hidden
vector ΠX

h , e.g., orthogonal directions in the activation space of h. To evaluate an alignment, we perform intervention
experiments to evaluate whether high-level interventions on the variables inH have the same effect as interventions on the
aligned features in N .

Causal Abstraction We use interchange interventions to reveal whether the hypothesized causal modelH is an abstraction
of an LM N . To simplify, assume both models share an input and output space. The high-level modelH is an abstraction of
the low-level model N under a given alignment when each high-level interchange intervention and the aligned low-level
intervention result in the same output. For a high-level intervention on X aligned with low-level features ΠX

h with a
counterfactual input c and base input b, we write

GetOutput(NΠX
h←Get(N (c),ΠX

h ))(b)) = GetOutput(HX←Get(H(c),X))(b)) (7)

If the low-level interchange intervention on the LM produces the same output as the aligned high-level intervention on
the algorithm, this is a piece of evidence in favor of the hypothesis. This extends naturally to multi-variable interventions
(Geiger et al., 2024a).
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(a) Arithmetic Task Submission. Users submit an alignment between the carry-the-one variable XCarry in a high-level causal model H+

and two features ΠXCarry of the neural network’s residual stream at the second number token.
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(b) Arithmetic Task Evaluation. An aligned interchange intervention with base input “17+25=” and counterfactual input “30+47=”. At
the high-level, the interchange intervention HXCarry←Get(H(30+47),XCarry)(17 + 25) fixes the carry-the-one variable XCarry to the value 0
(from the counterfactual) instead of its natural value 1 (from the base input), causing the causal model to output “32” instead of “42”. At
the low-level, the interchange intervention NΠXCarry

←Get(N (30+47),ΠXCarry
)(17 + 25) fixes the aligned features ΠXCarry of the LM to the

value they take on when the LM is run on the counterfactual input. The low-level output after intervention “32” is equal to the high-level
output after intervention, which is a piece of evidence supporting the hypothesized alignment between the carry-the-one variable and the
identified neural network features. The faithfulness metrics aggregate these individual experiments across base-counterfactual input pairs.

Figure 6. A schematic of the causal variable localization track submission and evaluation. Users submit an alignment between a
high-level causal variable X and hidden vector features ΠX in an LM (top). In evaluations, aligned interchange interventions are
performed with base and counterfactual inputs (b, c) on the high-level causal model HX←Get(H(c),X)(b) and the low-level neural network
NΠX←Get(N (c),ΠX )(b). The more similar LM output under intervention is to the causal model output under intervention, the more
faithfully the causal model abstracts the LM (bottom).

30



MIB: A Mechanistic Interpretability Benchmark

Graded Faithfulness Metric We construct counterfactual datasets for each causal variable where an example consists
of a base prompt and a counterfactual prompt . The counterfactual label is the expected output of the algorithm after the
high-level interchange intervention, i.e., the right-side of Equation 7. The interchange intervention accuracy is the proportion
of examples for which Equation 7 holds, i.e., the degree to whichH faithfully abstracts N .

G.2. Aligning Unsupervised Features to Causal Variables

In our experiments, we use a variety of unsupervised methods for featurizing hidden vectors in LMs, including principal
component analysis (PCA), sparse autoencoders (SAE), and simply taking standard dimensions of the hidden vector as
features. For a variable X in the high-level causal modelH, we learn a set of features ΠX

h of a hidden vector h of the LM
N using Differential Binary Masking (DBM) (Cao et al., 2020; 2022; Csordás et al., 2021; Davies et al., 2023). Given base
input b and counterfactual input c, we train a mask m ∈ [0, 1]|Πh| on the objective

CE
(
GetLogits

(
NΠh←m◦Get(N (c),Πh))(b)

)
,GetLogits

(
HX←Get(H(c),X))(b)

))
(8)

Principal Component Analysis. Principal Component Analysis (PCA) serves as an unsupervised dimensionality reduction
technique (Tigges et al., 2023; Marks & Tegmark, 2024). For a vector set (V ⊂ Rn) where (|V| > n), PCA determines
orthogonal unit vectors

[
p1 . . . pn

]
. We employ the principal components’ orthogonal matrix as featurizer F , mapping

neurons into a more interpretable lower-dimensional space. Given PCA’s unsupervised nature, which doesn’t inherently
specify component information, we use differential binary masking to select principal components that best abstracted by a
causal variable.

