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Abstract

Imitation learning (IL) is a paradigm for learning sequential decision-making poli-
cies from experts, leveraging offline demonstrations, interactive annotations, or
both. Recent advances show that when annotation cost is tallied per trajectory,
Behavior Cloning (BC)—which relies solely on offline demonstrations—cannot
be improved in general, leaving limited conditions for interactive methods such
as DAgger to help. We revisit this conclusion and prove that when the annotation
cost is measured per state, algorithms using interactive annotations can provably
outperform BC. Specifically: (1) we show that STAGGER, a one-sample-per-round
variant of DAgger, provably beats BC under low-recovery-cost settings; (2) we ini-
tiate the study of hybrid IL where the agent learns from offline demonstrations and
interactive annotations. We propose WARM-STAGGER whose learning guarantee
is not much worse than using either data source alone. Furthermore, motivated
by compounding error and cold-start problem in imitation learning practice, we
give an MDP example in which WARM-STAGGER has significant better annotation
cost; (3) experiments on MuJoCo continuous-control tasks confirm that, with mod-
est cost ratio between interactive and offline annotations, interactive and hybrid
approaches consistently outperform BC. To the best of our knowledge, our work
is the first to highlight the benefit of state-wise interactive annotation and hybrid
feedback in imitation learning.

1 Introduction

Imitation learning, or learning from demonstrations, is a widely applied paradigm for learning
sequential decision-making policies [45 5} 4]. In many applications, it offers a preferable alternative
to reinforcement learning, as it bypasses the need for carefully designed reward functions and avoids
costly exploration [42, 167].

Two prominent data collection regimes exist in imitation learning: offline and interactive. In offline
imitation learning, expert demonstration data in the format of trajectories is collected ahead of time,
which is a non-adaptive process that is easy to maintain. In contrast, in interactive imitation learning,
the learner is allowed to query the expert for annotations in an adaptive manner [51,150}67]. The
most basic and well-known approach for offline imitation learning is Behavior Cloning [49], [16]],
which casts the policy learning problem as a supervised learning problem that learns to predict
expert actions from states. Although simple and easy to implement, offline imitation learning has
the drawback that the quality of the data can be limited [45]]. As a result, the trained model can
well suffer from compounding error, where imperfect imitation leads the learned policy to enter
unseen states, resulting in a compounding sequence of mistakes. In contrast, in interactive imitation
learning, the learner maintains a learned policy over time, with the demonstrating experts providing
corrective feedback on-policy, which enables targeted collection of demonstrations and improves
sample efficiency.
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Recent work [16], via a sharp theoretical analysis of Behavior Cloning, shows that the sample
efficiency of Behavior Cloning cannot be improved in general when measuring using the number of
trajectories annotated. Interactive methods like DAgger [49] can enjoy sample complexity benefits,
but so far the benefits are only exhibited in limited examples, with the most general ones in the tabular
setting [46]. This leaves open the question:

Can interaction provide sample efficiency benefit for imitation learning under a
broad range of settings, especially with function approximation?

In this paper, we make progress towards this question, with a focus on the deterministically realizable
setting (i.e. the expert policy 7% is deterministic and is in the learner’s policy class B). Specifically,
we make the following contributions:

1. Motivated by the costly nature of interactive labeling on entire trajectories [28, [36], we
propose to measure the cost of annotation using the number of states annotated by the
demonstrating expert. We propose a general state-wise interactive imitation learning al-
gorithm, STAGGER, and show that as long as the expert can recover from mistakes at low
cost in the environment [S1]], it significantly improves over Behavior Cloning in terms of its
number of state-wise demonstrations required.

2. Motivated by practical imitation learning applications where sets of offline demonstration
data are readily available, we study hybrid imitation learning, where the learning agent
has the additional ability to query the demonstration expert interactively to improve its
performance. We design a hybrid imitation learning algorithm, WARM-STAGGER, and
prove that its policy optimality guarantee is not much worse than using either of the data
sources alone.

3. Inspired by compounding error [45] and cold start problem [34,41], two practical challenges
in imitation learning, we provide an MDP example, for which we show hybrid imitation
learning can achieve strict sample complexity savings over using either source alone, and
provide simulation results that verify this theoretical claim.

4. We conduct experiments in MuJoCo continuous control tasks and show that if the cost
of state-wise interactive demonstration is not much higher than its offline counterpart,
interactive algorithms can enjoy a better cost efficiency than Behavior Cloning. Under some
cost regimes and some environments, hybrid imitation learning can outperform approaches
that use either source alone.

2 Preliminaries

Basic notation. Define [n] := {1,...,n}. Denote by A(X) the set of probability distributions over a
set X. Foru € A(X) and z € X, we denote by u(z) the z-th coordinate of u and e, the delta mass on
x. We use the shorthand 1., to represent the sequence {x; }1_,. We will frequently use the Hellinger
distance to measure the difference between two distributions: D% (P,Q) = [ (\/% - \/% )2dw,
where P and QQ share a dominating measure w.

Episodic Markov decision process and agent-environment interaction. An episodic MDP M
is defined as a tuple (S, A, P,R, H), where S is the state space, A is the action space, P :=
{Py, : § x A — A(S)}HL, denotes the transition dynamics, R : S x A — A([0,1]) denotes
the reward distribution, and H denotes episode length. Given a stationary policy 7 : S — A(A),
we use 7(-|s) to denote the action distribution of 7 on s. A policy induces a distribution over
trajectories T = (sp,, an, )L | by first drawing the initial state s; ~ Py(9), and then iteratively
taking actions ay, ~ 7(- | sy), receiving rewards rj, ~ R(sy, ap), and transitioning to the next state
Sh+1 ~ Pr(sh,ap) (except at step H, where Py = &). Let E™ and P™ denote expectation and
probability law for (s, ap, ,)f_ | induced by  and M. Given , denote by d™ (s) := %P7 (s;, = s)

its state visitation distribution. The expected return of policy 7 is defined as J(7) := E™ [Zthl rh] ,
and the value functions of 7 are given by V;"(s) := E™ Zgzh rh | Sh = s] ,and QF (s,a) =

E™ [Zf,:h T | Sp = s,ap = a} . If for policy , step h, and state s, 7(- | s) is the delta-mass on

an action, we also sometimes slightly abuse the notation and let 7(s) denote that action.



Additional policy-related notations. Throughout, we assume the access to an Markovian policy
class B of finite size B, which contains the deterministic expert demonstrator policy 7 : S — A(A).
A (MDP, Expert) pair (M, 7¥) is said to be p-recoverable if forall h € [H], s € Sanda € A,
Q’,;E (s,a) — Vh’rE (s) < p. Additionally, we assume normalized return [L6], where for any trajectory
(snyan,rn)H_, 2’1;1:1 rp, € [0, R]. Throughout this paper, we make the assumption that our imitation
learning problem is deterministically realizable:

Assumption 1 (Deterministic Realizability). The expert policy 7% is deterministic and is contained
in the learner’s policy class B.

In our algorithm and analysis, we frequently use the following “convexification” of policy class B:
Definition 1 (Each-step Mixing of B). Iz = {7 x(als) := > s u(m)m(als) : u € A(B)}.

An each-step mixing policy 7, € Il can be executed by drawing m ~ u freshly-at-random at each
step h € [H] and takes action a ~ 7(-|s) (e.g. [32L[33]]). Observe that 7, is a Markovian policy.

Offline imitation learning and Behavior Cloning. In offline imitation 1earning, the agent is given a
collection of expert trajectories D = {71, ..., T, }» Where 7; = (8;.p, a; )L | is the i-th (reward-
free) trajectory, all of which are drawn iid from the trajectory distribution of expert policy 7.
Behavior Cloning finds a policy 7 € B that minimizes its log loss on expert’s actions on the seen
states, i.e.,

Nogg H
T = argmin E E log
TeB i—1 h=1 az h ‘ Sq h)

Recent result of [16] establishes a horizon-independent analysis of Behavior Cloning, which we
recall its guarantees here:

Theorem 2 (Guarantee of BC [16]). Suppose Assumption[l|holds, then with probability 1 — 6, the
policy returned by BC 7 satisfies:

J(x®) - J(7) <O <Rzl\‘;iB) .

Interactive imitation learning protocol. In interactive IL, the learner has the ability to query the
demonstration expert interactively. A first way to model interaction with expert is through a trajectory-
wise demonstration oracle O™ [51, [16]]: given a state sequence (s)L, return (ap)L | such
that aj, = 7¥(sy,) for all h. Subsequent works have considered modeling the expert as a state-wise
demonstration oracle [21} 16,39, 55] O5t¥*°: given a state s;, and step h, return a;, = 7(s;,). We
consider the learner interacting with the environment and demonstration oracles using the following
protocol:

For:=1,2,...

— Select policy 7' and roll it out in M, observing a reward-free trajectory
(81, ai,...,SH, aH).
— Query the available oracle(s) to obtain expert annotations.

Goal: Return policy 7 such that J(7¥) — J(#) is small, with a few number of queries to
Oij or (/)State.

In practice, we expect the cost of querying O to be higher than that of collecting a single offline
expert trajectory [28]]. Since H queries to OS2t can simulate one query to @23, the cost of a single
O3t query should be at least - the cost of O™, Consequently, we also expect one OS** query
to be more expensive than obtaining an additional offline (state, expert action) pair. We denote the
ratio between these two costs as C', where C' > 1 is an application-dependent constant. []_-]

"For practical settings such as human-in-the-loop learning with expert interventions [36} [63]], obtaining a
short segment of corrective demonstrations may be cheaper than querying OS2 for each state therein. Here,
we focus on a simplified setting and leave detailed cost modeling for such settings as interesting future work.



Algorithm 1 STAGGER: DAgger with State-wise annotation oracle

1: Input: MDP M, state-wise expert annotation oracle @St with query budget Ni,;, Markovian
policy class B, online learning oracle A.

2: forn=1,..., Nj do
3:  Query A and receive 7.
4:  Execute 7" and sample s™ ~ d™ . Query 05t for ¢*" = 7% (s™).
5:  Update A with loss function
() =1 ! ()
m):=log | —— | .
2 ﬂ.(a*m Sn)
6: end for

7: Output 7, a first-step uniform mixture of {w"}fj:"{

3 State-wise Annotation in Interactive Imitation Learning

Recent work [[16] on refined analysis of Behavior Cloning (BC) casts doubt on the utility of interaction
in imitation learning: when measuring sample complexity in the number of trajectories annotated,
BC is minimax optimal even among interactive algorithms [[16, Corollary 2.1 and Theorem 2.2].
Although benefits of interactive approaches have been shown in specific examples, progresses so
far have been sparse [[16, 46], with the most general results in the less-practical tabular setting [46]].
In this section, we show that interaction benefits imitation learning in a fairly general sense: when
measuring sample complexity using the number of state-wise annotations, we design an interactive
algorithm with sample complexity better than BC, as long as the expert policy has a low recovering
cost u in the environment.

3.1 Interactive IL Enables Improved Sample Complexity with State-wise Annotations

Our algorithm STAGGER (short for State-wise DAgger), namely Algorithm |1} interacts with the
demonstration expert using a state-wise annotation oracle O5*2*¢, Similar to the original DAgger [51],
it requires base policy class B and reduces interactive imitation learning to no-regret online learning.
At round n, it rolls out the current policy 7" obtained from an online learning oracle A and samples
s" from d™". A classical example of A is the exponential weight algorithm that chooses policies
from I1 ([8]; see Proposition 38|in Appendix |F)). It then queries O>*3 to get expert action a*™
and updates A with loss function ¢™(7) induced by this new example (Eq. (I)). The final policy 7
is returned as a uniform first-step mixture of the historical policies {ﬂ"}fj;‘{, i.e., sample one 7"
uniformly at random and execute it for the episode. In contrast to the DAgger variant analyzed in [16]],
which trains a distinct policy at each step—yielding H policies in total—and employs trajectory-level
annotations, our algorithm utilizes parameter sharing and uses state-wise annotations.

