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Grzegorz Rypeść1, 2∗, Sebastian Cygert1, 3, Valeriya Khan1, 2, Tomasz Trzciński1, 2, 4,
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ABSTRACT

Class-incremental learning is becoming more popular as it helps models widen
their applicability while not forgetting what they already know. A trend in this area
is to use a mixture-of-expert technique, where different models work together to
solve the task. However, the experts are usually trained all at once using whole
task data, which makes them all prone to forgetting and increasing computational
burden. To address this limitation, we introduce a novel approach named SEED.
SEED selects only one, the most optimal expert for a considered task, and uses data
from this task to fine-tune only this expert. For this purpose, each expert represents
each class with a Gaussian distribution, and the optimal expert is selected based
on the similarity of those distributions. Consequently, SEED increases diversity
and heterogeneity within the experts while maintaining the high stability of this
ensemble method. The extensive experiments demonstrate that SEED achieves
state-of-the-art performance in exemplar-free settings across various scenarios,
showing the potential of expert diversification through data in continual learning.

1 INTRODUCTION

In Continual Learning (CL), tasks are presented to the learner sequentially as a stream of non-i.i.d
data. The model has only access to the data in the current task. Therefore, it is prone to catastrophic
forgetting of previously acquired knowledge (French, 1999; McCloskey & Cohen, 1989). This effect
has been extensively studied in Class Incremental Learning (CIL), where the goal is to train the
classifier incrementally and achieve the best accuracy for all classes seen so far. One of the most
straightforward solutions to alleviate forgetting is to store exemplars of each class. However, its
application is limited, e.g., due to privacy concerns or in memory-constrained devices (Ravaglia et al.,
2021). That is why more challenging, exemplar-free CIL solutions attract a lot of attention.

Figure 1: Exemplar-free Class Incremental Learn-
ing methods evaluated on CIFAR100 divided into
eleven tasks for two different data distributions.

Many recent CIL methods that do not store ex-
emplars rely on having a strong feature extractor
right from the beginning of incremental learn-
ing steps. This extractor is trained on the larger
first task, which provides a substantial amount
of data (i.e., 50% of all available classes) (Hou
et al., 2019; Zhu et al., 2022; Petit et al., 2023),
or it starts from a large pre-trained model that
remains unchanged (Hayes & Kanan, 2020a;
Wang et al., 2022c) that eliminates the problem
of representational drift (Yu et al., 2020). How-
ever, these methods perform poorly when little
training data is available upfront. In Fig. 1, we
illustrate both CIL setups, with and without the
more significant first task. The trend is evident
when we have a lot of data in the first task - re-
sults steadily improve over time. However, the
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progress is not evident for the setup with equal splits, where a frozen (or nearly frozen by high
regularization) feature extractor does not yield good results. This setup is more challenging as it
requires the whole network to continually learn new features (plasticity) and face the problem of
catastrophic forgetting of already learned ones (stability).

One solution for this problem is architecture-based CIL methods, notably by expanding the network
structure beyond a single model. Expert Gate (Aljundi et al., 2017) creates a new expert, defined
as a neural network, for each task to mitigate forgetting. However, it can potentially result in
unlimited growth in the number of parameters. Therefore, more advanced ensembling solutions, like
CoSCL (Wang et al., 2022b), limit the computational budget using a fixed number of experts trained
in parallel to generate features ensemble. In order to prevent forgetting, regularization is applied to all
ensembles during training a new task, limiting their plasticity. Doan et al. (2022) propose ensembling
multiple models for continual learning with exemplars for experience-replay. To perform efficient
ensembling and control a number of the model’s parameters, they enforce the model’s connectivity to
keep several ensembles fixed. However, exemplars are still necessary, and as in CoSCL, task-id is
required during the inference.

As a remedy for the above issues, we introduce a novel ensembling method for exemplar-free CIL
called SEED: Selection of Experts for Ensemble Diversification. Similarly to CoSCL and (Doan et al.,
2022), SEED uses a fixed number of experts in the ensemble. However, only a single expert is updated
while learning a new task. That, in turn, mitigates forgetting and encourages diversification between
the experts. While only one expert is being trained, the others still participate in predictions. In SEED,
the training does not require more computation than single-model solutions. The right expert for the
update is selected based on the current ensemble state and new task data. The selection aims to limit
representation drift for the classifier. The ensemble classifier uses multivariate Gaussian distribution
representation associated with each expert (see Fig. 2). At the inference time, Bayes classification
from all the experts is used for a final prediction. As a result, SEED achieves state-of-the-art accuracy
for task-aware and task-agnostic scenarios while maintaining the high plasticity of the resulting model
under different data distribution shifts within tasks.

In conclusion, the main contributions of our paper are as follows:

• We introduce SEED, a new method that leverages an ensemble of experts where a new task is
selectively trained with only a single expert, which mitigates forgetting, encourages diversification
between experts and causes no computational overhead during the training.

• We introduce a unique method for selecting an expert based on multivariate Gauss distributions of
each class in the ensemble that limits representational drift for a selected expert. At the inference
time, SEED uses the same rich class representation to perform Bayes classification and make
predictions in a task-agnostic way.

• With the series of experiments, we show that existing methods that start CIL from a strong feature
extractor later during the training mainly focus on stability. In contrast, SEED also holds high
plasticity and outperforms other methods without any assumption of the class distribution during
incremental learning sessions.

