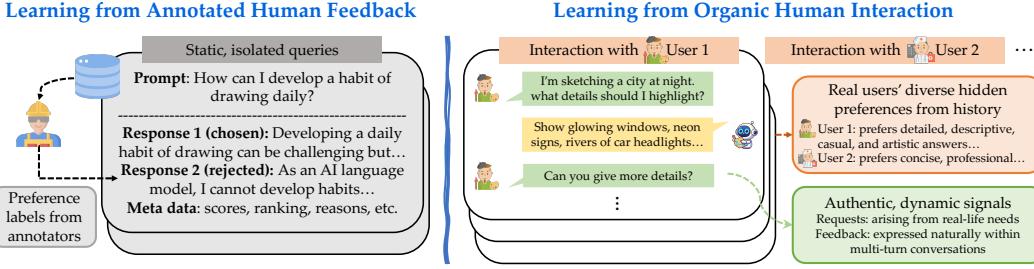

000 THE ERA OF REAL-WORLD HUMAN INTERACTION: 001 RL FROM USER CONVERSATIONS

002 003 004
005 **Anonymous authors**
006 Paper under double-blind review

007 008 009 ABSTRACT

010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026
We posit that to achieve continual model improvement and multifaceted alignment, future models must learn from natural human interaction. Current conversational models are aligned using pre-annotated, expert-generated human feedback. In this work, we introduce Reinforcement Learning from Human Interaction (RLHI), a post-training paradigm that learns directly from in-the-wild user conversations. We develop two complementary methods: (1) *RLHI with User-Guided Rewrites*, which revises unsatisfactory model outputs based on users' natural-language follow-up responses, (2) *RLHI with User-Based Rewards*, which learns via a reward model conditioned on knowledge of the user's long-term interaction history (termed persona). Together, these methods link long-term user personas to turn-level preferences via persona-conditioned preference optimization. Trained on conversations derived from WildChat, both RLHI variants outperform strong baselines in personalization and instruction-following, and similar feedback enhances performance on reasoning benchmarks. These results suggest organic human interaction offers scalable, effective supervision for personalized alignment.



040 041 042 043 044 045 046 047 048 049
Figure 1: **From annotated feedback to the era of real-world human interaction.** **Left:** Traditional alignment relies on expert-curated annotations of ranked responses or labels, providing static, out-of-distribution supervision. **Right:** In-the-wild conversations reveal users' long-term histories, dynamic demands, and diverse signals, enabling personalized, contextual, and continual learning.

050 051 052 053 1 INTRODUCTION

054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 099
Today, language model post-training primarily depends on static corpora of expert-annotated data: verifiable questions, fixed demonstrations, and rankings or ratings collected outside of natural conversational contexts. While these datasets are effective for instilling general capabilities, they reflect the opinions and heuristics of annotators in unnatural scenarios rather than the *authentic, diverse long-term goals and preferences of real users*; they capture static, context-free judgments instead of *evolving, situational demands*; and they scale with labeling budgets rather than with actual usage and diversity of organic users, as is illustrated on the left side of Figure 1.

099
In contrast, humans learn and improve through continual experience by interacting with their environment and other actors, receiving feedback, and adjusting behavior over time (Tomasello et al., 2005). Likewise, a rich and organic source of supervision for language models already exists in the wild: **human interaction**—the ongoing, natural exchanges between models and real users. As is shown on the right side of Figure 1, such organic interactions reveal hidden user preferences from

054 long-term histories and dynamic, context-dependent demands, as people reveal their priorities and
055 concerns not through annotation formats, but by discussing what matters to them, revising or re-
056 attempting questions, explicitly or implicitly approving or critiquing model outputs, following up,
057 or switching goals mid-dialogue. Because they arise directly from model outputs in authentic usage
058 contexts, such interactions provide a rich signal for learning personalized and adaptable behavior,
059 paving the way toward personal superintelligence. While this source of supervision has historically
060 been hard to extract, resulting in resorting to collecting static training data instead, the power of
061 modern language models now gives us a greater ability to extract these signals.

062 To achieve this vision, we introduce RLHI, a post-training paradigm that learns directly from in-
063 the-wild conversations through two complementary methods: (1) *RLHI with User-Guided Rewrites*
064 (§2.3), which revises unsatisfactory model outputs based on users’ natural-language follow-ups, and
065 pairs the rewrites with the originals for preference learning; and (2) *RLHI with User-Based Rewards*
066 (§2.4), which ranks candidate responses using a reward model conditioned on user personas derived
067 from long-term histories to generate preference pairs. Together, these methods link long-term user
068 personas to turn-level preferences via persona-conditioned preference optimization.

069 We evaluate RLHI in three settings. (i) *User-based evaluation* with our WILDCAT USEREVAL:
070 both RLHI variants outperform strong baselines in personalization and instruction-following, and
071 a human study corroborates these trends. (ii) *Standard instruction-following benchmarks*: *User-
072 Based Rewards* attains a 77.9% length-controlled win rate on AlpacaEval 2.0, surpassing all RLHF
073 methods. (iii) *Reasoning*: *User-Guided Rewrites* raises average accuracy from 26.5 to 31.8 across
074 four benchmarks. Our ablation studies further show that RLHI benefits from user guidance and
075 interaction diversity, that reinforcement learning outperforms supervised finetuning, and that quality
076 filtering is essential for effectively leveraging noisy human interaction data.

077

078

079 2 RLHI: REINFORCEMENT LEARNING FROM HUMAN INTERACTION

080

081

082 2.1 THE ERA OF REAL-WORLD HUMAN INTERACTION

083

084 Artificial intelligence (AI) has progressed rapidly in recent years through large-scale pretraining and
085 fine-tuning with human examples and preferences. Yet this trajectory is slowing: high-quality data
086 is running out, and imitation alone cannot push systems beyond existing human knowledge. Recent
087 proposals call for an *era of experience* (Silver & Sutton, 2025), in which AI systems advance by
088 continually learning from their own interactions with the world. Since these systems ultimately
089 exist to assist humans, interaction with users becomes a natural and essential dimension of this shift.
090 The *era of real-world human interaction* thus forms a core pillar of the era of experience, providing
091 both the raw data and personalization signals necessary for adaptive, human-centered intelligence.

092 We define learning from human interaction as the process of improving AI models through natural,
093 continual exchanges with real users. Such interactions may involve messages, actions, requests,
094 or demonstrations provided in direct response to the model’s outputs. These exchanges not only
095 reveal user goals and preferences but also create an evolving feedback loop that enables systems
096 to refine their behavior over time. To truly benefit from human interaction, AI needs to go beyond
097 coarse binary labels to absorb knowledge, preferences, reasoning skills, perceptual cues, cooperative
098 strategies, and social norms, learning deeper forms of intelligence through interaction.

099 Compared with other training data sources, human interaction is distinguished by three key proper-
100 ties: (1) **Contextual grounding** — arises within the flow of ongoing tasks or conversations, directly
101 tied to the user’s situational needs and the model’s prior outputs, while being shaped by personal-
102 alized knowledge of the user’s profile, history, and preferences; (2) **Evolving distribution** — reflects
103 goals that shift, environments that change, and preferences that adapt over time, thereby providing
104 supervision that is temporally relevant and aligned with the real distribution of human needs and
105 priorities; and (3) **Diverse supervision signals** — appears in both explicit high-bandwidth signals
106 beyond scalar rewards (e.g., corrections or clarifications) and implicit cues (e.g., disengagement or
107 frustration), and may include style and role assignments, emotional tone, or even adversarial inputs
such as jailbreak attempts, which require careful handling, but also offer valuable information.