We show the following performance guarantee of Algorithm|ljwith A instantiated as the exponential
weight algorithm:

Theorem 3. Suppose STAGGER is run with a state-wise expert annotation oracle OS¢, an MDP M
where (M, %) is p-recoverable, a policy class B such that deterministic realizability (Assumption
holds, and the online learning oracle A set as the exponential weight algorithm with decision space
A(B) and returns each-step mixing policies T,, € Ilg. Then it returns 7t such that, with probability at
least 1 — 0,

log(B) + 21log(1/6)

J(7®) — J(7) < pH - N .

Theoremshows that STAGGER returns a policy of suboptimality O(‘”{]\,l_iofB) using N, interactive

state-wise annotations from the expert. In comparison, with the cost of Vj,; state-wise annotations,

one can obtain CJ}?“*’ trajectory-wise annotations; [16]’s analysis shows that Behavior Cloning with

this number of trajectories from 7 returns a policy of suboptimality O(%); recall Theorem

Thus, if C <« %, Algorithmhas a better cost-efficiency guarantee than Behavior Cloning.

4
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Figure 1: State-wise sample complexity comparison between Behavior Cloning and STAGGER.

Shaded areas show the 10th—90th percentile bootstrap confidence intervals [14] over 10 runs.
STAGGER matches or exceeds BC with 50% fewer annotations, achieving better state-wise an-
notation efficiency.

We now sketch the proof of TheoremE} In line with [16], we define the online, on-policy state-wise
estimation error as

N
OnEsty™ =Y B, g [DR("(- | 5),7°(- | 5))] .
n=1

The proof proceeds by bounding this error and translating it to the performance difference between 7
and 7. While our definition of estimation error is similar to [16, Appendix C.2], their definition
requires all H states per trajectory, while ours depends on the distribution over a state sampled
uniformly from the rollout of policy 7™. This enables each labeled state to serve as immediate online
feedback, fully utilizing the adaptivity of online learning. In contrast, trajectory-wise annotations
may cause the online learning oracle to operate under delayed feedback [20, [75]], which incurs a
fundamental extra factor of H in state-wise sample complexity compared to our approach.

3.2 Experimental Comparison

We conduct a simple simulation study comparing the sample efficiency of log-loss Behavior
Cloning [16]] and STAGGER in four MuJoCo [73, [7] continuous control tasks with H = 1000
and pretrained deterministic MLP experts [52} 53]]. Considering MuJoCo’s low sensitivity to hori-
zon length [[16], we reveal expert states one by one along consecutive trajectories for BC to allow
fine-grained state-wise sample complexity comparison, while STAGGER queries exactly one state
per iteration by sampling from the latest policy’s rollout and updating immediately with the expert’s
annotation. In STAGGER, we implement the online learning oracle A so that it outputs a policy that
approximately minimizes the log loss. In addition to log loss, we also include results with online
learning oracle minimizing historical examples’ total square loss in Appendix[G.2] We defer other
implementation details to Appendix [G]

Figure [T] shows the performance of the learned policy as a function of the number of state-wise
annotations. When each interactive state-wise annotation has the same cost as an offline (state, expert
action) pair (C' = 1), STAGGER has superior and more stable performance than Behavior Cloning.
For a given target performance (e.g., near expert-level), STAGGER often requires significantly fewer
state-wise annotations than BC—especially on harder tasks—though the gains are less pronounced
on easier ones like Ant and Hopper. To highlight sample efficiency, we plot STAGGER using only half
the annotation budget of BC; despite this, it still matches or surpasses BC on several tasks, suggesting
meaningful benefits from interaction when C' is small (e.g., C' = 3 for Walker).

4 Hybrid Imitation Learning: Combining Offline Trajectory-wise and
Interactive State-wise Annotations

Practical deployments of imitation learning systems often learn simultaneously from offline and
interactive feedback modalities [26} [19]: for example, in autonomous driving [[79, 3, [80], the learner
has access to some offline expert demonstrations to start with, and also receives interactive expert



Algorithm 2 WARM-STAGGER: Warm-start STAGGER with offline demonstrations

1: Input: MDP M, state-wise expert annotation oracle OState Markovian policy class B, online
learning oracle A, offline expert dataset D of size Nyg, online budget Njpt

2: Initialize A with policy class By := {w € B: w(sp) = an, Vh € [H],V(s;“ah)thl € Dy}
3: forn=1,..., Ny do
4:  Query A and receive 7. ’
5. Execute 7™ and sample s" ~ d” . Query OStat for g*" = 7F(s").
6:  Update A with loss function:
() =1 ! @)
m)i=log| — | .
) 7.‘_(a*,n ‘ sn)
7: end for
8: Output: 7, a first-step uniform mixture of {7!,... 7V},

demonstration feedback in trajectory segments for subsequent finetuning. Motivated by this practice,
we formulate the following problem:

Hybrid Imitation Learning (HyIL): Problem Setup. The learner has access to two complementary
sources of expert supervision:

» Nog offline expert trajectories Dog = {(si,h, ain)l_ i€ [Noﬁ‘]}, sampled i.i.d. from
rolling out 7% in M;
* A state-wise annotation oracle O5*2* that can be queried interactively up to Nj,; times.

Each offline (state, action) pair takes a unit cost, and the cost of an interactive query is C' > 1. The
total cost budget is therefore H - Nog + C - Niy. The goal is to return a policy 7 that minimizes its
suboptimality J(7%) — J(7).

We ask: can we design a HyIL algorithm with provable sample efficiency guarantee? Furthermore,
can its performance surpass pure BC and pure interactive IL with the same cost budget?

4.1 WARM-STAGGER: Algorithm and Analysis

We answer the above questions by proposing the WARM-STAGGER algorithm, namely Algorithm 2]
It extends STAGGER to incorporate offline expert demonstrations, in that it constructs By, a restricted
policy class that contains all policies in B consistent with all offline expert demonstrations (line[2). It
subsequently performs online log-loss optimization on By over state-action pairs collected online,
where the state s™ is obtained by rolling out 7™ in the MDP M, and the action a™" is annotated by
the state-wise expert annotation oracle O5***¢, For analysis purposes, we introduce the following
technical definition.

Definition 4 (Each-step policy completion). Given a base policy class B, define for each step h € [H)|
B, = {7Th | ™= (71,...,7H) EB}.
Then the each-step completion of B is defined as
B:= {77: (T1yeeyTH) ‘ T, € By, forall h € [H]}

In words, each 7 € B uses a possibly distinct policy 7, from By, to take action at step . By definition,
B = |l§| is at most B¥, since |B;,| < B. Under non-parameter-sharing settings [49, 47, 46 [16],
where the base class 5 allows the policies used at each step to be chosen independently, B = B.
Theorem 5. If WARM-STAGGER is run with a state-wise expert annotation oracle O5***°, an
MDP M where (M, %) is u-recoverable, a policy class B such that deterministic realizability
(Assumption[I)) holds, and the online learning oracle A set as the exponential weight algorithm with
each-step mixing policies T, € Ilg, then it returns 7 such that, with probability at least 1 — 6,

J(x®) - J(7) <O (Inin (Rlozgvf/é)’ pH loffi(be/é))) 7

where we recall that B < B < B, and By = |By.| < B.
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Figure 2: MDP construction and simulation results of algorithms with rewards assigned only in E.
We evaluate WARM-STAGGER (WS) with 200, 800, 3200 offline (state, expert action) pairs. All
methods are evaluated under equal total annotation cost with C' = 1. With 800 offline (state, expert
action) pairs, WS significantly improves the sample efficiency over the baselines and explores E’
more effectively.

Theorem 5] shows that WARM-STAGGER finds a policy with suboptimality guarantee not signficantly
worse than BC or STAGGER: first, Behavior Cloning using the offline data only has a suboptimality of

0] (%&B/é)) (cf. Theorem; second, STAGGER without using offline data has a suboptimality

of O (%) (cf. Theorem. We conjecture that the log B dependence may be sharpened to
log B; we leave this as an interesting open question.

Remark 6. One may consider another baseline that naively switches between BC and STAGGER
based on a comparison between their bounds; however, such a baseline needs to know R and i ahead
of time. In practice, we expect our WARM-STAGGER fo perform much better than this baseline, since
it seamlessly incorporates both sources of data, and its design does not rely on theoretical bounds
that may well be pessimistic.

4.2 On the Benefit of Hybrid Imitation Learning

Theorem [3]is perhaps best viewed as a fall-back guarantee for WARM-STAGGER: its performance is
not much worse than either of the baselines. In this section, we demonstrate that the benefit of hybrid
feedback modalities can go beyond this: we construct an MDP motivated by practical challenges, in
which hybrid imitation learning has a significantly better sample efficiency than both offline BC and
interactive STAGGER. Specifically, we prove the following theorem:

Theorem 7. For large enough S, H, there exists an MDP M with S states, and expert policy ©°
such that:

o With Q(S) offline expert trajectories for BC, the learned policy is Q(H )-suboptimal;

» With Q(HS) interactive expert annotations for STAGGER, the learned policy is Q(H)-
suboptimal;

* With O (S/H) offline trajectories and O(1) expert interactions, WARM-STAGGER learns a
policy & such that J(7t) = J(mF).

Theorem [/ suggests that when H.S > max(1, C')), WARM-STAGGER achieves expert-level perfor-

mance with significantly lower cost than two baselines. To see this, observe that WARM-STAGGER
has a total cost of O (S + C), which is much smaller than Q(H.S) by BC, and 2(H SC) by STAGGER.

The MDP construction and simulation results. We now sketch our construction of MDP M. M
has an episode length H > 50, H = Q(log(S)) and action space of cardinality greater than 10H.
For each state, one of the actions is taken by the expert; the rest are “wrong” actions. We illustrate
Ms state space on the left of Figure 2} specifically, it consists of the following subsets:

* Expert ideal states E, where |E| = Nj: this can model for example, the agent driving
stably on the edge of a cliff [51], where any incorrect action transitions the agent to the



unrecoverable absorbing state set B := {b} (e.g., falling off the cliff). Taking the expert
action keeps the agent in E with high probability (1 — 3), and with a small probability £,
moves the agent to E’ (e.g., a safe slope).

* Unrecoverable state B = {b}: a special absorbing state that is unrecoverable by any action
(dead).

* Expert recoverable states E’: this models the agent getting off from the edge of the cliff to a
safe slope. When in E’, taking the expert action allows the agent to return to a uniformly
sampled state in E. Taking a wrong action from E’ leads to B’ := {b’} (e.g., rest area).

 Recoverable state B’ = {b’}: Not knowing how to act in b’ will result in the agent getting
trapped in b’ for the episode.

We now briefly justify each algorithm’s performance as stated in Theorem|[7] (1) BC only observes
expert actions in E and E’, but never in b’. As a result, near-expert performance at test time requires
high coverage over E’; otherwise, BC’s trained policy will likely incur compounding errors and
get trapped in b’. (2) STAGGER suffers from a cold-start problem: early policies fail to explore
E efficiently, and incorrect actions can cause transitions into b. Consequently, coverage over E
grows slowly, and the policy may still fail on unannotated states in E even with Q(H.S) queries.
(3) WARM-STAGGER benefits from offline data that fully covers E, and uses a small number of
interactions to visit b’ and query the expert, avoiding costly exploration in E’ while matching expert
performance.

We also conduct a simulation of the aforementioned three algorithms in a variant of the above MDP
with Ny = 200, N; = 1000, H = 100, and 8 = 0.08, using another reward function that assigns
a reward of 1 only when the agent visits the states in E. Here, we let the online learning oracle A
optimize 0-1 loss, which is equivalent to minimizing log loss under a deterministic learner policy
class and discrete actions. Figure[2]shows return and state coverage as functions of the number of
expert annotations, averaged over 200 runs.

We observe that: (1) BC exhibits slow improvement, as b’ remains unseen (and thus unannotated)
throughout training, resulting in poor performance even with substantial coverage (e.g., 80%) over
E’; (2) STAGGER is sample-inefficient due to slow exploration over E states, consistent with the
cold-start intuition; (3) WARM-STAGGER (WS), when initialized with limited (200) offline (state,
expert action) pairs, still needs to explore E first before it can safely reach E’ without failure; and
(4) WARM-STAGGER with sufficient offline coverage on E (e.g., initialized with 3200 offline (state,
expert action) pairs) directly benefits from exploring b’ with immediate performance gain, and
enables safe and even faster exploration than the expert in E’.

