
Interactive and Hybrid Imitation Learning: Provably Beating Behavior Cloning

Yichen Li

University of Arizona
yichenl@arizona.edu

Chicheng Zhang

University of Arizona
chichengz@cs.arizona.edu

Abstract

Imitation learning (IL) is a paradigm for learning sequential decision-making policies from experts, leveraging offline demonstrations, interactive annotations, or both. Recent advances show that when annotation cost is tallied per trajectory, Behavior Cloning (BC)—which relies solely on offline demonstrations—cannot be improved in general, leaving limited conditions for interactive methods such as DAgger to help. We revisit this conclusion and prove that when the annotation cost is measured per state, algorithms using interactive annotations can provably outperform BC. Specifically: (1) we show that STAGGER, a one-sample-per-round variant of DAgger, provably beats BC under low-recovery-cost settings; (2) we initiate the study of hybrid IL where the agent learns from offline demonstrations and interactive annotations. We propose WARM-STAGGER whose learning guarantee is not much worse than using either data source alone. Furthermore, motivated by compounding error and cold-start problem in imitation learning practice, we give an MDP example in which WARM-STAGGER has significant better annotation cost; (3) experiments on MuJoCo continuous-control tasks confirm that, with modest cost ratio between interactive and offline annotations, interactive and hybrid approaches consistently outperform BC. To the best of our knowledge, our work is the first to highlight the benefit of state-wise interactive annotation and hybrid feedback in imitation learning.

1 Introduction

Imitation learning, or learning from demonstrations, is a widely applied paradigm for learning sequential decision-making policies [45, 5, 4]. In many applications, it offers a preferable alternative to reinforcement learning, as it bypasses the need for carefully designed reward functions and avoids costly exploration [42, 67].

Two prominent data collection regimes exist in imitation learning: offline and interactive. In offline imitation learning, expert demonstration data in the format of trajectories is collected ahead of time, which is a non-adaptive process that is easy to maintain. In contrast, in interactive imitation learning, the learner is allowed to query the expert for annotations in an adaptive manner [51, 50, 67]. The most basic and well-known approach for offline imitation learning is Behavior Cloning [49, 16], which casts the policy learning problem as a supervised learning problem that learns to predict expert actions from states. Although simple and easy to implement, offline imitation learning has the drawback that the quality of the data can be limited [45]. As a result, the trained model can well suffer from compounding error, where imperfect imitation leads the learned policy to enter unseen states, resulting in a compounding sequence of mistakes. In contrast, in interactive imitation learning, the learner maintains a learned policy over time, with the demonstrating experts providing corrective feedback *on-policy*, which enables targeted collection of demonstrations and improves sample efficiency.

Recent work [16], via a sharp theoretical analysis of Behavior Cloning, shows that the sample efficiency of Behavior Cloning cannot be improved in general when measuring using the number of trajectories annotated. Interactive methods like DAgger [49] can enjoy sample complexity benefits, but so far the benefits are only exhibited in limited examples, with the most general ones in the tabular setting [46]. This leaves open the question:

Can interaction provide sample efficiency benefit for imitation learning under a broad range of settings, especially with function approximation?

In this paper, we make progress towards this question, with a focus on the *deterministically realizable* setting (i.e. the expert policy π^E is deterministic and is in the learner’s policy class \mathcal{B}). Specifically, we make the following contributions:

1. Motivated by the costly nature of interactive labeling on entire trajectories [28, 36], we propose to measure the cost of annotation using the number of states annotated by the demonstrating expert. We propose a general state-wise interactive imitation learning algorithm, STAGGER, and show that as long as the expert can recover from mistakes at low cost in the environment [51], it significantly improves over Behavior Cloning in terms of its number of state-wise demonstrations required.
2. Motivated by practical imitation learning applications where sets of offline demonstration data are readily available, we study *hybrid imitation learning*, where the learning agent has the additional ability to query the demonstration expert interactively to improve its performance. We design a hybrid imitation learning algorithm, WARM-STAGGER, and prove that its policy optimality guarantee is not much worse than using either of the data sources alone.
3. Inspired by compounding error [45] and cold start problem [34, 41], two practical challenges in imitation learning, we provide an MDP example, for which we show hybrid imitation learning can achieve strict sample complexity savings over using either source alone, and provide simulation results that verify this theoretical claim.
4. We conduct experiments in MuJoCo continuous control tasks and show that if the cost of state-wise interactive demonstration is not much higher than its offline counterpart, interactive algorithms can enjoy a better cost efficiency than Behavior Cloning. Under some cost regimes and some environments, hybrid imitation learning can outperform approaches that use either source alone.