2 RELATED WORK

Class-Incremental Learning (CIL) represents the most challenging and prevalent scenario in the
field of Continual Learning research (Van de Ven & Tolias, 2019; Masana et al., 2022), where during
the evaluation task-id is unknown, and the classifier has to predict all classes seen so far. The simplest
solution to fight catastrophic forgetting in CIL is to store exemplars, e.g. LUCIR (Hou et al., 2019),
BiC (Wu et al., 2019), Foster (Wang et al., 2022a), WA (Zhao et al., 2020). Having exemplars greatly
simplifies learning cross-task features. However, storing exemplars can not always be an option due to
privacy issues or other limitations. Then, the hardest scenario exemplar-free CIL is considered, where
number of methods exists: LwF (Li & Hoiem, 2016), SDC (Yu et al., 2020), ABD (Smith et al., 2021),
PASS (Zhu et al., 2021b), IL2A (Zhu et al., 2021a), SSRE (Zhu et al., 2022), FeTrIL (Petit et al.,
2023). Most of them favor stability and alleviate forgetting through various forms of regularization
applied to an already well-performing feature extractor. Some approaches even concentrate solely
on the incremental learning of the classifier while keeping the backbone network frozen (Petit et al.,
2023). However, freezing the backbone can limit the plasticity and not be sufficient for more complex
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Figure 2: SEED comprises K deep network experts gk ◦ f (here K = 2), sharing the initial layers
f for higher computational performance. f are frozen after the first task. Each expert contains one
Gaussian distribution per class c ∈ C in his unique latent space. In this example, we consider four
classes, classes 1 and 2 from task 1 and classes 3 and 4 from task 2. During inference, we generate
latent representations of input x for each expert and calculate its log-likelihoods for distributions of
all classes (for each expert separately). Then, we softmax those log-likelihoods and compute their
average over all experts. The class with the highest average softmax is considered as the prediction.

settings, e.g., when tasks are unrelated, like in CTrL (Veniat et al., 2020). This work specifically aims
at exemplar-free CIL, where the model’s plasticity in learning new features for improved classification
is still considered an essential factor.

Growing architectures and ensemble. Architecture-based methods for CIL can dynamically adjust
some networks’ parameters while learning new tasks, i.e. DER (Yan et al., 2021), Progress and
Compress (Rusu et al., 2016) or use masking techniques, e.g. HAT (Serrà et al., 2018). In an extreme
case, each task can have a dedicated expert network (Aljundi et al., 2017) or a single network per
class (van de Ven et al., 2021). That greatly improves plasticity but also requires increasing resources
as the number of parameters increases. Additionally, while the issue of forgetting is addressed,
transferring knowledge between tasks becomes a new challenge. A recent method, CoSCL (Wang
et al., 2022b), addresses this by performing an ensemble of a limited number of experts, which are
diversified using a cooperation loss. However, this method is limited to task-aware settings. Doan
et al. (2022) diversifies the ensemble by training tasks on different subspaces of models and then
merging them. In contrast to our approach, the method requires exemplars to do so.

Gaussian Models in CL. Exemplar-free CIL methods based on cross-entropy classifiers suffer
recency bias towards newly trained task (Wu et al., 2019; Masana et al., 2022). Therefore, some
methods employ nearest mean classifiers with stored class centroids (Rebuffi et al., 2017; Yu et al.,
2020). SLDA (Hayes & Kanan, 2020b) assigns labels to inputs based on the closest Gaussian,
computed using the running class means and covariance matrix from the stream of tasks. In the
context of continual unsupervised learning (Rao et al., 2019), Gaussian Mixture Models were used
to describe new emerging classes during the CL session. Recently, in (Yang et al., 2021), a fixed,
pre-trained feature extractor and Gaussian distributions with diagonal covariance matrices were
used to solve the CIL problem. However, we argue that such an approach has low plasticity and
limited applicability. Therefore, we propose an improved method based on multivariate Gaussian
distributions and multiple experts that can learn new knowledge efficiently.

3 METHOD

The core idea of our approach is to directly diversify experts by training them on different tasks and
combining their knowledge during the inference. Each expert contains two components: a feature
extractor that generates a unique latent space and a set of Gaussian distributions (one per class). The
overlap of class distributions varies across different experts due to disparities in expert embeddings.
SEED takes advantage of this diversity, considering it both during training and inference.

Architecture. Our approach, presented in Fig. 2, consists of K deep network experts gk ◦ f for
k = 1, . . . ,K, sharing the initial layers f for improving computational performance. f are frozen
after the first task. We consider the number of shared layers a hyperparameter (see Appendix A.3).
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Moreover, each expert k contains one Gaussian distribution Gc
k = (µc

k,Σ
c
k) per class c for its unique

latent space.

Algorithm. During inference, we perform an ensemble of Bayes classifiers. The procedure is
presented in Fig. 2. Firstly, we generate representations of input x for each expert k as rk = gk ◦f(x).
Secondly, we calculate log-likelihoods of rk for all distributions Gc

k associated with this expert

lck(x) = − 1

2
[ln (|Σc

k|) + S ln (2π) + (rk − µc
k)

T (Σc
k)

−1(rk − µc
k)], (1)

where S is the latent space dimension. Then, we softmax those values l̂1k, . . . , l̂
|C|
k =

softmax(l1k, . . . , l
|C|
k ; τ) per each expert, where C is the set of classes and τ is a temperature. Class c

with the highest average value after softmax over all experts (highest Ek l̂ck) is returned as a predic-
tion for task agnostic setup. For task aware inference, we limit this procedure to classes from the
considered task.

