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Abstract

Imitation learning (IL) is a paradigm for training sequential decision-making poli-
cies from experts, leveraging offline demonstrations, interactive annotations, or
both. Recent advances show that when annotation cost is tallied per trajectory,
Behavior Cloning (BC)—which relies solely on offline demonstrations—cannot
be improved in general, leaving limited conditions for interactive methods such
as DAgger to help. We revisit this conclusion and prove that when the annotation
cost is measured per state, algorithms using interactive annotations can provably
outperform BC. Specifically: (1) we show that STAGGER, a one-sample-per-round
variant of DAgger, provably beats BC under low-recovery-cost settings; (2) we ini-
tiate the study of hybrid IL where the agent learns from offline demonstrations and
interactive annotations. We propose WARM-STAGGER whose learning guarantee
is not much worse than using either data source alone. Furthermore, motivated
by compounding error and cold-start problem in imitation learning practice, we
give an MDP example in which WARM-STAGGER has significant better annotation
cost; (3) experiments on MuJoCo continuous-control tasks confirm that, with mod-
est cost ratio between interactive and offline annotations, interactive and hybrid
approaches consistently outperform BC. To the best of our knowledge, our work
is the first to highlight the benefit of state-wise interactive annotation and hybrid
feedback in imitation learning.

1 Introduction

Imitation learning, or learning from demonstrations, is a widely applied and practical paradigm for
learning sequential decision-making policies [43| 4, [3]. In many applications, it offers a preferable
alternative to reinforcement learning, as it bypasses the need for carefully designed reward functions
and avoids costly exploration [40. [64].

Two prominent data collection regimes exist in imitation learning: offline and interactive. In offline
imitation learning, expert demonstration data in the format of trajectories is collected ahead of time,
which is a non-adaptive process that is easy to maintain. In contrast, in interactive imitation learning,
the learner is allowed to query the expert for annotations in an adaptive manner [49, 48| 164]. The
most basic and well-known approach for offline imitation learning is Behavior Cloning [47} [15]],
which casts the policy learning problem as a supervised learning problem that learns to predict
expert actions from states. Although simple and easy to implement, offline imitation learning has
the drawback that the quality of the data is known to be limited [43]]. As a result, the trained model
can well suffer from compounding error, where imperfect imitation leads the learned policy to enter
unseen states, resulting in a compounding sequence of mistakes. In contrast, in interactive imitation
learning, the learner maintains a learned policy over time, with the demonstrating experts providing
corrective feedback on-policy, which enables targeted collection of demonstrations and improves
sample efficiency.
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Recent work [15], via a sharp theoretical analysis of Behavior Cloning, shows that the sample
efficiency of Behavior Cloning cannot be improved in general when measuring using the number of
trajectories annotated. Interactive methods like DAgger [47] can enjoy sample complexity benefits,
but so far the benefits are only exhibited in limited examples, with the most general examples in the
tabular setting [44]. This leaves open the question:

Can interaction provide sample efficiency benefit for imitation learning under a
broad range of settings, especially with function approximation?

In this paper, we make progress towards this question, with a focus on the deterministically realizable
setting (i.e. the expert policy 7% is deterministic and is in the learner’s policy class B). Specifically,
we make the following contributions:

1. Motivated by the costly nature of interactive labeling on entire trajectories [26, [34], we
propose to measure the cost of annotation using the number of states annotated by the
demonstrating expert. We propose a general state-wise interactive imitation learning al-
gorithm, STAGGER, and show that as long as the expert can recover from mistakes at low
cost [49] in the environment, it significantly improves over Behavior Cloning in terms of its
number of state-wise demonstrations required.

2. Motivated by practical imitation learning applications where sets of offline demonstration
data are readily available, we study hybrid imitation learning, where the learning agent
has the additional ability to query the demonstration expert interactively to improve its
performance. We design a hybrid imitation learning algorithm, WARM-STAGGER, and
prove that its policy optimality guarantee is not much worse than using either of the data
sources alone.

3. Inspired by compunding error [43] and cold start problem [32| 39]], two practical challenges
in imitation learning, we provide an MDP example, for which we show hybrid imitation
learning can achieve strict sample complexity savings over using either source alone, and
provide simulation results that verify this theoretical claim.

4. We conduct experiments in MuJoCo continuous control tasks and show that if the cost
of state-wise interactive demonstration is not much higher than its offline counterpart,
interactive algorithms can enjoy a better cost efficiency than Behavior Cloning. Under some
cost regimes and some environments, hybrid imitation learning can outperform approaches
that use either source alone.

2 Preliminaries

Basic notation. Define [n] := {1,...,n}. Denote by A(X) the set of probability distributions over a
set X. Foru € A(X)and x € X, we denote by u(z) the z-th coordinate of v and e,, the delta mass on
x. We use the shorthand 1., to represent the sequence {x;} ;. We will frequently use the Hellinger

distance to measure the difference between two distributions: D2 (P,Q) = [(4/ (‘g A/ j‘g 2dw,
where P and Q share a dominating measure w.

Episodic Markov decision process and agent-environment interaction. An episodic MDP M
is defined as a tuple (S,A, P,R, H), where S is the state space, A is the action space, P :=
{Py : 8§ x A — A(S)}ZL, denotes the transition dynamics, R : S x A — A([0, 1]) denotes the
reward distribution, and H denotes episode length. A Markovian policy (policy) is a collection of
H mappings from states to probability distributions over actions 7 = {7, : & = A(A)}HL,.

policy induces a distribution over trajectories 7 = (s, ap, r,)_, by first drawing the initial state
s1 ~ Py(9), and then iteratively taking actions ay, ~ 7, (sp,), receiving rewards r, ~ R(sp,ap),
and transitioning to the next state sp+1 ~ Pp(sn,an) (except at step H, where Py = @). Let E™
and P™ denote expectation and probability law for {sp, ap, 7 }F_, induced by m and M. Given 7,
denote by d" (s, h) := £P™ (s, = s) its (state, step) visitation distribution, and d™(h) := . The

expected return of policy 7 is defined as J(w) := E™ [Zf_l rh] and the value functions of 7 are

given by V7 (s) := Zh, _n T | sh = s] and Qf (s,a) :=E7 {Zh, The | Sn = s,an = a .



Additional policy-related notations. Throughout, we assume the access to an Markovian policy
class B of finite size B, which contains the deterministic expert demonstrator policy 7% := {71',];] :

S — AL A (MDP, Expert) pair (M, 7®) is said to be p-recoverable if for all h € [H], s € S
anda € A, Q;{E (s,a) — VhTrE (s) < p. Additionally, we assume normalized return [[15]], where for

any trajectory, Zthl rp, € [0, R]. Throughout this paper, we make the assumption that our imitation
learning problem is deterministically realizable:

Assumption 1 (Deterministic Realizability). The expert policy 7% is deterministic and is contained
in the learner’s policy class B.

In our algorithm and analysis, we frequently use the following “convexification” of policy class B:
Definition 1 (Each-step Mixing of B). Iz = {7 n(als) := Y czu(m)ma(als) : u € A(B)}.

An each-step mixing policy 7, € Il can be executed by drawing  ~ u freshly-at-random at each
step h € [H] and takes action a ~ 7;,(|s) (e.g. [30L[31]]). Observe that 7, is a Markovian policy.
Offline imitation learning and Behavior Cloning. In offline imitation learning, the agent is given a
collection of expert trajectories D = {71,..., 7N, }, Where 7; = (s; 4, a; )i, is the i-th (reward-
free) trajectory, all of which are drawn iid from the trajectory distribution of expert policy 7=.
Behavior Cloning finds a policy 7 € B that minimizes its disagreement with expert’s actions on the
seen states, i.e.,

Now H
7= argminz Z I(mp(sin) # aip),
me€B T oy

where I(-) is the indicator function. Recent result of [L3]] establishes a horizon-independent analysis
of Behavior Cloning, which we recall its guarantees here:

Theorem 2 (Guarantee of BC [[15]]). Suppose Assumption ?? holds, then with probability 1 — 6, the
policy returned by BC 7 satisfies:

J(r®) = J(7) <O <Rk’g3> :

Ny

Interactive imitation learning protocol. In interactive IL, the learner has the ability to query the
demonstration expert interactively. A first way to model interaction with expert is through a trajectory-
wise demonstration oracle O [49] [T5]]: given a state sequence (s;,)f_,, return (as)_; such
that ap, = ﬂ,]f(sh) for all h. Subsequent works have considered modeling the expert as a state-wise
demonstration oracle [20, /5,37, 53] OSt2t¢: given a state s;, and step h, return a;, = 72 (s;). We
consider the learner interacting with the environment and demonstration oracles using the following
protocol:

For:=1,2,...

— Select policy 7 and rollout in M, observing trajectory (s1,ay, ..., Sm,aq).
— Query the available oracle(s) to obtain expert annotations.

Goal: Return policy 7 such that J(7¥) — J(#) is small, with a few number of queries to
OTraj or (/)State.

In practice, we expect the cost of querying O to be higher than that of collecting a single offline
expert trajectory [26]]. Since H queries to OS2 can simulate one query to O, the cost of a single
O3t query should be at least - the cost of O™, Consequently, we also expect one OS*** query
to be more expensive than obtaining an additional offline (state, expert action) pair. We denote the
ratio between these two costs as C', where C' > 1 is an application-dependent constant.

'For practical settings such as human-in-the-loop learning with expert interventions [34}[61]], obtaining a short
segment of corrective demonstrations may be cheaper than querying O5***® for each state therein individually.
Here, we focus on a simplified setting and leave detailed cost modeling for such settings as interesting future
work.



Algorithm 1 STAGGER: DAgger with State-wise annotation oracle

1: Input: MDP M, state-wise expert annotation oracle (@52t with query budget Ni,,, Markovian
policy class B, online learning oracle A.

2: forn=1,..., Njdo
3:  Query A and receive "
4:  Execute 7" and sample (s, h") ~ d™ . Query OS¢ for ¢*" = 7, (s™).
5:  Update A with loss function
)= tog () m
m):=log | ——— | .
Thn (CL*’" ISn)
6: end for
7: Output 7, a first-step uniform mixture of {w"}fj;‘l.

3 State-wise Annotation in Interactive Imitation Learning

Recent work [[15] on refined analysis of Behavior Cloning (BC) casts doubt in the utility of interaction
in imitation learning: when measuring sample complexity in the number of trajectories annotated,
BC is shown to provide guarantees no worse than interactive approaches. Although benefits of
interactive approaches have been shown in specific examples, progresses so far have been relatively
sparse [15}44]), with the most general results in the tabular setting [44]. In this section, we show that
interaction benefits imitation learning in a general sense: when measuring sample complexity using
the number of state-wise annotations, we design an interactive algorithm that achieves a lower sample
complexity than BC, as long as the expert has a low recovering cost y in the environment.

3.1 Interactive IL Enables Improved Sample Complexity with State-wise Annotations

Our algorithm STAGGER (short for State-wise DAgger), namely Algorithm |1} interacts with the
demonstration expert using a state-wise annotation oracle OS¢, Similar to the original DAgger [49]],
it requires base policy class B and reduces interactive imitation learning to no-regret online learning.
At round n, it rolls out the current policy 7" obtained from an online learning oracle A and samples
(s™, h™) from d™" . A classical example of A is the exponential weight algorithm that chooses policies
from Iz ([7]; see Appendix E]) It then queries OS5t to get expert action a*™ and updates A with
loss function ¢™(7) induced by this new example (Eq. (I))). The final policy 7 is returned as a uniform

first-step mixture of the historical policies {W"},]yi:"‘l, i.e., sample one 7" uniformly at random and
execute it for the episode. In contrast to the DAgger variant analyzed in [[15]], which trains a distinct
policy at each step—yielding H policies in total—and employs trajectory-level annotations, our
algorithm utilizes parameter sharing and uses state-wise annotations.