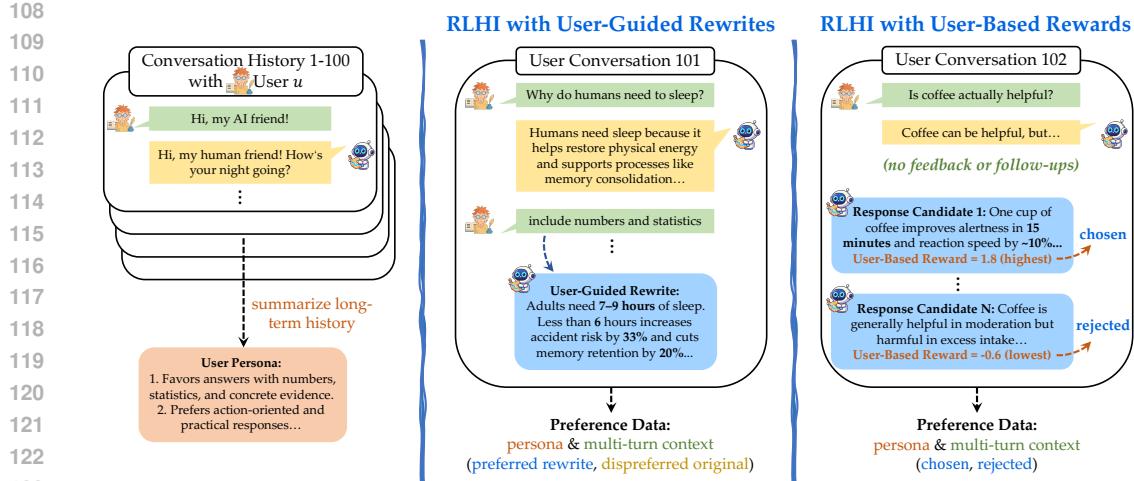


Figure 2: **Reinforcement Learning from Human Interaction (RLHI).** We derive a natural-language persona summary from each user’s long-term conversational history. For real-world requests, RLHI operates in two modes: (1) User-Guided Rewrites, where unsatisfactory model outputs are revised based on users’ natural-language follow-ups, creating preference pairs between the original and rewritten responses; and (2) User-Based Rewards, where multiple candidate responses are generated and ranked by a reward model conditioned on the user’s persona, yielding chosen-rejected pairs. Both methods leverage personas and multi-turn context to enable personalized alignment.

In this paper, we focus on large language models that engage daily with millions of users. Here, human interaction takes the minimal form of textual messages, yet still conveys contextual, dynamic, and diverse requests, holding unique potential as a driver of continual model improvement.

2.2 ANALYSIS OF REAL-WORLD HUMAN INTERACTION

To determine the feasibility of our approach, we first consider *currently available human interaction data*, analyzing its properties. We note that these properties are necessarily tied to the capabilities of current models, and we expect these statistics to change considerably in the coming years.

Users often provide feedback to improve model responses. We analyze user messages in the WildChat-1M dataset, which contains over one million conversations with ChatGPT (Zhao et al., 2024b). In each multi-turn conversation, the first message is the *initial request*, and we prompt an GPT-4o model to classify user follow-up messages into four types: (1) *new requests*, where the user shifts to a new topic, substantially reformulates the original, or provides unrelated input; (2) *re-attempts with feedback*, where the user refines the initial prompt, adds clarification, or provides explicit or implicit feedback; (3) *re-attempts without feedback*, where the same prompt is repeated with no new input; and (4) *positive feedback*, where the user expresses praise or satisfaction. We find the distributions are: 27.07% of user messages are *initial requests*, 40.40% are *new requests*, 26.51% are *re-attempts with feedback*, 4.77% are *re-attempts without feedback*, and 1.25% are *positive feedback*, with more details and examples in Appendix A. Conversations of later stages are dominated by *re-attempts with feedback*, accounting for 83.15% of user utterances after the fifth turn. *re-attempts with feedback* are relatively short, averaging 272 characters compared to 725 for initial requests, but are semantically dense. We note that given the huge amount of human interactions in current production systems, these percentages convert to very large amounts of supervisory data. We note that while these are current statistics, in the future, as models display further capabilities, users will change their behavior. For example, if users know that models will learn from their textual feedback, then they are even more likely to provide it.

Real-world human interaction data are more diverse than existing preference datasets. Conversation messages span a wide range of forms and topics (for example, creative writing, analysis, and coding) and occur in conversations of highly varying length (average 2.54 turns). To quantify this diversity, we compare request contexts in our generated preference dataset with two widely used annotated feedback datasets: HH-RLHF (Bai et al., 2022) and HelpSteer2 (Wang et al., 2024b). From each dataset, we sample 500 examples, embed their contexts using OpenAI’s text-embedding-

162 3-small model (OpenAI, 2024), and compute average pairwise cosine distances. WildChat users
163 show the greatest contextual diversity (0.865), compared to 0.751 for HH-RLHF and 0.848 for Help-
164 Steer2. These results suggest that real user interactions not only reflect authentic everyday needs but
165 also span broader contexts and requests. Additional visualizations are provided in Appendix B.

166 **User personas are diverse with distinct characteristics.** We restructure the dataset by user and
167 construct natural-language *personas* that summarize each individual’s preferences from their con-
168 versation histories (see prompt in Figure 7). We observe that: (1) some users provide little feedback,
169 while others reveal clear and consistent behaviors; (2) many personas reflect common expectations,
170 yet a notable subset exhibit unique preferences (e.g., repeatedly requesting analogies or engaging in
171 role-play with recurring characters); and (3) some users needs vary across domains (e.g., preferring
172 step-by-step reasoning in math but quick takeaways in daily advice) or show evolving needs over
173 time. To study these patterns, we examine several of the most frequently mentioned preference
174 dimensions: expertise, desired informativeness, tone, and response structure. As shown in Table 1,
175 majorities tend to prefer expert, expansive, serious, and well-structured responses, yet substantial
176 portions favor the opposite qualities, underscoring the need to model both dominant trends and less
177 common preferences.

178
179 Table 1: User preferences across conversational dimensions, based on a random subset of 5,000
180 WildChat users. Percentages represent the proportion of users with a clear preference. “Pct. None”
181 denotes the percentage of users with no clear preference.

Dimension	Preference 1	Pct.	Preference 2	Pct.	Pct. None
expertise	responses that can be easily understood by beginners	24.1%	responses with expert-level knowledge	59.8%	16.1%
informativeness	concise responses, without being verbose	36.0%	expansive and informative responses, without missing background information	49.9%	14.1%
tone	casual, friendly, and humorous responses	4.9%	serious, formal, and professional responses	84.5%	10.6%
structure	structured responses, with a clear and logical flow	77.1%	free-form responses, with a casual and conversational style	9.1%	13.8%

194 2.3 RLHI WITH USER-GUIDED REWRITES

195
196 In real-world scenarios, conversational models can generate unsatisfactory outputs—responses that
197 are unhelpful, off-target, or misaligned with user intent. Organically, in such interactions, users
198 frequently react by providing follow-up requests or explicit/implicit feedback (e.g., “Could you pro-
199 vide more details?”), signaling both dissatisfaction and expectations for improvement. Rather than
200 reducing such feedback into coarse binary labels, we seek to exploit its rich semantic content. Lever-
201 aging feedback to help the model identify where it falls short and apply targeted updates provides a
202 natural path toward more useful and better-aligned model behavior.

203 We rely on our user message classification in Section 2.2 to identify *re-attempts with feedback*,
204 which make up 26.51% of all user messages in WildChat. In these cases, the model is prompted
205 to revise its previous unsatisfactory response using the explicit or implicit user feedback (e.g., as
206 in Figure 2, adding numbers and statistics when requested). The prompt we use is provided in
207 Appendix Figure 8. This produces preference pairs where the user-guided rewrite is favored over
208 the original output, directly reflecting user-indicated improvements.

209 To better ground learning in long-term user preferences, we prompt the LLM to summarize each
210 user’s latent preferences from their conversation histories into a user persona. These personas are
211 incorporated into preference pairs generated via user-guided rewrites during training, and dynami-
212 cally updated at inference time to guide personalized generation, as shown in Figure 9. The persona
213 distills long-context signals into a compact representation, while turn-level feedback offers imme-
214 diate, response-specific supervision. Together, long-context persona modeling and local feedback
215 signals help the system capture user-specific expectations and styles that may differ from general
preferences, linking a user’s enduring preferences to desirable outputs.

To ensure the quality of preference pairs, we filter the data using two criteria: (1) User-guided rewrites must improve upon the original. We discard any rewrites with a user-based reward (details in Section 2.4) lower than the original to avoid harmful follow-ups. (2) Overall quality must be high. We apply the filtering techniques from RIP (Yu et al., 2025), with details provided in Appendix C.2.

Formally, for each training instance i from user u , we consider the persona p_u , the multi-turn context $x_{u,i}$, a dispreferred original $y_{u,i}^-$, and a preferred rewrite $y_{u,i}^+$. We perform preference optimization using persona-conditioned Direct Preference Optimization (DPO), which maximizes the relative preference for $y_{u,i}^+$ over $y_{u,i}^-$ conditioned on both the prompt and persona:

$$\mathcal{L}_{\text{persona-DPO}} = \mathbb{E}_{u,i} \left[\log \sigma \left(\beta \left(\log \frac{\pi_\theta(y_{u,i}^+ | x_{u,i}, p_u)}{\pi_{\text{ref}}(y_{u,i}^+ | x_{u,i}, p_u)} - \log \frac{\pi_\theta(y_{u,i}^- | x_{u,i}, p_u)}{\pi_{\text{ref}}(y_{u,i}^- | x_{u,i}, p_u)} \right) \right) \right], \quad (1)$$

where π_θ is the current policy, π_{ref} a frozen reference model (a copy of the base model used as a baseline), and β controls the sharpness of preference learning. This objective explicitly conditions preference optimization on user personas, aligning generation with individualized expectations derived from long-term interactions, and yielding more personalized, satisfactory responses.