4.3 Hybrid IL on Continuous Control Benchmarks

Following our earlier MuJoCo-based comparison of Behavior Cloning and STAGGER, we now
evaluate WARM-STAGGER (WS) on the same benchmarks. This experiment aims to answer: Does
WS reduce total annotation cost compared to the baselines?

Based on the observation in Figure [} we assign 400 total state-wise annotations for Hopper and
Ant, and 1200 for HalfCheetah and Walker2D. For WARM-STAGGER, we allocate 1/8, 1/4, or 1/2
of the total annotations to offline data, with the remainder used for interactive queries. For a fair
comparison, all methods are evaluated under the same total annotation cost, with C' =1 or C' = 2.
This makes the baselines stronger, as they have full cost budget assigned to a single source.

In terms of the number of state-wise annotations (C' = 1), the results align with our theoretical
findings: WS performs not significantly worse than BC or STAGGER, regardless of the offline dataset
size. WS still achieves performance competitive with STAGGER, and even outperforms it on Ant
when C' = 1. Furthermore, as shown by the purple curves, WS with appropriate offline sample size
has preferable performance over 4 tasks when C' = 2, highlighting its utility in cost-aware regimes.
These results confirm that WARM-STAGGER reduces total annotation cost for moderate C'.

5 Related Work

Imitation Learning with offline demonstrations, pioneered in autonomous driving [45]], was solved
by offline, state-wise supervised learning in early works [49, /1] and named Behavior Cloning (BC).



Ant Half Cheetah Walker

2500 3000

3000
2000
2000 2500 2000
15001
1500 2000

1000

1500 1000

1000

Expected Return

710001

0 S0 100 150 200 250 300 350 400 G 30 100 150 200 250 300 350 400 G 200 400 600 80 1000 1200 G 200 400 600 80 1000 1200
Number of Expert Annotations Number of Expert Annotations Number of Expert Annotations Number of Expert Annotations

2500 - = | 000 3000

2000
2000 2500 2000
1500
1500 2000

1000

1500 1000

1000 506

Expected Return

)/

-1000

0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

Expert Annotation Costs (C = 2) Expert Annotation Costs (C = 2) Expert Annotation Costs (C = 2) Expert Annotation Costs (C = 2)

= WS(50) = WS(100) = WS(200) — WS(50) = WS(100) = WS(200) = WS(150) = WS(300) = WS(600) = WS(150) = WS(300) = WS(600)
Expert Stagger Behavior Cloning

Figure 3: Sample and cost efficiency on MuJoCo tasks. The top row shows expected return vs.
number of annotations (C' = 1); the bottom row shows performance under a cost-aware setting
(C' = 2). WARM-STAGGER (WS) is initialized with 1/8, 1/4, or 1/2 of the total annotation budget as
offline demonstrations. Specifically, WS(n) refers to WS with offline expert trajectory demonstrations
of total length n. For a good range of n’s, WS(n) matches STAGGER in sample efficiency and
outperforms the baselines when C' = 2.

A recent analysis by [16] employs trajectory-wise Hellinger distance to tighten the dependence of BC
on the horizon at the trajectory level, although its sample complexity measured per state still grows
quadratically with the horizon in the worst case. This shortcoming, often termed covariate shift or
compounding error [45]], arises when imperfect imitation drives the learner to unseen states, resulting
in a cascading sequence of mistakes. From a data collection perspective, this can be mitigated by
noise-injection approaches such as [29l 25]]. By leveraging additional environment interactions,
generative-adversarial IL methods [[18} 166} 24} 64] frame learning as a two-player game that aims to
find a policy that matches expert’s state-action visitation distributions. This setting is also known
as “apprenticeship learning using inverse reinforcement learning” in earlier works [, [70], which
also starts from offline demonstrations and assumes the ability to interact with the environment
MDP. Quantitative comparisons with these methods are beyond our scope, as they rely on extensive
interactions with the MDP and access to a class of discriminator functions, while we focus on
understanding the utility of state-wise interactive annotations. This line work also include recent
work of [48]], who introduce “Hybrid Inverse Reinforcement Learning”, which leverages hybrid
Reinforcement Learning to accelerate its inner loop of policy search; in contrast, our “hybrid” setting
focus on utilizing heterogeneous data modalities. Recent offline imitation learning approaches [9, [76]]
do not require MDP access but still require access to strong offline datasets, either with broad expert
coverage or a large transition buffer. Our work assumes that interacting with the environment does
not incur costs; we leave a detailed analysis that takes into account environment interaction cost as
future work.

Imitation Learning with interactive demonstrations, first proposed by [49], allows the expert
to provide corrective feedback to the learner’s action retroactively. Assuming low costs of expert
recovery from mistakes, termed recoverability, DAgger [51]], and following works [27, 150,167, [10} 11}
46| outperform traditional BC both theoretically and empirically. However, this efficiency demands
substantial annotation effort [36]]. Although DAgger [51] and some subsequent works [67} 146,168\ [16]]
popularized the practice of annotating full trajectories, there has also been growing interest in state-
wise annotations [32] |54} |33], which appeared as early as [49} [21]. In fact, practical applications
of DAgger often adopt partial trajectory annotation in expert-in-the-loop [36l 162] [35] designs, as
seen in [78, 26, (19} 74], where issues such as inconsistencies caused by retroactive relabeling [28]]
can be mitigated. These methods often leverage human- or machine-gated expert interventions to
ensure safety during data collection [79,37], provide more targeted feedback [38|[12], and enable



learning on the fly [59]. The use of selective state-wise queries aligns with our goal of promoting
interactive imitation learning with efficient supervision and provable sample efficiency. We regard our
contribution as providing a theoretical foundation for this increasingly popular paradigm of partial
trajectory annotation.

Utilizing Offline Data for Interactive Learning. Many practical deployments of interactive learning
systems do not start from tabula rasa; instead, prior knowledge of various forms is oftentimes available.
Combining offline and interactive feedback has recently gained much popularity in applications
such as instruction finetuning large language models [15}44], and bandit machine translation [40].
Many recent theoretical works in reinforcement learning try to quantify the computational and
statistical benefit of combining offline and online feedback: for example, [31}[72] show provable
reduction of sample complexity using hybrid reinforcement learning, using novel notions of partial
coverage; [61] shows that under some structural assumptions on the MDP, hybrid RL can bypass
computational barriers in online RL [23]]. Many works also quantify the benefit of utilizing additional
offline data sources in the contextual bandit domain; for example, [41, |58} [77] study warm-starting
contextual bandits using offline bandit data and supervised learning data. While some variants of
DAgger [[79,119] also operate in a hybrid setting, our work focuses on a fundamental formulation that
explicitly accounts for the cost asymmetry between offline and interactive annotations [56], and, to
the best of our knowledge, is the first to provide a rigorous framework with provable sample efficiency
guarantees.

6 Conclusion

We revisit imitation learning from the perspective of state-wise annotation. We show via the STAGGER
algorithm that, interaction with the demonstrating expert, with its cost properly measured, can enable
provable cost efficiency gains over Behavior Cloning. We also propose WARM-STAGGER that
combines the benefits of offline data and interactive feedback. Our theoretical construction shows
that such a hybrid method can strictly outperform both pure offline and pure interactive baselines
under realistic cost models. Empirical results on the synthetic MDP support our theoretical findings,
while MuJoCo experiments demonstrate the practical viability and competitive performance of our
methods on continuous control tasks. Additionally, we show a trajectory-wise annotation variant
of DAgger can match the sample complexity of log-loss Behavior Cloning without recoverability
assumptions (Appendix [E), with additional experiments (Appendix [G.3).

Limitations: Our design of imitation learning algorithm only aims at closing the gap between the
performance of the expert and the trained policy; thus, the performance of our learned policy is
bottlenecked by the expert’s performance. In this respect, designing imitation learners outputting
policies that surpass expert performance is an important direction.

Our theory provide sample complexity guarantees for the discrete-action setting with deterministic
and realizable expert. When such assumptions are relaxed, additional challenges arise [60]. In this
respect, there remains a gap between our theoretical analysis and our MuJoCo experiment results.
In future work, we are interested in conducting additional experiments on discrete-action control
problems (e.g., Atari) as well as language model distillation tasks.
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Interactive and Hybrid Imitation Learning: Provably Beating Behavior
Cloning — Supplementary Materials

A Additional Related Work

First-step mixing and each-step mixing policies. The emergence of first-step mixing policies
originated from technical considerations. In may interactive IL methods [51}50], the returned policy
was not a uniform first-step mixture but rather the best policy selected through validation. However,
performing such validation in an interactive setting often requires additional expert annotations.
Subsequent works [46 32| 33} [16] circumvented the need for validation by employing a uniform first-
step mixture of policies across learning rounds, thereby directly translating online regret guarantees
into performance differences. Our TRAGGER algorithm (Algorithm [3]in Appendix [E) also employs a
first-step mixing policy at each iteration, and has sample complexity on par with behavior cloning.

On the other hand, each-step mixing between the learned policy across rounds and the expert policy
has been a prevalent strategy in interactive IL approaches [[13} 149, 51} 50]. For each-step mixture
policies, [32] was the first to explicitly distinguish this approach from first-step mixing. In other
works [46/ [16], each-step mixing can be interpreted as learning H separate mixture policies, one for
each step within an episode.

Alternative algorithm designs and practical implementations. Though this work follows [16]]
and focuses on log loss, we believe the 1/n-rate is not exclusive to log loss. Despite requiring an
additional supervision oracle, [30] suggests that trajectory-wise annotation complexity similar to
Theorem 3| (and Theorem [27) can be achieved using Halving [57] and 0-1 loss.

From an algorithmic perspective, we explored trajectory-wise annotation with first-step mixing
(Algorithm 3]in Appendix [E)) and state-wise annotation with each-step mixing (Algorithm|[I]). For
trajectory-wise annotation with each-step mixing, naively learning a parameter-sharing policy may
encounter a batch-summed log loss, introducing an (undesirable) additional H factor to the sample
complexity. Analyzing state-wise annotation with each-step mixing remains an open question for
future research.

In terms of practical implementation, it is worth noting that even with oracle-efficient implementations
(e.g. [32,133]), interactive IL may require multiple supervised learning oracle calls per iteration. In
contrast, offline IL requires only a single oracle call to obtain the returned policy, which provides
a clear computational advantage. We also note that real-world experts can be suboptimal; in some
applications it may be preferable to combine imitation and reinforcement learning signals (e.g.,
(505 165, 2]).

Lower bounds in interactive imitation learning. From an information-theoretic perspective, a line
of work [47 46} |16] provides lower bounds for imitation learning under the realizable setting and
considers p-recoverability. [46] is the first to demonstrate a gap between the lower bounds of offline
IL and interactive IL in trajectolgy-wise annotation, focusing on the tabular and non-parameter-sharing
setting. [[16] establishes a 2 ( ) sample-complexity lower bound for trajectory-wise annotation in
the parameter-sharing setting.

€

We observe that the proof of [16, Theorem 2.2] also implicitly implies a Q(%) sample complexity
lower bound for the state-wise annotation setting. Their proof relies on an MDP consisting only of
self-absorbing states, where annotating a full trajectory gives the same amount of information as
annotating a single state. In that MDP (which is 1-recoverable), Algorithm|l|achieves O(m%g(m)
state-wise sample complexity, which does not contradict this lower bound. Nonetheless, obtaining
lower bounds for state-wise sample complexity for general MDPs, policy classes, and general
recoverability constants remains an open question.

B Proof for STAGGER

We first present 2 useful distance measures for pair of policies.
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Definition 8 (Trajectory-wise Li-divergence). For a pair of Markovian policies w and 7', define
their trajectory-wise L-divergence as

H
/\(7T || 7T') =FE" Ea’l o (s1ear) [Z H(ah 7& a/h)] .

h=1

A(7 || 7') is the expected total number of actions taken by 7’ that deviates from actions in trajectories
induced by 7. Note that A(-||-) is asymmetric, while the same concept is applied in offline and
interactive IL [49,[51] with different guarantees for A(7 || #) and A\(7" || ) (Lemma .