Our training assumes T tasks, each corresponding to the non-overlapping set of classes C1 ∪ C2 ∪
· · · ∪ CT = C such that Ct ∩ Cs = ∅ for t ̸= s. Moreover, task t is a training step with only access
to data Dt = {(x, y)|y ∈ Ct}, and the objective is to train a model performing well both for classes
of a new task and classes of previously learned tasks (< t).

The main idea of training SEED, as presented in Fig. 3, is to choose and finetune one expert for each
task, where the chosen expert should correspond to latent space where distributions of new classes
overlap the least. Intuitively, this strategy causes latent space to change as little as possible, improving
stability.

Figure 3: SEED training process for K = 2 experts, T = 3 tasks, and |Ct| = 2 classes per task.
When the third task appears with novel classes C3, we analyze distributions of C3 classes (here
represented as purple distributions) in latent spaces of all experts. We choose the expert where those
distributions overlap least (here, expert 2). We finetune this expert to increase the separability of new
classes further and move to the next task.

To formally describe our training, let us assume that we are in the moment of training when we have
access to data Dt = {(x, y)|y ∈ Ct} of task t for which we want to finetune the model. There are
two steps to take, selecting the optimal expert for task t and finetuning this expert.

Expert selection starts with determining the distribution for each class c ∈ Ct in each expert k. For
this purpose, we pass all x from Dt with y = c through deep network gk ◦ f . This results in a set
of vectors in latent space for which we approximate a multivariate Gaussian distribution qc,k. In
consequence, each expert is associated with a set Qk = {q1,k, q2,k, ..., q|Ct|,k} of |Ct| distributions.
We select expert k̄ for which those distributions overlap least using symmetrized Kullback–Leibler
divergence dKL:

k̄ = argmax
k

∑
qi,k,qj,k∈Qk

dKL(qi,k, qj,k), (2)
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To finetune the selected expert k̄, we add the linear head to its deep network and train gk̄ using
Dt set. As a loss function, we use cross-entropy combined with feature regularization based on
knowledge distillation (Li & Hoiem, 2016) weighted with α: L = (1 − α)LCE + αLKD, where
LKD = 1

|B|
∑

i∈B ||gk̄ ◦ f(xi)− gold
k̄

◦ f(xi)||, B is a batch and gold
k̄

is frozen gk̄.

While we use CE for its simplicity and effective clustering (Horiguchi et al., 2019), it can be replaced
with other training objectives, such as self-supervision. Then, we remove the linear head, update
distributions of Qk̄, and move to the next task.

Due to the random expert initializations, we skip the selection procedure for K initial tasks and
omit LKD. Instead, we select the expert with the same number as the number task (k = t) and use
L = LCE . For the same reason, we calculate distributions of new tasks only for the experts trained
so far (k ≤ t). Finally, we fix f after the first task so that finetuning one expert does not affect others.

4 EXPERIMENTS

In order to evaluate the performance of SEED and fairly compare it with other models, we utilize three
commonly used benchmark datasets in the field of Continual Learning (CL): CIFAR-100 (Krizhevsky,
2009) (100 classes), ImageNet-Subset (Deng et al., 2009) (100 classes) and DomainNet (Peng et al.,
2019) (345 classes, from 6 domains). DomainNet contains objects in very different domains, allowing
us to measure models’ adaptability to new data distributions. We create each task with a subset
of classes from a single domain, so the domain changes between tasks (more extensive data drift).
We always set K = 5 for SEED, so it consists of 5 experts. We evaluate all Continual Learning
approaches in three different task distribution scenarios. We train all methods from scratch. Detailed
information regarding experiments and the code are in the Appendix. We compare all methods with
standard CIL evaluations using the classification accuracies after each task, and average incremental
accuracy, which is the average of those accuracies (Rebuffi et al., 2017). We train all methods from
scratch in all scenarios.

The first scenario is the CIL equal split setting, where each task has the same number of classes. This
weakens the feature extractor trained on the first task, as there is little data. Therefore, this scenario
better exposes the methods’ plasticity. We reproduce results using FACIL(Masana et al., 2022), and
PyCIL(Zhou et al., 2021) benchmarks for this setting. We train all methods using random crops,
horizontal flips, cutouts, and AugMix (Hendrycks et al., 2019) data augmentations.

The second scenario is similar to the one used in (Hou et al., 2019), where the first task is larger than
the subsequent tasks. This equips CIL methods with a more robust feature extractor than the equal
split scenario. Precisely, the first task consists of either 50% or 40% of all classes. This setting allows
methods that freeze the feature extractor (low plasticity) to achieve good results. We take baseline
results for this setting from (Petit et al., 2023).

The third scenario is task incremental on equal split tasks (where the task id is known during inference).
Here, the baseline results and numbers of models’ parameters are taken from (Wang et al., 2022b).
We perform the same data augmentations as in this work.

4.1 RESULTS

Tab. 1 presents the comparison of SEED and state-of-the-art exemplar-free CIL methods for CIFAR-
100, DomainNet, and ImageNet-Subset in the equal split scenario. We report average incremental
accuracies for various split conditions and domain shift scenarios (DomainNet). We present joint
training as an upper bound for the CL training.