2.4 RLHI WITH USER-BASED REWARDS

In real-world human-LLM interactions, many initial requests do not come with follow-ups or feedback clarifying expectations for improvement. Nevertheless, these requests still reflect genuine user needs and are grounded in authentic human personas. Our goal is to improve model responses for such cases in a personalized manner. Using a (user-based) reward model provides a scalable way to learn from one-shot requests, enabling adaptation even when explicit feedback is absent.

To this end, we develop user-based rewards to guide model learning. For each user request, we generate preference pairs by first sampling N candidate responses, then evaluating them with a reward model that explicitly conditions on the corresponding user persona. For example, as illustrated in Figure 2 (right), if long-term interactions indicate that a user favors answers with numbers, statistics, and concrete evidence, the reward model will assign higher scores to responses that not only meet general quality criteria but also reflect these user-specific characteristics.

Formally, for each training instance i from user u , let p_u denote the user persona and $x_{u,i}$ the multi-turn context. The LLM \mathcal{M} generates N candidate responses conditioned on both context and persona. A reward model r then scores each candidate given $(x_{u,i}, p_u)$. Preference pairs $(y_{u,i}^+, y_{u,i}^-)$ are formed by selecting the highest- and lowest-scoring candidates:

$$\{y_{u,i}^{(n)}\}_{n=1}^N \sim \mathcal{M}(x_{u,i}, p_u) \quad \text{then} \quad \begin{cases} y_{u,i}^+ = \arg \max_{n \in [N]} r(y_{u,i}^{(n)} | x_{u,i}, p_u), \\ y_{u,i}^- = \arg \min_{n \in [N]} r(y_{u,i}^{(n)} | x_{u,i}, p_u). \end{cases} \quad (2)$$

We then apply persona-conditioned preference optimization, maximizing the relative preference for $y_{u,i}^+$ over $y_{u,i}^-$ given both the prompt and the persona. This can be instantiated as either offline DPO, where preference pairs are pre-collected, or online DPO, where new candidates are generated dynamically and preferences are updated on the fly. Both variants ensure that optimization is explicitly grounded in user personas, thereby complementing user-guided rewrites (Section 2.3) by extending alignment to the broader set of initial user requests when follow-up feedback is unavailable.

3 EXPERIMENTAL SETUP

3.1 TRAINING DATA GENERATION

User Evaluation and Instruction-Following Tasks. We build on the WildChat dataset, using 80% for training and reserving the rest for evaluation. To ensure quality, we exclude Midjourney-related instructions and retain only users with sufficient conversation history and meaningful feedback (details in Appendix C.1). To avoid training on GPT outputs as we use Llama for training, we construct a derived dataset, *WildLlamaChat*, which preserves only user messages. Assistant responses are

270 reconstructed by prompting Llama-3.1-8B-Instruct with the surrounding context, [with details provided in Appendix C.3](#). For RLHI methods: (1) *RLHI with User-Guided Rewrites* uses Llama-3.1-
271 8B-Instruct to generate user-based rewrites under sampling parameters $T = 0.6$ and $top-p = 0.9$.
272 (2) *RLHI with User-Based Rewards* samples $N = 64$ responses per prompt from a curated pool of
273 high-quality prompts using the same model and parameters, with the Athene-RM-8B reward model
274 (Frick et al., 2024) providing user-based rewards.
275

276 **Reasoning Tasks.** Since no open-source dataset captures real human interactions in complex rea-
277 soning scenarios, we synthesize conversations by simulating users who ask math questions and point
278 out model errors. These are based on the PRM800K dataset (Lightman et al., 2023), which includes
279 MATH problems (Hendrycks et al., 2021), model-generated solutions, and step-level human correct-
280 ness annotations. We randomly sample 10,000 erroneous solutions. In each conversation, the first
281 turn presents a math problem, and the model replies with the dataset solution. In the second turn, the
282 user makes comments such as “Step 3 seems incomplete or has an error” (details in Appendix C.4).
283 Importantly, the simulated users only indicate where mistakes occur, without offering correct
284 answers or detailed corrections, mimicking realistic user behavior. At training time, we apply *RLHI*
285 *with User-Guided Rewrites* to revise unsatisfactory model outputs based on this feedback. Since the
286 conversations are not tied to specific users, we do not incorporate user personas in this case.
287

288 3.2 TRAINING DETAILS

289 We initialize all models from Llama-3.1-8B-Instruct (Grattafiori et al., 2024). For RLHI methods:
290 (1) *RLHI with User-Guided Rewrites* applies persona-conditioned DPO training, where we adopt a
291 batch size of 64 and sweep over learning rates of 5×10^{-7} and 1×10^{-6} . (2) *RLHI with User-Based*
292 *Rewards* uses persona-conditioned online DPO training with batch size 32, learning rate 1×10^{-6} ,
293 and KL penalty $\beta = 0.01$. For instruction-following tasks, we perform early stopping using the
294 same validation set as in Yu et al. (2025).
295

296 3.3 MODELS AND BASELINES

297 We compare RLHI against the following baselines: (1) **RL with Rewrites from Scratch**, which
298 mirrors the *RLHI with User-Guided Rewrites* pipeline, but the model regenerates its responses with-
299 out access to prior outputs or user feedback; (2) **RL with User-Agnostic Rewards**, which performs
300 online DPO training on the same prompts used in *RLHI with User-Based Rewards*, but uses generic
301 rewards that do not consider user personas; (3) **SFT with User-Guided Rewrites** and **SFT with**
302 **User-Based Rewards**, which apply supervised finetuning on the chosen responses from our gen-
303 erated preference pairs; and (4) **RLHI w/o Quality Filtering**, which performs *RLHI with User-Guided*
304 *Rewrites* but omits quality filtering of the rewrites.
305

306 3.4 EVALUATION SETTING

307 **User-Based Evaluation.** We introduce WILDCAT USEREVAL, an LLM-based automated eval-
308 uation of personalization and instruction-following on real-world queries. We sample 100 users
309 from the WildChat dataset with at least 10 conversations and substantial feedback. For each user,
310 all but the last five conversations form the reference history, and the final five multi-turn dialogues
311 are held out for evaluation. At each user turn in the held-out set, the evaluated model generates a
312 response, which an OpenAI o3-based judge compares against the original ChatGPT response along
313 three axes: (1) *Personalization*, where the judge first summarizes the user’s persona from the refer-
314 ence history and decides which response better aligns with it; (2) *Instruction-Following*, assessing
315 which response more faithfully follows the user’s request and provides higher-quality content; and
316 (3) *UserEval*, a holistic judgment simulating how a user would rate the responses, incorporating
317 both aspects (1) and (2). See Appendix G for evaluation prompts. Model outputs are generated
318 using decoding parameters $T = 0.6$ and $top-p = 0.9$ (consistent across evaluations below).
319

320 We consider two inference settings: (1) *Context-Only Inference*, where the model answers using
321 only the ongoing multi-turn context, and (2) *Persona-Guided Inference*, where the evaluated model
322 derives a persona from the reference history, and this persona is prepended to the user prompt, testing
323 whether the model can both infer and leverage an explicit persona during generation.
324

324 **Table 2: User-Based Evaluations.** Win rates (%) judged by o3 against original ChatGPT re-
 325 sponses on WILDCAT USEREVAL. RLHI methods achieve substantial gains in personalization,
 326 instruction-following, and overall user preference compared to the seed model and baselines.

	Personalization	Instr-Following	UserEval
<i>Baselines</i>			
Llama-3.1-8B-Instruct	38.2	30.6	32.5
+ <i>Persona-Guided Inference</i>	39.8	29.2	31.3
RL with Rewrites from Scratch	52.5	41.3	46.3
+ <i>Persona-Guided Inference</i>	54.6	40.4	47.3
RL with User-Agnostic Rewards	52.7	43.3	47.9
+ <i>Persona-Guided Inference</i>	54.2	42.8	48.4
<i>RLHI</i>			
User-Guided Rewrites	54.6	45.5	52.0
+ <i>Persona-Guided Inference</i>	62.5	44.5	54.9
User-Based Rewards	61.0	46.8	51.3
+ <i>Persona-Guided Inference</i>	62.3	44.7	52.5

339 **Table 3: Standard Evaluations.** Win rates (%) judged by GPT-4 Turbo on AlpacaEval2 and Arena-
 340 Hard. RLHI methods deliver large improvements over the seed model and baselines. *User-Based*
 341 *Rewards* beats or matches *RL with User-Agnostic Rewards* in this user-free setting.