We show the following performance guarantee of Algorithm [I]with A instantiated as the exponential
weight algorithm:

Theorem 3. Suppose STAGGER is run with a state-wise expert annotation oracle OS5t an MDP M
where (M, %) is p-recoverable, a policy class B such that deterministic realizability (Assumption ??)
holds, and the online learning oracle A set as the exponential weight algorithm with decision space
A(B) and returns each-step mixing policies T, € Ilg. Then it returns 7 such that, with probability at
least 1 — 9,

log(B) + 21log(1/6)

J(7®) — J(7) < pH - N .

Theorem [3|shows that STAGGER returns a policy of suboptimality O(%) using Ny, interactive
state-wise annotations from the expert. In comparison, with the cost of Ny, state-wise annotations,

one can obtain Cg‘"‘ trajectory-wise annotations; [[15]’s analysis shows that Behavior Cloning with

this number of trajectories from 7¥ returns a policy of suboptimality O(%ﬁgf;); recall Theorem

Thus, if C <« %, Algorithmhas a better cost-efficiency guarantee than Behavior Cloning.

4
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Figure 1: State-wise sample complexity comparison between Behavior Cloning and STAGGER.
Shaded areas show the 10th—90th percentile bootstrap confidence intervals [13] over 10 runs.
STAGGER matches or exceeds BC with 50% fewer annotations, achieving better state-wise an-
notation efficiency.

We now sketch the proof of TheoremE} In line with [15], we define the online, on-policy state-wise
estimation error as

N
ONEstY™® i= S By e [DA(mh(s), 7 (5))] -

n=1

The proof proceeds by bounding this error and translating it to the performance difference between
# and 7. While our definition of estimation error is similar to [13], their definition requires all H
states per trajectory, while ours allows unbiased approximation from a single state. This enables
each labeled state to serve as immediate online feedback, fully utilizing the adaptivity of online
learning. In contrast, trajectory-wise annotations may cause the online learning oracle to fall into a
delayed feedback setting [[19} [72], which incurs a fundamental extra factor of H in state-wise sample
complexity compared to our approach.

3.2 Experimental Comparison

We conduct a simple simulation study comparing the sample efficiency of log-loss Behavior
Cloning [15] and STAGGER in four MuJoCo [70, 6] continuous control tasks with H = 1000
and pretrained deterministic MLP experts [50, 51]]. Considering MuJoCo’s low sensitivity to hori-
zon length [[15]], we reveal expert states one by one along consecutive trajectories for BC to allow
fine-grained state-level sample complexity comparison, while STAGGER queries exactly one state
per round by sampling from the latest rollout and updating immediately with the expert action. In
STAGGER, we implement the online learning oracle A so that it outputs a policy that approximately
minimizes the log-loss over historical (state, expert action) pairs. In addition to log-loss, we also in-
clude results with online learning oracle minimizing historical samples’ square loss in Appendix [G.2]
We defer other implementation details to Appendix

Figure [T] shows the performance of the learned policy as a function of the number of state-wise
annotations. Overall we see that, when each interactive state-wise annotation has the same cost as an
offline (state, expert action) pair (C' = 1), STAGGER has superior and more stable performance than
Behavior Cloning. For a given target performance (e.g., near expert-level), STAGGER often requires
significantly fewer state-wise annotations than BC—especially on harder tasks—though the gains
are less pronounced on easier ones like Ant and Hopper. To highlight sample efficiency, we plot
STAGGER using only half the annotation budget of BC; despite this, it still matches or surpasses BC
on several tasks, suggesting meaningful benefits from interaction when C' is small (e.g., C' = 3 for
Walker).

4 Hybrid Imitation Learning: Combining Offline Trajectory-wise and
Interactive State-wise Annotations

Practical deployments of imitation learning systems oftentimes combine offline and interactive
feedback modalities [24, [18]: for example, in autonomous driving [[76} 2| [77]], the learner has access



Algorithm 2 WARM-STAGGER: Warm-start STAGGER with offline demonstrations

1: Input: MDP M, state-wise expert annotation oracle OState Markovian policy class B, online
learning oracle A, offline expert dataset D of size Ny, online budget Vi

2: Initialize A with policy class By := {7 € B : 7w (sp) = ap, Vh € [H],V(sp, ah)hH:1 € Dy}
3: forn=1,..., N do
4:  Query A and receive 7".
5. Execute 7" and sample (s™, h") ~ d™ . Query OS5t for ¢*" = 7%, (s™).
6:  Update A with loss function:
()= g ( — ) @
m)i=log| —— | .
& Tpn (@™ | ™)
7: end for
8: Output: 7, a first-step uniform mixture of {7!,... 7N},

to some offline expert demonstrations to start with, and also receives state-wise interactive expert
demonstration feedback in subsequent finetuning phase. Motivated by this common practice, we
formulate the following problem setup:

Hybrid Imitation Learning (HyIL): Problem Setup. The learner has access to two complementary
sources of expert supervision:

* Nogr offline expert trajectories Doy = {(8in,ain)i,7 € [Nogg] }, sampled i.i.d. from
rolling out 7% in M;
* A state-wise annotation oracle O5*** that can be queried interactively up to Niy times.

Each offline (state, action) pair takes a unit cost, and the cost of a single interactive query is C' > 1.
The total cost budget is therefore H - Nyg + C' - Nip. The goal is to return a policy 7 that minimizes
its suboptimality J(7¥) — J(7).

We ask: can we design a HyIL algorithm with provable sample efficiency guarantee? Furthermore,
can its performance surpass pure BC and pure interactive IL under the same total cost?

4.1 WARM-STAGGER: Algorithm and Analysis

We answer the above questions by proposing the WARM-STAGGER algorithm, namely Algorithm 2]
It extends STAGGER to incorporate offline expert demonstrations, in that it constructs By, a restricted
policy class that contains all policies in /3 consistent with all offline expert demonstrations (line [2)). It
subsequently performs online log-loss optimization on By, over state-action pairs collected online,
where the state s™ is obtained by rolling out 7" in the MDP M, and the action a*" is annotated
by the state-wise expert annotation oracle O5**t¢, For the purpose of analysis, we introduce the
following technical definition.

Definition 4 (Each-step policy completion). Given a base policy class B, define for each step h € [H|
B, = {7rh | 7= (m1,...,7TH) EB}.
Then the each-step completion of B is defined as
B:= {77: (1., 7H) ‘ T € By forall h € [H]}

In words, each 7w € B uses a possibly distinct policy 7, from B}, to take action at step h. By definition,
B := |B] is at most B, since |B;,| < B. Under non-parameter-sharing settings [47} 43, 144, T3],
where the base policy class B allows the policies used at each step to be chosen independently,
B=B.

Theorem 5. If WARM-STAGGER is run with a state-wise expert annotation oracle OS¢, an
MDP M where (M, %) is y-recoverable, a policy class B such that deterministic realizability
(Assumption ??) holds, and the online learning oracle A set as the exponential weight algorithm with
each-step mixing policies 7, € Ilg, then it returns 7 such that, with probability at least 1 — 6,

R . ([ Rlog(B/d) pH log(By./d)
J(@®) = J(#7) <0 (mm ( N, , Nimh )) ,
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Figure 2: MDP construction and simulation results of algorithms with rewards assigned only in E.
We evaluate WARM-STAGGER (WS) with 200, 800, 3200 offline (state, expert action) pairs. All
methods are evaluated under equal total annotation cost with C' = 1. With 800 offline (state, expert
action) pairs, WS significantly improves the sample efficiency over the baselines and explores E’
more effectively.

where we recall that B < B < B¥, and By, = |By.| < B.

Theorem 5] shows that WARM-STAGGER finds a policy with suboptimality guarantee not signficantly
worse than BC or STAGGER: first, Behavior Cloning using the offline data has a suboptimality of
0] %&BMU (cf. Theorem ; second, STAGGER without using offline data has a suboptimality

of O (%@) (cf. Theorem . We conjecture that the log B dependence may be sharpened to

nt

log B; we leave this as an interesting open question.

Remark 6. One may consider another baseline that naively switches between BC and STAGGER
based on a comparison between their bounds; however, such a baseline needs to know R and p ahead
of time. In practice, we expect our WARM-STAGGER fo perform much better than this baseline, since
it seamlessly incorporates both sources of data, and its design does not rely on theoretical bounds
that may well be pessimistic.

4.2 On the Benefit of Hybrid Imitation Learning

Theorem [3]is perhaps best viewed as a fall-back guarantee for WARM-STAGGER: its performance is
not much worse than either of the baselines. In this section, we demonstrate that the benefit of hybrid
imitation learning can go beyond this: we construct an MDP motivated by practical challenges, in
which hybrid imitation learning has a significantly better sample efficiency than both offline BC and
interactive STAGGER. Specifically, we prove the following theorem:

Theorem 7. For large enough S, H, there exists an MDP M with S states, and expert policy ©°
such that:

o With Q(S) offline expert trajectories for BC, the learned policy is Q(H )-suboptimal;

» With Q(HS) interactive expert annotations for STAGGER, the learned policy is Q(H)-
suboptimal;

« With O (S/H) offline trajectories and O(1) expert interactions, WARM-STAGGER learns a
policy 7 such that J(7t) = J(mF).

Theorem suggests that when H.S > max(1,C'), WARM-STAGGER achieves expert-level perfor-
mance with significantly lower cost than two baselines. To see this, observe that WARM-STAGGER
has a total cost of O(S + C), which is much smaller than Q(H.S) by BC, and (H SC) by STAGGER.

The MDP construction and simulation results. We now sketch our construction of MDP M. M
has an action space of cardinality greater than 20. For each state, one of the actions is taken by the
expert; the rest are “wrong” actions. We illustrate M’s state space on the left of Figure[2} specifically,
it is partitioned to the following subsets:



* Expert ideal states E, where |E| = Nj: this can model for example, the agent driving
stably on the edge of a cliff [49], where any incorrect action transitions the agent to the
unrecoverable absorbing state B (e.g., falling off the cliff). Taking the expert action keeps
the agent in E with high probability (1 — /3), and with a small probability 3, moves the
agent to E’ (e.g., a safe slope).

» Unrecoverable state B: a special absorbing state that is unrecoverable by any action (dead).

* Expert recoverable states E': this models the agent getting off from the edge of the cliff to a
safe slope. When in E’, taking the expert action allows the agent to return to a uniformly
sampled state in E. Taking a wrong action from E’ leads to B’ (e.g., rest area).

* Recoverable state B’: Not knowing how to act in B’ will result in the agent getting trapped
in B’ for the episode.

In the following proof sketch, we briefly justify each baseline’s performance as stated in Theorem
(1) BC only observes expert actions in E and E’, but never in B’. As a result, near-expert perfor-
mance at test time requires high coverage over E’; otherwise, BC’s trained policy will likely incur
compounding errors. (2) STAGGER suffers from a cold-start problem: early policies fail to explore
E efficiently, and incorrect actions can cause transitions into B. Consequently, coverage over E
grows slowly, and the policy may still fail on unseen states in E even with Q(HS) queries. (3)
WARM-STAGGER benefits from offline data that fully covers E, and uses limited interaction to visit
B’ and query the expert, avoiding costly exploration in E’ while matching expert performance.

We also conduct a simulation of the aforementioned three algorithms in a variant of the above MDP
with Ny = 200, Ny = 1000, H = 100, and 8 = 0.08, using a more challenging reward function that
assigns a reward of 1 only when the agent visits the states in E. Here we let the online learning oracle
A optimize 0-1 loss, which corresponds to a special case of the log loss under a deterministic learner
policy class and discrete actions. Figure[2]shows return and state coverage as functions of the number
of expert annotations, averaged over 200 runs.