2 Preliminaries

Basic notation. Define $[n] := \{1, \dots, n\}$. Denote by $\Delta(\mathcal{X})$ the set of probability distributions over a set \mathcal{X} . For $u \in \Delta(\mathcal{X})$ and $x \in \mathcal{X}$, we denote by $u(x)$ the x -th coordinate of u and e_x the delta mass on x . We use the shorthand $x_{1:n}$ to represent the sequence $\{x_i\}_{i=1}^n$. We will frequently use the Hellinger distance to measure the difference between two distributions: $D_H^2(\mathbb{P}, \mathbb{Q}) = \int (\sqrt{\frac{d\mathbb{P}}{d\omega}} - \sqrt{\frac{d\mathbb{Q}}{d\omega}})^2 d\omega$, where \mathbb{P} and \mathbb{Q} share a dominating measure ω .

Episodic Markov decision process and agent-environment interaction. An episodic MDP \mathcal{M} is defined as a tuple $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $P := \{P_h : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})\}_{h=1}^H$ denotes the transition dynamics, $\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta([0, 1])$ denotes the reward distribution, and H denotes episode length. Given a stationary policy $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$, we use $\pi(\cdot | s)$ to denote the action distribution of π on s . A policy induces a distribution over trajectories $\tau = (s_h, a_h, r_h)_{h=1}^H$ by first drawing the initial state $s_1 \sim P_0(\emptyset)$, and then iteratively taking actions $a_h \sim \pi(\cdot | s_h)$, receiving rewards $r_h \sim \mathcal{R}(s_h, a_h)$, and transitioning to the next state $s_{h+1} \sim P_h(s_h, a_h)$ (except at step H , where $P_H = \emptyset$). Let \mathbb{E}^π and \mathbb{P}^π denote expectation and probability law for $(s_h, a_h, r_h)_{h=1}^H$ induced by π and \mathcal{M} . Given π , denote by $d^\pi(s) := \frac{1}{H} \mathbb{P}^\pi(s_h = s)$ its state visitation distribution. The expected return of policy π is defined as $J(\pi) := \mathbb{E}^\pi \left[\sum_{h=1}^H r_h \right]$, and the value functions of π are given by $V_h^\pi(s) := \mathbb{E}^\pi \left[\sum_{h'=h}^H r_{h'} | s_h = s \right]$, and $Q_h^\pi(s, a) := \mathbb{E}^\pi \left[\sum_{h'=h}^H r_{h'} | s_h = s, a_h = a \right]$. If for policy π , step h , and state s , $\pi(\cdot | s)$ is the delta-mass on an action, we also sometimes slightly abuse the notation and let $\pi(s)$ denote that action.

Additional policy-related notations. Throughout, we assume the access to an Markovian policy class \mathcal{B} of finite size B , which contains the deterministic expert demonstrator policy $\pi^E : \mathcal{S} \rightarrow \Delta(\mathcal{A})$. A (MDP, Expert) pair (\mathcal{M}, π^E) is said to be μ -recoverable if for all $h \in [H]$, $s \in \mathcal{S}$ and $a \in \mathcal{A}$, $Q_h^{\pi^E}(s, a) - V_h^{\pi^E}(s) \leq \mu$. Additionally, we assume normalized return [16], where for any trajectory $(s_h, a_h, r_h)_{h=1}^H, \sum_{h=1}^H r_h \in [0, R]$. Throughout this paper, we make the assumption that our imitation learning problem is *deterministically realizable*:

Assumption 1 (Deterministic Realizability). *The expert policy π^E is deterministic and is contained in the learner's policy class \mathcal{B} .*

In our algorithm and analysis, we frequently use the following “convexification” of policy class \mathcal{B} :

Definition 1 (Each-step Mixing of \mathcal{B}). $\bar{\Pi}_{\mathcal{B}} = \{\bar{\pi}_{u,h}(a|s) := \sum_{\pi \in \mathcal{B}} u(\pi)\pi(a|s) : u \in \Delta(\mathcal{B})\}$.