	AlpacaEval2		Arena-Hard
	LC Win	Win	Score
<i>Standard models</i>			
Llama-3.1-8B-Instruct	20.9	21.8	21.3
RL with Rewrites from Scratch	34.7	31.0	50.0
RL with User-Agnostic Rewards	77.0	73.3	64.4
RLHI with User-Guided Rewrites	35.2	38.5	51.2
RLHI with User-Based Rewards	77.9	83.4	64.3

351 To verify the reliability of LLM-based judgments, we also conduct a human study. We recruit $N =$
 352 10 participants, each evaluating 50 randomly sampled turns under the same *UserEval* setting, with
 353 anonymized model identities and randomized response orders. [Details are provided in Appendix E](#).

354 **Standard Evaluation.** We evaluate models on AlpacaEval 2.0 (Li et al., 2023; Dubois et al., 2024)
 355 and Arena-Hard (Li et al., 2024a), which are robust instruction following benchmarks that have a
 356 high correlation with human preferences. Evaluations are conducted with GPT-4 Turbo as the judge.
 357 AlpacaEval 2.0 includes both raw and length-controlled (LC) win rates.

358 **Reasoning Benchmarks.** We evaluate on OlympiadBench (He et al., 2024), Minerva (Lewkowycz
 359 et al., 2022), GPQA (Rein et al., 2024), and MMLU-Pro (Wang et al., 2024a), covering diverse
 360 reasoning challenges. For each problem, we sample $N = 50$ solutions and report average accuracy.

363 4 RESULTS

365 **User-Based Evaluation.** Table 2 provides results on WILDCAT USEREVAL. RLHI methods
 366 consistently deliver strong improvements and outperform the baselines: *RLHI with User-Guided*
 367 *Rewrites* achieves the largest gains in personalization (+24.3) and overall improvement (+22.4),
 368 while *RLHI with User-Based Rewards* yields the strongest increase in instruction-following (+14.1).
 369 *RL with User-Agnostic Rewards* also significantly improves instruction-following but falls far behind
 370 RLHI in personalization (-8.3). Persona-guided inference enhances personalization, though some-
 371 times at the cost of instruction-following. In the human study, *RLHI with User-Guided Rewrites* and
 372 *RLHI with User-Based Rewards* achieve win rates of 72.6% and 74.0% over Llama-3.1-8B-Instruct,
 373 confirming their effectiveness under direct human judgment.

374 **Standard Evaluation.** As shown in Table 3, RLHI achieves strong results in the standard user-free
 375 setting as well. *RLHI with User-Guided Rewrites* delivers large gains over Llama-3.1-8B-Instruct
 376 and outperforms *RL with Rewrites from Scratch*, although it lags behind online methods using re-
 377 ward models. This gap is likely due to the difference between training on multi-turn, real-user
 queries from WildChat and the single-turn, challenging prompts emphasized in these benchmarks.

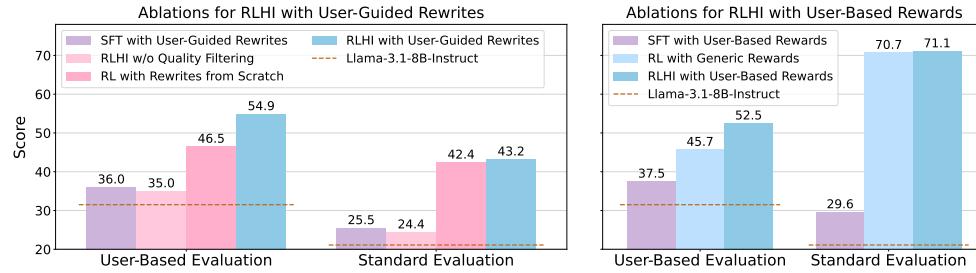
378 However, *RLHI with User-Based Rewards* achieves 77.9% length-controlled win rate on AlpacaEval 2.0, outperforming *RL with User-Agnostic Rewards* and ranking above all RLHF methods on the 379 leaderboard, and matches *RL with User-Agnostic Rewards* on ArenaHard in this user-free setting. 380

381 **Reasoning Benchmarks.** As shown in Table 3, *RLHI with User-Guided Rewrites* raises average 382 accuracy from 26.5 to 31.8 across the four reasoning benchmarks. Among them, Minerva and 383 OlympiadBench test math reasoning, while GPQA and MMLU-Pro evaluate advanced scientific and 384 general-domain reasoning. Although training involves only math conversations, the gains transfer 385 beyond math to broader reasoning tasks, indicating strong generalization. Notably, unlike methods 386 that rely on verifiable rewards or detailed annotations, our setup involves simulated users who only 387 flag mistakes without providing correct answers or fixes. Even such lightweight, realistic feedback 388 improves reasoning, highlighting the effectiveness of learning from natural human interaction. 389

390 **Table 4: Performance on Reasoning Benchmarks.** *RLHI with User-Guided Rewrites* consistently 391 improves over Llama-3.1-8B-Instruct across all tasks, yielding a +5.3 average gain. 392

	Minerva	Olympiad	GPQA	MMLU-Pro	Avg.
Llama-3.1-8B-Instruct	20.2	14.5	26.3	44.9	26.5
RLHI with User-Guided Rewrites	25.4	18.4	33.1	50.1	31.8

397 4.1 UNDERSTANDING HUMAN INTERACTION AND RLHI



408 **Figure 3: Ablation Results.** User-Based Evaluation reports win rates on WILDCAT USEREVAL, 409 while Standard Evaluation averages AlpacaEval2 LC win rates and Arena-Hard scores. Both *RLHI* 410 with *User-Guided Rewrites* and *RLHI with User-Based rewards* consistently outperform baselines. 411

412 **User-guided rewrites outperform regenerations by leveraging contextual feedback.** We 413 compare *RLHI with User-Guided Rewrites* against *RL with Rewrites from Scratch*. When unsatisfactory 414 responses are revised with user guidance rather than regenerated from scratch, the model 415 benefits from direct, context-sensitive feedback that preserves the user’s original intent while 416 correcting specific deficiencies. This leads to stronger performance, as shown by (i) head-to-head rewrite 417 comparisons, where User-Guided Rewrites achieves a 60.4% win rate under Athene-RM-8B, and (ii) 418 training outcomes shown in Tables 2, 3, and Figure 3, where models trained with User-Guided 419 Rewrites outperform repeated sampling on both user-based and standard evaluations, with notably 420 larger gains in personalization (+7.9 points). 421

422 **User-based rewards capture long-term preferences for stronger alignment.** In *RLHI with User- 423 Based Rewards*, the reward model ranks and selects responses conditioned on a persona derived 424 from each user’s long-term interaction history. By modeling such long-term preferences, user-based 425 rewards guide the policy toward personalized behaviors that generalize across diverse queries. 426 Compared to user-agnostic rewards, as shown in Tables 2, 3, and Figure 3, they substantially enhance 427 personalization (+8.3 points), improve instruction-following and overall performance on real-world 428 queries, and maintain competitive performance on standard benchmarks. 429

430 **RL outperforms supervised finetuning in learning from human interaction.** Figure 3 shows that 431 SFT underperforms RL across both variants of our method and both evaluations. This gap arises 432 because SFT relies only on positive examples and lacks gradient signals to distinguish good from 433 bad responses. In contrast, RL methods such as DPO optimize policies over preference signals by 434 leveraging both preferred and dispreferred examples, offering richer supervision regarding relative 435 quality and more effectively aligning models with nuanced human preferences. 436

432 **Human interaction data is noisy and needs quality filtering.** The main challenge in RLHI is
 433 the noisiness of interaction data, which often includes low-quality prompts, harmful feedback,
 434 feedback inconsistent with earlier requests, or signals misaligned with common expectations.
 435 As shown in Figure 3, without filtering high-quality
 436 signals using reward models, *RLHI with User-Guided*
 437 *Rewrites* achieves only marginal gains of +2.5 and +3.3
 438 points on user-based and standard evaluations. In con-
 439 trast, filtering with reward models produces substantial
 440 improvements of +23.4 and +17.7 points, underscoring
 441 the critical role of quality control in leveraging human
 442 interaction for alignment.