We observe that: (1) BC exhibits slow improvement, as B’ remains unseen throughout training,
resulting in poor performance even with substantial coverage (e.g., 80%) over E’; (2) STAGGER
is sample-inefficient due to slow exploration over E states, consistent with the cold-start intuition;
(3) WARM-STAGGER (WS), when initialized with limited 200 offline (state, expert action) pairs,
still needs to explore E first before it can safely reach E’ without failure; and (4) WARM-STAGGER
with sufficient offline coverage on E (e.g., initialized with 3200 offline (state, expert action) pairs)
directly benefits from exploring B’ with immediate performance gain, and enables safe and even
faster exploration than the expert in E’.

4.3 Hybrid IL on Continuous Control Benchmarks

Following our earlier MuJoCo-based comparison of Behavior Cloning and STAGGER, we now
evaluate WARM-STAGGER (WS) on the same continuous-control benchmarks. This experiment aims
to answer: Does WS reduce total annotation cost compared to the baselines?

Based on the observation in Figure [T we assign 400 total annotations for Hopper and Ant, and
1200 for HalfCheetah and Walker2D. For WARM-STAGGER, we allocate 1/8, 1/4, or 1/2 of the total
annotations to offline data, with the remainder used for interactive queries. For a fair comparison,
all methods are evaluated under equal total annotation cost, with C' = 1 or C' = 2. This makes the
baselines stronger, as they have full cost budget assigned to a single source.

In terms of the number of state-wise annotations (C' = 1), the results align with our theoretical
findings: WS performs not significantly worse than BC or STAGGER, regardless of the offline dataset
size. WS still achieves performance competitive with STAGGER, and even outperforms it on Ant
when C' = 1. Furthermore, as shown by the purple curves, WS with appropriate offline sample size
has preferable performance over 4 tasks when C' = 2, highlighting its utility in cost-aware regimes.
These results confirm that WARM-STAGGER reduces total annotation cost for moderate C'.

5 Related Work

Imitation Learning with offline demonstrations, pioneered in autonomous driving [43], was
reduced to offline, state-wise supervised learning in early works [47, |68]] and named Behavior
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Figure 3: Sample and cost efficiency on MuJoCo tasks. The top row shows expected return vs.
number of annotations (C' = 1); the bottom row shows performance under a cost-aware setting
(C = 2). WARM-STAGGER (WS) is initialized with 1/8, 1/4, or 1/2 of the total annotation budget
as offline demonstrations. It matches STAGGER in sample efficiency and outperforms the baselines
when C' = 2.

Cloning (BC). A recent analysis by [[L5]] employs trajectory-wise Hellinger distance to tighten the
dependence of BC on the horizon at the trajectory level, although its sample complexity measured
per state still grows quadratically with the horizon in the worst case. This shortcoming, often termed
covariate shift or compounding error [43]], arises when imperfect imitation drives the learner to unseen
states, resulting in a compounding sequence of mistakes. From a data collection perspective, this can
be mitigated by noise-injection approaches such as [27, [23]. By leveraging additional environment
interactions, generative-adversarial IL methods [[17, 163} 22| 62] frame learning as a two-player game
that aims to find a policy that matches expert’s state-action visitation distributions. This setting
is also known as “apprenticeship learning using inverse reinforcement learning” in earlier works
[L, 167], which also starts from offline demonstrations and assumes access to the MDP dynamics
or interactive rollouts. Quantitative comparisons with these methods are beyond our scope, as
they rely on extensive interactions with the MDP, while we focus on the advantages of state-wise
interactive annotations. Recent work [46] introduces Hybrid Inverse Reinforcement Learning, which
leverages hybrid Reinforcement Learning to accelerate its inner loop of policy search; in contrast, our
“hybrid” setting focus on utilizing heterogeneous data modalities. Recent offline imitation learning
approaches [8, [73]] do not require MDP access but still require access to strong offline datasets,
either with broad expert coverage or a large transition buffer. Our work assumes that interacting
with the environment does not incur costs; we leave a detailed analysis that incorporate environment
interaction cost as future work.

Imitation Learning with interactive demonstrations, first proposed by [47], allows the expert
to provide corrective feedback to the learner’s action retroactively. Assuming low costs of expert
recovery from mistakes, termed recoverability, DAgger [49], and following works [25}, 48] 64} 9., |10,
44] outperform traditional BC both theoretically and empirically. However, this efficiency demands
substantial annotation effort [34]]. Although DAgger [49] and some subsequent works [64} 144,165 [15]]
popularized the convention of annotating full state sequences, there has also been growing interest in
state-wise annotation [30, (52} 131]], which appeared as early as [47,[20]]. In fact, practical applications
of DAgger often adopt state-wise annotation in expert-in-the-loop [34, |60l 33] designs, as seen
in [[75 24,18} [71]], where issues such as inconsistencies caused by retroactive relabeling [26]] can be
mitigated. These methods often leverage human- or machine-gated expert interventions to ensure
safety during data collection [76} 35], provide more targeted feedback [36}[11], and enable on-the-fly
learning [57]. The common use of selective state-wise queries aligns with our goal of promoting
interactive imitation learning with efficient supervision and provable sample efficiency. We regard our



contribution as providing a theoretical foundation for this increasingly popular paradigm of state-wise
annotation.

Utlizing Offline Data for Interactive Learning. Many practical deployments of interactive learning
systems do not start from tabula rasa; instead, prior knowledge of various forms are oftentimes
available. Combining offline and interactive feedback has recently gained much popularity such as
instruction finetuning large language models [[14, 42], and bandit machine translation [38]]. Many
recent theoretical works in reinforcement learning try to quantify the computational and statistical
benefit of combining offline and online feedback: for example, [29,169] shows provable reduction of
sample complexity using hybrid reinforcement learning, using novel notions of partial coverage; [S9]
shows that under some structural assumptions on the MDP, hybrid RL achieves computational savings.
Many works also quantify the benefit of utilizing additional offline data sources in the contextual
bandit domain; for example, [39, 56} [74] study warm-starting contextual bandits using offline bandit
data and supervised learning data, respectively. While some DAgger variants [[76, 18] also operate in
a hybrid setting, our work focuses on a fundamental formulation that explicitly accounts for practical
cost asymmetry between offline and interactive annotations [54]], and, to the best of our knowledge,
is the first to provide a rigorous framework with provable sample efficiency guarantees.

6 Conclusion

We revisit imitation learning from the perspective of state-wise annotation. We show via the STAGGER
algorithm that, interaction, with its cost properly measured, can yield provable sample efficiency gains
over Behavior Cloning. We also propose WARM-STAGGER that combine the benefits of offline data
and interactive feedback. Our theory shows that such a hybrid method can strictly outperform both
purely offline and purely interactive baselines under realistic cost models. Empirical results on the
synthetic MDP support our theoretical findings, while MuJoCo experiments demonstrate the practical
viability and competitive performance of our methods on continuous control tasks. Additionally, we
show a trajectory-wise annotation variant of DAgger can match the sample complexity of log-loss
BC without recoverability assumptions (Appendix [E), with additional experiments (Appendix [G.3).

Limitations: Our theory provide sample complexity guarantees for the discrete-action setting with
deterministic and realizable expert. When such assumptions are relaxed, additional challenges
arise [58]]. In this respect, there remains a gap between our theoretical analysis and our MuJoCo
experiment results. In future work, we are interested in conducting additional experiments on
discrete-action control problems (e.g., Atari) as well as language model distillation tasks.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions—proposing
STAGGER and WARM-STAGGER, establishing their sample efficiency, and validating them
empirically. These claims align with the paper’s content and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discusses limitations such as the assumption of a realizable and
deterministic expert, and that environment interaction cost is not modeled. These are noted
in the theoretical setup and discussed as directions for future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theorem explicitly states its assumptions, such as realizability and recov-
erability. Full, self-contained proofs are provided in the appendix, including intermediate
lemmas and detailed derivations, to the best of our knowledge.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The paper includes all necessary details to reproduce the main experimental
results, including model architecture, training hyperparameters, evaluation protocols, and
data collection methods. Additional implementation details and results are provided in

Appendix [G|
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper includes a link in the appendix to a public GitHub repository
containing the code and instructions necessary to reproduce the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies training and evaluation protocols, including model ar-
chitecture, learning rate, batch size, optimizer, number of updates, and trajectory length.
Additional details and implementation-specific settings are provided in Appendix [G|

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars using bootstrap confidence bounds, computed
over 10 independent runs, and clearly states the methodology in the caption of each relevant
figure.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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10.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on compute resources used for experiments, including GPU type,
memory configuration, and experiment running time, are provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. It involves standard
simulation environments and pretrained MLP expert policy annotations, without the use of
sensitive data, human subjects, or deployments with societal implications.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper presents foundational theoretical work in imitation learning, aimed
at improving sample efficiency through state-wise annotation and hybrid learning algorithms.
To the best of our knowledge, the work poses no direct negative societal impact. Its potential
applications, such as in robotics or autonomous systems, are mentioned to motivate the
study, but the contributions themselves are purely algorithmic and theoretical.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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11.

12.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release pretrained models, large-scale datasets, or tools
with high risk of misuse. The work is theoretical and algorithmic in nature, focusing on
sample efficiency in imitation learning, and thus does not raise direct concerns requiring
safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in this work, including MuJoCo environments and
pretrained experts, are properly cited (e.g., [70,150]). MuJoCo is used under its standard
academic license, and the pretrained models are referenced with proper attribution. No
proprietary data or code was used without credit.

Guidelines:

» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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15.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new simulation scripts and code for our proposed algorithms
(STAGGER and WARM-STAGGER), which are documented and included via a GitHub link
in the appendix. Instructions for running experiments and reproducing results are also
provided.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or research with human
subjects. All experiments are conducted in simulated environments.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects or participant-based studies; all
experiments are performed in simulation, so IRB approval is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Large language models (LLMs) were only used for grammar checking and
editing. They were not involved in the development or evaluation of the core methodology,
and did not influence the scientific contributions of the work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Interactive and Hybrid Imitation Learning: Provably Beating Behavior
Cloning — Supplementary Materials

A Additional Notations and Related Work

A.1 Additional Notations

In line with [15]], we introduce another annotation oracle that models interaction with the demonstra-
tion expert: the trajectory-wise demonstration oracle O™, which takes as input a state sequence
s1.p and returns a},; ~ wE(- | s1.¢). We also provide a formal definition of first-step policy
mixing—used in the definition of 7 (see Algorithm|[I] Algorithm2)), which is a common technique
(e.g., [64][66l 41]), defined as follows:

Definition 8 (First-step mixing of B). Iz := {m, : u € A(B)}, where policy 7, is executed in an
an episode of an MDP M by: draw m ~ u at the beginning of the episode, and execute policy
throughout the episode.

Importantly, 7, is not a stationary policy; as a result, a;.z are dependent conditioned on si.z, while
a1.pr are only conditionally independent given s1.y and the random policy 7 drawn.

Additionally, we use (- || s1.7) to denote the causally-conditioned probability of action sequence
a1.p induced by 7, given state sequence s1.z7 [78]]. E] To elaborate:

* For Markovian policy 7, w(a1.57 || $1.51) := HhH:1 7h(an|sp).

* For first-step mixing of Markovian policies 7., 7y (- || s1.17) 1= > cgu(m)7(- || 51:1)-
It is well-known that the trajectory distribution induced by Markovian policies and their first-step
mixings 7 can be factorized to the product of 7(a1.x || s1.x) and the causally-conditioned probability

of the state sequence given the action sequence (Definition 39)and Lemma40). When it is clear from
context, we use shorthand 7(sq.) for (- || s1.1)-

A.2 Useful Distance Measures

In the following, we present 4 useful distance measures for pair of policies.