Sparse Autoencoders. Sparse Autoencoders (SAE) employ an autoencoder architecture to transform neural activations
into a sparse, higher-dimensional feature space before reconstruction (Bricken et al., 2023; Huben et al., 2024). Our
implementation utilizes the GemmaScope (Lieberum et al., 2024) and LlamaScope (He et al., 2024) SAE collections. A key
consideration is that featurizer invertibility requires inclusion of the SAE reconstruction loss. Consequently, all SAE feature
interventions incorporate the base input’s reconstruction error. As with PCA, sparse autoencoders produce unsupervised
features without inherent interpretability. We address this by implementing the previously described differential binary
masking approach on SAE features (Chaudhary & Geiger, 2024).

G.3. Distributed Alignment Search

Distributed Alignment Search. Distributed Alignment Search (DAS) (Geiger et al., 2024b) operates as a supervised
featurization technique that identifies a linear subspace within the model’s representation space. The method utilizes
an orthogonal matrix Q of size n × n, written as Q = [u1 . . .un]. This transformation matrix converts the original
representation into a new coordinate system through F(h) = Q⊤h. The feature subset Πh is extracted from the first k
dimensions of this transformed space, where k serves as an adjustable hyperparameter. The optimization of matrix Q
minimizes the following loss:

L = CE(HX←Get(H(c),X)(b),NΠX
h←Get(N (c),ΠX

h )(b))

To manage computational efficiency, rather than computing the complete matrix Q, we learn only the k orthogonal vectors
that constitute feature ΠX

h . Our implementation utilizes the pyvene library (Wu et al., 2024), training the featurizer on
base-counterfactual pairs with interchange interventions.
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G.4. Hyperparameters

Learning rate and regularization The learning rate used across models and tasks was 0.01, except for IOI which we
used learning rate of 1.0. No regularization loss terms were used.

Epochs and batch size. For RAVEL, we train for one epoch of ≈30k examples with a batch size of 128 for Llama and 32
for Gemma. For MCQA, we train for 8 epochs on ≈300 examples with a batch size of 64. For ARC (easy), we train for 2
epochs of ≈9k examples and a batch size of 48 with Gemma and for 1 epoch with a batch size of 16 for Llama. For the
two-digit addition task, we train for 1 epoch on ≈30k examples with a batch size of 256. For IOI, we train for one epoch on
≈30k examples.

DAS dimensionality. The dimensionality of DAS was set at 16 for the ordering ID XOrder and carry-the-one variable
XCarry. The DAS dimensionality for STok and SPos are 32. The OAnswer variable in MCQA and ARC (Easy) has a DAS
dimensionality of half the residual stream for their respective model, because token embeddings live in a higher dimensional
space. The RAVEL task which had the dimensionality of an eighth of the residual stream, according to the experiments
from (Huang et al., 2024a).

Masking parameters. For the masking methods, the temperature schedule used begins at 1.0 and approaches 0.01.

G.5. High-level Causal Models and Experimental Details for Each Task

G.5.1. MULTIPLE-CHOICE QUESTION ANSWERING

Answer

AnswerPointer

TextPrompt

(a) General causal model for multiple choice question answering

Answer: C

AnswerPointer: 3

TextPrompt:
“Question: Coconuts

are brown. What
color are coconuts?
A. red B. orange C.
brown D. purple”

(b) Specific example of the causal process

Figure 7. Causal model for multiple choice question answering. The model operates through a two-step mechanism: first, the TextPrompt
is processed to generate an AnswerPointer that identifies the position of the correct answer in the options list. Second, this AnswerPointer
is used to extract the corresponding letter label (A, B, C, or D) as the final Answer. This mechanism separates the reasoning process
(identifying which option is correct) from the answer extraction (converting position to label).