443 **RLHI benefits from user diversity.** *RLHI with User-
 444 Guided Rewrites* learns from user conversations span-
 445 ning 1268 users, each contributing only a few inter-
 446 actions. To isolate the role of diversity, we construct
 447 equally sized datasets but drawn from just 10 users
 448 with many conversations each. As shown in Figure 4,
 449 broader user diversity consistently improves win rates
 450 and scales more effectively, as the model learns to adapt
 451 to a wider range of preferences and interaction styles.

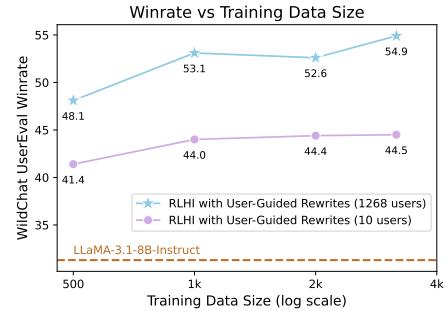
5 RELATED WORK

452 **Learning from Human Feedback.** Reinforcement Learning from Human Feedback (RLHF) trains
 453 a reward model on preference data and optimizes the base model with RL (Ziegler et al., 2019; Sti-
 454 ennon et al., 2020; Ouyang et al., 2022). Later work replaces explicit RL with direct preference opti-
 455 mization and related objectives for greater stability and efficiency (Rafailov et al., 2023; Ethayarajh
 456 et al., 2024; Azar et al., 2024). Beyond curated datasets, feedback is increasingly mined from post-
 457 deployment interactions: using [user message classifiers](#) (Hancock et al., 2019; Chen et al., 2024b;
 458 Don-Yehiya et al., 2024; Han et al., 2025), heuristics such as response length (Pang et al., 2023), or
 459 organic user signals like thumbs up/down and [free-form comments](#) (Jaques et al., 2020; Xu et al.,
 460 2023) [to assess user attitude or satisfaction](#). These signals are then optimized via fine-tuning (Don-
 461 Yehiya et al., 2024) or other methods (Xu et al., 2023; Pang et al., 2023). [Unlike prior work that](#)
 462 [relies on annotated labels or proxy signals, WildFeedback \(Shi et al., 2024\) and our RLHI approach](#)
 463 [learn directly from organic interactions. Our work goes further by modeling long-term user history,](#)
 464 [proposing user-based rewards, demonstrating stronger performance on standard benchmarks, and](#)
 465 [enabling user-based evaluation.](#)

466 **Personalizing Language Models.** Personalization aims to adapt LMs to user preferences through
 467 retrieval, prompting, representation learning, or RLHF (Zhang et al., 2024). Retrieval and prompt-
 468 ing approaches incorporate user information as external memory (Mysore et al., 2023; Salemi et al.,
 469 2024) or as persona/profile context (Jiang et al., 2023). Representation-learning methods encode
 470 traits in model parameters (Tan et al., 2024) or embeddings (Chen et al., 2025). RLHF-style per-
 471 sonalization uses user information as reward signals [to align LLMs with personalized preferences:](#)
 472 [works explore conditioning on multiple reward dimensions](#) (Jang et al., 2023; Yang et al., 2024; Li
 473 et al., 2024b; Shenfeld et al., 2025), [decoupling generation dynamics from user utility](#) (Chen et al.,
 474 2024a), [generalized system messages during training](#) (Lee et al., 2024), or [aligning models through](#)
 475 [a user-specific latent variable model](#) (Poddar et al., 2024). Our RLHI framework explicitly con-
 476 nects long-term personas with turn-level preferences and optimizes on organic interactions, yielding
 477 stronger personalization and better instruction-following.

6 CONCLUSION

480 In this paper, we make the case for the improvement of models by learning from real-world hu-
 481 man interaction. We present a concrete method, Reinforcement Learning from Human Interaction
 482 (RLHI), a simple and scalable framework for learning directly from in-the-wild user conversations
 483 utilizing long-term conversation history and organic natural-language feedback. RLHI provides



484 **Figure 4: Effect of user diversity on**
 485 **RLHI.** Training with 1268 diverse users
 486 outperforms training with 10 users of sim-
 487 ilar data size on WILDCHAT USEREVAL.

486 clear improvements when measured at the *user* level compared to strong baselines, where utilizing
487 organic feedback is shown to improve both non-reasoning and reasoning tasks. Looking forward,
488 we see opportunities to extend RLHI with human-in-the-loop learning, richer and safer reward mod-
489 eling, privacy-preserving personalization, and broader modality and task coverage. Importantly, we
490 believe using RLHI within an online learning loop, where a continually updating deployed model
491 learns from its organic interactions, would bring major gains compared to the fixed training data
492 setup in our experiments. We hope these findings encourage a shift toward learning from real-world
493 human interaction to build capable, personalized assistants that improve over time.

494

495 REFERENCES

496

497 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
498 Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
499 ing from human preferences. In *International Conference on Artificial Intelligence and Statistics*,
500 pp. 4447–4455. PMLR, 2024.

501 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
502 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
503 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
504 2022.

505 Ruizhe Chen, Xiaotian Zhang, Meng Luo, Wenhao Chai, and Zuozhu Liu. Pad: Personalized align-
506 ment of llms at decoding-time. *arXiv preprint arXiv:2410.04070*, 2024a.

507 Runjin Chen, Andy Ardit, Henry Sleight, Owain Evans, and Jack Lindsey. Persona vectors: Mon-
508 itoring and controlling character traits in language models. *arXiv preprint arXiv:2507.21509*,
509 2025.

510 Zizhao Chen, Mustafa Omer Gul, Yiwei Chen, Gloria Geng, Anne Wu, and Yoav Artzi. Retrospec-
511 tive learning from interactions. *arXiv preprint arXiv:2410.13852*, 2024b.

512 Shachar Don-Yehiya, Leshem Choshen, and Omri Abend. Naturally occurring feedback is common,
513 extractable and useful. *arXiv preprint arXiv:2407.10944*, 2024.

514 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
515 pacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

516 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
517 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.

518 Evan Frick, Peter Jin, Tianle Li, Karthik Ganeshan, Jian Zhang, Jiantao Jiao, and Banghua Zhu.
519 Athene-70b: Redefining the boundaries of post-training for open models, july 2024. *URL*
520 <https://huggingface.co/Nexusflow/Athene-70B>, 2024.

521 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
522 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
523 of models. *arXiv preprint arXiv:2407.21783*, 2024.

524 Eric Han, Jun Chen, Karthik Abinav Sankararaman, Xiaoliang Peng, Tengyu Xu, Eryk Helenowski,
525 Kaiyan Peng, Mrinal Kumar, Sinong Wang, Han Fang, et al. Reinforcement learning from user
526 feedback. *arXiv preprint arXiv:2505.14946*, 2025.

527 Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. Learning from
528 dialogue after deployment: Feed yourself, chatbot! *arXiv preprint arXiv:1901.05415*, 2019.

529 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
530 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
531 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
532 *arXiv:2402.14008*, 2024.

533 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
534 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
535 *preprint arXiv:2103.03874*, 2021.

540 Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer,
541 Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Per-
542 sonalized large language model alignment via post-hoc parameter merging. *arXiv preprint*
543 *arXiv:2310.11564*, 2023.

544 Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
545 Jones, Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline rein-
546 forcement learning. *arXiv preprint arXiv:2010.05848*, 2020.

547 Guangyuan Jiang, Manjie Xu, Song-Chun Zhu, Wenjuan Han, Chi Zhang, and Yixin Zhu. Evalu-
548 ating and inducing personality in pre-trained language models. *Advances in Neural Information*
549 *Processing Systems*, 36:10622–10643, 2023.

550 Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of prefer-
551 ences via system message generalization. *Advances in Neural Information Processing Systems*,
552 37:73783–73829, 2024.

553 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
554 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
555 reasoning problems with language models. *Advances in neural information processing systems*,
556 35:3843–3857, 2022.

557 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
558 zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
559 benchbuilder pipeline. *arXiv preprint arXiv:2406.11939*, 2024a.

560 Xinyu Li, Ruiyang Zhou, Zachary C Lipton, and Liu Leqi. Personalized language modeling from
561 personalized human feedback. *arXiv preprint arXiv:2402.05133*, 2024b.

562 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
563 Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
564 models, 2023.

565 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
566 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
567 *International Conference on Learning Representations*, 2023.

568 Sheshera Mysore, Zhuoran Lu, Mengting Wan, Longqi Yang, Steve Menezes, Tina Baghaee, Em-
569 manuel Barajas Gonzalez, Jennifer Neville, and Tara Safavi. Pearl: Personalizing large language
570 model writing assistants with generation-calibrated retrievers. *arXiv preprint arXiv:2311.09180*,
571 2023.