Definition 9 (State-wise Hellinger distance). For a pair of policies ™ and ', define their state-wise
Hellinger distance as Esq~ [Dg(w(- | s), 7' (- | s))].

State-wise Hellinger distance represents the expected Hellinger distance between the action distri-
bution of 7 and 7’ on s ~ d™. One notable feature here is that the distance is evaluated between
m(- | s) and 7'(- | s), independent of the original action a taken by 7 when visiting s. By Lemma[36]
state-wise Hellinger distance can relate to trajectory-wise L;-divergence.

In the following, we show that the performance difference between the pohcy @ returned by STAGGER
(Al gorlthm 1)) and the expert policy 7 can be bounded by the state-wise Hellinger estimation error:

OnEstR*' := ZESNW [DE("(- | ), 75(- | )],
n=1

where 7" (- | s) and £ (- | s) denote the action distributions over .A produced by the policies 7" and

7F at state s.

We first prove this in Lemma [0} and then prove the state-wise annotation complexity of Algorithm [I]
in Theorem 11

Different from [[16], where access to full action demonstrations is assumed, we consider a more
restrictive model where, at each round n, only a single state (s™, h™) from the trajectory induced by
7™ is sampled and annotated by the expert.

Lemma 10. For any MDP M, deterministic expert %, and sequence of policies {W”}n 1> then T,
the first-step uniform mixture of {m', ... 7wV} satisfies:
0 EStState
J(B) — J(#) < pH - HTN

Proof. By Lemma [36] under the assumption of recoverability, the performance difference between 7t
and the expert is bounded by

J(r®) = J(7) < p- M7 || 7°),
where we recall the notation that

H
A || 7®) lZHaHAW (sn)) ]:;ZE”ﬂ(sh)—wE(sh)Hl.
h=1

The proof follows by upper-bounding 227:1 ™ || ) by H - OnEst3'**. To this end, it suffices
to show that for any stationary policy 7,

—_

H - Esvgr [DF(n(- | 5), 7" *ZE”IIW (18) =" 9]

[\

Observe that H - Eg g~ [D3(m(- | s), 72(- | 5))] Zh LE™ D3 (7 (- | sp), (- | sn))], we con-
clude the proof by applying Lemmanwnh p = 7(sp) and ¢ = 7 (sy,), which gives

Di(m(- | sn), w2 | sn)) = Sllm(- [ sn) = (- | sn)ll.

N | =
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Theorem 11 (Theorem B] Restated). If STAGGER (Algorlthm [1) is run with a state-wise expert
annotation oracle OS2, an MDP M where (M, ") is p-recoverable, a policy class B such
that deterministic realizability (Assumption[l) holds, and the online learning oracle A set as the
exponential weight algorithm, then it returns 7 such that, with probability at least 1 — 6,

OnEstState <log(B) + 2log(1/9),
and furthermore, the returned 7 satisfies

log(B) + 210g(1/5).

J(7) — J(x®) < pH N

Proof. Recall the each-step mixing in Definition [1} since 7, is a each-step mixing policy, where
Vh e [H],s € S, mu(als) =3 cgul(m)m(als).

By using 7, the loss functions at each round that passed through online learning oracle A, ¢" () is

of the form .
£1(m) = oB(1 ™" |5") = ok (i )

which is 1-exp-concave with respect to w. Thus, implementing A using the exponential weights
algorithm (Proposition [38)) achieves:

Nint Nint

> log(1/mb(a" | s Zlog 1/mjin (a*™ | s™)) + log(B) = log(B).
n=1

Then, Lemma L a standard online-to-batch conversion argument with 2" = (s", h"), y® = ™",

g« =, and H" = {o" }n, 1> Where o™ = (s™, h"™,a™, a*"™), implies that with probability at least
1-9,

Nint
OnES‘cStatc ZE(SH pymdnn (D (- 1 8™), mhn (- | 87))] < log(B) + 21log(1/9).
n=1
The second part of the theorem follows by applying Lemma O

C Proof for WARM-STAGGER

In this section, we analyze the guarantees of WARM-STAGGER under the realizable and deterministic
expert assumption. We show that all intermediate policies, as well as the final returned mixture
policy, enjoy small Hellinger distance to the expert’s trajectory distribution, due to their agreement
on the offline dataset. Our analysis builds on maximum likelihood estimator (MLE) generalization
guarantees under log-loss minimization, and leverages the fact that each each-step mixing policy in
WARM-STAGGER can be viewed as a first-step policy mixture. The following claim shows that any
Markovian policy 7 can be represented as a first-step mixing over deterministic Markovian policies
from a finite class.

Lemma 12. Let 7, be a each-step mixing policy that, at each step h € [H|, samples a base policy
7 € B independently according to w € A(B). Then, its induced trajectory distribution is equivalent
to a first-step mixing the each-step policy completion of B, denoted by B := {(m1,...,7) : m € B}
(see Definition[d)).

Proof. Letv = (my,...,m) € B. Define u(v) := Hle u(mp,), which is a valid distribution over
B. Consider the joint action distribution under 7,,, which samples 75, ~ u independently for each
step and executes ap, ~ 7y (- | sp). The resulting conditional distribution over actions given the state

sequence is
ﬁu(ale ‘ SI:H H <Z 7Th Wh(ah | Sh)>

ThEB

18



Under the first-step mixture policy 7,y over B, a full tuple v = (71, ..., my) is sampled once from
u(v), and actions are drawn as ap, ~ 7p(- | sp). The resulting action distribution is

Tuwy (@ | s1m) = u(v Hm an | sn).

veB h=1

Expanding the sum yields

H
Z (Hu 7Th)7rh ap, | Sh > H Z 71'}, Th a;, | Sh)

(m1,...,m) \h=1 h=1nmrLEB
by the distributive property and independence of the product.

Therefore, Ty (a1.1 | $1.5#) = Tu)(@1:1 | s1.1), and both policies induce the same trajectory
distribution by Lemma [T} O

Lemma 13. Let By, := {7 € B : 7(s) = n¥(s) Vs € Dy} be the set of policies that agree with

the expert on the offline dataset of Nog expert trajectories. Assume the expert ©F is deterministic
and realizable. Then, with probability at least 1 — 6, for all ™ generated in WARM-STAGGER
(Algorithm[2), it holds that:

D% (P, P.s) <O (bg(é/‘s)> :

Noff

Furthermore, the returned policy 7 satisfies:

D3y(Pr, Pre) <O <H10]§<HB/5>> |

Proof. Let By, denote the realizable class of policies that agree with 7 on the offline dataset. By
the MLE generalization bound [16]], for any single policy m € By, we have with probability at least

1-96:
D2(Py, Pye) <O (W)
Noff

However, in WARM-STAGGER, policies 7’ are not selected directly from /3y, but are instead mixtures
over By, at each time step. A full trajectory is therefore sampled by first choosing a policy 7" at
each step h € [H], inducing an effective policy over sequences from Bye. Therefore, by appling
B for Theoremi the BC guarantee holds for all = € B, with a factor of log |B| < Hlog B in the
worst case instead of log B. Therefore, by Lemma|12] each 7* can be viewed as first-step mixing and

satisfies: ~
Hlog(B/§
D%/(Py:,Pys) <O (Og(/)> .
N, off
This remains a worst-case bound. If the per-step base policies are drawn from a factored structure
(e.g., ™ = (m1,..., ) with T, € By,), and the support is shared across steps, the effective covering
number can be much smaller, reducing the overhead back to log B.

Finally, the returned policy 7 is a first-step mixing of {71, ..., 7y}, and thus the same Hellinger
bound carries over by convexity. O

Theorem 14 (TheoremIRestated) IfAlgortthmI is run with a deterministic expert policy %, an
MDP M such that (M, %) is p-recoverable, a policy class B such that realizability holds, and the
online learning oracle O set as the exponential weight algorithm, then it returns 7 such that, with
probability at least 1 — ¢,

I — () < 0 (mm (Rlog(B/@, pH log<B,,c/5>>> |

Noff Non
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Proof. By Lemma [13] with probability at least 1 — §/2, for all 7 € {my, -+ ,7n}, it satisfies

that D3, (Py, Pre) < O (%). This implies the first-step uniform mixture of {my,--- ,7x}
satisfies N ]
1 log(B/6
Diy(Pr, Prn) = 5 > Diy(Prs, Pr) < O (0%3/))
i=1 o

By invoking Theorem [16]][2.1], we have,

) - Rlog(B/9)
J(#) = J(@*) <O (NOH>

For the second half of the proof, we notice that by definition 7 € By.. Then, by applying Theorem
with probability at least 1 — §/2, the returned 7 satisfies

H log(Bh/6
N; int
Together, we conclude our proof by applying union bound. O

D Proof for Theorem

We formally define the MDP M from Section 4.2} where the expert policy 7 is deterministic and
the transition dynamics are time-homogeneous across all steps h € [H].

« State Space S = EUE’' UB U B’, where:
— E: ideal expert states, |E| = Ny;
— E’: recoverable expert states, |E'| = Ny;
- B = {b}: absorbing failure state (unrecoverable);
- B’ = {b'}: recoverable reset state.

 Action Space A: A = |A| discrete actions. For each state s € S, there is a unique action
72 (s) taken by the expert.

¢ Episode length H.
Initial State Distribution p:

forall s € E, forall s € E.

1
=T M = TN

* Transition Dynamics:
- scE:
% a = 72 (s): with probability 1 — 3, transitions to a uniformly random s’ € E; with
probability /3, transitions to a uniformly random s’ € E’ ;
% a # 72 (s): transitions to b.
-scE":
% a = 7 (s): transitions to a uniformly random s’ € E;
% a # 7 (s): transitions to b’.
- s € B = {b}: absorbing for all actions. Specifically, P(s’ = b|s = b,a) = 1.
-seB ={b'}:
% a = 7°(b’): transitions to a uniformly random s’ € E;
% a # 72 (b’): remains in b’.
* Reward Function: For theoretical analysis, we consider the following reward function R;:

1 ifseEUE
Ri(s,a) =<1 ifs=Db'anda = 7¥(s)
0 otherwise
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* Specification of Parameters: In the following proofs, we consider H > 50, H >
%log(l()No), A>10H, 5 = H - V1 > 500, and N7 > 160Np.

We also make the following assumption on the output policy of our learning algorithms (BC,

STAGGER, and WARM-STAGGER). At any stage of learning, denote the set of states that are anno-

tated by the expert by Synmotatea- Given the annotated (state, expert action) pairs, the learner calls some

offline or online learning oracle A to return a policy 7. We require 7’s behavior as follows:

_ ﬂ—E(' | S)a 5 € Sannotateds
m(-|s) = 1 1 S
(Aa"'7A)a S§é annotated -
In other words, 7 follows the expert’s action whenever such information is available; otherwise, it
takes an action uniformly at random.

We next make a simple observation that by the construction of M, the expert policy’s state-visitation
distribution in M is stationary over all time steps:

Observation 1. For MDP M, the expert policy 7F°s visitation distribution at time step h, dzE
equals p, for all h € [H].

Proof. The initial distribution gives:

1
No(LFB) s € E,
p(S) = N1(1+ﬁ)7 S 6 E/a
0, otherwise.

Under 7F, the induced transition kernel on E U E/ satisfies:

18 ScE, s €E,

No
8 / ’
T cE, sk
P / E — Ny S ) )
(ls, w(s) N%), seE, s €k,
0, otherwise.
For any fixed s € E, using the kernel above,
1- B 1 1
P(s s 7r —|— s).
Z” | ;NolJrﬁ) No ;E,Nl(Hﬂ) No " N+ Y
Similarly, for any fixed s € E,
B B
P(s|s,m¥ — = —=p(s).
2, PP ZNOHB) NN Y

s'eE
Thus, forany s € EU E/,

Zp P(s | s, 78 (s").