SEED outperforms other methods by a large margin in each setting. For CIFAR-100, SEED is
better than the second-best method by 14.7, 17.5, and 15.6 percentage points for T = 10, 20, 50,
respectively. The difference in results increases as there are more tasks in the setting. More precisely,
for T = 10, SEED has 14.7 percentage points better accuracy than the second-best method (LwF*,
which is LwF implementation with PyCIL (Zhou et al., 2021) data augmentations and learning rate
schedule). At the same time, for T = 50 SEED is better by 15.6%. The results are consistent for other
datasets, proving that SEED achieves state-of-the-art results in an equal split scenario. Moreover,
based on DomainNet results, we conclude that SEED is also better in scenarios with a significant
distributional shift. Detailed results for CIFAR100 T=50 and DomainNet T=36 are presented in

5



Published as a conference paper at ICLR 2024

Figure 4: Class incremental accuracy achieved after each task for equal splits on CIFAR100 and
DomainNet. SEED significantly outperforms other methods in equal split scenarios for many tasks
(left) and more considerable data shifts (right).

Fig. 4. In this extreme setting, where each task consists of just little data, SEED results in significantly
higher accuracies for the last tasks than other methods.

Table 1: Task-agnostic avg. inc. accuracy (%) for equally split tasks on CIFAR-100, DomainNet and
ImageNet-Subset. The best results are in bold. SEED achieves superior results compared to other
methods and outperforms the second best method (FeTrIL) by a large margin.

CIL Method CIFAR-100 (ResNet32) DomainNet ImageNet-Subset

T=10 T=20 T=50 T=12 T=24 T=36 T=10

Finetune 26.4±0.1 17.1±0.1 9.4±0.1 17.9±0.3 14.8±0.1 10.9±0.2 27.4±0.4
EWC (Kirkpatrick et al., 2017) (PNAS’17) 37.8±0.8 21.0±0.1 9.2±0.5 19.2±0.2 15.7±0.1 11.1±0.3 29.8±0.3
LwF* (Rebuffi et al., 2017) (CVPR’17) 47.0±0.2 38.5±0.2 18.9±1.2 20.9±0.2 15.1±0.6 10.3±0.7 32.3±0.4
PASS (Zhu et al., 2021b) (CVPR’21) 37.8±1.1 24.5±1.0 19.3±1.7 25.9±0.5 23.1±0.5 9.8±0.3 -
IL2A (Zhu et al., 2021a) (NeurIPS’21) 43.5±0.3 28.3±1.7 16.4±0.9 20.7±0.5 18.2±0.4 16.2±0.4 -
SSRE (Zhu et al., 2022) (CVPR’22) 44.2±0.6 32.1±0.9 21.5±1.8 33.2±0.7 24.0±1.0 22.1±0.7 45.0±0.5
FeTrIL (Petit et al., 2023) (WACV’23) 46.3±0.3 38.7±0.3 27.0±1.2 33.5±0.6 33.9±0.5 27.5±0.7 58.7±0.2
SEED 61.7±0.4 56.2±0.3 42.6±1.4 45.0±0.2 44.9±0.2 39.2±0.3 67.8±0.3
Joint 71.4±0.3 63.7±0.5 69.3±0.4 69.1±0.1 81.5±0.5

Large first task class incremental scenarios. We present results for this setting in Tab. 2. For
CIFAR-100, SEED is better than the best method (FeTrIL) by 4.6, 4.1, and 1.4 percentage points for
T = 6, 11, 21, respectively. For T = 6 on ImageNet-Subset, SEED is better by 3.3 percentage points
than the best method. However, with more tasks, T = 11 or T = 21, FeTrIL with a frozen feature
extractor presents better average incremental accuracy.

We can notice that simple regularization-based methods such as EWC and LwF* are far behind more
recent ones: FeTrIL, SSRE, and PASS, which achieve high levels of overall average incremental
accuracy. However, these methods benefit from a larger initial task, where a robust feature extractor
can be trained before incremental steps. In SEED, each expert can still specialize for a different set
of tasks and continually learn more diversified features even with using regularization like LwF. The
difference between SEED and other methods is noticeably smaller in this scenario than in the equal
split scenario. This fact proves that SEED works better in scenarios where a strong feature extractor
must be trained from scratch or where there is a domain shift between tasks.

Task incremental with limited number of parameters. We investigate the performance of SEED in
task incremental scenarios. We compare it against another state-of-the-art task incremental ensemble
method - CoSCL (Wang et al., 2022b) and follow the proposed limited number of models’ parameters
setup. We compare SEED to: HAT (Serrà et al., 2018), MARK (Hurtado et al., 2021), and BNS (Qin
et al., 2021). Tab. 3 presents the results with the number of utilized parameters. Our method requires
significantly fewer parameters than other methods and achieves better average incremental accuracy.
Despite being designed to solve the exemplar-free CIL problem, SEED outperforms other task-
incremental learning methods. Additionally, we check how the number of shared layers (f function)
affects SEED’s performance. Increasing the number of shared layers decreases required parameters
but negatively impacts task-aware accuracy. As such, the number of shared layers in SEED is a
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Table 2: Comparison of CIL methods on ResNet18 and CIFAR-100 or ImageNet-Subset under larger
first task conditions. We report task-agnostic avg. inc. accuracy from multiple runs. The best result
is in bold. The discrepancy in results between SEED and other methods decreases compared to the
equal split scenario.