Definition 9 (Trajectory-wise Li-divergence). For a pair of Markovian policies © and 7', define
their trajectory-wise L1-divergence as

H
)\(’/T H 7T/) = EWEGILHNTI'/(SLH) lz ]I(ah #* a%)] .

h=1

(7 || @) is the expected total number of actions taken by 7’ that deviates from actions in trajectories
induced by 7. Note that A(-||-) is asymmetric, while the same concept is applied in offline and
interactive IL [47, 49] with different guarantees for A(7 || #%) and A\(7" || ) (Lemma .

Definition 10 (Trajectory-wise L.-semi-metric [15]). For a pair of Markovian policies © and 7',
define their trajectory-wise L.-semi-metric as

p(r || 7') = E"Eq; o (s1.r) T{3h  an # aj}] -

p(m || @) is the probability of any action taken by 7" deviating from actions in trajectories induced by
7, which is symmetric [15]. A bound on p(7 || %) leads to straightforward performance difference
guarantee: J(7°) — J(m) < R - p(r || «%) [15] (Lemma.

Definition 11 (State-wise Hellinger distance). For a pair of Markovian policies w and 7', define their
state-wise Hellinger distance as E s p)y~q= [Dg(mh(s), 7},(s))].

The use of || highlights its distinction from standard conditioning on s1..
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State-wise Hellinger distance represents the expected Hellinger distance between the action distribu-
tion of 7 and 7" on (s, h) ~ d™. One notable feature here is that the distance is evaluated between
mh(- | s) and 7, (- | s), independent of the original action a taken by 7 when visiting s. By Lemma (35|
state-wise Hellinger distance can relate to trajectory-wise L;-divergence.

Definition 12 (Decoupled Hellinger distance). For a pair of Markovian policies 7 and 7', define
their decoupled Hellinger distance as E™ [D} (7 (s1.1), @ (s1.1))]-

Similarly, E™ [DZ (7 (s1.), 7 (s1:1r))] denotes the expected Hellinger distance between the distri-
bution of actions 7(s1.77) and 7/ (s1.77) on state sequence s1.zy visited by 7. This allows decoupled
analysis for state and action sequences, which is useful for the proof of Theorem 26|

A.3 Additional Related Work

State-wise v.s. trajectory-wise annotations in imitation learning. The debate over using state-
wise versus trajectory-wise annotations traces back to the reduction from imitation learning to
supervised learning [47]. While the sample complexity of BC can be interpreted in a state-wise
manner (e.g. [9,130]), BC conventionally relies on full trajectories of expert demonstrations. Recent
advancements [[15] seem to settle the debate in favor of trajectory-wise annotations through more
refined analysis. However, the question "Is trajectory-wise annotation all you need?" remains
unresolved in the interactive setting. To the best of our knowledge, we are the first to explicitly
address this debate, systematically developing efficient algorithms tailored to both state-wise and
trajectory-wise annotations (See Section ).

First-step mixing and each-step mixing policies. The emergence of first-step mixing originated
from technical considerations. In may interactive IL methods [49, 48], the returned policy was not a
uniform first-step mixture but rather the best policy selected through validation. However, performing
such validation in an interactive setting often requires additional expert annotations. Subsequent
works [44} 130, 31} [15] circumvented the need for validation by employing a uniform first-step
mixture of policies across learning rounds, thereby directly translating online regret guarantees into
performance differences. While [64]] implies the usage of a first-step mixture policy class, to the best
of our knowledge, we are the first to establish a concrete online regret guarantee this policy class.

On the other hand, each-step mixing between the learned policy across rounds and the expert policy
has been a prevalent strategy in interactive IL approaches [12[][47, |49, 48| 64]. However, when
selecting the mixture policy class for each learning round, ambiguity arises regarding the choice
between first-step mixing and each-step mixing [[64]]. For each-step mixture policies, [30] was the
first to explicitly distinguish this approach from first-step mixing. In other works [44} [15]], each-step
mixing can be interpreted as learning H separate mixture policies, one for each step within an
episode.

Alternative algorithm designs and practical implementations. Though this work follows [15]]
and focuses on log loss, we believe the 1/n rate is not exclusive to log loss. Despite requiring an
additional supervision oracle, [28] suggests that trajectory-wise annotation complexity similar to
Theorem [26]can be achieved using Halving [55] and 0-1 loss.

From an algorithmic perspective, we explored trajectory-wise annotation with first-step mixing
(Algorithm 3] and state-wise annotation with each-step mixing (Algorithm[I)). For trajectory-wise
annotation with each-step mixing, naively learning a parameter-sharing policy may encounter a batch-
summed log loss, introducing an additional H factor to the sample complexity, which is undesirable.
State-wise annotation with each-step mixing remains an open question for future research.

In terms of practical implementation, it is worth noting that even with oracle-efficient implementations
(e.g. [30L [31]), interactive IL requires multiple computational oracle calls per learning round. In
contrast, offline IL requires only a single oracle call to obtain the returned policy, which provides
a clear computational advantage. We also note that real-world experts can be suboptimal; in some
applications it may be preferable to combine imitation and reinforcement learning signals (e.g., [48]).

Lower bounds in interactive imitation leanring. From an information-theoretic perspective, a line
of work [45][44} [15] provides lower bounds for imitation learning under the realizable setting and
considers p-recoverability. [44] is the first to demonstrate a gap between the lower bounds of offline
IL and interactive IL in trajectory-wise annotation, focusing on the tabular and non-parameter-sharing
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setting. [15] shifts attention back to the general setting and establishes a Q(%) sample complexity
lower bound for trajectory-wise annotation.

We argue that the result in [15] also implies a Q(%) sample complexity lower bound for the state-
wise annotation setting. Their proof relies on an MDP consisting only of self-absorbing states,
where annotating a full trajectory is equivalent to annotating a single state. In their special MDP
case (1-recoverable), Algorithm|l|achieves O(%g(B)) state-wise sample complexity, which does
not contradict existing lower bounds. Nonetheless, obtaining lower bounds for state-wise sample
complexity for general MDPs and policy classes remains an open question.

B Proof for STAGGER

In the following, we show that the performance difference between the pohcy 7 returned by STAGGER
(Algonthm 1)) and the expert policy 7 can be bounded by the state-wise Hellinger estimation error:

N
OnEst3° := ZE(svh)Ndw" [DIQ{(WZ(S)J"E(S))] )

n=1

where 77 (s) and 7£ (s) denote the action distributions over A produced by the policies 7" and 7
at step h in state s.

We first prove this in Lemma|[I3] and then prove the state-wise annotation complexity of Algorithm T]
in Theorem T4l

Different from [15]], where access to full action demonstrations is assumed, we consider a more
restrictive model where, at each round 7, only a single state (s™, k") from the trajectory induced by
7™ is sampled and annotated by the expert.

Lemma 13. For any MDP M, deterministic expert 7B, and sequence of policies {ﬂ'"}n 1» each of
which Markovian, then 7, the first-step uniform mixture of {7r U Al } satisfies:
. OnEStState
J(WE)fj(TF)S T

Proof. By Lemma33] under the assumption of recoverability, the performance difference between 7
and the expert is bounded by

J(r®) = J (&) < p- A7 || 7),

where we recall the notation that

H
1
E (an # 7Th s5n) ] = 3 E E™||7h (sn) —WE(Sh)”l-
h=1

A || )

The proof follows by upper-bounding ij:l (7™ || 7F) by H - OnEst3!**. To this end, it suffices
to show that for any Markovian policy 7,

1
H - E(s py~ar [D(7a(s), 7 §Z]E”H7Th sn) — 7 (sn)]l1-
h=1

Observe that H - B, jygr [D%(m4(s), 7E(5))] = S, E™ [D% (mn(s1), 7 (s1))], we conclude
the proof by applying Lemmawith p = m(sp) and ¢ = 7 (sp,), which gives

D (mn(s), my (s)) > %IIM(S) =, (5)|1-
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Theorem 14 (Theorem [3] Restated). If STAGGER (Algorithm [I) is run with a state-wise expert
annotation oracle O5%*, an MDP M where (M, %) is u-recoverable, a policy class B such that
realizability (Assumption ??) holds, and the online learning oracle A set as the exponential weight
algorithm, then it returns  such that, with probability at least 1 — §,

OnEst}*° < log(B) + 2log(1/9),
and furthermore, the returned 7 satisfies

. log(B) + 2log(1/6)
J(7) = J(r¥) < uH N .

Proof. Recall the each-step mixing in Definition [T} since 7, is a each-step mixing policy, where
Vh € [H],s € S, Tunlals) = cpulm)mn(als).

By using 7, the loss functions at each round that passed through online learning oracle A, ¢™(7) is
of the form

£7(r) = log(1/Tu (™ |5™)) = log ( ! ) ,

Yreu(m)malam*]s")

which is 1-exp-concave with respect to w. Thus, implementing A using the exponential weights
algorithm (Proposition [37) achieves:

Nint Nint
> log(1/mpa (@™ | ) < Y log(1/mha (@™ | s™)) + log(B) = log(B).
n=1 n=1

Then, Lemma a standard online-to-batch conversion argument with ™ = (s™, h"), y" = a™",
g = 7%, and H™ = {0™ }"',_,, where 0" = (s", h™, a™, a*™), implies that with probability at least
1-9,
Nint
OnEst‘?\zite = Z E(sn hnymdrm [Di (i (s™), mhn (s™))] < log(B) + 2log(1/4).

n=1

The second part of the theorem follows by applying Lemma T3]

C Proof for WARM-STAGGER

In this section, we analyze the theoretical guarantees of WARM-STAGGER under the realizability
with deterministic expert. We show that all intermediate policies, as well as the final returned mixture
policy, enjoy small Hellinger distance to the expert’s trajectory distribution, due to their agreement
on the offline dataset. Our analysis builds on maximum likelihood estimator (MLE) generalization
guarantees under log-loss minimization, and leverages the fact that each each-step mixing policy in
WARM-STAGGER can be viewed as a first-step policy mixture. The following structural claim shows
that any Markovian policy 7 can be represented as a first-step mixing over deterministic Markovian
policies from a finite class.

Lemma 15. Let 7, be a each-step mixing policy that, at each step h € [H|, samples a base policy
7y, € B independently according to u € A(B). Then, its induced trajectory distribution is equivalent

to a first-step mixing the each-step policy completion of BB, denoted by B:= {(m1,...,7H) : 7, € B}
(see Definition ).
Proof. Letv = (my,...,m5) € B. Define u(v) := Hthl u(mp,), which is a valid distribution over

B. Consider the joint action distribution under 7,,, which samples 75, ~ v independently for each
step and executes ap ~ 7, (- | sp). The resulting conditional distribution over actions given the state

sequence is
H
Tu(ary | $S1:0) = H <Z w(my) mh(an | sh)> )
h=1

ThEB
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Under the first-step mixture policy 7, over B, a full tuple v = (71, ..., 7y ) is sampled once from
u(v), and actions are drawn as ap, ~ 7y (- | sp). The resulting action distribution is

Tuwy(arm | s1m) =Y u(v H Th(an | sn).

veB

Expanding the sum yields

H H
Z (Hu 7Th)7Th ah|sh> H Z 7Th Wh(ah|8h)
h=1m,eB

(71,emm) \h=1
by the distributive property and independence of the product.