We define the causal model for multiple-choice question answering, including one for the ARC dataset, in Figure 7. It
comprises two variables, as illustrated in Figure 7a: 1) XOrder: It takes the text prompt as input and outputs a pointer that
encodes the position of the correct label. 2) OAnswer: It receives the answer pointer as input and dereferences it by retrieving

32



MIB: A Mechanistic Interpretability Benchmark

the corresponding token value from the text prompt. For instance, consider the text prompt shown in Figure 7b. First, the
XOrder variable identifies the position of the correct option—position 3. Then, the OAnswer variable uses this information to
locate and extract the value of the third option from the prompt—i.e., C—which becomes the final output. Similar high-level
causal models have also been proposed in prior work (Lieberum et al., 2023b; Prakash et al., 2024).

We conduct two interchange intervention experiments—one for each variable in the causal model—to align the LM’s internal
representations with those of the causal model. To align the XOrder variable, we create counterfactual examples where the
position of the correct option is altered, while the option label remains the same alphabetically. Conversely, to align the
OAnswer variable, we generate counterfactuals in which the position of the correct option is fixed, but the option label is
replaced with a different letter.

Figures 8 and 9 show the alignment results of the XOrder variable in the Gemma model using full vector patching and
the DAS method, respectively. Both results demonstrate that the XOrder information shifts from the correct symbol token
position to the last token position in the middle layers. This behavior aligns with our hypothesized causal model, in which
the model first identifies the position of the correct option, before dereferencing it to fetch token value information.

Figure 8. XOrder variable alignment results with full residual vector patching.

Figure 9. XOrder variable alignment results using the subspace identified using the DAS method.
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Figures 10 and 11 illustrate the alignment results of the OAnswer variable in the Gemma model, using the full vector patching
and DAS methods, respectively. Both results indicate that the OAnswer variable aligns in the later layers—i.e., after the
XOrder variable has been established—which is consistent with our hypothesized high-level causal model, where the OAnswer
variable derives its information from the XOrder variable.

Figure 10. OAnswer variable alignment results with full vector patching.

Figure 11. OAnswer variable alignment results using the subspace identified using the DAS method.

G.5.2. ARITHMETIC

We define the causal model for arithmetic (addition) in Figure 14. Unlike the causal models for MCQA and ARC, the
addition causal model involves multiple variables, as illustrated in Figure 14a. First, the units and tens digits of both addends
are parsed. The unit digits are then added together to determine the units digit of the result, as well as whether a carry is
generated. Next, the tens digits of both addends—along with the carry, if any—are summed to compute the tens digit of the
result. This step also helps determine whether the result includes a hundred’s digit.

Consider the example shown in Figure 14b, namely 57 + 66. The causal model begins by parsing the addends to identify
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their respective tens and units digits. It first adds the unit digits, 7 and 6, determining that the units digit of the result is 3,
and that a carry is generated. Next, it adds the tens digits of both addends along with the carry, concluding that the tens digit
of the result is 3. Using these same three values—the tens digits and the carry—the model also determines that the result
includes a hundreds digit, which is 1.

We evaluate the hypothesized causal model by conducting an interchange intervention experiment to align the XCarry variable.
The counterfactual examples are designed such that they introduce a carry when the original does not, and remove it when
the original includes one. Figures 12 and 13 present the alignment results in the Llama model using full vector patching and
the DAS method, respectively. Together, these results suggest that the XCarry information emerges at the last token position
during the middle layers of the model.

Figure 12. XCarry variable alignment results in Llama with full vector patching.

Figure 13. XCarry variable alignment results in Llama using the DAS method.
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OutputDigit100 OutputDigit10 OutputDigit1

CarryTheOne

TextPrompt

Addend1Digit10 Addend1Digit1Addend2Digit10 Addend2Digit1

(a) General causal model for two-digit addition

OutputDigit100 = 1 OutputDigit10 = 2 OutputDigit1 = 3

CarryTheOne = 1

TextPrompt: “57 + 66 = ?”

Addend1Digit10 = 5 Addend1Digit1 = 7Addend2Digit10 = 6 Addend2Digit1 = 6

(b) Specific example: 57 + 66 = 123

Figure 14. Causal model for two-digit addition arithmetic. The model processes addition through a series of interdependent mechanisms:
(1) The 1’s digits from both addends directly influence the output 1’s digit through modular addition. (2) When the sum of 1’s digits
exceeds 9, the CarryTheOne variable becomes 1, otherwise it’s 0. (3) The 10’s digit of the result is determined by three inputs: the 10’s
digits of both addends and the CarryTheOne value. (4) The 100’s digit is causally influenced by both 10’s digits of the addends and the
carry operation—it becomes 1 only when the sum of 10’s digits plus any carried value exceeds 9.