Hence p is a stationary distribution for the Markov chain induced by 7% (and B, B’ are never reached
under 7). Since d]TE = p and the dynamics are time-homogeneous, induction gives Vh € [H],

ar” = pie.,
1
i N €E,
us _ /
h (S) - N (1+3)° sekE ’
0, otherwise.

O

Theorem 15 (Restatement of Theorem ' To achieve smaller than £ 5 suboptimality compared to
expert in MDP M with probability 5°

* Behavior Cloning (BC) using offline expert trajectories requires

Nog = Q(N1)  with total annotation cost Q(H Ny).
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* STAGGER that collects interactive state-wise annotations requires

Nint = Q(HNy)  with total annotation cost Q(C H Ny).

In contrast, WARM-STAGGER learns a policy that achieves expert performance with probability at
least % using

N
Nog = O(ﬁo log(No)) expert trajectories, and
Nint < 3 interactive annotations, &)

with total annotation cost O(Ny + C).

Proof. The proof is divided into three parts:

First, by Lemma we show that in M, Behavior Cloning requires Q( H N1) expert trajectories to
achieve suboptimality H /2 with probability %
Next, in Lemma[20] we show that STAGGER, which rolls out the learner policy and queries the expert

on only one state sampled uniformly from its learned policy’s rollout, requires Ny, = Q(H Np)
interactive annotations to achieve suboptimality no greater than H /2 with probability %

Finally, by Lemma[22] we demonstrate that WARM-STAGGER achieves expert performance using
O(% log(No)) offline expert tarjectories and 3 interactive annotations with probability 3. O

D.1 Lower Bound for Behavior Cloning

/
annotate

Throughout this subsection, we denote by E
by the expert’s Nog offline trajectories.

4 the set of states in E’ that are visited and annotated

Lemma 16 (BC suboptimality lower bound). Consider the MDP M and the expert policy m%
constructed as above. If Behavior Cloning uses
Ny
Nog < —
°T ™ 160
expert trajectories, then with probability at least % the suboptimality of its returned policy 7 is lower
bounded by:
H

JW%—J@)ZE.
Proof. Note that if the learned policy 7 ever takes a wrong action at a state in E, the trajectory
deterministically falls into the absorbing bad state b, yielding even smaller return. Thus, we here
define a modified policy 7 that agrees with 7 everywhere except that it always take the expert’s action
on E. By construction, J(7) > J(7), so it suffices to prove the claimed lower bound for 7. In the
remainder we analyze 7.

In the following, we show that an insufficient number of expert trajectories leads to small E/_ .,
and poor coverage on states in E’. This, in turn, causes the BC-learned policy to frequently fail to
recover and get trapped in the absorbing bad state b, incurring a large suboptimality compared to the

expert.

By Lemma when N is below the stated threshold, at most 1/10 of the states in E’ is annotated
by expert trajectories with probability % Suppose we roll out the policy 7 in M; let 7 be the first
step such that s, € E’.

By Lemmal|I8§]

Aqu(T < H/5) > 0.79, and Aljl: (57 & Ejpnouea | 7 < H/5) > 0.9.

We henceforth condition on the event {7 < H/5, s, ¢ B ....}. Applying Lemma[19] we have,
with probability at least 0.9, 7 takes a wrong action at s, and transitions to b’, and subsequently
never takes the expert recovery action at b’. Therefore the trajectory remains in b’ from time H/5
onward, yielding zero reward for at least % steps.
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Multiplying all factors, with probability greater than 1,

H
JrPY—JF) > 079 x 09 x 09 x 08H >—,
~—~ ~—~ ~—~ ~—~— 2
reach E/ unannotated s action errors zero reward
which concludes the proof. O

Lemma 17 (Bounded E’ coverage). If the number of expert trajectories satisfies:
Ny
Nogp < —,
=160
then, with probability at least %,

Ny
‘Eémnotaled| < TO

Proof. Recall that by Observation d},{E (s) = m HL_s_

Denote X := |E/ jynotated| to be the number of annotated states in E’. Consider N,g expert trajectories,
each of length H, and let s; j, be the state at step h of trajectory ¢. Fix any s € E’. By a union bound
over all time indices,

_ 8 / _
= H—leorseE,where,Bf

Nogg H Nogg H Nogg H 8N
- F
Pr (SeEannotated (U U Sl,hzs}) SZZPT(Sih_S sz —
im1 he1 i=1 h=1 i=1 h=1 M
Under the assumption Nog < N7 /160, this gives
1
PI‘(S S Elannotated) < %

Let Z; be the indicator that s is visited by the expert trajectories, by linearity of expectation,

N
E[X] = Z E[Z,] = Z Pr(s € E unotatea) < 2*5
seE’ seE/

Applying Markov’s inequality at the threshold N; /10,
N E[X Ny/2 1
Pr(X>71>< [X] _ Nu/20 _

10/ = Ny/10 = Ny/10 2
Equivalently,
Pr (X < &) > 1
10 2

Lemma 18 (First E/ visit). For the MDP M, for any policy © that agrees with ©° on E:
/\lflr (3h € [H/5],s: € E') >0.79

Proof. Since 7 agrees with 7% on E,

/\lit)rw (3he[H/5],ss €E') = Pr (3he[H/5],s, €E).

M,mE

It suffices to c0n51der the expert policy 7’s visitation. By Observation |l l the state visitation
distribution for 7% satisfies that for all h € [H],

1 /
. No(lF5)" $ €E,
dy (s) = M8’ s’ € E,
0, otherwise.

The probability of no s € E’ visit in % steps is:
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L g 1 1
75 1P (1+ﬁ)(1—6)<1+6)
1 8\*
= _H> @
P —
Tl e

<1.038 - e 5 < 0.21,

where we apply 5 = %, 11—z <e *,and H > 50. Thus:

Pr (3h e [H/5], s € E') >1-0.2095 = 0.79
M, 7E

O

Lemma 19 (Action Errors on Unannotated States). Let Syuannoraea © S be the set of unannotated
states for a policy ©t. Consider MDP M with action space size A > 10H.

Pr (Vh S [H] I Sh ¢ Sannm‘ated — W(Sh) 7& WE(Sh)) > 0.9.

Proof. Since for any unannotated state s, the learner’s policy selects the expert action with probability
exactly %. Condition on any realization with | Hypannotatea| < H. By union bound,

H H
: =7 <—<——=0.1.
Pr(3h € [H] : sp € Sunannotated and 7(sp,) = 77 (sp,)) < 1510/ 0.1
Thus
Pr (Vh € [H] : s, ¢ Samnotaed = 7(51) # WE(Sh)) > 0.9.

D.2 Lower Bound for STAGGER

Throughout the proof, denote by E,nnoueq the final set of states in E on which STAGGER have
requested expert annotations.

Lemma 20 (STAGGER suboptimality lower bound). Consider the MDP M from Sectiond.2| with
H >50,A>10H, and 5 = HL_S. If STAGGER collects no more than

HN,
Nint S T
interactive state-wise annotations, then, with probability at least % the returned policy 7 suffers
suboptimality at least

. H
J(@®) = J(7) > 5

Proof. By Lemma if STAGGER collects at most Hg 0 interactive state-wise annotations as above,

then with probability at least %, | Eannotatea|» the number of distinct states in E annotated is fewer than
Ny/3. Consider a random rollout of 7, define the following events:

Fl = {51 ¢ Eannotated}7
Fy:={a1 # 7TE(51)}~

We now lower bound their probabilities:

Pr(F) > ———

RI‘(FQ ‘ Fl) 2 1-—
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Conditioned on the two events, the agent will get trapped at state b from step 2 on, and thus its
conditional expected return satisfies

H
> rn| By, Fy
h=1

Also, by the definition of the reward function Ry, J(7¥) = H. Thus,

H
J(nP) — J(7) =Ex [H -3 rh]

l Zrh|F17F2 #(F1, )
h=1
2 H-8 10H -1 H
>Z. . S(H-1)>=
3 H 10H ( )2 2
Where we use our setting of 3 = 2> and apply H > 50.
O
Lemma 21 (Bounded E coverage under STAGGER). Suppose STAGGER collects at most
HN,
Nint < 0
12

interactive annotations. Then,
Ny 1
E > — ) < -,
<| unm)tatedl 3 =79

Proof. In this proof, we say that state s is annotated at iteration 1, if it has been annotated by the
expert before iteration 7 (excluding iteration 7). Since each iteration of STAGGER samples only one
state uniformly from the current episode for annotation, we denote the indicator of expert annotating
an unannotated state from E at iteration ¢ as X; € {0,1}. With this notation, we have the total
number of annotated states by the end of iteration Ny, as

Nint

IEannotated‘ - Z Xz

i=1

Let F; be the sigma-algebra generated by all information seen by STAGGER up to iteration j. We
now upper bound the expected value of X; conditioned on F;_1, for each i.

Denote by Y; the number of unannotated states in E visited by round 7’s rollout (by policy 7%). We
claim that conditioned on F;_1, Y; is stochastically dominated by a geometric distribution with

parameter @ . Indeed, whenever an unannotated state in E is encountered when rolling out 7%, the

probability that the agent takes a wrong action is 45 === L. if so, the agent gets absorbed to b immediately,

and thus never sees any new unannotated states in thls episode. In summary,

N7 ——

| Fq <
B[Y; | Fia] <E <

Z~Geometric( 21

Since the state sampled for expert annotation is uniformly at random from the trajectory, conditioned
on Y;, the probability that it lands on a an unannotated state in E is at most . Hence,

2
E[X; | Fia] = E[E[X: | Y, Fia] | Fioa] = [ \F 1} 2

By linearity of expectation:

1nt 2Nln
E[‘Eannolaled| Z ]E ! .
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Applying Markov’s inequality:

Pr(|Eannotated| Z N0/3) S

H ];7 2. This completes the proof. O

where the last inequality is by our assumption that N, < 5

D.3 Upper Bound for WARM-STAGGER

Lemma 22 (Hybrid IL achieves expert performance under R;). Consider the MDP M and expert
policy 7% as above, then, with probability at least 1/2, WARM-STAGGER outputs a policy that
achieves expert performance using Nog = O (% log(NO)) offline expert trajectories and Ny < 3
interactive annotations.

Proof. We divide the proof into four parts. In this proof, we denote by Eannotatea and E/, .4
the subsets of E and E’, respectively, that are annotated by the N g offline expert demonstration
trajectories.

First, we state a high probability event for the N g offline expert demonstration trajectories to provide
annotations on all states in E. Define event

Fs = {Eannotated = E}

By Lemma 23] the choice

7(1 jV;)H log(lONO)

ensures that Pr(F3) > 0.9. On event Fj, the learner takes the correct action on every state in E.

Noﬂ =

Next, we define the event under which only a small fraction of E’ is covered by the expert. With
H > 50, H > 21og(10Ny), 8 = 725, N1 = 500, and N1 > 160Ny, the number of offline
trajectories satisfies

Ny 4 4(H - 8)
— 1 ( < Ny =
(1-p)H * =5(1-p) " 5(H - 16)

where we apply H > 21og(10Ny) and £=18 < £ when H > 50. Thus, by Lemma

N
No < Ny < —~

No - 3
ft 160

10N0)

Ny
E[‘Ez/mnolaled H < % .

Applying Markov’s inequality at threshold % — 2 gives

Ny Ny 2N, 25
Pr <|E‘fmnotated| > T - 2) <Pr (‘Elannotaled‘ > T - %) < -7 <0.2L

- 121
Define event
N
F, = {Ez/mnotated < Tl a 2} .

Then Pr(Fy) > 0.79.

Third, we show that under events F3 and F}, the interactive phase of WARM-STAGGER annotates b’
with probability greater than 0.4 in each of the first three rollouts, such that b’ is annotated within
three expert annotations with probability greater than 0.78.

Conditioned on Fj, the learner acts optimally on all states in E. Conditioned on F}, at least % of the
states in E’ are unannotated for each of the first three rollouts. Let 7 be the first index with s, € E’.

By Lemmal(T8§]
Pr(r < H/5) > 0.79.