Therefore, Ty (a1.1 | $1:5) = Tu)(@1:1 | s1.1), and both policies induce the same trajectory
distribution by Lemma 0}

Lemma 16. Let By := {m € B : n(s) = ¥ (s) Vs € Dy} be the set of policies that agree with
the expert on the offline dataset of N,y expert trajectories. Assume the expert ¥ is deterministic
and realizable. Then, with probability at least 1 — ¢, for all 7; generated in WARM-STAGGER
(Algorithm[2), it holds that:

> log(B/9)
D%(Py,, Prz) <O <Nﬁ) :

Furthermore, the returned policy 7 satisfies:

D?(P;,P.r) <O <Hk’§f/5)> :

Proof. Let By denote the realizable class of policies that agree with 7 on the offline dataset. By
the MLE generalization bound [[15]], for any single policy m € B, we have with probability at least

1-0:
D2 (P, Pye) < 0 (12881
Nogt

However, in WARM-STAGGER, policies 7; are not selected directly from B, but are instead mixtures
over By, at each time step. A full trajectory is therefore sampled by first choosing a policy 7" at
each step h € [H], inducing an effective policy over sequences from Bye. Therefore, by appling
B for Theoremi the BC guarantee holds for all 7 € B, with a factor of log |B| < H log B in the
worst case instead of log B. Therefore, by Lemma|[I3] each 7; can be viewed as first-step mixing and

satisfies: R
Dy (P Prr) <O (H</>) |
Nogr

This remains a worst-case bound. If the per-step base policies are drawn from a factored structure
(e.g., ™ = (m1,...,mp) with T, € By,), and the support is shared across steps, the effective covering
number can be much smaller, reducing the overhead back to log B.

Finally, the returned policy 7 is a first-step mixing of {71, ..., 7y}, and thus the same Hellinger
bound carries over by convexity.

Theorem 17 (TheoremIRestated) If Algonthml is run with a deterministic expert policy w%, an
MDP M such that (M, %) is p-recoverable, a policy class B such that realizability holds, and the
online learning oracle O set as the exponential weight algorithm, then it returns T such that, with
probability at least 1 — 6,

I - J(a®) < 0 (mm (Rlog(B/@, pH log<B,,c/5>>> |

Nogr Non
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Proof. By Lemma [16] with probability at least 1 — §/2, for all 7 € {my, -+ ,7n}, it satisfies
that D% (P,, Ps) < O (%). This implies the first-step uniform mixture of {my,--- ,7x}
satisfies

N ~
1 log(B
D?J(Pf“PwE):N E D%{(Pﬂi,PﬂE)§0<Og(/5)>
i=1

Nogt

By invoking Theorem [15][2.1], we have,

) - Rlog(B/9)
J(#®) = J(@*) <0 <Noff>

For the second half of the proof, we notice that by definition 7 € By.. Then, by applying Theorem
with probability at least 1 — §/2, the returned 7 satisfies

J(#) — J(#®) < 0 (W) .

Together, we conclude our proof by applying union bound.

D Proof for Theorem /(7|

We reintroduce the MDP M from Section where the expert policy 7% is deterministic and the
transition dynamics are time-homogeneous across all steps h € [H].

+ State Space S = EUE’ U {B, B’}, where:

E: ideal expert states, |E| = Npy;

— E’: recoverable expert states, |E'| = Ny;
— B: absorbing failure state (unrecoverable);
— B’: recoverable reset state.

* Action Space A: | A| > 20 discrete actions. For each state s € S, there is a unique expert
action ¥ (s); all others are incorrect.

* Transition Dynamics:

Initial Distribution p:

pE) = g o) = 1

- scE:
% a = 72 (s): transition to a uniformly random s’ € E with probability 1 — /3, or to
s' € E’ with probability (;
% a # 72 (s): transition to B.
-seE:
% a = 72 (s): return to a uniformly random s’ € E;
* a # 7 (s): transition to B/.
B: absorbing for all actions.
- B
% a = 7%(B'): return to a uniformly random s’ € E;
% a # 7 (B'): remain in B’

¢ Reward Function: We consider two variants:

— Rj (used in theory):

1 ifseEUE
Ri(s,a) =<1 ifse€ B anda = 7%(s)
0 otherwise
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— Ry (used in simulations):
1 if s€eE,
0 otherwise.

afs,0) = {

Theorem 18 (Restatement of Theorem([7). There exists an MDP with state space partitioned into Ny
good states, N1 recover states, and 2 bad states, episode length H > 50, action size A > 20, such
that to achieve smaller than % suboptimality compared to expert:

* STAGGER that collects interactive state-wise annotations requires
N,y = Q(HNy) with total annotation cost Q(C'H Ny).

* Behavior Cloning (BC) using offline expert trajectories requires
Noy = Q(N1) with total annotation cost QL(H Ny ).

In contrast, WARM-STAGGER achieves expert performance with probability at least 1 — §, using
N
Nogp = O(FO log(No/0)) expert trajectories,
N,, = O(log(1/8)) interactive annotations, &)

with total annotation cost O(Np).

Proof. The proof is divided into three parts. First, by Lemma[I9] we show that in the aforementioned

MDP M with g = HL—s and reward function R;, Behavior Cloning requires 2(H N7) expert

trajectories to achieve suboptimality no greater than H/2. Next, in Lemma we show that
STAGGER, which rolls out the learner policy and queries the expert on only one state per trajectory
(sampled uniformly), requires N, = Q(H Ny) interactive annotations to achieve suboptimality no
greater than H/2.

Finally, by Lemma [25] we demonstrate that WARM-STAGGER achieves expert performance using
O(Nylog(Ny/9)) offline demonstrations and O(log(1/4)) interactive annotations.

Lemma 19 (BC suboptimality lower bound). Consider the MDP specified in Section|.2lwith H > 50,
A > 20, and 8 = +=. If Behavior Cloning collects no more than

H—8"
Ni(1+p) 1
Ny 1
7S g 8\ 1= 6/10
expert trajectories, then with probability at least 1 — 0, the expected suboptimality of its returned
policy 7 is bounded by:

H
J(7®) — J(7) > o
Proof. In the following, we show that insufficient expert trajectories leads to poor E’ coverage, which

in turn causes the BC policy to frequently fail recovery and get stuck in the absorbing bad state,
incurring a large suboptimality compared to the expert.

By Lemma when N is below the stated threshold, at most 1/10 of E’ is covered by expert
trajectories with probability 1 — §. Hence, the policy returned by BC has no information on at
least 9/10 of E’, and fails to act correctly upon reaching them. Lemma [21| further guarantees that
with probability at least 0.79, the policy reaches E’ within the first H/5 steps. Conditioned on
being in E’, the chance of hitting an unseen state is at least 0.9 due to the MDP design, and given
A > 20, the probability of taking the wrong action is at least 0.95. Therefore, with probability at
least 0.79-0.9-0.95 - 0.95 > 0.64. Under this event, the trajectory enters sp,q by time step 0.8 H + 2,
leading to zero reward for 0.8 H — 1 steps, which is no less than 0.78 H with H > 50.

Multiplying all factors, with probability no less than one 1 — §, the expected suboptimality of the
returned policy is lowerbouded by:

H
J(7®) — J(mpc) > 0.798 x 0.9 x 095 x 095 x 0.78H > —
N—— ~—~ ~—~ ~—~ N—— 2

reach B/ unseen state  wrong action  reset failure 0 reward steps

which concludes the proof.
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Lemma 20 (Coverage of expert with Ny trajectories). Consider an MDP specified in Section
with stationary distribution p: p(E) = ﬁ p(E) = % For Ny trajectories of horizon H:
1. All Ny states in E are visited with probability > 1 — § if:

No(1+5) Ny
Noy > i log 5

2. All Nj states in E' are visited with probability > 1 — ¢ if:

Ni(1 N-
Noﬁ' > % IOg ((51)

Proof. The stationary distribution gives:

1 B
sEE)=-—— . plseE)=-—"
B Narg R T Naes
It can be verified that for any h € [H],
B 1 E 8
I GeB)=—— di(seE)=-—" .
R RN A ()

By this observation, we can view states from an expert trajectory as i.i.d. drawn from p.

Then, for the coverage of Expert on E, given N expert trajectories which equals to H N states,
we have for each state s in E:

1 HNoff
P(s € Enotvisited) = |1 — ——— .
( ) ( No(1 Jrﬂ))

By taking union bound for all s € E, we have

1 H Not
P(ds € E, s.t.snot visited) < Ng [ 1 — ———— )
( )< 0( No(1+ﬁ))

which should be smaller than §.

By solving

1 H Nogt
Nol[l- ——m— <4,
O( No(1+5>>

We take natural logarithms on both sides and apply logarithm properties,
1
log No + HNyglog [ 1 — ——— | < logé.
g Vo off g( No(1+ﬁ)> g
Apply the inequality log(1 — z) < —z withz = m:

H N

log No = No(1+ )

<logé

Rearrange terms and complete the first part of the proof

No(1+ ) Ny
> 7 -
Nogr > I log 5

Similarly, for coverage on E’, given H N total samples, we have

H Ny
P(3s € E', s.t. snot visited) < Ny (1 — 6) ' <4
Ni(1+ )
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Solving using log(1 — =) < —z, we obtain

Ni(1+p) log (M) ’

Nogp >
=80 5

which concludes the proof.

Lemma 21 (First E’ visit). For an MDP specified in Section with transition parameter 3 = %

(H > 16), any trajectory induced by any policy 7 that agrees with ™% on E satisfies:

H
P(rvisit s € E' within 5 steps) > 0.798

Proof. Since 7 agrees with 7 on E, we only need to consider the first visit of E’ by the expert. The
state visition distribution for 7% satisfies that for any h € [H],
E 1 E 8
df (s€E)=———, df (s€E)= —r—r.
R Ty N S )

The probability of no s € E' visitin £ steps is:

H H
5

1 5 8

where we apply 1 — 2 < e~ ”. Thus:

H
P(rFvisit s € E' within = steps) > 1-0.202 = 0.798

Lemma 22 (Bounded E’ coverage). Under the MDP’s stationary distribution p(s € E') =
if the number of expert trajectories satisfies:

Ni(1+8) 1
N = —3 1°g<1—5/10)’

then with probability at least 1 — 6, at most % of E' states are visited:

B
N1(1+8)”

Ny
P E/visie — | <.
CEEEE

Proof. Recall that p(s € E') = m Given H Ny states from Nyg expert trajectories, denote
visited states in E’ as X := |E/jjeq|- For each s € E':

ﬂ HNoff
P(s visited by expert) =1 — (1 — ——— .
( vewer) <1 (1= )

By linearity of expectation:

E[X] =N [1 — (1 _ Jvl(erﬁ))HNm] |

" : Ni.
Now, we apply Markov’s inequality for 75

()< ()]

To ensure P (X > &) < 4§, it suffice to solve

3 H Nt
10[1(1]\[1(14_6)) ]gé.
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By rearranging and taking natural logarithms, we have:

153 1)
H Nt log (1 - W) > log(1 — TO)

Apply log(1 — z) < —a:

I5) é
H Nogt <_N1(1+ﬁ)) > log(1 — E%

By rearranging the terms, we conclude that the number of visited states in E’ by expert trajectories is
no more than N7 /10 with probability at least 1 — ¢ if:

< Ni(1+ )

| 1
=" *® (1 —5/10> '

Noff

Lemma 23 (STAGGER suboptimality lower bound). Consider the MDP M from Sectiond.2| with

H >50, A>20,and 8 = HL_S. If STAGGER collects no more than

N, < 0H Ny

interactive state-wise annotations. Then, with probability at least 1 — 6, the returned policy 7 suffers
suboptimality at least

. H
J(@®) = J(7) > 5

Proof. By Lemma if STAGGER collects at most ‘”{% interactive annotations as above, then with
probability at least T — 4, the number of distinct expert states E visited is fewer than Ny /2.

Under this event, the returned policy 7 agrees with the expert on at most half of E. Starting from
p(E) = ﬁ the agent begins in a random s € E, and with probability > 1/2, enters an unseen state
where it takes a wrong action (w.p. > 0.95), transitioning to absorbing B and earning zero reward
for most of the episode.

We consider two-step failure:

With probability > 1/2, step 1 is already an unseen state, causing immediate failure. Suboptimality
is at least H — 1.