G.5.3. RAVEL

Figure 15. The RAVEL task with variables for the country ACountry , continent ACont , and language ALang of a city.

RAVEL

Gemma-2 Llama-3.1

Method ACont ACountry ALang ACont ACountry ALang

DAS 75 (85) 57 (67) 62 (70) 75 (83) 58 (64) 63 (70)
DBM 66 (71) 53 (65) 54 (58) 68 (80) 53 (59) 58 (64)
+PCA 63 (70) 47 (53) 50 (56) 62 (74) 48 (54) 53 (57)
+SAE 64 (72) 49 (56) 53 (59) 64 (72) 50 (57) 55 (57)
Full Vector 48 (62) 49 (57) 45 (56) 53 (62) 47 (53) 47 (57)

The Resolving Attribute–Value Entanglements in Language Models (RAVEL) benchmark (Huang et al., 2024a) evaluates
methods for isolating attributes of an entity. We include the split of RAVEL for disentangling the country, continent, and
language attributes of cities. The prompts are queries about a certain attribute, e.g., Paris is on the continent of.

Behavioral Performance. The Llama model achieves 66.5% accuracy on the task and the Gemma model achieves 70.5%
accuracy on the task. The dataset contains many, many cities, so considering that there are many countries and languages to
choose from, this is good performance. We filter out failure cases.

Causal model. The causal model has a text input variable T , three attribute variables ACountry , ACont , and ALang for the
city in the prompt, a queried attribute variable AQuery , and an output variable O that retrieves the value of the attribute
variable corresponding to the queried attribute.

Counterfactuals. Half of the counterfactual prompts are prompts that query a different attribute from the base prompt.
The other half are random sentences from Wikipedia containing the city. Interventions on ACountry , ACont , and ALang

will only change the output if the queried attribute matches the intervened variable. When evaluating each variable, we
balance the base prompts such that half of the prompts query the intervened attribute, which enforces the balance between
interventions that should change the output and interventions that shouldn’t change the output.

Results. For each baseline, we target the last token and the last token of the city entity in the prompt. We generally see
evidence that the attributes can be localized and disentangled (Figure 15; App. G.5.3), though the Llama-3 results are weaker.
Because the dataset requires balancing causing an attribute to change with not changing the other attributes, the full vector
baseline entirely fails completely.
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Further Details We define the causal model for the RAVEL task in Figure 16. The model takes an input prompt that queries
the value of an attribute of an entity (e.g., the continent of a city) and outputs the correct answer. As illustrated in Figure 16a,
the causal model first parses the input prompt T to extract two input variables: the entity and the queried attribute AQuery .
The entity refers to a city, which is associated with three attribute variables: ACont , ACountry , and ALang . The model then
identifies the value of each attribute variable for the given entity. Lastly, the answer variable O selects the appropriate value
based on the queried attribute. For example, given the prompt “Paris is in the continent of” in Figure 16b, the model first
identifies the entity “Paris” and the queried attribute “continent.” It then uses its internal knowledge to retrieve the continent,
country, and language associated with the city of Paris. Lastly, since the queried attribute is “continent,” the model outputs
“Europe.”

We conduct interchange intervention experiments on each of the attribute variables, ACont , ACountry , and ALang , to align
the language model’s internal representations with the hypothesized causal model. We use two types of counterfactuals: the
attribute counterfactual, which alters the queried attribute in the base prompt, and the Wikipedia counterfactual, which
is a freeform sentence from Wikipedia about the entity city. If the MI method successfully isolates the target attribute,
then the intervention should cause the language model to output the corresponding attribute value for the entity city in the
counterfactual.

Answer

Continent
Country

Language

TextPrompt

Entity QueriedAttribute

(a) General causal model for RAVEL.

Answer:
Europe

Continent:
Europe Country:

France

Language:
French

TextPrompt: Paris is in the continent of

Entity:
Paris

QueriedAttribute:
Continent

(b) Specific example: Paris is in the continent of “ ”.