An each-step mixing policy $\bar{\pi}_u \in \bar{\Pi}_{\mathcal{B}}$ can be executed by drawing $\pi \sim u$ freshly-at-random at each step $h \in [H]$ and takes action $a \sim \pi(\cdot|s)$ (e.g. [32, 33]). Observe that $\bar{\pi}_u$ is a Markovian policy.

Offline imitation learning and Behavior Cloning. In offline imitation learning, the agent is given a collection of expert trajectories $\mathcal{D} = \{\tau_1, \dots, \tau_{N_{\text{off}}}\}$, where $\tau_i = (s_{i,h}, a_{i,h})_{h=1}^H$ is the i -th (reward-free) trajectory, all of which are drawn iid from the trajectory distribution of expert policy π^E . Behavior Cloning finds a policy $\pi \in \mathcal{B}$ that minimizes its log loss on expert's actions on the seen states, i.e.,

$$\hat{\pi} = \operatorname{argmin}_{\pi \in \mathcal{B}} \sum_{i=1}^{N_{\text{off}}} \sum_{h=1}^H \log \frac{1}{\pi(a_{i,h} | s_{i,h})}.$$

Recent result of [16] establishes a horizon-independent analysis of Behavior Cloning, which we recall its guarantees here:

Theorem 2 (Guarantee of BC [16]). *Suppose Assumption 1 holds, then with probability $1 - \delta$, the policy returned by BC $\hat{\pi}$ satisfies:*

$$J(\pi^E) - J(\hat{\pi}) \leq \tilde{O} \left(\frac{R \log B}{N_{\text{off}}} \right).$$

Interactive imitation learning protocol. In interactive IL, the learner has the ability to query the demonstration expert interactively. A first way to model interaction with expert is through a *trajectory-wise demonstration oracle* $\mathcal{O}^{\text{Traj}}$ [51, 16]: given a state sequence $(s_h)_{h=1}^H$, return $(a_h)_{h=1}^H$ such that $a_h = \pi^E(s_h)$ for all h . Subsequent works have considered modeling the expert as a *state-wise demonstration oracle* [21, 6, 39, 55] $\mathcal{O}^{\text{State}}$: given a state s_h and step h , return $a_h = \pi^E(s_h)$. We consider the learner interacting with the environment and demonstration oracles using the following protocol:

For $i = 1, 2, \dots$

- Select policy π^i and roll it out in \mathcal{M} , observing a reward-free trajectory $(s_1, a_1, \dots, s_H, a_H)$.
- Query the available oracle(s) to obtain expert annotations.

Goal: Return policy $\hat{\pi}$ such that $J(\pi^E) - J(\hat{\pi})$ is small, with a few number of queries to $\mathcal{O}^{\text{Traj}}$ or $\mathcal{O}^{\text{State}}$.

In practice, we expect the cost of querying $\mathcal{O}^{\text{Traj}}$ to be higher than that of collecting a single offline expert trajectory [28]. Since H queries to $\mathcal{O}^{\text{State}}$ can simulate one query to $\mathcal{O}^{\text{Traj}}$, the cost of a single $\mathcal{O}^{\text{State}}$ query should be at least $\frac{1}{H}$ the cost of $\mathcal{O}^{\text{Traj}}$. Consequently, we also expect one $\mathcal{O}^{\text{State}}$ query to be more expensive than obtaining an additional offline (state, expert action) pair. We denote the ratio between these two costs as C , where $C \geq 1$ is an application-dependent constant.¹

¹For practical settings such as human-in-the-loop learning with expert interventions [36, 63], obtaining a short segment of corrective demonstrations may be cheaper than querying $\mathcal{O}^{\text{State}}$ for each state therein. Here, we focus on a simplified setting and leave detailed cost modeling for such settings as interesting future work.

Algorithm 1 STAGGER: DAgger with State-wise annotation oracle

- 1: **Input:** MDP \mathcal{M} , state-wise expert annotation oracle $\mathcal{O}^{\text{State}}$ with query budget N_{int} , Markovian policy class \mathcal{B} , online learning oracle \mathbb{A} .
- 2: **for** $n = 1, \dots, N_{\text{int}}$ **do**
- 3: Query \mathbb{A} and receive π^n .
- 4: Execute π^n and sample $s^n \sim d^{\pi^n}$. Query $\mathcal{O}^{\text{State}}$ for $a^{*,n} = \pi^{\text{E}}(s^n)$.
- 5: Update \mathbb{A} with loss function

$$\ell^n(\pi) := \log \left(\frac{1}{\pi(a^{*,n}|s^n)} \right). \quad (1)$$

- 6: **end for**
- 7: Output $\hat{\pi}$, a first-step uniform mixture of $\{\pi^n\}_{n=1}^{N_{\text{int}}}$.