With probability < 1/2, the first step is safe, but with transition probability 1 — 3 the agent remains in
E and faces another unseen state at step 2 with probability > 1/2. Failure leads to at most 2 rewards,
and suboptimality > (1 — 8)(H — 2).

We conclude the proof by combining them together and bring in values

J(r®) — J(7) > ! L g

_m(H—l)—&-i(l—ﬁ)(H—Z)z

41+ 5)

Lemma 24 (Bounded E coverage under STAGGER). Suppose STAGGER collects at most
N, < 0H Ny

interactive annotations. Then with probability at least 1 — 0, fewer than half of the expert states in E

are visited:
N,
P <|Evisited| Z 20) S é.

Proof. Since each annotated trajectory in STAGGER samples only one state uniformly from the
current rollout trajectory for annotation, we denote the indicator of whether a new, unseen state from
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E atruond i as X; € {0, 1}. By this, we have the total number of visited states by the end of round

Ny, as
NOH

Eyisited := E X;.
i=1

‘We now upper bound the expected value of each X;. Let F;_ be the filtration up to round ¢ — 1. For
any rollout of STAGGER in the designed MDP given an arbitrary number of already seen states in E,
the chance of seeing more than one unseen state in E decays geometricly, since the learner is forced
to guess the correct action and transit to the obsorbing bad state B if failed. More specificaly, the
chance of reaching ¢ distinct E states before being trapped by B is upperbounded by AA_tl . Therefore,
for any A > 2, the expected number of unique E states in a trajectory is upper bounded by:

H t
1 A
. — — ) < <
S () = 4 o

Since the sampled annotation is uniformly from the trajectory, the probability it lands on a new E
state is at most 2/ H. Hence,

E[X; | Fioi1] <

[ v

By linearity of expectation:

N,

on 2N
IE[E‘lvisiled} = Z E[Xl] Hon :
i=1

IN

Apply Markov’s inequality:

E[X] 4Ny
P(Eyisited > No/2) < < .
( visited — 0/ )_N0/2_HNO
To ensure the probability is bounded by 4, we set:
% <4,
HNy —
which results in SHN
Non < ==

This completes the proof.

Lemma 25 (Hybrid IL achieves expert performance under R;). Consider the MDP M from

Section with reward function Ry and f = HL—ES' Then with probability at least 1 — 6,

WARM-STAGGER achieves expert performance using Noy = O (% log(NO/é)) offline expert tra-
jectories and N,, = O (log(1/4)) interactive annotations.

Proof. We divide the proof into three parts.
First, we state the high probability event for visiting all states in E. By Lemma [20] if

WARM-STAGGER uses No(1 4 ) N
+ 0
N > o+ 8) ), (Mo
off Z H og ( 5 /2> )
then with probability at least 1 — §/2, all states in E are visited by expert trajectories. Thus, the
learner will take correct actions in E.

Next, we analyze the high-probability event of visiting B’. Since the number of offline trajectories
is strictly below the threshold in Lemma the learner fails to cover most of E’. By Lemma
with probability at least 0.79, the policy visits some state in E’ within the first H /5 steps of a rollout.
Given insufficient coverage, this state is more than 0.9 probability unseen, and the learner takes the
wrong action w.p. 0.95, which causes a transition to B’. Once in B’, the agent accumulates repeated
B’ of length 4H/5 — 1 w.p. 0.95. As a result, the probability of selecting a B’ state for annotation
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in each round is at least 1/2 following the argument in Lemma [19] which requires O (log(1/4))
interactive annotations to cover B’.

Finally, after learner sees B’ and all states in E, under reawrd function R1, the learner receives reward
1 at any step if: (i) itis in E or E/, or (ii) it is in B’ and takes the recovery action same as the expert.
Since the learner now behaves like 7™ on all states in E and can successfully recovers in B/, its total
return is the same as the expert. With union bound, this guarantee holds with probability at least
1—-9.

E Additional Guarantees for DAgger Variant Without Recoverability
Assumption

In this section, we revisit and conduct a refined analysis of another variant of DAgger with trajectory-
wise annotations. We show that without the recoverability assumption, an interactive IL algorithm
has sample complexity no worse than that of behavior cloning, contrary to prior claims [[15].

Here, we consider another oracle that models interacting with the demonstration expert: the trajectory-
wise demonstration oracle O™ that takes into a state-sequence s1.y and returns aj ; ~ 7°(- ||
S1:H ) .

Additionally, we use (- || s1.z7) to denote the causally-conditioned probability of action sequence
a1.p induced by 7, given state sequence s1.z [78]]. E] To elaborate:

* For Markovian policy 7, w(a1.57 || $1.51) := HhH:1 7h(an|sp).
* For first-step mixing of Markovian policies 7y, m (- || s1.1) := > cpu(m)m(- || 51.1)-

It is well-known that the trajectory distribution induced by Markovian policies and their first-step
mixings 7 can be factorized to the product of 7w(ay.5 || $1.7) and the causally-conditioned probability
of the state sequence given the action sequence (Definition [39]and Lemma0). When it is clear from
context, we use shorthand 7 (s1.57) for (- || s1.5)-

E.1 Interactive IL Matches Offline IL on Trajectory-wise Annotation

Next, we consider the trajectory-wise sampling model. We present TRAGGER, another DAgger
variant, namely Algorithm 3]and provide its sample complexity bounds.

Algorithm 3 TRAGGER: DAgger with trajectory-wise annotation oracle

1: Input: MDP M, deterministic expert 7%, Markovian policy class B, online learning oracle A
with decision space A(B) and benchmark set {e, : 7 € B}.

2:. forn=1,...,Ndo

3:  Query A and receive u” € A(B).

4:  Execute 7" := T, and sample s7,; following P™". Query O™® for a}/}, = 7%(s] ;).

5:  Update A with loss function

mn —_ 17
£(m) := log (w(@:’;{ || s;zH>> ‘ @

6: end for
7: Output 7, the first-step uniform mixture of policies in {7r1, e ,w"}.

Algorithm [3| uses first-step mixing policies 7, € IIg (recall Definition[8). At round n, it rolls out
" = mu» Whose mixing weight u™ is obtained from an online learning oracle A and samples a
full state sequence sT.;;. Same as Algorithm Algorithm also requires A to have decision space
A(B) and benchmark set {e : 7 € B}. It then requests expert’s trajectory-wise annotation a;’ 7 and
updates A by £ () (Eq. {@)). At the end of round N, the uniform first-step mixing of {7"}}_ is

n=1
returned, which is equivalent to returning 7, where 4 := % 25:1 u". We provide the following
performance guarantee of Algorithm [3}

3The use of || highlights its distinction from standard conditioning on s1..

34



Theorem 26. If AlgorithmE] is run with a deterministic expert policy 7%, a policy class B such that
realizability holds, and the online learning oracle A set as the exponential weight algorithm, then it
returns T such that, with probability at least 1 — 6,

log(B) + 21log(1/6)

J(7®) — J(#) < 2R ~ .

Theorem [26]shows that the interactive IL Algorithm [3|matches the trajectory-wise sample complexity
of behavior cloning in [[L5]. In contrast, prior state-of-the-art analysis of interactive IL algorithms [15}
Appendix C.2] gives sample complexity results that are in general worse than behavior cloning.

For the proof of Theorem [26] we introduce a new notion of decoupled Hellinger estimation error:

N
OnEs‘c}\}raJ = ZE’Tn [Dﬁ(ﬂ"(sle),ﬂE(sl:H))] .

n=1

OnEst]T\,raJ decouples the dependence between the state sequence and the distribution of action
sequence induced by the learner. Perhaps surprisingly, it is compatible with non-Markovian first-step
mixing of policies, while still being well-behaved enough to be translated to a policy suboptimality
guarantee, which could be of independent interest.

E.2 Decoupling State and Action Sequences by Decoupled Hellinger Distance

In this section, we demonstrate that similar to D3 (]P”r(sl:H, al:H),IP”TE(sl:H, al:H)) [13]], the

decoupled Hellinger distance E™ [DZ (7 (s1.1), 7 (s1.17))] that decouples states and actions is also

proportionally lower bounded by a constant factor of p(7 || 7). The following two lemma shows
that such relationship holds for both Markovian policies and their first-step mixings.

Lemma 27. Let m° be a deterministic policy, and let ™ be an Markovian policy. Then we have

5 ol | 7)< B [Dj(r(snar), 7 (sa0)]

Lemma 28. Let m° be a deterministic policy, and let T, be a first-step mixing of Markovian policies.
Then we have

% p(my || 7P) < E™ [Di(mu(sim), 7 (s1.0))] -

To prove these two lemmas, we first prove a special case, i.e. Lemma[29] with first-step mixing of
deterministic policies. To facilitate the proofs, we introduce the following additional notations:

* Let BPet denote the set of all deterministic, Markovian policies. We will use v, v’ to denote
members of B2t and v, (s) to denote the action taken by v at (s, h) when it is clear from
the context.

s Let BE(sy.1,) represent the subset of BP¢t that agrees with 7% on the state sequence s1.j,.
s Define F(v;v/;7%) = Dy PV (s1:0)1 [/ ¢ BE(s1.)] , which evaluates the probability
that v/ disagrees with 7" over the distribution of H-step state sequences induced by 7.

Lemma 29. Let % be a deterministic Markovian policy, and let m, be a first-step mixing of
deterministic Markovian policies (elements of BP<). Then we have that

% ' p(ﬂu || '/TE) <E™ [DI%I(WU(SliH)vﬂE(SLH))] :

“For [15, Appendix C.2]’s sample complexity to improve over behavior cloning, we need
pH maxyeip log | B to be significantly smaller Rlog |B| (where By, is the projection of 3 onto step h).
This may require the strong condition that ;x < R/H < 1 in the practically-popular parameter sharing settings
(IBn| = |BD.
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The key idea in the following proof is to lower bound E™ [ DZ (7, (s1.1), 7 (s1.5))] , which reflects

the asymmetric roles of the two appearances of 7,,’s, using a symmetric formulation via function ¥’
(as shown in (8)).

Proof. Recall the first-step mixing policy in Definition[8] we start by rewriting

p(my || 7®) =E™ [1{3h : an # 7} (sn)}]
= Z u(v) Z IP’”(SLH,al:H)]I{Hh fap # wg(sh)}

veBDet S1:H (5)
= > u@)pv || =),
UeBDet

which is a weighted combination of p(v || 7%) for v € BPet,

Next, we turn to analyzing DZ(m,(s1.1), 7 (s1.5)). Since the deterministic expert induces a delta
mass distribution over actions, we apply the elementary fact about the Hellinger distance with delta
mass distribution stated in Lemma[34] yielding:

% I mu(s1:m) = 7% (s1.m) L < Did(mu(s1:m), 7° (s1:00))-

We recall that BE(Sl: ) denotes the subset of BPet that agrees with 7F on sq.5 and define the total
weight assigned by u on it as u(B¥(s1.5)) := D venn( u(v). Then,

S1:H)

S ImuCsna) = 7 (sw) =1~ w(B(51.0)),

which implies:
1 —w(B"(s1.1)) < Di(mu(s1.:), 7" (s1.11)).- (6)

Therefore, by taking expectation over s1.i ~ P™ in Eq. (6),
D P (s1m) (1 — w(B(s1:1))) < E™ [Di(mu(sin), 7 (s1.m))] - (M
S1:H

We now examine the expression

ZPM(SLH)O *U(BE(SLH)))- *)

S1:H

Since T, is a first-step mixing of policies in BP°* with weight u, we have P™(s;.5) =
> Lepoet (V)PY(s1.17). This allows us to rewrite (*) using the definition of F(v; 1/, 7%) as:

(%)

Z Z w(v)P” (s1.m) Z u(W L[V ¢ B(s1.1)]

S1:H veBDet v!€BDet
= > u@u@)d P(sua)l [V ¢ B (s1n)]

D,I/’EBDet S1:H (8)
= Z u(V)u(V)F(v; v o)

v,v’ € BDet

1
=3 Z u(v)u(V) (F(V; VB + Fuy /s FE)) ,

v,v’ €BPet

where the first three equalities are by algebra and the definition of F(v;v; 1)
we use the observation that

Z u(W)u(V)F(v; ;o) = Z w()u(VVF (v ).

v,v’ €BDet v,v’ €BDet

. In the last equality,
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By Lemma [30] (stated below),

22 S ) (o )+ )
v, €BDet
=5 3wl [|7°) = 5 ol | 7).
VeBDet

Combining the above two inequalities with Eq (7)) we conclude the proof by

% cp(my || 7TE) < (x) <E™ [DI%I(Wu(SI:H)vﬂE(SliH))] .