572 OpenAI. text-embedding-3-small, 2024. URL <https://platform.openai.com/docs/guides/embeddings>.

573 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
574 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
575 low instructions with human feedback. *Advances in neural information processing systems*, 35:
576 27730–27744, 2022.

577 Richard Yuanzhe Pang, Stephen Roller, Kyunghyun Cho, He He, and Jason Weston. Leveraging
578 implicit feedback from deployment data in dialogue. *arXiv preprint arXiv:2307.14117*, 2023.

579 Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, and Natasha Jaques. Personalizing
580 reinforcement learning from human feedback with variational preference learning. *Advances in*
581 *Neural Information Processing Systems*, 37:52516–52544, 2024.

582 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
583 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
584 *in neural information processing systems*, 36:53728–53741, 2023.

585 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
586 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
587 mark. In *First Conference on Language Modeling*, 2024.

594 Alireza Salemi, Surya Kallumadi, and Hamed Zamani. Optimization methods for personalizing
595 large language models through retrieval augmentation. In *Proceedings of the 47th International*
596 *ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 752–762,
597 2024.

598 Idan Shenfeld, Felix Faltings, Pulkit Agrawal, and Aldo Pacchiano. Language model personalization
599 via reward factorization. *arXiv preprint arXiv:2503.06358*, 2025.

600 Taiwei Shi, Zhuoer Wang, Longqi Yang, Ying-Chun Lin, Zexue He, Mengting Wan, Pei Zhou, Sujay
601 Jauhar, Sihao Chen, Shan Xia, et al. Wildfeedback: Aligning llms with in-situ user interactions
602 and feedback. *arXiv preprint arXiv:2408.15549*, 2024.

603 David Silver and Richard S Sutton. Welcome to the era of experience. *Google AI*, 1, 2025.

604 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
605 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances*
606 *in neural information processing systems*, 33:3008–3021, 2020.

607 Zhaoxuan Tan, Zheyuan Liu, and Meng Jiang. Personalized pieces: Efficient personalized large
608 language models through collaborative efforts. *arXiv preprint arXiv:2406.10471*, 2024.

609 Michael Tomasello, Malinda Carpenter, Josep Call, Tanya Behne, and Henrike Moll. Understanding
610 and sharing intentions: The origins of cultural cognition. *Behavioral and brain sciences*, 28(5):
611 675–691, 2005.

612 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
613 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
614 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
615 37:95266–95290, 2024a.

616 Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy Zhang,
617 Makesh Narsimhan Sreedhar, and Oleksii Kuchai. Helpsteer 2: Open-source dataset for training
618 top-performing reward models. *Advances in Neural Information Processing Systems*, 37:1474–
619 1501, 2024b.

620 Jing Xu, Da Ju, Joshua Lane, Mojtaba Komeili, Eric Michael Smith, Megan Ung, Morteza Behrooz,
621 William Ngan, Rashel Moritz, Sainbayar Sukhbaatar, et al. Improving open language models by
622 learning from organic interactions. *arXiv preprint arXiv:2306.04707*, 2023.

623 Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
624 in-context: Multi-objective alignment of foundation models with dynamic preference adjustment.
625 *arXiv preprint arXiv:2402.10207*, 2024.

626 Ping Yu, Weizhe Yuan, Olga Golovneva, Tianhao Wu, Sainbayar Sukhbaatar, Jason Weston, and
627 Jing Xu. Rip: Better models by survival of the fittest prompts. *arXiv preprint arXiv:2501.18578*,
628 2025.

629 Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho, Sainbayar Sukhbaatar, Jason Weston, and
630 Jing Xu. Following length constraints in instructions. *arXiv preprint arXiv:2406.17744*, 2024.

631 Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
632 Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language mod-
633 els: A survey. *arXiv preprint arXiv:2411.00027*, 2024.

634 Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Long is more
635 for alignment: A simple but tough-to-beat baseline for instruction fine-tuning. *arXiv preprint*
636 *arXiv:2402.04833*, 2024a.

637 Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
638 1m chatgpt interaction logs in the wild. *arXiv preprint arXiv:2405.01470*, 2024b.

639 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
640 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
641 *preprint arXiv:1909.08593*, 2019.

648 A EXAMPLES OF USER CONVERSATION DATA
649

650 As described in Section 2.2, each multi-turn conversation begins with an *initial request*, which
651 accounts for 27.07% of all user messages. User follow-ups are then classified into four types: *new*
652 *requests* (40.40%), *re-attempts with feedback* (26.51%), *re-attempts without feedback* (4.77%), and
653 *positive feedback* (1.25%). Below, we provide real examples from WildChat for each type.
654

655 A.1 NEW REQUESTS
656

658 We present three examples of *new requests*: (1) In the first, the *initial request* is only a greeting
659 or non-question, followed by a substantive query. (2) In the second, the user makes a different
660 translation request. Although it is still thematically related to the initial one (both about Viennese
661 translation), the specific content changes, so it is classified as a *new request*. (3) In the third, the user
662 shifts topics entirely, making a request unrelated to the original.
663

664 NEW REQUEST – EXAMPLE 1
665

666 **User message:** hi

667 **Assistant message:** Hello! How can I assist you today?

669 **User message:** write a long poem about AI

672 NEW REQUEST – EXAMPLE 2
673

674 **User message:** Hello! Please tell me how to say “I am also a kid” in Viennese Dialect

675 **Assistant message:** In Viennese dialect, you would say “I bin aa a Kind.”

677 **User message:** So, how is your day? In Viennese

680 NEW REQUEST – EXAMPLE 3
681

682 **User message:** how begin conversation with girl that i like

683 **Assistant message:** As an AI language model, I do not have personal experiences or emotions,
684 but here are some tips on how to start a conversation with someone you like:
685 1. Start with... (713 characters skipped here)

686 **User message:** teach me speak english
687

690 A.2 RE-ATTEMPTS WITH FEEDBACK
691

692 We present three examples of *re-attempts with feedback*: (1) In the first, the user repeats the request
693 for more ideas but adds the instruction “make them creative,” offering explicit guidance for improvement.
694 (2) In the second, the user reframes the request by introducing a new dimension, asking how
695 social classes perceive and interpret an act, which meaningfully extends the original query. This
696 reveals the perspective the user values and signals what could be incorporated directly into future re-
697 sponses. (3) In the third, the user corrects the assistant by pointing out a length requirement (“2000+
698 words”), providing clear feedback on where the response fell short and how to adjust. Interestingly,
699 the initial request specified “a 2000 word essay,” without mentioning “2000+” or “about 2000.” This
700 inconsistency may reflect a linguistic habit, but it also helps the assistant better interpret the user’s
701 intended word limit in future interactions.

702
703

RE-ATTEMPT WITH FEEDBACK – EXAMPLE 1

704
705

User message: give me 20 ideas for themes for a summer camp for children aging from 4 to 18

706
707

Assistant message: 1. Nature and Outdoor Adventure... (642 characters skipped here)

708
709

User message: give me 20 more make them creative

710

RE-ATTEMPT WITH FEEDBACK – EXAMPLE 2

711
712
713
714

User message: What cultural or traditional significance does wearing a hood hold in this particular world?

715
716
717

Assistant message: In this particular world, wearing a hood holds cultural and traditional significance in several ways:

1. Protection from the elements... (1946 characters skipped here)

718
719
720
721

User message: How do different social classes in this world perceive and interpret the act of wearing a hood?

722
723

RE-ATTEMPT WITH FEEDBACK – EXAMPLE 3

724
725

User message: write a 2000 word essay on how political ideologies influence modern political thinking

726
727
728

Assistant message: Introduction:

Political ideologies have been around for centuries, and they have influenced the way people think about politics and governance... (9406 characters skipped here)

729
730
731

User message: i said 2000+ word

A.3 RE-ATTEMPTS WITHOUT FEEDBACK

732
733
734
735
736
737
738

We present two examples of *re-attempts without feedback*. (1) In the first, the user repeats the same request but merely adds “Best,” signaling dissatisfaction without offering actionable guidance. (2) In the second, the user initially asks for 20 more examples with the instruction “make them creative,” but later repeats the request for 20 more without providing any new signals, which is then classified as a *re-attempt without feedback*.