CIL Method
CIFAR-100 ImageNet-Subset

T=6 T=11 T=21 T=6 T=11 T=21
|C1|=50 |C1|=50 |C1|=40 |C1|=50 |C1|=50 |C1|=40

EWC∗ (Kirkpatrick et al., 2017) (PNAS’17) 24.5 21.2 15.9 26.2 20.4 19.3
LwF* (Rebuffi et al., 2017) (CVPR’17) 45.9 27.4 20.1 46.0 31.2 42.9
DeeSIL (Belouadah & Popescu, 2018) (ECCVW’18) 60.0 50.6 38.1 67.9 60.1 50.5
MUC∗ (Liu et al., 2020) (ECCV’20) 49.4 30.2 21.3 - 35.1 -
SDC∗ (Yu et al., 2020) (CVPR’20) 56.8 57.0 58.9 - 61.2 -
ABD∗ (Smith et al., 2021) (ICCV’21) 63.8 62.5 57.4 - - -
PASS∗ (Zhu et al., 2021b) (CVPR’21) 63.5 61.8 58.1 64.4 61.8 51.3
IL2A∗ (Zhu et al., 2021a) (NeurIPS’21) 66.0 60.3 57.9 - - -
SSRE∗ (Zhu et al., 2022) (CVPR’22) 65.9 65.0 61.7 - 67.7 -
FeTrIL∗ (Petit et al., 2023) (WACV’23) 66.3 65.2 61.5 72.2 71.2 67.1
SEED 70.9±0.3 69.3±0.5 62.9±0.9 75.5±0.4 70.9±0.5 63.0±0.8
Joint 80.4 81.5

hyperparameter that allows for a trade-off between achieved results and the number of parameters
required for training.

Table 3: Limited parameters setting on CIFAR-100 with
random class order. The reported metric is average task
aware accuracy (%). Results for SEED are presented for
various numbers of shared layers. Although we designed
SEED for the task agnostic setting, it achieves superior
results to exemplar-free, architecture-based methods using
fewer parameters.

Approach #Params. 20-split 50-split
HAT 6.8M 77.0 80.5
MARK 4.7M 78.3 -
BNS 6.7M - 82.4
CoSCL(EWC+LWF) 4.6M 79.4±1.0 87.9±1.1
SEED 3.2M 86.8±0.3 91.2±0.4
SEED(1 shared) 3.2M 86.7±0.6 91.2±0.5
SEED(11 shared) 3.1M 85.6±0.3 89.6±0.2
SEED(21 shared) 2.7M 82.4±0.4 88.1±0.5

Table 4: Ablation study of SEED for
CIL setting with T=10 on ResNet32
and CIFAR-100. Avg. inc. acc. is re-
ported. Multiple components of SEED
were ablated. SEED as-designed
presents the best performance.

Approach Acc.(%)
SEED(5 experts) 61.7 ±0.4
standard ensemble 56.9±0.4
weighted ensemble 57.0±0.5
CoSCL ensemble 57.3±0.4

w/o multivariate Gauss. 53.5±0.5
w/o covariance 54.1±0.3
w/o temp. in softmax 59.2±0.5

w/ ReLU 57.8±0.6

4.2 DISCUSSION

Is SEED better than other ensemble methods? We want to verify that the improved performance
of our method comes from more than just forming an ensemble of classifiers. Hence, we compare
SEED with the vanilla ensemble approach to continual learning, where all experts are initialized
with random weights, trained on the first task, and sequentially fine-tuned on incremental tasks. The
final decision is obtained by averaging the predictions of ensemble members. We present results in
Tab. 4. Using the standard ensemble decreases the accuracy by 4.8%. We also experiment with the
approaches where the predictions are weighted during inference by the confidence of the ensemble
members (using prediction entropy, as in (Ruan et al., 2023) and where the experts are trained with
additional ensemble cooperation loss from (Wang et al., 2022b). However, they yielded similar
results to uniform weighting.

Diversity of experts Fig. 5 and Fig.11 (Appendix) depict the quality of each expert on various tasks
and their respective contributions to the ensemble. It can be observed that experts specialize in tasks
on which they were fine-tuned. For each task, there is always an expert who exhibits over 2.5% points
better accuracy than the average of all experts. This demonstrates that experts specialize in different
tasks. Additionally, the ensemble consistently achieves higher accuracy (ranging from 6% to 10%
points) than the average of all experts on all tasks. Furthermore, the ensemble consistently outperforms
the best individual expert, indicating that each expert contributes uniquely to the ensemble. See the
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details in Fig. 10 (Appendix) for more analysis of overlap strategy from Eq. 2 that also presents how
experts are diversified between the tasks.

Figure 5: Diversity of experts on CIFAR-100 dataset with T = 20 split. The presented metric
is relative accuracy (%) calculated by subtracting the accuracy of each expert from the averaged
accuracy of all experts. Black squares represent experts selected to be finetuned on a given task.
Although we do not impose any cost function associated with experts’ diversity, they tend to specialize
in different tasks by the design of our method. Moreover, our ensemble (bottom row) always performs
better than the best expert, proving that each expert contributes uniquely to the ensemble in SEED.

Expert selection strategy. In order to demonstrate that our minimum overlap selection strategy
(KL-max) improves the performance of the SEED architecture, we compare it to three other selection
strategies. The first is a random selection strategy, where each expert has an equal probability of
being chosen for finetuning. The second is a round-robin selection strategy, where for a task t, an
expert with no. 1 + (t− 1 mod K) is chosen for a finetuning. The third one is the maximum overlap
strategy (KL-min), in which we choose the expert for which the overlap between latent distributions
of new classes is the highest. We conduct ten runs on CIFAR-100 with a Resnet32 architecture,
three experts, and a random class order and report the average incremental accuracy in Fig. 6. Our
minimum overlap selection strategy shows a higher mean and median than the other methods.