3 State-wise Annotation in Interactive Imitation Learning

Recent work [16] on refined analysis of Behavior Cloning (BC) casts doubt on the utility of interaction in imitation learning: when measuring sample complexity in the number of trajectories annotated, BC is minimax optimal even among interactive algorithms [16, Corollary 2.1 and Theorem 2.2]. Although benefits of interactive approaches have been shown in specific examples, progresses so far have been sparse [16, 46], with the most general results in the less-practical tabular setting [46]. In this section, we show that interaction benefits imitation learning in a fairly general sense: when measuring sample complexity using the number of state-wise annotations, we design an interactive algorithm with sample complexity better than BC, as long as the expert policy has a low recovering cost μ in the environment.

3.1 Interactive IL Enables Improved Sample Complexity with State-wise Annotations

Our algorithm STAGGER (short for State-wise DAgger), namely Algorithm 1, interacts with the demonstration expert using a state-wise annotation oracle $\mathcal{O}^{\text{State}}$. Similar to the original DAgger [51], it requires base policy class \mathcal{B} and reduces interactive imitation learning to no-regret online learning. At round n , it rolls out the current policy π^n obtained from an online learning oracle \mathbb{A} and samples s^n from d^{π^n} . A classical example of \mathbb{A} is the exponential weight algorithm that chooses policies from $\bar{\Pi}_{\mathcal{B}}$ ([8]; see Proposition 38 in Appendix F). It then queries $\mathcal{O}^{\text{State}}$ to get expert action $a^{*,n}$ and updates \mathbb{A} with loss function $\ell^n(\pi)$ induced by this new example (Eq. (1)). The final policy $\hat{\pi}$ is returned as a uniform first-step mixture of the historical policies $\{\pi^n\}_{n=1}^{N_{\text{int}}}$, i.e., sample one π^n uniformly at random and execute it for the episode. In contrast to the DAgger variant analyzed in [16], which trains a distinct policy at each step—yielding H policies in total—and employs trajectory-level annotations, our algorithm utilizes parameter sharing and uses state-wise annotations.

We show the following performance guarantee of Algorithm 1 with \mathbb{A} instantiated as the exponential weight algorithm:

Theorem 3. *Suppose STAGGER is run with a state-wise expert annotation oracle $\mathcal{O}^{\text{State}}$, an MDP \mathcal{M} where $(\mathcal{M}, \pi^{\text{E}})$ is μ -recoverable, a policy class \mathcal{B} such that deterministic realizability (Assumption 1) holds, and the online learning oracle \mathbb{A} set as the exponential weight algorithm with decision space $\Delta(\mathcal{B})$ and returns each-step mixing policies $\bar{\pi}_u \in \bar{\Pi}_{\mathcal{B}}$. Then it returns $\hat{\pi}$ such that, with probability at least $1 - \delta$,*

$$J(\pi^{\text{E}}) - J(\hat{\pi}) \leq \mu H \cdot \frac{\log(B) + 2 \log(1/\delta)}{N_{\text{int}}}.$$

Theorem 3 shows that STAGGER returns a policy of suboptimality $O(\frac{\mu H \log B}{N_{\text{int}}})$ using N_{int} interactive state-wise annotations from the expert. In comparison, with the cost of N_{int} state-wise annotations, one can obtain $\frac{CN_{\text{int}}}{H}$ trajectory-wise annotations; [16]’s analysis shows that Behavior Cloning with this number of trajectories from π^{E} returns a policy of suboptimality $O(\frac{RH \log B}{CN_{\text{int}}})$; recall Theorem 2. Thus, if $C \ll \frac{R}{\mu}$, Algorithm 1 has a better cost-efficiency guarantee than Behavior Cloning.