Figure 16. Causal model for the RAVEL task. Given a prompt querying an attribute of a city entity, the model extracts the entity and
queried attribute as input variables, then identifies the values of the ACont , ACountry , and ALangattributes for the entity. Lastly, it decides
which value to output based on the queried attribute.

Results. We present representative results from the set of intervention experiments. Specifically, we focus on the Gemma-2
2B model and target the ACountryvariable. Figure 17 shows the Interchange Intervention Accuracy (IIA) at each layer
using the attribute counterfactual, comparing the baseline (Full Vector) and the best-performing method (DAS). Half of
this counterfactual dataset consists of prompts querying the ACountryvariable, while the other half queries the AContor
ALangvariables. Successfully isolating the ACountryvariable requires the method to change only the value of ACountrywhile
preserving the values of AContand ALang . Since the Full Vector swaps out all features, it performs poorly in the last token
position in the later layers. In contrast, the featurizer learned by DAS achieves high IIA in layers 18 and 19.

We also evaluate performance using the Wikipedia counterfactual, which presents a more challenging case: the counterfactual
prompt is a freeform sentence that does not query an attribute, and thus would reduce false positives where the counterfactual
answer coincides with the base prompt. In Figure 18, we observe similar but generally lower IIA patterns compared to the
attribute counterfactual. The Full Vector baseline fails to isolate the variable, with IIA in both token positions consistently
around or below 50. For DAS, IIA increases from the early to mid layers, with meaningful signals emerging in the entity’s
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last token position in the mid layers. It is worth noting that the ACountryvariable may be more difficult to disentangle than
others (Huang et al., 2024a), and all five methods we evaluate exhibit lower IIA on ACountrycompared to the other two
variables.

(a) IIA using the identity featurizer (Full Vector). (b) IIA using Distributed Alignment Search to learn a featurizer.

Figure 17. Interchange Intervention Accuracy (IIA) at each layer of Gemma-2 2B, when targeting the ACountryvariable using the attribute
counterfactual. The Full Vector baseline fails to isolate the target variable, whereas DAS achieves high accuracy in the mid layers.

(a) IIA using the identity featurizer (Full Vector). (b) IIA using Distributed Alignment Search to learn a featurizer.

Figure 18. Interchange Intervention Accuracy (IIA) at each layer of Gemma-2 2B when targeting the ACountryvariable using the Wikipedia
counterfactual. This counterfactual presents a more challenging setting. The Full Vector baseline fails to disentangle the attributes, while
DAS identifies meaningful signal in the mid layers.

G.5.4. INDIRECT OBJECT INDENTIFICATION

The indirect object identification (IOI) task is a natural language task which consists of sentences like “When Mary and
John went to the store, John gave a drink to”, and evaluates for the model completion, ‘Mary’. The task is linguistically
fundamental and has an interpretable algorithm: given two names in a sentence, predict the name that isn’t the subject of the
last clause.

A sentence in IOI has two parts: a beginning clause that depends on the rest of the sentence, like “When Mary and John
went to the store,” and a main clause, like “John gave a bottle of milk to Mary.” The beginning clause introduces the indirect
object (IO), ‘Mary’, and the subject (S), ‘John’. The main clause mentions the subject again, and in every IOI example, the
subject gives something to the IO. The goal of the IOI task is to predict the last word of the sentence, which should be the
IO. Our high-level model predicts the logit difference resulting from subtracting indirect object name logit from the the
subject name logit. When this difference is positive, the model is more likely to predict the subject than the indirect object.
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(Wang et al., 2023) identify that heads 3 and 9 in layer 7 (7.3 and 7.9) and heads 6 and 10 in layer 8 (8.6 and 8.10) all reduce
the likelihood of the model outputting the subject, dubbing these heads “S-inhibition heads”. These heads help the model
output the indirect object to solve the task. Specifically, Wang et al. (2023) found that S-Inhibition Heads use two types
of signals. The first is the token signal, which carries the token identity of the subject, while the second is the position
signal, which carries information about the position of subject, i.e., first or second. These information signals carried by the
S-Inhibition heads inform other components in the model to avoid the token and position of the subject.