Figure 6: Avg. inc. accuracy of 10 runs
with different class orderings for CIFAR-
100 and different fine-tuning expert se-
lection strategies for T = 20, 50 and
three experts. Our KL-max expert se-
lection strategy yields better results than
random, round-robin, and KL-min.

Ablation study. In Tab. 4, we present the ablation study
for SEED. We report task-agnostic inc. avg. accuracy for
five experts on CIFAR-100 and ResNet32, where results
are averaged over three runs. Firstly, we remove or re-
place particular SEED components. We start by replacing
the multivariate Gaussian distribution with its diagonal
form. This reduces accuracy to 53.5%. Then, we re-
move Gaussian distributions and represent each class as a
mean prototype in the latent space and use Nearest Mean
Classifier (NMC) to make predictions. This also reduces
accuracy, which shows that using multivariate distribution
is important for SEED accuracy. Secondly, we check the
importance of using temperature in the softmax function
during inference. SEED without temperature (τ = 1)
achieves worse results than with temperature (τ = 3), al-
lowing more experts to contribute to the ensemble with
more fuzzy likelihoods. At last, we analyze various SEED
modifications, i.e., adding ReLU activations (like in the
original ResNet) at the last layer, which decreased the
accuracy by 3.9% points. It is because it is easier for the
neural network trained with cross-entropy loss to represent
features as Gaussian distribution if nonlinear activation is
removed. See Tab. 7 for additional ablation study.

Plasticity vs stability trade-off. SEED uses feature distillation in trained expert to alleviate forgetting.
To assess the influence of the regularization on overall method performance, we use the forgetting
and intransigence measures defined in (Chaudhry et al., 2018). Fig. 7 (left) shows the relationship
between forgetting and intransigence for four different regularization-based methods: SEED, EWC as
a parameters regularization-based method, LWF as regularization of network’s output with distillation,
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Figure 7: CIFAR-100. (Left) Forgetting and intransigence for different methods when manipulating
the stability-plasticity parameters for T = 10. SEED with 5 experts achieves the best forgetting-
intransigence trade-off. (Right) SEED accuracy as a function of a number of experts for T = 20 with
5 or 50 classes in the first task. Bars reflect standard dev. out of three runs.

and a recent FeTrIL method (Petit et al., 2023). For SEED, we adapt plasticity using the α and K
parameter, and for both EWC and LWF, we change the λ parameter. FeTrIL method has no such
parameter, as it uses a frozen backbone. The trade-off between stability and plasticity is evident. The
FeTrIL model is very intransigent, with low plasticity and low forgetting. Plasticity is crucial in the
CIL setting with ten or more tasks with an equal number of classes. Thus, EWC and LwF, need to
be less rigid and exhibit more forgetting. The SEED model for K = 3 and K = 5, achieves much
better results than FeTrIL while remaining less intransigent and more stable than LwF and EWC. By
adjusting the α trade-off parameter of SEED, its stability can be controlled for any number of experts.

Number of experts. In Fig. 7 (right), we analyze how the number of experts influences the avg.
incremental accuracy achieved by SEED. Changing the number of experts from 1 to 5 increases
task-agnostic and task-aware accuracy by ≈ 15% for T0 = 5. However, for T0 = 50, the increase
is less significant ( 2% and 5% for task aware and task agnostic settings, respectively). These
results suggest that scenarios with the significantly bigger first task are simpler than equal split ones.
Moreover, going beyond five experts does not improve final CIL performance so much.

5 CONCLUSIONS

In this paper, we introduce an exemplar-free CIL method called SEED. It consists of a limited number
of trained from scratch experts that all cooperate during inference, but in each task, only one is
selected for finetuning. Firstly, this decreases forgetting, as only a single expert model’s parameters
are updated without changing learned representations of the others. Secondly, it encourages diversified
class representations between the experts. The selection is based on the overlap of distributions of
classes encountered in a task. That allows us to find a trade-off between model plasticity and stability.
Our experimental study shows that the SEED method achieves state-of-the-art performance across
several exemplar-free class-incremental learning scenarios, including different task splits, significant
shifts in data distribution between tasks, and task-incremental settings. In the ablation study, we
proved that each SEED component is necessary to obtain the best results.

Reproducibility and limitations of SEED We enclose the code in the supplementary material, and
results can be reproduced by following the readme file. Our method has three limitations. Firstly,
SEED may be not feasible for scenarios where tasks are completely unrelated and the number of
parameters is limited, as in that case sharing initial parameters between experts may lead to a poor
performance. Secondly, SEED requires the maximum number of experts given upfront, which can
be found as a limitation of our method for new settings. Thirdly, calculating a distribution for a
class may not be possible if the class’s covariance matrix is singular. We address the last problem by
decreasing latent space size. We elaborate more on this in the Appendix A.2.
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A APPENDICES

A.1 IMPLEMENTATION DETAILS

All experiments are the average over three runs and all methods are trained from scratch as in
their original papers. We implemented SEED in FACIL (Masana et al., 2022) framework using
Python 3 programming language and PyTorch (Paszke et al., 2019) machine learning library. We
utilized a computer equipped with AMD EPYCTM 7742 CPU and NVIDIA A-100TM GPU to perform
experiments. On this machine, SEED takes around 1 hour to be trained on CIFAR100 for T = 10.