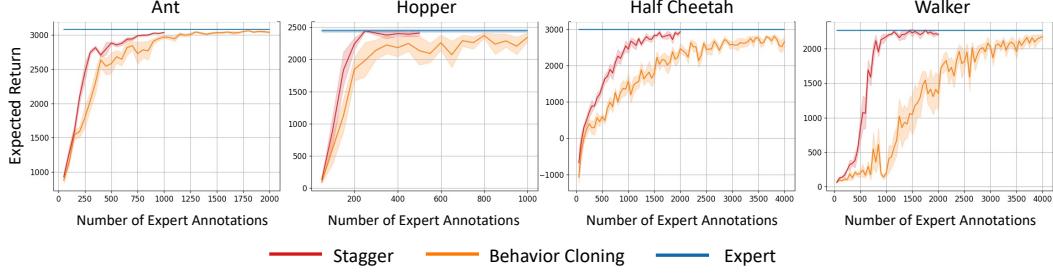


Figure 1: State-wise sample complexity comparison between Behavior Cloning and STAGGER. Shaded areas show the 10th–90th percentile bootstrap confidence intervals [14] over 10 runs. STAGGER matches or exceeds BC with 50% fewer annotations, achieving better state-wise annotation efficiency.

We now sketch the proof of Theorem 3. In line with [16], we define the online, on-policy state-wise estimation error as

$$\text{OnEst}_N^{\text{State}} := \sum_{n=1}^N \mathbb{E}_{s \sim d^{\pi^n}} [D_H^2(\pi^n(\cdot | s), \pi^E(\cdot | s))].$$

The proof proceeds by bounding this error and translating it to the performance difference between $\hat{\pi}$ and π^E . While our definition of estimation error is similar to [16, Appendix C.2], their definition requires all H states per trajectory, while ours depends on the distribution over a state sampled uniformly from the rollout of policy π^n . This enables each labeled state to serve as immediate online feedback, fully utilizing the adaptivity of online learning. In contrast, trajectory-wise annotations may cause the online learning oracle to operate under delayed feedback [20, 75], which incurs a fundamental extra factor of H in state-wise sample complexity compared to our approach.

3.2 Experimental Comparison

We conduct a simple simulation study comparing the sample efficiency of log-loss Behavior Cloning [16] and STAGGER in four MuJoCo [73, 7] continuous control tasks with $H = 1000$ and pretrained deterministic MLP experts [52, 53]. Considering MuJoCo’s low sensitivity to horizon length [16], we reveal expert states one by one along consecutive trajectories for BC to allow fine-grained state-wise sample complexity comparison, while STAGGER queries exactly one state per iteration by sampling from the latest policy’s rollout and updating immediately with the expert’s annotation. In STAGGER, we implement the online learning oracle \mathbb{A} so that it outputs a policy that approximately minimizes the log loss. In addition to log loss, we also include results with online learning oracle minimizing historical examples’ total square loss in Appendix G.2. We defer other implementation details to Appendix G.

Figure 1 shows the performance of the learned policy as a function of the number of state-wise annotations. When each interactive state-wise annotation has the same cost as an offline (state, expert action) pair ($C = 1$), STAGGER has superior and more stable performance than Behavior Cloning. For a given target performance (e.g., near expert-level), STAGGER often requires significantly fewer state-wise annotations than BC—especially on harder tasks—though the gains are less pronounced on easier ones like Ant and Hopper. To highlight sample efficiency, we plot STAGGER using only half the annotation budget of BC; despite this, it still matches or surpasses BC on several tasks, suggesting meaningful benefits from interaction when C is small (e.g., $C = 3$ for Walker).

4 Hybrid Imitation Learning: Combining Offline Trajectory-wise and Interactive State-wise Annotations

Practical deployments of imitation learning systems often learn simultaneously from offline and interactive feedback modalities [26, 19]: for example, in autonomous driving [79, 3, 80], the learner has access to some offline expert demonstrations to start with, and also receives interactive expert

Algorithm 2 WARM-STAGGER: Warm-start STAGGER with offline demonstrations

- 1: **Input:** MDP \mathcal{M} , state-wise expert annotation oracle $\mathcal{O}^{\text{State}}$, Markovian policy class \mathcal{B} , online learning oracle \mathbb{A} , offline expert dataset D_{off} of size N_{off} , online budget N_{int}
- 2: Initialize \mathbb{A} with policy class $\mathcal{B}_{\text{bc}} := \{\pi \in \mathcal{B} : \pi(s_h) = a_h, \forall h \in [H], \forall (s_h, a_h)_{h=1}^H \in D_{\text{off}}\}$.
- 3: **for** $n = 1, \dots, N_{\text{int}}$ **do**
- 4: Query \mathbb{A} and receive π^n .
- 5: Execute π^n and sample $s^n \sim d^{\pi^n}$. Query $\mathcal{O}^{\text{State}}$ for $a^{*,n} = \pi^E(s^n)$.
- 6: Update \mathbb{A} with loss function:

$$\ell^n(\pi) := \log \left(\frac{1}{\pi(a^{*,n} \mid s^n)} \right). \quad (2)$$

- 7: **end for**
- 8: **Output:** $\hat{\pi}$, a first-step uniform mixture of $\{\pi^1, \dots, \pi^N\}$.