To identify these two signals, Wang et al. (2023) perform interchange interchange interventions that manipulate each signal
separately. The IO↔S1-Flip counterfactual inverts the position of the subject while keeping the token the same. The
IO↔S2-Flip inverts the token of the subject while keeping the position the same. The IO↔S1-Flip+IO↔S2-Flip inverts the
position and token of the subject.

After an interchange intervention is performed on all four heads with one of these counterfactuals, Wang et al. (2023) consider
the token/position to have value 1 if unchanged and value -1 if inverted.13 Using these binary signals as inputs and the logit
difference between indirect object and subject as outputs, they perform a regression and find that 2.31PositionSignal+
0.99TokenSignal is the best predictive model of logit difference. On our dataset, we perform the same intervention
experiments and fit a linear model, finding that 0.069 + 2.018PositionSignal+ 0.687TokenSignal is the best predictor
of logit difference.

Wang et al. (2023) never conducted experiments attempting to disentangle the position and token signals, and this is what
we do here.

Dataset. Our dataset consists of train, validation, and test splits. The train, test, and private test sets contain 10000
examples each, as well as 10000 examples for 8 corresponding counterfactuals as shown in Table 6.

Causal Model. We define the causal model for indirect object identification in Figures 19. The variables STok and SPos are
derived from the original prompt and without intervention, they will always take on the value of the subject token identity and
subject position, respectively. These variables are not equivalent to the binary signals TokenSignal and PositionSignal.
Instead, the output OLogDiff variable compares the subject token and subject position to the original input to determine
whether the token and position is inverted and run the linear model accordingly.

Without an intervention, the STok and SPos variables will always match the text input, and the logit diff is predicted to be
0.069 + 2.018 + 0.687. When only STok is intervened on, the logit diff is predicted to be 0.069 + 2.018 − 0.687. When
only SPos is intervened on, the logit diff is predicted to be 0.069− 2.018 + 0.687. If both are intervened on, then the logit
diff is predicted to be 0.069− 2.018− 0.687

Full Vector Brute-Force Search We conduct a brute-force search by aligning each of the two causal variables with every
possible subset of the four S-inhibition heads. In Table 18) we report the mean-squared error for the alignments. In the main
text, we report the alignment of SPos to heads 7.3, 7.9, and 8.6 and STok to the head 8.10.

13They also included a value of 0 for the token signal of a random new token, but we leave out this condition for our experiments.

39



MIB: A Mechanistic Interpretability Benchmark

LogitDifference

SubjectToken SubjectPosition

TextPrompt

×0.687 ×2.018

+0.069

(a) General causal model for indirect object identification

LogitDifference = 3.16

SubjectToken = 1 SubjectPosition = 1

TextPrompt:
”As Carl and Maria

left the consulate,
Carl gave a fridge to”

×0.687 ×2.018

+0.295

(b) Specific example showing prediction for ”Carl”

Figure 19. Causal model for indirect object identification. The TextPrompt is processed to extract the subject token STok and the
subject position SPos. The output variable mechanism (1) compares the token and position to the input, and determines whether the
token and position were inverted or the same and sets PositionSignal and TokenSignal to 1 and -1 accordingly and (2) computes
0.069 + 0.687TokenSignal+ 2.018PositionSignal, with position having a stronger influence than token identity.

Table 18. Mean Squared Error (MSE) for aligning SPos and STok to each subset of heads.

Heads MSE (SPos) MSE (STok)

((7, 3), (7, 9), (8, 6)) 2.45 6.83
((7, 3), (7, 9), (8, 10)) 3.08 6.79
((7, 3), (7, 9)) 5.42 3.28
((7, 3), (8, 6), (8, 10)) 2.52 8.08
((7, 3), (8, 6)) 4.17 4.82
((7, 3), (8, 10)) 4.92 3.51
((7, 3)) 12.03 4.07
((7, 9), (8, 6), (8, 10)) 2.90 10.20
((7, 9), (8, 6)) 3.15 5.05
((7, 9), (8, 10)) 3.63 4.33
((7, 9)) 7.90 2.80
((8, 6), (8, 10)) 3.00 5.71
((8, 6)) 5.81 4.21
((8, 10)) 7.28 2.82
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