For all experiments, SEED is trained using the Stochastic Gradient Descent (SGD) optimizer for 200
epochs per task, with a momentum of 0.9, weight decay factor equal 0.0005, α set to 0.99, τ set to
3 and an initial learning rate of 0.05. The learning rate decreases ten times after 60, 120, and 160
epochs. As the knowledge distillation loss, we employ the L2 distance calculated for embeddings in
the latent space. We set the default number of experts to 5 and class representation dimensionality
S to 64. In order to find the best hyperparameters for SEED, we perform a manual hyperparameter
search on a validation dataset.

Tab. 1, Fig. 4 and Fig. 9. We perform experiments for all methods using implementations provided
in FACIL and PyCIL (Zhou et al., 2021) frameworks. We use ResNet32 as a feature extractor for
CIFAR100 and ResNet18 for DomainNet and ImageNet-Subset. For DomainNet T = 12, we use 25
classes per task; for T = 18, we use 10; for T = 36, we use 5.

All methods were trained using the same data augmentations: random crops, horizontal flips, cutouts,
and AugMix (Hendrycks et al., 2019). For baseline methods, we set default hyperparameters provided
in benchmarks. However, for LwF, we use λ = 10 as we observed that this significantly improved its
performance.

Tab. 2. For baseline results, we provide results reported in (Petit et al., 2023). All CIL methods use the
same data augmentations: random resized crops, horizontal flips, cutouts, and AugMix (Hendrycks
et al., 2019).

Tab. 3. The setting and baseline results are identical to (Wang et al., 2022b). We train SEED with the
same data augmentation methods as other methods: horizontal flips and random crops. Here, we use
five experts consisting of the Resnet32 network.

Fig. 6 We calculate relative accuracy by subtracting each expert’s accuracy from the average accuracy
of all experts as in (Wang et al., 2022b). We perform 10 runs with random seeds.

Fig. 7. Below we report the range of used parameters for plotting the forgetting-intransigence curves
(Fig. 7 - left).

• LwF: λ ∈ {1, 2, 3, 5, 7, 10, 15, 20, 25, 50, 100}
• EWC: λ ∈ {100, 500, 1000, 2500, 5000, 7500, 10000}
• SEED K = 1: γ ∈ {0.0, 0.25, 0.5, 0.9, 0.95, 0.97, 0.99, 0.999}
• SEED K = 3: γ ∈ {0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999}
• SEED K = 5: γ ∈ {0.5, 0.9, 0.97, 0.999}

A.2 RESNET ARCHITECTURE MODIFICATION

The backbone for the SEED method can be any popular neural network with its head removed. This
study focuses on a family of modified ResNet (He et al., 2016) architectures.

ResNet architecture is a typical neural architecture used for the continual learning setting. In this
work, we follow this standard. However, there are two minor changes to ResNet in our algorithm.

Due to ReLU activation functions placed at the end of each ResNet block, latent feature vectors of
ResNet models consist of non-negative elements. That implies that every continuous random variable
representing a class is defined on [0;∞)S , where S is the size of a latent vector. However, Gaussian
distributions are defined for random variables of real values, which, in our case, reduces the ability to
represent classes as multivariate Gaussian distributions. In order to alleviate this problem, we remove
the last ReLU activation function from every block in the last layer of ResNet architecture.
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Secondly, the size S of the latent sample representation should be adjustable. There are two reasons
for that. Firstly, if S is too big and a number of class samples is low, Σ can be a singular matrix. This
implies that the likelihood function might not be well-defined. Secondly, adjusting S allows us to
reduce the number of parameters the algorithm requires. We overcome this issue by adding a 1x1
convolution layer with S kernels after the last block of the architecture. For example, this allows us
to represent feature vectors of Resnet18 with 64 elements instead of 512.

A.3 MEMORY FOOTPRINT

SEED requires:

|θf |+K|θg|+
K∑
i=1

T∑
j=i

|Cj |(S +
S(S + 1)

2
) (3)

parameters to run, where |θf | and |θg| represent number of parameters of f and g functions, respec-
tively. S is dimensionality of embedding space, K is number of experts, T is number of tasks, |Cj | is
a number of classes in j-th task.

This total number of parameters used by SEED can be limited in several ways:

• Decreasing S by adding a convolutional 1x1 bottleneck layer at the network’s end.
• Pruning parameters.
• Performing weight quantization.
• Using simpler feature extractor.
• Increasing number of shared layers (moving parameters from g into f function).
• Simplifying multivariate Gaussian distributions to diagonal covariance matrix or prototypes.

A.4 NUMBER OF PARAMETERS VS ACCURACY TRADE-OFF

To investigate the trade-off between the number of the SEED’s parameters and the overall average
incremental accuracy of the method, we conducted several experiments with a different number of
experts and shared layers (as in a previous experiment in Tab. 3 we only adjust the number of layers).
We see that these two factors indeed control and decrease the number of required parameters, e.g.,
sharing the first 25 layers in Resnet32 decreases memory footprint by 0.8 million parameters when
we use five experts. However, it slightly hurts the performance of SEED, as the overall average
incremental accuracy drops by 4.4%. These results, combined with expected forgetting/intransigence,
can guide an application of SEED for a particular problem.