Lemma 30 (Symmetric Evaluation Lemma). Given deterministic Markovian policies v, V', and i
the following holds

5 (o0 1 7°) 4 oo/ || 7)) < P/ ) + F(&/; 7). ©

Proof. Recall that
F(5/57%) + P50m) = 3 (B (v [ ¢ B Gsvn)] + B (sra v ¢ B(s0.0)] ).

Throughout the proof, we say that v makes a mistake at step h, if vy, (s) # 7 (s). Then, we can
partition all state sequences s1.7 € S H into 4 subsets, X, indexed byi € {1,2,3,4}:

1. Xy = {s1.g | v,V € BE(s1.g)}s

2. Xy :={s1.p | 3h,s.t.v € BE(s1.), V" & B¥(s1.), V" € BE(s1.1)};

3. Xz = {s1.g | h,s.t.v & BE(s1.), v € BE(s1.n),v € BE(s1.0-1) s

4. Xy :={s1.g | I, st & B¥(s1.p), v & B¥(s1.),v € BE(s1.h1),V" € B¥(s1.n-1)}}.

In words, the four subsets divide state sequences into cases where: (1) both v, v/ agree with the 7%
throughout, (2)&(3) one of v, v’ makes its first mistake earlier than the other, and (4) v, v’ make their
first mistake at the same time. It can now be easily seen that each s1.y € S H Yies in exactly one of
such X}, and

XiUX,UXsUX, =8H.

To see this, consider k", the first time step A such that one of v and v’ disagree with 7B, If he" does
not exist, then s1.y € X;. Otherwise, s1.g lies in one of Xy, X3, X4 depending on whether v and v/
makes mistakes at step h".

By definition, subset X denotes trajectories s1.y where v,/ € BE(SL 1 ), meaning that

3 (IP’”(SLH)H [V ¢ B®(s1.0)] + P (s1.) [v ¢ BE(SLH)]) ~0.

$1:HEX]

For the other 3 sets, i.e. X; for i € {2, 3,4}, we can further divide each set based on the time step
where the first error occurs, formally:

X ={s1.m | v e B%(s1),v ¢ BE(s1.),v € BE(s1-1)};
X ={s1.m | v ¢ B%(s1.0),0 € B%(s1.0),v € BE(s1.-1)}; (10)
X ={s1.m | v & B (s10),v & BE(s1.1),v € B¥(s1.-1), V' € BE(s1.0-1) }.
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By definition, each pair of subsets is disjoint and Up¢c(x ]X = X, for ¢ = 2,3,4. Note that the
determination of whether s1.5 € th only depends on sj.j; therefore, Xih can be represented as
Xih x SH=h where

Xih = {Sl:h | S1:H € Xih}.

Based on this observation, we have

> PY(s1p) = > Y(sur)= Y P(s1n)

sLHEX] s1:n €X' shp1:HESH s1.REX]

Furthermore, since deterministic policies v, v/, 7 agrees with each other for all {s1.,_1|s1., € /{’ih},

h—1
ST P = Y. R(E) [] Pulsnralsn, va(sn))
Sl;he-;éih' Sl:he-;‘?ih h'=1
bl (11D
= > PR(E) [ Palsnsalsn,vi(sn)) = Y PV (s1)-
s1.R EX] h'=1 s1:n EX]
This implies that
Z P"(s1.1) = Z P (s1.m),
s1HEX]! suHEX]!
and therefore, summing over all h € [H],
S Psum)= Y P (sum).
S1.HEX; 51:HEX;
Now, for X5, we have
> (Pl [V ¢ B (s1)] + P (su)T [v & B(s1)] ) = > P(sn)
51:HEX2 $1.HEX2
(12)

where we apply the fact that for all s1.;r € X, v/ ¢ B¥(s1.5), and dropping the second term which
is nonnegative.

Similarly, for X3, we have that

Z (Pl’(sl:H)H [y/ ¢ BE(Sl:H)] =+ Pv (sle)]I [I/ ¢ B 81 H ) Z ]P 81 H Z ]P 81 H .
s1.H EX3 s1.HEX3 s1.HEX3
(13)
Finally, for Xy, we use the fact that for s1.57 € Xy, v,v’ ¢ B¥(s1.5) and obtain

3 (]P”’(SLH)H [V ¢ BE(sy.i)] + P (s1.1)1 [ ¢ BE(SLH)])

81.HEXy

= > (P(sem) + P (sum)) = Y Psim).

81.HEX, $1.HEX,

(14)

Now, we combine Egs. (T2), (13), (I4) and observe that

S Pt Y Pt Y Pl zy S (Bl B ).

81.H EX2 81.HEX3 81.HEXy 81.H €EX2UX3UX)y
(15)

which implies

Fv; V7% + F(V/ vy 7)) > Z (PV(SLH) + ]P)V,(SLH)) . (16)

81:H EX2UX3UXy

N |
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Based on the definitions of X», X3, Xy and p(- | ),
S (PCorn) P (s1m)) = S0P (o) T{3h: valsn) # 7 (sn) or vh(sn) # mh(sn) )

S1. HEX2UX3UXy S1:H
+ Z P (s1.1)1 {3h 2 vn(sp) # w1 (sn) or vy (sn) # 7 (sn) }
S1:H
> Z P (s1:)L{3h : v (sp) # 73, () }
S1:H
+ Z P (s1.5)I {3h v, (sn) # 7 (sn)}
S1:H
=p(v || 7) + p(v/" || 7®),
a7
where s1.g € Xy U X3 U X, implies either v or v disagrees with 7, while the inequality relaxes
the condition by splitting it into separate contributions for v and »’.

We conclude the proof by plugging (T7) into (T6).

E.2.1 Proof of Lemma[27

Proof. The key to this proof is showing that any Markovian policy 7 is equivalent, in terms of
action distribution on any state sequence, to a first-step mixing of a set of deterministic Markovian
policies. This leads to equivalence on trajectory distribution and decoupled Hellinger distance. To
clarify further, we present the following claim, which allows us to apply guarantees for mixtures of
deterministic policies in Lemma [29]

Claim 31. For a Markovian policy , there exists a first-step mixing of deterministic policy m, such
that for any s1.; € SH, 1. 7(s1.5) = mu(s1.51), and 2. P™(s1.55) = P™(s1.17).

Given an MDP with finite state space size S and action space size A, the set of all deterministic,
Markovian policies, denoted by Bt contains A deterministic policies, which can be indexed by
a tuple of actions (an,s)he[a], ses-

To construct policy 7, we will set the weight vector u such that its weight on policy v indexed by

(ah,s)he[H],seS as:
H
=] II 7 (ansls) (18)

h=1seS
It can be easily verified by that ) zpe. u(v) = 1.

We now verify the first item. By first-step mixing, we rewrite 7, (a1.5 || S1.57) as

H
Wu(ale || sl:H) = Z H 14 ah|sh
h=1

DeBDet
H
= Z H H ﬂ—h(a/h,s‘ H ah S
(a}, ne(m),ses h=15€S h=1
H H H
= > I mEds > [Tl [T, =
(a}, Inelm),szs), h=1s#sn (ah Inetm) s=s;, h=1 h=1
H H
= Z H H Th(ap ¢|s) H 7h(an|sh)
(@b, Inem), azey, h=1 5750 h=1
H
= [ 7n(anlsn) = w(ar.ar || s1.m0)-
h=1

19)
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Since this holds for any action sequence a1.;r € A, we derive the first part of Claim [31] that
7(s1.1) = mu(s1.1). The second item follows from the first item in combination with Lemma 40j

‘We conclude that for the 7, in the statement of the claim,
E™ [DEI(W(SLH)»WE(SLH))} =E™ [Dﬁ(ﬂu(sl:H)»ﬂ'E(Sl:H)ﬂ :

Finally, the proof follows by applying Lemma[29]to 7.

E.2.2 Proof of Lemmal[28]

Proof. By Claim[31} any Markovian policy can be viewed as a first-step mixing of A% deterministic
policies from BP°¥, then any first-step mixing of Markovian policies 7, can also be viewed as a first-
step mixing of A% deterministic policies from BP°t. The proof follows by applying Lemma

E.3 New Guarantees for DAgger Variant with Trajectory-wise Annotation

Recall that we have defined decoupled Hellinger estimation error:
OnEst;{,raJ ZE” DH "(s1.m),T (81H))] .

In the following, we first demonstrate that the performance difference between expert and the
the uniform first-step mixing of any Markovian policy sequence {7"}"_, is upper-bounded by

2R OnEs‘uIT\;raj /N, and then show the trajectory-wise sample complexity of Algorithmin Theo-
rem

Lemma 32. For any MDP M, deterministic expert ™%, and sequence of policies {w"}n 1» each of
which can be Markovian or a first-step mixing of Markovzan policies, their first step uniform mixture
policy 7 satisfies.

OnEst ™
J(rB) — J(#) < 2R - n%

Proof. By Lemma[27]and Lemma 28] for each 7", whether it is Markovian or a first-step mixing of
Markovian policies, the following holds:

p(™ || ).

N =

E™ [Df{(ﬂ”(sl;H),ﬂ'E(sl;H))} >

Then, by the definition of OnEstTraJ,

OnEst \ .
— =% ZE [DR(" (s5.10), 75 (s5,

" 1 ~
| 78) = 3ol || 75,

||M2

where we apply the fact that 7 is a first-step mixing of {#"},"_; with uniform weights. Finally, we
conclude the proof by applying Lemma [36]

Theorem 33 (TheoremRestated). If Algorithm 3| is run with a deterministic expert policy 7%,
a policy class B such that realizability holds, and the online learning oracle A set to exponential
weight algorithm (see Proposition[37). Then, with probability at least 1 — 6,

OnEst y* < log(B) + 2log(1/4),

and furthermore, the returned 7 satisfies

log(B) +210g(1/5).

J(7®) — J(#) < 2R ~
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Proof. The proof closely follows Proposition C.2 in [[15], tailored for another DAgger variant.
However, in this case, we leverage the distribution of the state sequence s;.y instead of the per-step
state distribution.