demonstration feedback in trajectory segments for subsequent finetuning. Motivated by this practice, we formulate the following problem:

Hybrid Imitation Learning (HyIL): Problem Setup. The learner has access to two complementary sources of expert supervision:

- N_{off} offline expert trajectories $D_{\text{off}} = \{(s_{i,h}, a_{i,h})_{h=1}^H, i \in [N_{\text{off}}]\}$, sampled i.i.d. from rolling out π^E in \mathcal{M} ;
- A state-wise annotation oracle $\mathcal{O}^{\text{State}}$ that can be queried interactively up to N_{int} times.

Each offline (state, action) pair takes a unit cost, and the cost of an interactive query is $C \geq 1$. The total cost budget is therefore $H \cdot N_{\text{off}} + C \cdot N_{\text{int}}$. The goal is to return a policy $\hat{\pi}$ that minimizes its suboptimality $J(\pi^E) - J(\hat{\pi})$.

We ask: can we design a HyIL algorithm with provable sample efficiency guarantee? Furthermore, can its performance surpass pure BC and pure interactive IL with the same cost budget?

4.1 WARM-STAGGER: Algorithm and Analysis

We answer the above questions by proposing the WARM-STAGGER algorithm, namely Algorithm 2. It extends STAGGER to incorporate offline expert demonstrations, in that it constructs \mathcal{B}_{bc} , a restricted policy class that contains all policies in \mathcal{B} consistent with all offline expert demonstrations (line 2). It subsequently performs online log-loss optimization on \mathcal{B}_{bc} over state-action pairs collected online, where the state s^n is obtained by rolling out π^n in the MDP \mathcal{M} , and the action $a^{*,n}$ is annotated by the state-wise expert annotation oracle $\mathcal{O}^{\text{State}}$. For analysis purposes, we introduce the following technical definition.

Definition 4 (Each-step policy completion). *Given a base policy class \mathcal{B} , define for each step $h \in [H]$*

$$\mathcal{B}_h := \{ \pi_h \mid \pi = (\pi_1, \dots, \pi_H) \in \mathcal{B} \}.$$

Then the each-step completion of \mathcal{B} is defined as

$$\tilde{\mathcal{B}} := \{ \pi = (\pi_1, \dots, \pi_H) \mid \pi_h \in \mathcal{B}_h \text{ for all } h \in [H] \}.$$

In words, each $\pi \in \tilde{\mathcal{B}}$ uses a possibly distinct policy π_h from \mathcal{B}_h to take action at step h . By definition, $\tilde{B} := |\tilde{\mathcal{B}}|$ is at most B^H , since $|\mathcal{B}_h| \leq B$. Under non-parameter-sharing settings [49, 47, 46, 16], where the base class \mathcal{B} allows the policies used at each step to be chosen independently, $\tilde{B} = B$.

Theorem 5. *If WARM-STAGGER is run with a state-wise expert annotation oracle $\mathcal{O}^{\text{State}}$, an MDP \mathcal{M} where (\mathcal{M}, π^E) is μ -recoverable, a policy class \mathcal{B} such that deterministic realizability (Assumption 1) holds, and the online learning oracle \mathbb{A} set as the exponential weight algorithm with each-step mixing policies $\bar{\pi}_u \in \bar{\Pi}_{\mathcal{B}}$, then it returns $\hat{\pi}$ such that, with probability at least $1 - \delta$,*

$$J(\pi^E) - J(\hat{\pi}) \leq O \left(\min \left(\frac{R \log(\tilde{B}/\delta)}{N_{\text{off}}}, \frac{\mu H \log(B_{\text{bc}}/\delta)}{N_{\text{int}}} \right) \right),$$

where we recall that $B \leq \tilde{B} \leq B^H$, and $B_{\text{bc}} := |\mathcal{B}_{\text{bc}}| \leq B$.