We additionally compare SEED to the best competitor - FeTrIL (with Resnet32) in a low parameters
regime. FeTrIL stores feature extractor without the linear head and prototypes of each class. For
SEED we utilize Resnet20 network with a number of kernels changed from 64 to 48 in the third block.
We use 5 experts which share first 17 layers. We present results in Tab. 5. We present the number of
network weights and total number of parameters which for SEED also includes multivariate Gaussian
distributions. SEED has 13K less parameters than FeTrIL but achieves better accuracy on 3 settings.

Table 5: SEED outperforms competitors in terms of performance and number of parameters on
equally split CIFAR100, however it requires decreasing size of the feature extractor network and
sharing first 17 layers.

CIL Method Network Network weights Total params. CIFAR-100

T=10 T=20 T=50

EWC∗ (Kirkpatrick et al., 2017) (PNAS’17) ResNet32 473K 473K 24.5 21.2 15.9
LwF* (Rebuffi et al., 2017) (CVPR’17) Resnet32 473K 473K 45.9 27.4 20.1
FeTrIL (Petit et al., 2023) (WACV’23) Resnet32 473K 473K 46.3±0.3 38.7±0.3 27.0±1.2
SEED Resnet20* 339K 460K 54.7±0.2 48.6±0.3 33.1±1.1

A.5 PRETRAINING SEED

We study the impact of using a pretrained network with SEED on its performance. For this purpose
we utilize ResNet-18 with weights pretrained on ImageNet-1K as a feature extractor for every expert.

14



Published as a conference paper at ICLR 2024

Figure 8: Impact of number of experts and number of shared layers on accuracy and number
parameters of SEED. We utilize CIFAR100 with |T | = 10. We can observe that accuracy drops when
decreasing the number of experts and increasing the number of shared layers.

DomainNet Avg. Inc. Accuracy (%) Forgetting (%)
|T | From scratch Pretained From scratch Pretrained

12 45.0 53.1 12.1 12.8
24 44.9 54.2 11.2 12.1
36 39.2 53.6 13.7 15.6

Table 6: Pretraining experts in SEED increases its accuracy while slightly increasing forgetting. We
compare ResNet-18 with weights pretrained on ImageNet-1K to a randomly initilized ResNet-18 as
feature extractors of each expert.

We compare it to SEED initialized with random weights (training from scratch) in Tab.6. Pretrained
SEED achieves better average incremental accuracy by: 8.1%, 9.3%, 14.4% on DomainNet split to
12, 24, 36 tasks respectively.

A.6 ADDITIONAL RESULTS

In this section we provide more experimental results. Fig. 10 presents insight into diversity of experts
on CIFAR100 for T = 50 and 5 experts. We measure value of overlap per expert in each task given
by Eq. 2. Average value of the function differ between tasks, e.g., for task 49. it equals to ≈ 3.5,
while for task 33. it equals to ≈ 18.0. This is due to semantic similarity between classes in a given
task, classes in task 49. (cups, bowls) are semantically more similar then classes in task 33. (bed,
dolphin). However, in each task we can observe significant variance between values for experts. This
proves that classes overlap differently in experts, therefore experts are diversified what allows SEED
to achieve great results.

In Fig. 9, we present accuracies obtained after equal split tasks for Table 1. We report results for
CIFAR100 and DomainNet datasets. We can observe that for DomainNet SEED achieves 15%
better accuracy after the last incremental step than FeTril. On CIFAR100 SEED achieves 20%
and 16% better accuracy than the best method. This proves that SEED achieves superior results to
state-of-the-art methods on equal-split and big domain shift settings.

Table 7 presents an additional ablation study for SEED. We test various ways to approximate class
distributions in the latent space on CIFAR100 dataset and T = 10. Firstly, we replace multivariate
Gaussian distribution with a Gaussian Mixture Model (GMM) consisting of 2 multivariate Gaussian
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Figure 9: Accuracy after each task for equal splits on CIFAR100 and DomainNet. SEED significantly
outperforms other methods in equal split scenarios for many tasks (top) and more considerable data
shifts (bottom).

distributions. It slightly reduces the accuracy (by 1.2%). Then, we abandon multivariate Gaussians
and approximate classes using 2 and 3 Gaussian distributions with the diagonal covariance matrix.
That decreases accuracy by a large margin. We also approximate classes using their prototypes
(centroids) in the latent space. This also reduces the performance of SEED.

Table 7: Ablation study of SEED for CIL setting with T=10 on ResNet32 and CIFAR-100. Avg. inc.
accuracy is reported. We test different variations of class representation (such as Gaussian Mixture
Model, diagonal covariance matrix or prototypes). SEED presents the best performance when used
as designed.

Approach Acc.(%)
SEED(5 experts) 61.7 ±0.5
w/ 2× multivariate 60.5±0.7
w/ 2× diagonal 53.8 ±0.1
w/ 3× diagonal 53.8±0.3
w/ prototypes 54.1±0.3
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Figure 10: Overlap of class distributions in each task per expert on CIFAR-100 dataset with T = 50
split and random class order. Diversification by data yields high variation in overlap values in each
task what proves that experts are diversified and learn different features. Average overlap values differ
between tasks, as they depend on semantic similarity of classes. Classes in task 49. are semantically
similar (cups, bowls) but classes in task 33. are different (beds, dolphins).
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Figure 11: Diversity of experts on CIFAR-100 dataset with T = 20 split, different seeds and random
class order. The presented metric is relative accuracy (%). Black squares represent experts selected to
be finetuned on a given task. We can observe that experts specialize in different tasks.
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