Since s, is drawn uniformly from E’ and at most N, /4 states are annotated under B,
3

Pr(ST ¢ Ez/mnolaled | F3, Fy, 7 < H/5) > 1
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With A > 10H, by Lemma|[T9]
Pr(W(ST)#WE(ST) | Sr ¢E, F33F47T§H/5) 2097

annotated »

so with probability at least 0.9 the learner transitions to b’ at time 7 + 1 and stays there till the end of
episode, accumulating no less than 0.8 H b’ states with H > 50. Since WARM-STAGGER samples
one state uniformly from each rollout for annotation, this gives 0.8 probability of sampling b’ in this
specific case.

Combining these factors, we obtain

Pr(sample b’ inarollout | F5,Fy) > 0.79 x 075 x 09 x 08 > 0.4.
~—~ ~—~ ~—~ ~—~
reach E/ unannotated s wrong actions pick b’

Define event
F5 := {b’ is annotated within 3 rollouts}.

Conditioned on F3 and F}, the three rollouts has in each rollout the probability of sampling b’ is at
least 0.4. Hence
Pr(Fs | F3,Fy) > 1—(1-04)>=1-0.6%>0.78.

Combining the three events, we have
PI‘(Fg N F4 n F5) 2 PI‘(Fg n F4) PI‘(F5 | F3,F4) Z (09 +0.79 — ].) x 0.78 > 0.5.

Finally, on F3 N FyN F5, all states in E and the reset state b’ are annotated, under reward function R,
the learner receives reward 1 at any step if it is in E or E’ or it is in b’ and takes the recovery action
same as the expert. Since the learner now behaves like 7 on all states in E and can successfully
recovers in B’, its total return is the same as the expert, which concludes the proof.

O

Lemma 23 (Coverage of expert with N trajectories). Consider the MDP M. For Nog trajectories
of length H rolled out by expert policy 7%, all Ny states in E are annotated with probability > 1 — §
o)

> Y -
Nog > (1_/8)H10g

]

Proof. Recall that we denote by E,nnottea the set of states in E visited and annotated by offline expert
demonstrations. Fix any s € E and concatenate all expert trajectories into a single sequence {s;}7_;
of length T' := H N,g, ordered from the first state of the first trajectory to the last state of the last

trajectory. Let F; be the sigma-algebra generated by all states s1, . . ., s;, and define the set of initial
indices
Iy:={1, H+1,2H+1, ..., (Neg —1)H +1}.
Forany t + 1 € Iy, 5441 is drawn from p, so
1
Pr(sit1 =5 | Ft) = p(s) = ———.
Fort + 1 ¢ Iy, we have s; € E U E’ and under wE.
— , St € E7
PI"(SH_l =S | St) = ]‘_7\[ ,
— e E.
NO ’ St
Therefore, in all cases,
1-8 1-p

Pr(sit1=s|F) > Pr(siq1#s|F) < 1—

Ny’ Ny
Let Ay := {s1 # 8,...,8: # s}. Then
1-5

0

Pr(A:i1) < (1 - ) Pr(4,),
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so by induction,

Pr(Ar) < (1 - 1];Oﬂ)T < exp(— w) :exp(— %)

Ny No
Therefore,
Pr (5 ¢ Eamowed) = Pr(A7) < exp( - %)
By a union bound over all s € E,
Pr(3s € E, 5 ¢ Eamoues) < Noexp( - %)

which is at most 6 whenever
Ny

Nog > uivig)Hlog( 5 )

E Additional Guarantees for DAgger Variant Without Recoverability
Assumption

In this section, we revisit and conduct a refined analysis of another variant of DAgger with trajectory-
wise annotations. We show that without the recoverability assumption, an interactive IL algorithm has
sample complexity no worse than that of behavior cloning. This result complements prior work [16]
that analyzes a different version of DAgger, which they proved to have a worse sample complexity
guarantee than behavior cloning.

E.1 Additional Notations and Useful Distance Measures

In line with [16], we consider another oracle that models interacting with the demonstration expert:
the trajectory-wise demonstration oracle O™ that takes into a state-sequence si1.z and returns
al.g ~ 7B(- || s1.;7). Different from other sections, in the following we adopt Markovian policy,
which is a collection of H mappings from states to probability distributions over actions = = {m, :
S — A(AYVE

h=1"

We here provide a formal definition of first-step policy mixing—used in the definition of 7 (see
Algorithmm Algorithm @]) which is a common technique (e.g., [67} 169} 43]), defined as follows:

Definition 24 (First-step mixing of B). Iz := {7, : u € A(B)}, where policy m, is executed in an
an episode of an MDP M by: draw m ~ wu at the beginning of the episode, and execute policy
throughout the episode.

Importantly, 7, is not a stationary policy (note its difference with 7,, in Definition [I); as a result,
a1.p are dependent conditioned on s;.77, while a;. are only conditionally independent given s1. g
and the random policy 7 drawn.

Additionally, we use 7(- || $1.1) to denote the causally-conditioned probability of action sequence
a1.r induced by 7, given state sequence s1.z7 [81]]. E] To elaborate:

* For Markovian policy 7, w(a1.p || $1.1) := Hle mh(an|sp)-

* For first-step mixing of Markovian policies 7, 7y (- || s1.17) 1= > cgu(m)7(- || s1:1)-
It is well-known that the trajectory distribution induced by Markovian policies and their first-step
mixings 7 can be factorized to the product of 7(a1.5 || s1.z) and the causally-conditioned probability

of the state sequence given the action sequence (Definition #0|and Lemma#T). When it is clear from
context, we use shorthand 7(s1.77) for (- || s1:1).

In the following, we present another 2 useful distance measures for pair of policies.

The use of || highlights its distinction from standard conditioning on s1.#.
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Definition 25 (Trajectory-wise L.-semi-metric [16]). For a pair of Markovian policies © and 7',
define their trajectory-wise L,-semi-metric as

p(r || 7') :=E Bt ornr(s1) {30 2 an # aj}] .

p(m || @) is the probability of any action taken by 7’ deviating from actions in trajectories induced by
7, which is symmetric [16]]. A bound on p(7 || 7*) leads to straightforward performance difference
guarantee: J(72) — J(1) < R- p(r || ©) [16] (Lemma[37).

Definition 26 (Decoupled Hellinger distance). For a pair of Markovian policies w and 7', define
their decoupled Hellinger distance as E™ [D}(w(s1.i), @' (s1.1))].-

Similarly, E™ [Dfl(w(slz ), (81, H))] denotes the expected Hellinger distance between the distri-
bution of actions 7(s1.z) and 7' (s1.7) on state sequence s1.y visited by 7. This allows decoupled
analysis for state and action sequences, which is useful for the proof of Theorem 27|

E.2 Interactive IL Matches Offline IL on Trajectory-wise Annotation

Next, we consider the trajectory-wise sampling model. We present TRAGGER, another DAgger
variant, namely Algorithm 3]and provide its sample complexity bounds.

Algorithm 3 TRAGGER: DAgger with trajectory-wise annotation oracle

1: Input: MDP M, deterministic expert 7%, Markovian policy class B, online learning oracle A
with decision space A(B) and benchmark set {e, : 7 € B}.

2. forn=1,...,Ndo
3:  Query A and receive u" € A(B).
4:  Execute 7" := 7, and sample s7,; following P™". Query O™® for a}’}, = 7¥(s7 ;).
5:  Update A with loss function
() =108 (e ) B
m)=log | )
ﬂ-n(ale ” Sl:H)
6: end for
7: Output 7, the first-step uniform mixture of policies in {m!,... 7" }.

Algorithm [3|uses first-step mixing policies 7, € Il (recall Definition 24)). At round n, it rolls out
" = m,» whose mixing weight u™ is obtained from an online learning oracle A and samples a
full state sequence s, ;. Same as Algorithm Algorithm also requires A to have decision space
A(B) and benchmark set {e : 7 € B}. It then requests expert’s trajectory-wise annotation a;’r; and
updates A by £ () (Eq. (3)). At the end of round N, the uniform first-step mixing of {7} is
returned, which is equivalent to returning 74, where 4 := % 25:1 u". We provide the following
performance guarantee of Algorithm 3}

Theorem 27. IfAlgorithmE] is run with a deterministic expert policy 7%, a policy class B such that
realizability holds, and the online learning oracle A set as the exponential weight algorithm, then it
returns T such that, with probability at least 1 — 6,

log(B) + 21og(1/4)
N

J(r®) — J(7) < 2R

Theorem [27)shows that the interactive IL Algorithm [3|matches the trajectory-wise sample complexity
of behavior cloning in [[16]. In contrast, prior state-of-the-art analysis of interactive IL algorithms [16]
Appendix C.2] gives sample complexity results that are in general worse than behavior cloning.

3For [16, Appendix C.2]’s sample complexity to improve over behavior cloning, we need
pH maxy e log |Br| to be significantly smaller Rlog |B| (where By, is the projection of 3 onto step h).
This may require the strong condition that ;x < R/H < 1 in the practically-popular parameter sharing settings
(IBn| = |BD.

29



For the proof of Theorem [27] we introduce a new notion of decoupled Hellinger estimation error:

N
OnESt};;aJ = ZEFTL [D%(ﬂ'n(- | Sl;H),TFE(~ | Sle))] .

n=1

OnEst%raJ decouples the dependence between the state sequence and the distribution of action
sequence induced by the learner. Perhaps surprisingly, it is compatible with non-Markovian first-step
mixing of policies, while still being well-behaved enough to be translated to a policy suboptimality
guarantee, which could be of independent interest.

E.3 Decoupling State and Action Sequences by Decoupled Hellinger Distance

In this section, we demonstrate that similar to D3 (]P’”(SLH, ale),]P’”E (s1.H, ale)> [16]], the

decoupled Hellinger distance E™ [DE (7 (- | s1.x), 7 (- | s1.1r))] that decouples states and actions

is also proportionally lower bounded by a constant factor of p(7 || 7). The following two lemma
shows that such relationship holds for both Markovian policies and their first-step mixings.

Lemma 28. Let ® be a deterministic policy, and let ™ be an Markovian policy. Then we have

5 ol || ) < BT [DR(r( | suar)y e (- | svan))]

Lemma 29. Let m° be a deterministic policy, and let 7, be a first-step mixing of Markovian policies.
Then we have

% p(ma || 7TE) <E™ [Dl%l(ﬁu( | 31:H)77TE(' | Sl:H))] :

To prove these two lemmas, we first prove a special case, i.e. Lemma[30] with first-step mixing of
deterministic policies. To facilitate the proofs, we introduce the following additional notations:

* Let BPet denote the set of all deterministic, Markovian policies. We will use v, v’ to denote
members of B2 and v, (s) to denote the action taken by v at (s, h) when it is clear from
the context.

* Let BE(sy.;,) represent the subset of BP¢t that agrees with 7 on the state sequence s1.j,.
* Define F(v;v/;7%) := 3, P"(s1.u)l [/ ¢ B(s1.)] , which evaluates the probability
that / disagrees with 7" over the distribution of H-step state sequences induced by 7.

Lemma 30. Let % be a deterministic Markovian policy, and let 7, be a first-step mixing of
deterministic Markovian policies (elements of BP°). Then we have that

5 pma | 7%) < BT [D(ma(- | 51, 7 | s1en)]

The key idea in the following proof is to lower bound E™ [D(m, (- | s1.1), 7 (- | s1.1))] , which
reflects the asymmetric roles of the two appearances of m,,’s, using a symmetric formulation via
function F' (as shown in (9)).

Proof. Recall the first-step mixing policy in Definition [24] we start by rewriting

p(my || 7F) =E™ [H {Eh Cap # w,]?(sh)}]
= Z u(v) Z PY(s1.m, a1.m)1{3h s ap # 7 (sn) }

veBDet S1:H 6)
= > u)p(v =),
VeBDCt
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which is a weighted combination of p(v || %) for v € BPet.