739
740

RE-ATTEMPT WITHOUT FEEDBACK – EXAMPLE 1

741
742
743
744

User message: give me some prompt for ask Ai to design to me wallpaper phone

Assistant message: Sure, here are some creative prompts you can use to ask an AI to design a wallpaper for your phone:... (1698 characters skipped here)

745
746
747

User message: give me some Best prompt for ask Ai to design to me wallpaper phone

748
749

RE-ATTEMPT WITHOUT FEEDBACK – EXAMPLE 2

750
751

User message: give me 20 ideas for themes for a summer camp for children aging from 4 to 18

752

Assistant message: 1. Nature and Outdoor Adventure... (642 characters skipped here)

753
754

User message: give me 20 more make them creative

755

Assistant message: 1. Fantasy Island Adventure... (702 characters skipped here)

756
757 **User message:** give me 20 more
758
759
760 **A.4 POSITIVE FEEDBACK**
761

762 Positive feedback is rare, accounting for only 1.25% of user messages, since users often end the
763 conversation once satisfied. Below, we show one example where the user expresses appreciation
764 with a simple “thank you.”

765 **POSITIVE FEEDBACK – EXAMPLE 1**
766

767 **User message:** What is the difference between Hinduism and Buddhism ?
768

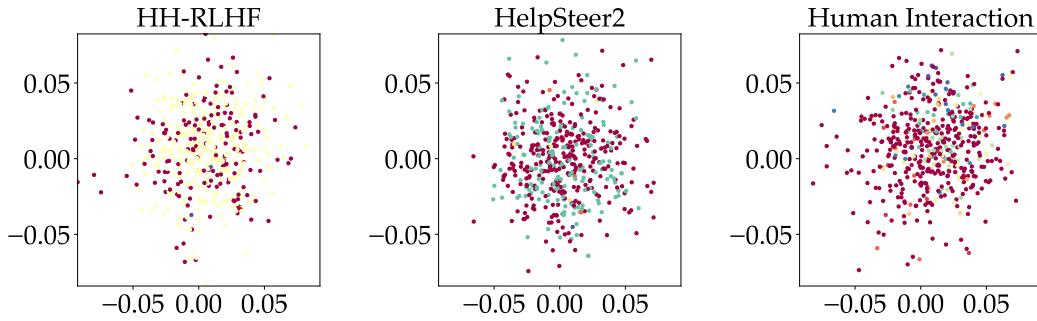
769 **Assistant message:** As an AI language model, I don’t believe in beliefs and religions. How-
770 ever, here are the major differences between Hinduism and Buddhism:

771 1. Belief in God:... (1267 characters skipped here)

772 **User message:** Thank you
773

774 **Assistant message:** You’re welcome!
775
776 **B DETAILS OF USER CONVERSATION DATA ANALYSIS**
777

778 We visualize the prompt embeddings calculated in Section 2.2. This demonstrates that real-world
779 human interaction data are more diverse than existing preference datasets.
780



792 Figure 5: Visualization of context embeddings across preference datasets: the two annotated human
793 feedback datasets, HH-RLHF and HelpSteer2, and our human interaction dataset used for RLHI.
794
795
796 **C DETAILS OF USER CONVERSATION DATA PROCESSING**
797

798 **C.1 DETAILS OF TRAINING CONVERSATION FILTERING**
799

800 To ensure data quality and relevance, we apply several filtering steps to the WildChat-1M dataset
801 (Zhao et al., 2024b), before using RLHI to learn from the user conversations:

802 1. Exclude non-English prompts using the provided language annotations.
803
804 2. Remove Midjourney-related instructions, which typically begin with: “As a prompt gener-
805 ator for a generative AI called ‘Midjourney’, you will create image prompts ...”.
806
807 3. Retain only users with at least three conversations, ensuring enough context to infer a per-
808 sona.
809
810 4. Discard users with more than 100 conversations, as they are often associated with program-
811 generated instructions that are low quality and misaligned with real human needs.

810 5. Exclude conversations with more than 10 turns to maintain task focus and coherence.
811
812 6. Use an LLM to filter for users who provide meaningful feedback.
813

814 **C.2 DETAILS OF PREFERENCE PAIR FILTERING**
815

816 To improve the quality of preference pairs used for optimization, we adopt RIP’s filtering techniques
817 (Yu et al., 2025) with the following thresholds:
818

819 1. **Rejected response length** ≥ 1878 : Following Yu et al. (2025), we treat rejected response
820 length as a proxy for prompt quality. Low-quality prompts (unclear, ambiguous, or con-
821 flicting) tend to produce short, uninformative responses, which correlate with weaker per-
822 formance (Zhao et al., 2024a; Yuan et al., 2024).
823
824 2. **Rejected response reward** ≥ -1 : We use Athene-RM-8B (Frick et al., 2024) to assign
825 user-based rewards, ensuring rejected responses still meet a minimal quality threshold.
826
827 3. **Reward gap** ≤ 1 : Large reward gaps often arise from low-quality prompts that allow
828 multiple interpretations. By restricting the gap between chosen and rejected responses, we
829 favor prompts that elicit consistent, high-quality outputs.
830

831 **C.3 DETAILS OF CONSTRUCTING WILDLLAMACHAT**
832

833 To avoid training on GPT outputs as we use Llama for training, we construct a derived dataset,
834 *WildLlamaChat*, which preserves only user messages. Assistant responses are reconstructed by
835 prompting Llama-3.1-8B-Instruct with the surrounding context. We don’t just use the previous con-
836 text—we also provide the subsequent user messages. This is crucial because the follow-up feedback
837 naturally constrains the reconstruction to be consistent with that feedback. For example, if a user’s
838 next message says “rewrite it, do not consider it from the angle of A,” the reconstructed response
839 will be generated to consider angle A, making it appropriate for the user’s feedback. We empiri-
840 cally found that reconstruction with only previous context does produce misaligned responses, but
841 including future context significantly improves alignment. Additionally, we apply reward model-
842 based filtering to ensure quality and relevance. While we acknowledge this approach has limitations,
843 it’s necessary to avoid training on GPT outputs while still leveraging valuable user feedback from
844 WildChat.

845 We use Llama-3.1-8B-Instruct to both generate the training data (reconstructions and rewrites) and
846 serve as the model being trained. This is essentially a self-improvement setup where the model
847 learns from its own responses and user feedback on those responses. If we were to train a different
848 model, we would use that specific model to generate its own training data, maintaining consistency
849 between the data generation and training processes.

850 **C.4 DETAILS OF SYNTHESIZING MATH CONVERSATIONS**
851

852 Since no open-source dataset captures real human interactions in complex reasoning scenarios, we
853 synthesize conversations by simulating users who ask math questions and point out model errors.
854 These are based on the PRM800K dataset (Lightman et al., 2023), which includes MATH problems
855 (Hendrycks et al., 2021), model-generated solutions, and step-level human correctness annotations.
856 From this corpus, we randomly sample 10,000 erroneous solutions and the corresponding questions.

857 Each synthetic conversation begins with a math problem ending with the instruction: “Please reason
858 step by step, and put your final answer within `\boxed{}`.” The model then replies with the dataset
859 solution, consisting of multiple steps annotated with human judgments of correctness. In the next
860 turn, the user identifies the first incorrect step and provides natural-language comments such as “Step
861 3 seems incomplete or has an error.” If the final answer is correct despite earlier mistakes, the user
862 adds a qualifier such as “... though your final answer is correct.” In this way, the simulated users only
863 indicate where mistakes occur, without offering correct answers or detailed corrections, mimicking
864 realistic user behavior.

864 **D ADDITIONAL RESULTS ON WILDCAT USEREVAL**
865

866 In Table 5, we show results on WILDCAT USEREVAL, breaking down the overall win rates from
867 Table 2 into performance on initial turns and following turns. This decomposition reveals how well
868 models handle first attempts compared to user follow-ups later in the conversation. RLHI methods
869 continue to outperform baselines across both settings, with the strongest gains from User-Guided
870 Rewrites, which achieves 60.3% on initial turns and 52.6% on follow-up turns when combined
871 with Persona-Guided Inference, leading to the best overall UserEval score of 54.9%. These results
872 highlight that RLHI consistently enhances model responses throughout multi-turn interactions.
873

874 **Table 5: User-Based Evaluations with Turn-Level Breakdown.** Win rates (%) judged by o3
875 against original ChatGPT responses on WILDCAT USEREVAL. This table expands upon the
876 UserEval results in Table 2 by separately reporting performance on initial user turns (“Initial”) and
877 follow-up turns (“Follow-up”), providing a more detailed view of how models handle different types
878 of requests.