Observe that the log-loss functions passed through online learning oracle A, ¢ () is of the form
1
£1(x) = Yog(1/mulay | tar) = 1o e )
LH Yrepu(m)m(aiy || s7.h)

It can be observed that ¢"’s are 1-exp-concave. Therefore, implementing A using the exponential
weights algorithm (Proposition ensures that the following bound holds almost surely:

N N
> log(1/7" (a3 || stg)) < Y log(1/7® (a7 || sT.4r)) + log(B) = log(B).
n=1 n=1

Then, Lemma 38| with ™ = s7.,;, y* = all}, g. = 77, and H" = {0"'}7,_,, where 0" =
(E™,at,ay", ..., s, a%, a}"), implies that with probability at least 1 — 4,

N
OnEstr™ = STE™" [D3(x" (7,11, 7(s7.11))] < log(B) + 2log(1/6).
n=1
Finally, the second part of the theorem follows by applying Lemma[32]

F Auxiliary Results

Lemma 34. If p, q are two distributions over some discrete domain Z, and q is a delta mass on an
element in Z. Then

1
slIP=alhi< D@ lia) <lp=-ql

Lemma 35 (Performance Difference Lemma [21][47]). For two Markovian policies © and 7°

: S — A(A), we have
H
ZAE(Sh7ah)] B

h=1

J(@®) — J(x) =E7

where AF (sp,ap) = QZE(sh, ap) — V;ZTE(sh) Furthermore:
* It holds that (recall Definition[9)
J(r) = J(x¥) < H - X" || 7).

o suppose (M, %) is p-recoverable, then
J(m) = J(7P) < - A || 7).
Lemma 36 (Lemma D.2. of [13]). For all (potentially stochastic) policies ™ and 7', it holds that
J(m) = J(n') < R-p(7 || 7).
Proposition 37 (Proposition 3.1 of [7]). Suppose {¢"(u)}Y_, is a sequence of n-exp-concave

functions from A(X) to R. For all x € X, define the weights w? ™' and probabilities u"(z) as

follows:
n—1
Wl = e XIS tiles) u(z) = Wa

x —1>
ZI’GX wg’
where e, is the x-th standard basis vector in RI*|, Then, choosing u™ = {u™ ()} e x (exponential
weights used with learning rate n) satisfies:
N N
log |X
Z (u™) <min Yy (ey) + 4 |

reX
n=1 n=1 n




Lemma 38 (Restatement of Lemma A.14 in [[16]]). Under the realizbility assumption, where there
exists gy := g;, € G such that for all n € [N],

Yyt gl et [ 1,
where H" ™! denotes all histories at the beginning of round n.

Then, for any estimation algorithm and any ¢ € (0, 1), with probability at least 1 — 6,

N N
Z IEn—l [D72—L (gn( Z log A ﬁ)g(gf)) + 210g(6_1)
n=1

n=1
where €7, (g) = log (1/g (y" | ™), and En[] := E[- | #7).

We have the following well-known lemma for causally-conditioned probability (e.g. [78]]).

Definition 39. The causally-conditioned probability of state sequence s1.p given action sequence
a1.1—1, is defined as

PM(s1.p || ar.m—1) = Pof E' w(Sht1 | Sn,an)

u::]m

Lemma 40. For any Markovian policy T,

P™ (s, avm) = PM(sem || atm—1) - m(avw || s1m), (20)
and for any first-step mixing of Markovian policy T,

P (Sleaale) = ]PM(SI:H H al:Hfl) : 7Tu(al:H || sl:H)~ (21)

Proof. Eq. (20) follows by noticing that both sides are equal to

H-1
Po(E') [T Pu(snsr | snoan) H7Th (an | sn).
h=1 h=1

Eq. (21) follows by noticing that both sides are equal to

H-1
Z (V)P (E') H Pr(snt1 | sn,an) H vi(an | sn).
v h=1 h=1

G Experiment Details

We compare WARM-STAGGER against Behavior Cloning (BC) and STAGGER on continuous-control
tasks from OpenAl Gym MuJoCo [70l 6] with episode length H = 1000.

Infrastructure and Implementation. All experiments were conducted on a Linux workstation
equipped with an Intel Core 19 CPU (3.3GHz) and four NVIDIA GeForce RTX 2080 Ti GPUs. Our im-
plementation builds on the publicly available DRIL framework [5] (https://github.com/xkianteb/dril),
with modifications to support online learning. The continuous control environments used in
our experiments are: ‘“‘HalfCheetahBulletEnv-v0”, “AntBulletEnv-v0”, “Walker2DBulletEnv-v0”,
and “HopperBulletEnv-v0”. We include an anonymous link to our implementation here: https:
//github.com/anonymous-submi/neurips2025,

Environments and Expert Policies. We use four MuJoCo environments: Ant, Hopper, HalfCheetah,
and Walker2D. The expert policy is a deterministic MLP pretrained via TRPO [50} 51], with two
hidden layers of size 64.

Learner Architecture. The learner uses the same MLP architecture as the expert. The output is a

diagonal Gaussian policy:
m(a|s)=N (fg(s),diag(UQ)) ,
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Figure 4: Sample and cost efficiency on MuJoCo tasks. The top row shows expected return vs.
number of annotations (C' = 1); the bottom row shows performance under a cost-aware setting
(C = 2). WARM-STAGGER (W) is initialized with 1/20, 1/10, or 1/5 of the samples as offline
demonstrations. It matches STAGGER in sample efficiency and outperforms the baselines when
C = 2, especially WS(1/5).

where fy(s) € R% is the learned mean, and o € R%* is a learnable log-standard deviation vector.
Each model is trained from random initialization using a batch size of 100, a learning rate of 1073,
and up to 2000 passes over the dataset, with early stopping evaluated every 250 passes using a 20

Learning Protocols. For BC, we reveal expert state-action pairs sequentially along expert trajectories.
For STAGGER, each round rolls out the latest policy, samples a state uniformly from the trajectory,
queries the expert action, and updates immediately.

For WARM-STAGGER, we begin with BC and switch to STAGGER after a predefined number of
offline examples. We use switch points of 100, 200, or 400 for easier tasks (e.g., Hopper, Ant) and
200, 400, or 800 for harder tasks (e.g., HalfCheetah, Walker2D).

Cost Model and Evaluation. We assign cost 1 to each offline state-action pair and either cost 1 or
cost 2 to each interactive query. We run each method for 10 random seeds. Every 50 rounds, we
evaluate the current policy by running 25 full-episode rollouts and reporting the average cumulative
reward.

Though the nonrealizable setting is beyond the scope of this work, we expect that some variant of our
algorithm can still give reasonable performance, provided the policy class is expressive enough (so
that the problem is not exactly realizable but still meaningful). For example, [31] observed that with
nonrealizable stochastic experts, DAgger variants outperform BC, and exhibit learning curves similar
to ours.

G.1 Additional Experiment Plots

In this section, we present extended experiment results with longer training horizons. As shown
in Figure [ we allocate a total annotation budget of 2000 samples for Hopper and Ant, and 4000
samples for HalfCheetah and Walker. This complements the main paper by showing the full training
curves without zooming in on early rounds. The trends are consistent with our earlier observations:
WARM-STAGGER achieves similar or better sample efficiency compared to STAGGER when C' = 1,
and clearly outperforms both baselines under the cost-aware setting where C' = 2.
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Figure 5: Performance comparison under MSE loss across MuJoCo tasks. Results show that
WARM-STAGGER (WS) achieves comparable sample efficiency and performance to the log loss
setting, with improved training stability. Each curve represents the average over 10 seeds.

G.2 Experiment with MSE Loss

Additionally, we evaluate our algorithms using mean squared error (MSE) as the loss function. All
training settings remain the same as in the log loss experiments, except that we use a learning rate of
2.5 x 10~*. As shown in we observe qualitatively similar results to those under log loss, consistent
with prior observations in [[15]], with the added benefit of more stable training dynamics.

G.3 Additional Experiments with Algorithm 3]

For completeness, we evaluate TRAGGER and its warm-start version as shown in Algorithm [] as
follows on continuous control tasks and the MDP example the same as in Figure 2] The main
difference between WARM-TRAGGER and WARM-STAGGER is by changing interactive annotation
oracle from state wise annotation to trajectory wise annotation, which exhibits significant difference
as shown in Figure [§] Especially for Ant and Half-cheetah, the sample efficiency (C' = 1) of
TRAGGER and WARM-TRAGGER are sigificantly worse than STAGGER, which is due to the cold
start problem, where early dagger rollouts does not have good visitation coverage but still have to go
on until the end of trajectory. However, this is not the case for STAGGER, which only samples one
state per trajectory, unleashing the benefit of interactive learning. Also observe that the performance
of TRAGGER and WARM-TRAGGER are closer to STAGGER in Hopper and Walker, which is due to
the hard reset induced by the environment if the learner performs badly and triggers the terminate
state (unlikely in Ant and Half-cheetah), enabling a shorter trajectory early stop and more efficient
learning. Combining these observarion, it is natural to see the middle groud between full trajectory
annotation and single state annotation, which is batch query, for example sampling 50 states per
trajectory, which has been implemented by [31] with similar performance.

For completeness, we evaluate TRAGGER and its warm-start variant (WARM-TRAGGER) as shown in
Algorithm A} on continuous control tasks and the same MDP setup as in Figure[2] The key distinction
between WARM-TRAGGER and WARM-STAGGER lies in the annotation mode: the former employs
trajectory-wise oracle feedback instead of state-wise annotation, leading to notably different behaviors
as shown in Figure [f]

In particular, for Ant and Half-Cheetah, the sample efficiency (C' = 1) of TRAGGER and
WARM-TRAGGER is significantly worse than that of STAGGER, due to the cold-start problem: early
DAgger rollouts have poor state coverage but must still proceed until the end of each trajectory. In
contrast, STAGGER only samples one state per trajectory, thus better leveraging interactive feedback.
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Algorithm 4 WARM-TRAGGER: Warm-start TRAGGER with offline demonstrations

1: Input: MDP M, trajectory-wise expert annotation oracle OT*®, Markovian policy class B,
online learning oracle A, offline expert dataset D, of size N, online budget Ny,

2: Initialize A with policy class By := {m € B : 7(s) = 72(s) , Vs € Dog}.
3: forn=1,..., Nin/H do
4:  Query A and receive 7".
. n n : " Traj *n _ _E(.n
5: Execute 7" and sample s, ;; following ™. Query O™ for ayjy; = m=(s. ).
6: Update A with loss function
4 1 —1 22
(7'[') = log ﬂ_n(a*,n || s™ ) . ( )
1:H 1:H
7: end for
8: Output: 7, a first-step uniform mixture of {7!,... 7V},
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Figure 6: Sample efficiency of algorithms on MuJoCo tasks, showing expected return vs. number of
annotations (C' = 1). WARM-TRAGGER (WT) is initialized with 1/8, 1/4, or 1/2 of the total annotation
budget as offline demonstrations. Although the performance of WARM-TRAGGER improves with
more offline demonstrations, both TRAGGER and WARM-TRAGGER remain inferior to STAGGER
and, in many cases, even underperform Behavior Cloning, confirming the advantage of state-wise
over trajectory-wise annotation.

For Hopper and Walker, however, TRAGGER and WARM-TRAGGER achieve performance closer to
STAGGER. This is because these environments inherit hard resets when the agent fails, effectively
truncating poor trajectories and improving sample efficiency.

Overall, these observations suggest a natural middle ground between full-trajectory and single-state
annotation—namely, batch queries (e.g., sampling 50 states per trajectory), as explored by [31]] with
comparable results.

An additional head-to-head comparison between TRAGGER and STAGGER, as well as
WARM-TRAGGER and WARM-STAGGER, is shown in Figure[7] highlighting the clear advantage of
state-wise over trajectory-wise annotation.

However, the advantage of state-wise annotation does not hold in general; under certain MDP designs,
trajectory-wise annotation can achieve nearly identical performance, as shown in Figure|[g]
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Figure 7: Head-to-head sample efficiency comparison between TRAGGER and STAGGER, and
between WARM-TRAGGER and WARM-STAGGER under different offline demonstration budgets.
STAGGER and WARM-STAGGER consistently outperform TRAGGER and WARM-TRAGGER. The
performance gap narrows as the offline budget increases, effectively alleviating the cold-start problem
suffered by TRAGGER.
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Similar to Figure|2[, we evaluate WARM-TRAGGER (WT) with 200, 800, 3200 offline (state, expert
action) pairs. All methods are evaluated under equal total annotation cost with C' = 1. With 800
offline (state, expert action) pairs, WD significantly improves the sample efficiency over the baselines

and explores E’ more effectively. The performance of TRAGGER WARM-TRAGGER and is almost

the same as WARM-STAGGER in Figure 2]
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