Next, we turn to analyzing D3 (7, (- | s1.5), 7" (- | s1.7)). Since the deterministic expert induces a
delta mass distribution over actions, we apply the elementary fact about the Hellinger distance with
delta mass distribution stated in Lemma [33] yielding:

1
5 I mu(srn) = 75(sm) W< Di(mu(- [ svm), w2(- | s1m))-

We recall that B¥(s1.7) denotes the subset of BP¢! that agrees with 7 on 5.z and define the total
weight assigned by u on it as u(BE(s1.5)) := D veBE(sy.y) W(V). Then,

1

3 I mu(srn) = 75(s1m) 1= 1 = u(B"(s1.)),

which implies:
1= u(B"(s1:m)) < Di(mu(- | s1:m), 7°(- | s1)). Q)

Therefore, by taking expectation over s1.i ~ P™ in Eq. (7)),

> P (s1m) (1 — w(B®(s1:1))) < E™ [Di(mu(- | s1:0), (| s1:1))] - ®)

S1:H

We now examine the expression

D P (sim)(1 = u(BE(s1:m)))- *)

S1:H

Since 7, is a first-step mixing of policies in BP°* with weight u, we have P™(s1.py) =
> epe w(V)PY (s1.7). This allows us to rewrite (+) using the definition of F'(v; 1/, 7) as:

Z Z w(V)P” (s1.1) Z u(L [V ¢ B¥(s1.n)]

(%)

s1:H veBPet ! €BDet
= > u@u@)d P(sra)l [V ¢ B®(s1.m)]

v,v’ €BDbet S1:H (9)
= > u@u)Fy; ;7"

V,V’EBDet
LY wu) (P i) + Fviia))

U,U’GBD“

where the first three equalities are by algebra and the definition of F'(v;v; 7). In the last equality,
we use the observation that

Z u(V)u(V)F(v; ;o) = Z w(V)u(VVF (Vv ).

V,ZI’EBDet I/,V'EBDEt
By Lemma 3] (stated below),

11
ST ..
(1) 253

Yo ul)u) (pv | 7%) + o || 7))

v,v’ €B3Det

1 1
=5+ 2w || 7°) = 5 - plma || 7).
vepDet
Combining the above two inequalities with Eq (8)) we conclude the proof by
1

5 P(mu [ 7%) < () SE™ [Di(mu(- | s1:0), 7°(: | s1:m))]
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Lemma 31 (Symmetric Evaluation Lemma). Given deterministic Markovian policies v, V', and e
the following holds

%%MVW@HWWWW%)Sﬂwﬂm%+F@hm@) (10)

Proof. Recall that
F; ;7% + F(V/ ;7)) = Z (PV(SLH)]I [V ¢ BY(s1.m)] —|—IP”’/(31:H)]I [v ¢ BE(SLH)]) .

S1:H
Throughout the proof, we say that v makes a mistake at step h, if vy, (sp) # 7f (sn). Then, we can
partition all state sequences s1.y € S H into 4 subsets, X}, indexed byi € {1,2,3,4}:

1. Xy = {s1.g | v,V € BE(s1.g)};

2. Xy = {s1.g | 3, st € BE(s1.p), v & BE(s1.n), V" € BE(s1.h-1)};

3. Xy :={s1.g | 3h,s.t.wv & BE(s1.)," € BE(s1.),v € B¥(s1.h-1) };

4. X, = {SI:H ‘ Hh,s.t.u ¢ BE(Sl:h),l// ¢ BE(Sl;h),I/ S BE(Sl;h_l),Z/ S BE(Sl;h_l)}}.
In words, the four subsets divide state sequences into cases where: (1) both v, v agree with the 7%
throughout, (2)&(3) one of v, v’ makes its first mistake earlier than the other, and (4) v, v’ make their
first mistake at the same time. It can now be easily seen that each s1.5 € S H Yies in exactly one of
such X}, and

X UXUXUux, =8

To see this, consider h°", the first time step A such that one of v and v/’ disagree with 7=. If h°™ does

not exist, then s1.y € Xj. Otherwise, s1.g lies in one of X5, X3, Xy depending on whether v and 1/
makes mistakes at step h°".

By definition, subset X} denotes trajectories s1.z where v,/ € BE(s;.5), meaning that
S (Psrmt [V ¢ Bsrm)] + P (s [v ¢ B2(s1.1)] ) = 0.
S1.HEX]

For the other 3 sets, i.e. X; for ¢ € {2,3,4}, we can further divide each set based on the time step
where the first error occurs, formally:

X)={s1.u | v € B®(s1n), V' & BY(s14), V' € B¥(s1n-1)};
Xgh ::{Sl:H | v ¢ BE(Sl:h)ayl € BE(Slzh)ay S BE(Sl:h—l)}; (] 1)
Xi={s1.z | v ¢ B®(s1n), V' & BY(s1),v € BE(s1:n—1), v/ € B (s1.4-1)}-
By definition, each pair of subsets is disjoint and Up¢[p) Xl = X, for i = 2,3,4. Note that the
determination of whether s1.;7 € Xih only depends on s1.j; therefore, Xih can be represented as
Xl x SH=" where
Xih = {Sl:h | S1:H € Xih}.

Based on this observation, we have

Z PY(s1.0) = Z PY(s1.m) = Z PY(s1.1)-

s1.HEX]! 51:h€)21ﬁ,8h,+1;H€$H*’L sl:h@?ﬁ

Furthermore, since deterministic policies v, v/, 7¥ agrees with each other for all {s1.,_1|s1.;, € Xih},

h—1
S Psin) = > PRo(E) [] Palsnsrlsn vnlsn))
s1., XN s1.,EX] h'=1
- (12)
= Z Po(E/) H Ph(8h+1|8h,7/;L(8h)) = Z ]P)V/(Slzh).
Sl:hE-Xk‘ih h'=1 Sl;hE.X‘-‘ih
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This implies that

Yo Psum)= D> P (s1m),

s1HEX]! s1HEX]!
and therefore, summing over all h € [H],

S Psum)= Y P (sunm).

S1.HEX; 51:HEX;
Now, for X5, we have

3 (IP’”(SLH)]I [V & BE(s1.1)] + P (s1.0)1 [V¢BE(31:H)]) > 3 Psun),

51:.HEX2 81.H EX2
(13)
where we apply the fact that for all s1.;7 € X, v/ ¢ B¥(s1.), and dropping the second term which
is nonnegative.

Similarly, for X5, we have that

> (Plorn)l [V ¢ B (s1m)] + P (sl [v € Bos1m)] ) = > P (sm) = Y. PY(sum).
81.HEX3 s1.HEX3 S1:HEX3
(14)
Finally, for X, we use the fact that for s1.r € Xy, v,v/ ¢ BE(s1.57) and obtain

3 (]P’”(SLH)H [V ¢ B%(s1.1)] + P (s1.:)1 [v & BE(SLH)])

51 HEXy

= > @ (sem) + P (s:m) = Y Psnm).

s1.HEX, 81.HEX,

15)

Now, we combine Egs. (T3), (T4), (I3) and observe that

S Pt Y Pt Y Pl zy S (Bl B ).

$1.HEX> 1. HEX3 1. HEXy 81.H EX2UX3UXy
(16)

which implies

Fv; V7% + F(V vy 7®) > Z (]P’V(SLH) + ]P)y/(Sle)) : (17)

S1:H EXoUX3UAX,

N

Based on the definitions of Xy, X5, Xy and p(- || -),

3 (IP”(SLH) + PV’(SLH)) =" P (swm)L{3h : vi(sn) # 7 (sn) or vh(sn) # T (sn) )

81, H EX2UX3UXy S1:H

+ 3 P (s1m)T{3h s vn(sn) # h (sn) or v (sn) # mh(sn) }

> Z P (s1.4)1 {EIh cvp(sn) # WE(S}L)}
S1:H
+ Z P (s1.5)1 {3h vy (sn) # 7 (sn)}
S1:H
—p(v || 7°) + p(/ || 7,
(13)
where s1.7 € Xy U X3 U X, implies either v or v/ disagrees with 7%, while the inequality relaxes
the condition by splitting it into separate contributions for v and v/’.

We conclude the proof by plugging (18) into (T7). O
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E.3.1 Proof of Lemma[2§|

Proof. The key to this proof is showing that any Markovian policy 7 is equivalent, in terms of
action distribution on any state sequence, to a first-step mixing of a set of deterministic Markovian
policies. This leads to equivalence on trajectory distribution and decoupled Hellinger distance. To
clarify further, we present the following claim, which allows us to apply guarantees for mixtures of
deterministic policies in Lemma

Claim 32. For a Markovian policy T, there exists a first-step mixing of deterministic policy m, such
that for any s1.;y € SH, 1. w(s1.17) = mu(s1.1), and 2. P (s1.57) = P™ (s1.51).

Given an MDP with finite state space size S and action space size A, the set of all deterministic,
Markovian policies, denoted by Bt contains A deterministic policies, which can be indexed by
a tuple of actions (an,s)ne[a], ses-

To construct policy 7, we will set the weight vector u such that its weight on policy v indexed by
(ah,s)he[H],ses as:

H
u(v) = H H mh(an,s

h=1s€eS

5) (19)

It can be easily verified by that ) zpe. u(v) = 1.

We now verify the first item. By first-step mixing, we rewrite 7, (a1.p || $1.5) as

H
mu(arn || s1.1) = Z u(v) H v(an|sn)
vEBDet h=1
H H
= > =) [T Tehe, =]
(a}, Jne(H),ses h=1s€S h=1
H H H
I IR IECHD D | BN I pi
(@}, Jne[m),s#s), h=15Fsn (a}, $nelH),s=s, h=1 h=1

H H
- Z H H ﬂ-h(a;L,s‘S) H 7Th(ah|5h)
h=1

(@}, Jnem],s#s), h=157sn
H

= H 7rh(ah|8h) = W(ale || sl:H)-
h=1 (20)

Since this holds for any action sequence aj.; € AH | we derive the first part of Claim that
m(s1.1) = mu(81.1)- The second item follows from the first item in combination with Lemma 4|

‘We conclude that for the 7, in the statement of the claim,
E™ [Di(w(- | s1m), 77 (- | s1:1))] = E™ [Df(mu(- | s1.), 7°(- | s1::0))] -

Finally, the proof follows by applying Lemma [30]to m,,. O

E.3.2 Proof of Lemmal[29|
Proof. By Claim[32] any Markovian policy can be viewed as a first-step mixing of A9 deterministic

policies from BPt, then any first-step mixing of Markovian policies 7, can also be viewed as a first-
step mixing of A% deterministic policies from BP¢t. The proof follows by applying Lemma O
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E.4 New Guarantees for DAgger Variant with Trajectory-wise Annotation

Recall that we have defined decoupled Hellinger estimation error:
OnEst ™ = ZE” [DE("(- | s1.0), 77 (- | 51:1))] -

In the following, we first demonstrate that the performance dlfference between expert and the
the uniform first-step mixing of any Markovian policy sequence {7"}"_, is upper-bounded by

2R OaEst%”J /N, and then show the trajectory-wise sample complexity of Algorithm [3|in Theo-
rem [27]

Lemma 33. For any MDP M, deterministic expert T, and sequence of policies {W"}n 1» each of
which can be Markovian or a first-step mixing of Markovzan policies, their first step uniform mixture
policy T satisfies.

) OnEst '

Proof. By Lemma[28]and Lemma [29] for each 7", whether it is Markovian or a first-step mixing of
Markovian policies, the following holds:

p(r" || 7).

N —

E™" [DR(x"(- | s1m), 77 (- | s1:1))] >
Then, by the definition of OnEstTraJ,

OnEst - N
7]\] =% ZE DH C|stu)m ( | Sl:H))]

" 1 ~
| 7®) = 5ol || 7).
n 1

uMz

where we apply the fact that 7 is a first-step mixing of {7}/, with uniform weights. Finally, we

conclude the proof by applying Lemma[37] O

Theorem 34 (Theorem Restated). If Algorithm 3| is run with a deterministic expert policy ©%,
a policy class B such that realizability holds, and the online learning oracle A set to exponential
weight algorithm (see Proposition[38)). Then, with probability at least 1 — 0,

OnEst y* < log(B) + 2log(1/4),
and furthermore, the returned 7 satisfies

log(B) + 21og(1/4)
N .

J(7®) — J(#) < 2R

Proof. The proof closely follows Proposition C.2 in [16], tailored for another DAgger variant.
However, in this case, we leverage the distribution of the state sequence s;.y instead of the per-step
state distribution.