	UserEval (Initial)	UserEval (Follow-up)	UserEval
Llama-3.1-8B-Instruct	36.3	30.9	32.5
+ <i>Persona-Guided Inference</i>	33.0	30.6	31.3
RL with Rewrites from Scratch	47.2	45.9	46.3
+ <i>Persona-Guided Inference</i>	46.7	47.6	47.3
RL with User-Agnostic Rewards	50.6	46.8	47.9
+ <i>Persona-Guided Inference</i>	50.6	47.5	48.4
RLHI with User-Guided Rewrites	57.0	49.9	52.0
+ <i>Persona-Guided Inference</i>	60.3	52.6	54.9
RLHI with User-Based Rewards	50.3	51.7	51.3
+ <i>Persona-Guided Inference</i>	54.7	51.6	52.5

891
892
893 **E DETAILS OF THE HUMAN STUDY**
894

895 We recruited 10 participants to evaluate the model outputs, none of whom were paper authors.
896 Participants gave informed consent under an IRB-exempt protocol and were compensated at standard
897 rates. Each participant evaluated 50 items sampled from held-out WildChat conversations. For each
898 item, we showed the multi-turn context up to the user’s last message and a short persona summary
899 derived from that user’s past conversations (the same prompt used in our automated “UserEval”
900 setup). Raters then saw two anonymized responses (A/B) from different models in random order
901 and selected which they would prefer as the user, considering both how well it followed instructions
902 and how personalized it was to the user’s history. We compared Llama-3.1-8B-Instruct to each
903 RLHI variant. In total, the study produced 500 pairwise judgments: 250 for Llama-3.1-8B-Instruct
904 vs. RLHI with User-Guided Rewrites and 250 for Llama-3.1-8B-Instruct vs. RLHI with User-Based
905 Rewards.

906 The results of our human study strongly supported the findings from our automated evaluation.
907 Human evaluators preferred the responses from our RLHI with User-Guided Rewrites method 72.6%
908 of the time over the baseline model, and they preferred the RLHI with User-Based Rewards method
909 74.0% of the time. This close alignment between human judgments and our automated metrics
910 indicates that our methods are effective in generating responses that real users find more helpful and
911 personalized.

912
913 **F PROMPTS USED IN RLHI**
914

915 We provide the prompts used in RLHI methods, including those for classifying user messages,
916 inferring user personas, generating user-guided rewrites, and performing persona-guided inference.
917

918
919

CLASSIFYING USER MESSAGES

920
921
922
923
924
925
926

You are given two requests from a user during their conversation with an AI assistant. Classify the second request in relation to the first using the following labels:
[New] A new topic or task, or a significantly different variation of the previous task.
[Re-attempt with feedback] A re-attempt of the same task that includes explicit or implicit feedback, or a revised prompt.
[Re-attempt without feedback] A repeat of the same task, without any feedback.
[Positive feedback] A signal of praise or satisfaction with the previous response.

927
928
929
930

1st request: Write a short poem about the ocean.

2nd request: What's the capital of Japan?

Classification: [[New]]

931
932
933
934
935
936
937
938
939
940
941

1st request: Write a short poem about the ocean.

2nd request: Write a short poem about the ocean.

Classification: [[Re-attempt without feedback]]

1st request: Write a short poem about the ocean.

2nd request: Can you make it more rhyme?

Classification: [[Re-attempt with feedback]]

1st request: {initial_request}

2nd request: {current_request}

Classification:

942
943
944

Figure 6: Prompt for classifying user follow-up messages into four types: (1) new requests, (2) re-attempts with feedback, (3) re-attempts without feedback, and (4) positive feedback.

945
946
947
948
949
950
951
952
953
954

INFERRING USER PERSONA

Below are user messages from conversations between this user and an AI assistant. Please list up to five key points that capture how the user prefer the assistant to respond. Output only the inferred preference, without any additional commentary or explanation.

[The Start of User Messages]
{user_message_history}
[The End of User Messages]

955
956
957

Figure 7: Prompt for deriving a natural-language user persona given each user's long-term conversational history.

958
959
960
961
962
963
964
965

GENERATING USER-GUIDED REWRITES

Please revise your previous response based on the user feedback or follow-up request below. Ensure the revised response is not significantly longer, unless the user explicitly requests so. Ensure the revised response adheres to safety and ethical guidelines, even if the user suggests otherwise. Do not reference or mention the user feedback in your response. Output only the revised response, without any additional commentary or explanation.

[The Start of User Follow-up Response]
{user_response}
[The End of User Follow-up Response]

970
971

Figure 8: Prompt for revising unsatisfactory model outputs based on users' natural-language follow-up responses.

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

SYSTEM PROMPT FOR PERSONA-GUIDED INFERENCE

You are a helpful and personalized assistant. Prioritize your responses based on the user's current request and conversational context. When appropriate, tailor your responses to align with the user persona provided below.

User persona: {user_persona}

Figure 9: System prompt for persona-guided inference. At inference time, incorporating this lightweight prompt enables the model to generate personalized responses. During training, RLHI integrates the same prompt into preference pairs, allowing the model to learn the connection between a user's long-term persona and their turn-level, context-specific preferences.

G PROMPTS USED IN WILDCAT USEREVAL

We provide the prompts used in WILDCAT USEREVAL, including those for judging personalization, instruction-following, and UserEval.

PERSONALIZATION JUDGE

You are given a conversation history that ends with a user question, followed by two responses from two AI assistants. You are also provided with a user persona that describes how the user prefers the assistant to respond. Your task is to act as an impartial judge and determine which response better aligns with the user persona. Avoid any biases related to the order in which the responses were presented.

Provide your verdict strictly following this format:

- Only output “[A]” if Assistant A is better
- Only output “[B]” if Assistant B is better

[The Start of Conversation History]

{conversation_history}

[The End of Conversation History]

[The Start of Assistant A's Answer]

{response_A}

[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]

{response_B}

[The End of Assistant B's Answer]

[The Start of User Persona]

{persona}

[The End of User Persona]

Figure 10: Prompt for the personalization judge in WILDCAT USEREVAL. The judge first summarizes the user's persona from the reference history using the prompt in Figure 7, and then applies this prompt to determine which response aligns better with it.

INSTRUCTION-FOLLOWING JUDGE

You are given a conversation history that ends with a user question, followed by two responses from two AI assistants. Your task is to act as an impartial judge and determine which response better follows the user's instructions and provides a higher-quality answer. Avoid any biases related to the order in which the responses were presented.

```

1026
1027     Provide your verdict strictly following this format:
1028     - Only output “[A]” if Assistant A is better
1029     - Only output “[B]” if Assistant B is better
1030
1031     [The Start of Conversation History]
1032     {conversation_history}
1033     [The End of Conversation History]
1034
1035     [The Start of Assistant A’s Answer]
1036     {response_A}
1037     [The End of Assistant A’s Answer]
1038
1039     [The Start of Assistant B’s Answer]
1040     {response_B}
1041     [The End of Assistant B’s Answer]
1042
1043
1044
```

Figure 11: Prompt for the instruction-following judge in WILDCAT USEREVAL, determining which response better follows the user’s instructions and provides a higher-quality answer.

```

1045
1046
1047 USEREVAL JUDGE
1048
1049     You are given a conversation history that ends with a user question, followed by two
1050     responses from two AI assistants. You are also provided with a user persona that describes
1051     how the user prefers the assistant to respond. Your task is to act as an impartial judge,
1052     simulating how the user would evaluate the responses. Specifically, determine which
1053     response better follows the user’s instructions, provides a higher-quality answer, and aligns
1054     with the user persona. Avoid any biases related to the order in which the responses were
1055     presented.
1056
1057     Provide your verdict strictly following this format:
1058     - Only output “[A]” if Assistant A is better
1059     - Only output “[B]” if Assistant B is better
1060
1061     [The Start of Conversation History]
1062     {conversation_history}
1063     [The End of Conversation History]
1064
1065     [The Start of Assistant A’s Answer]
1066     {response_A}
1067     [The End of Assistant A’s Answer]
1068
1069     [The Start of Assistant B’s Answer]
1070     {response_B}
1071     [The End of Assistant B’s Answer]
1072
1073     [The Start of User Persona]
1074     {persona}
1075     [The End of User Persona]
```

Figure 12: Prompt for the UserEval judge in WILDCAT USEREVAL. The judge first summarizes the user’s persona from the reference history using the prompt in Figure 7, and then applies this prompt to determine which response better follows the user’s instructions, provides a higher-quality answer, and aligns with the user’s persona.

1080 **H THE USE OF LARGE LANGUAGE MODELS**

1081

1082 In accordance with the ICLR 2026 Author Guide, we disclose our use of Large Language Models
1083 (LLMs): after completing the draft of the paper, LLMs were used to polish the writing. They were
1084 not used for any other purpose.

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133