Observe that the log loss functions passed through online learning oracle A, £™(7) is of the form

,/T(alz’H || S?H)

It can be observed that {"’s are 1-exp-concave. Therefore, implementing A using the exponential
weights algorithm (Proposition [38) ensures that the following bound holds almost surely:

£(m) = 081 mulay || i) = ot (e ).

N N
> log(1/n"(ayyy || stg)) < D log(1/m™(ayyyy || s%.47)) + log(B) = log(B).

n=1
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The7rL1, Lemma 39| with 2" = s, ¥ = all}, g« = 7%, and H" = {0™ }7",_,, where 0" =
(E™,at,ay", ..., s, a%, a}"), implies that with probability at least 1 — 4,

N
OnEsty™ = S E™ [DA(n"(- | sy ), 75(- | s7.5))] < log(B) + 2log(1/8).
n=1

Finally, the second part of the theorem follows by applying Lemma [

F Auxiliary Results

Lemma 35. If p, q are two distributions over some discrete domain Z, and q is a delta mass on an
element in Z. Then

1
slp=alhi<Duwlia) <lp-ql

Lemma 36 (Performance Difference Lemma [22][49]). For two Markovian policies © and 7°

: S = A(A), we have
H
ZAE(Shvah)] 9

h=1

J(@®) — J(x) =7

where AE (s, ap) := Q;;E(sh, ap) — V;ZTE(S}L). Furthermore:
* It holds that (recall Definition[8))
J(m) = J(xP) < H - \#" || 7).

o suppose (M, %) is p-recoverable, then
J(m) = J(xF) < - A || 7).
Lemma 37 (Lemma D.2. of [16]]). For all (potentially stochastic) policies ™ and 7', it holds that
J(m) = J(7') < R-p(m || 7).
Proposition 38 (Proposition 3.1 of [8). Suppose {¢"(u)}Y_, is a sequence of n-exp-concave

functions from A(X) to R. For all x € X, define the weights w?~! and probabilities u" () as
follows:

n—1 —n 3 i (er) n wg_l
’U}w = e 1=1 “r\~® s u (x) = )
Zw’EX W

where e, is the x-th standard basis vector in RI*|. Then, choosing u™ = {u™(x)},ex (exponential
weights used with learning rate ) satisfies:

N N

log | X
Sty <min Y 0(e,) og|X]
n=1 J;exnzl N

Lemma 39 (Restatement of Lemma A.14 in [17]). Under the realizbility assumption, where there
exists gy := g;, € G such that for all n € [N],

yn ~ gf(' | wn) | wn7 an—l7
where H" ™! denotes all histories at the beginning of round n.

Then, for any estimation algorithm and any ¢ € (0, 1), with probability at least 1 — 6,

D Eu1 [DF(0"(@"), gl (")) < D (Geg(§™) — bieg(gl)) +2log(671).

n=1

where €}, (g) :=log (1/g (y" | 2")), and E,,[-] := E[- | H"].
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We have the following well-known lemma for causally-conditioned probability (e.g. [81]).

Definition 40. The causally-conditioned probability of state sequence s1.;y given action sequence
a1.g—1, is defined as

H-1

PM(s1. || arr—1) = Po(B') T Pa(snia | sn,an)
h=1

Lemma 41. For any Markovian policy T,
P (sv.msarm) = PM(siy || avm—1) - m(avn | sun), (21)
and for any first-step mixing of Markovian policy T,

P (Sl:Haal:H) = ]P)M (SI:H H al:H—l) : 7Tu<a1:H || SI:H)- (22)

Proof. Eq. follows by noticing that both sides are equal to

H-1 H
Po(E/) H Ph(8h+1 | sh,ah) H Wh(ah | Sh).
h=1 h=1

Eq. follows by noticing that both sides are equal to

H-1 H
> u@)Po(E) T Palsnea | snyan) [] vnlan | sn)-
v h=1 h=1

G Experiment Details

We compare WARM-STAGGER with Behavior Cloning (BC) and STAGGER on continuous-control
tasks from OpenAl Gym MuJoCo [73|[7] with episode length H = 1000.

Infrastructure and Implementation. All experiments were conducted on a Linux work-
station equipped with an Intel Core 19 CPU (3.3GHz) and four NVIDIA GeForce RTX
2080 Ti GPUs. Our implementation builds on the publicly available DRIL framework [6]
(https://github.com/xkianteb/dril), with modifications to support online learning. The con-
tinuous control environments used in our experiments are: ‘“HalfCheetahBulletEnv-v0”,
“AntBulletEnv-v0”, “Walker2DBulletEnv-v0”, and “HopperBulletEnv-v0”. We include
an anonymous link to our implementation here: https://github.com/liyichen1998/
Interactive-and-Hybrid-Imitation-Learning-Provably-Beating-Behavior-Cloning.

Environments and Expert Policies. We use four MuJoCo environments: Ant, Hopper, HalfCheetah,
and Walker2D. The expert policy is a deterministic MLP pretrained via TRPO [52} 53], with two
hidden layers of size 64.

Learner Architecture. The learner uses the same MLP architecture as the expert. Following [16]],
we use a diagonal Gaussian policy:

m(a|s)=N (fg(s),diag(JQ)) ,
where fg(s) € R%4 is the learned mean, and o € R4 is a learnable log-standard deviation vector.

Each model is trained from random initialization using a batch size of 100, a learning rate of 1073,
and up to 2000 passes over the dataset, with early stopping evaluated every 250 passes using a 20%
held-out validation set.

Learning Protocols. To evaluate the performance of BC against the number of states annotated, we
reveal expert state-action pairs sequentially along expert trajectories until the annotation budget is
reached. For STAGGER, each round it rolls out the latest policy, samples a state uniformly from the
trajectory, queries it for the expert action, and updates immediately.
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Figure 4: Sample and cost efficiency on MuJoCo tasks. The top row shows expected return vs.
number of annotations (C' = 1); the bottom row shows performance under a cost-aware setting
(C = 2). WARM-STAGGER (W) is initialized with 1/20, 1/10, or 1/5 of the samples as offline
demonstrations. It matches STAGGER in sample efficiency and outperforms the baselines when
C = 2, especially WS(1/5).

For WARM-STAGGER, we begin with BC and switch to STAGGER after a predefined number of
offline state-action pairs has been used, denoted as N. We set N to be 100, 200, or 400 for easier
tasks (e.g., Hopper, Ant) and 200, 400, or 800 for harder tasks (e.g., HalfCheetah, Walker2D).

Cost Model and Evaluation. We assign a cost of 1 to each offline state-action pair and a cost of
C =1 or 2 to each interactive query. We run each method for 10 random seeds. For every 50 new
state-action pairs collected, we evaluate the current policy by running 25 full-episode rollouts and
reporting the average return.

Though the nonrealizable setting is beyond the scope of this work, we expect that some variant of
our algorithm can still give reasonable performance, provided that the policy class is expressive
enough (so that the approximation error is nonzero but small). For example, [33] observed that with
nonrealizable stochastic experts, DAgger variants outperform BC, and exhibit learning curves similar
to ours.

G.1 Additional Experiment Plots

We present extended experiment results with larger cost budgets. As shown in Figure i we allocate a
total annotation budget of 2000 for Hopper and Ant, and 4000 for HalfCheetah and Walker. This
complements Figure [3] in the main paper by showing the full training curves without zooming
into the stage with small cost budget. The trends are consistent with our earlier observations:
WARM-STAGGER achieves similar or better sample efficiency compared to STAGGER when C' = 1,
and clearly outperforms both baselines under the cost-aware setting where C' = 2.

G.2 Experiment with MSE Loss

We additionally evaluate our algorithms using mean squared error (MSE) as the loss function for
optimization. All training settings remain identical to the main experiments with log loss, except that
we use a learning rate of 2.5 x 10™%. As shown in Figure we observe qualitatively similar results
to those under log loss shown in[3] consistent with prior observations in [16], with the added benefit
of more stable training dynamics.
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Figure 5: Performance comparison under MSE loss across MuJoCo tasks. Results show that
WARM-STAGGER (WS) achieves comparable sample efficiency and performance to the log loss
setting, with improved training stability. Each curve represents the average over 10 seeds.

G.3 Additional Experiments with Algorithm 3]

For completeness, we evaluate TRAGGER and its warm-start variant (WARM-TRAGGER), as shown in
Algorithm[d] on continuous control tasks and the same MDP setup as in Figure[2] The key distinction
between WARM-TRAGGER and WARM-STAGGER lies in the annotation mode: the former employs
trajectory-wise oracle feedback instead of state-wise annotation, leading to notably different behaviors,
as shown in Figure [6]

In particular, for Ant and HalfCheetah, the sample efficiency (C' = 1) of TRAGGER and
WARM-TRAGGER is significantly worse than that of STAGGER due to the cold-start problem: early
DAgger rollouts have poor state coverage but must still proceed until the end of each trajectory. In
contrast, STAGGER samples only a single state per trajectory, thereby better leveraging interactive
feedback.

For Hopper and Walker, however, TRAGGER and WARM-TRAGGER achieve performance closer to
STAGGER. These environments feature hard resets when the agent fails (unlikely in Ant and never in
HalfCheetah), which truncate poor trajectories and consequently improve sample efficiency.

Overall, these observations suggest a natural middle ground between full-trajectory and single-state
annotation—namely, batch queries (e.g., sampling 50 states per trajectory), as explored by [33] with
comparable results.

A head-to-head comparison between TRAGGER and STAGGER, as well as between WARM-TRAGGER
and WARM-STAGGER, is shown in Figure[7] highlighting the advantage of state-wise over trajectory-
wise annotation.

However, this advantage does not hold in general: in the toy MDP in Figure 2] TRAGGER and
WARM-TRAGGER achieve performance nearly identical to STAGGER and WARM-STAGGER, as
shown in Figure ]
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Algorithm 4 WARM-TRAGGER: Warm-start TRAGGER with offline demonstrations

1: Input: MDP M, trajectory-wise expert annotation oracle O™, Markovian policy class B,
online learning oracle A, offline expert dataset D of size Nyg, online budget Vi

2: Initialize A with policy class By := {m € B : 7(s) = 72(s) , Vs € Do}
3: forn=1,..., Nin/H do
4:  Query A and receive 7".

. n n : " Traj *n _ _E(.n
5: Execute 7" and sample s7, ;; following P™". Query O™ for iy = 7 (8T )
6:  Update A with loss function

n 1
m(atgr | sT)
7: end for
8: Output: 7, a first-step uniform mixture of {m?, ... 7V}.
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Figure 6: Sample efficiency of algorithms on MuJoCo tasks, showing expected return vs. number
of annotations (C' = 1). WARM-TRAGGER (WT) is initialized with 1/20, 1/10, or 1/5 of the
total annotation budget as offline demonstrations. Specifically, WT(n) refers to WT with offline
demonstrations of total length n. Although the performance of WT improves with more offline
demonstrations, both TRAGGER and WARM-TRAGGER remain inferior to STAGGER and, in many
cases, even underperform Behavior Cloning, confirming the advantage of state-wise over trajectory-
wise annotations.
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Figure 7: Head-to-head sample efficiency comparison between TRAGGER and STAGGER, and be-
tween WARM-TRAGGER and WARM-STAGGER under equal (since we are talking about comparison
here) offline demonstration budgets. STAGGER and WARM-STAGGER consistently outperform
TRAGGER and WARM-TRAGGER. The performance gap narrows as the offline budget increases,
effectively alleviating the cold-start problem suffered by TRAGGER.
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Figure 8: Similar to Figure@ we evaluate TRAGGER and WARM-TRAGGER (WT) with 200, 800,
3200 offline (state, expert action) pairs in the toy MDP therein. All methods are evaluated under
equal total annotation cost with C' = 1. With 800 offline (state, expert action) pairs, WT significantly
improves the sample efficiency over the baselines and explores E' more effectively. The performance
of TRAGGER and WARM-TRAGGER is almost the same as STAGGER and WARM-STAGGER in

Figure[2]
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