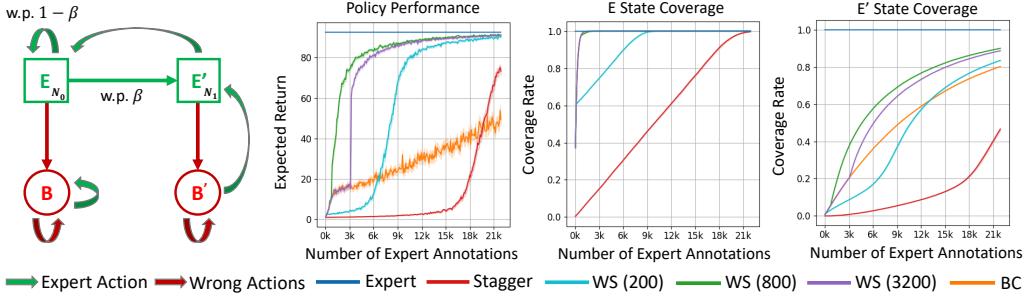


Figure 2: MDP construction and simulation results of algorithms with rewards assigned only in E . We evaluate WARM-STAGGER (WS) with 200, 800, 3200 offline (state, expert action) pairs. All methods are evaluated under equal total annotation cost with $C = 1$. With 800 offline (state, expert action) pairs, WS significantly improves the sample efficiency over the baselines and explores E' more effectively.

Theorem 5 shows that WARM-STAGGER finds a policy with suboptimality guarantee not significantly worse than BC or STAGGER: first, Behavior Cloning using the offline data only has a suboptimality of $O\left(\frac{RH \log(B/\delta)}{N_{\text{off}}}\right)$ (cf. Theorem 2); second, STAGGER without using offline data has a suboptimality of $O\left(\frac{\mu H \log(B/\delta)}{N_{\text{int}}}\right)$ (cf. Theorem 3). We conjecture that the $\log \tilde{B}$ dependence may be sharpened to $\log B$; we leave this as an interesting open question.

Remark 6. *One may consider another baseline that naively switches between BC and STAGGER based on a comparison between their bounds; however, such a baseline needs to know R and μ ahead of time. In practice, we expect our WARM-STAGGER to perform much better than this baseline, since it seamlessly incorporates both sources of data, and its design does not rely on theoretical bounds that may well be pessimistic.*

4.2 On the Benefit of Hybrid Imitation Learning

Theorem 5 is perhaps best viewed as a fall-back guarantee for WARM-STAGGER: its performance is not much worse than either of the baselines. In this section, we demonstrate that the benefit of hybrid feedback modalities can go beyond this: we construct an MDP motivated by practical challenges, in which hybrid imitation learning has a significantly better sample efficiency than both offline BC and interactive STAGGER. Specifically, we prove the following theorem:

Theorem 7. *For large enough S, H , there exists an MDP \mathcal{M} with S states, and expert policy π^E such that:*

- With $\Omega(S)$ offline expert trajectories for BC, the learned policy is $\Omega(H)$ -suboptimal;
- With $\Omega(HS)$ interactive expert annotations for STAGGER, the learned policy is $\Omega(H)$ -suboptimal;
- With $\tilde{O}(S/H)$ offline trajectories and $O(1)$ expert interactions, WARM-STAGGER learns a policy $\hat{\pi}$ such that $J(\hat{\pi}) = J(\pi^E)$.

Theorem 7 suggests that when $HS \gg \max(1, C)$, WARM-STAGGER achieves expert-level performance with significantly lower cost than two baselines. To see this, observe that WARM-STAGGER has a total cost of $O(S + C)$, which is much smaller than $\Omega(HS)$ by BC, and $\Omega(HSC)$ by STAGGER.

The MDP construction and simulation results. We now sketch our construction of MDP \mathcal{M} . \mathcal{M} has an episode length $H \geq 50$, $H = \Omega(\log(S))$ and action space of cardinality greater than $10H$. For each state, one of the actions is taken by the expert; the rest are “wrong” actions. We illustrate \mathcal{M} ’s state space on the left of Figure 2; specifically, it consists of the following subsets:

- Expert ideal states E , where $|E| = N_0$: this can model for example, the agent driving stably on the edge of a cliff [51], where any incorrect action transitions the agent to the

unrecoverable absorbing state set $\mathbf{B} := \{\mathbf{b}\}$ (e.g., falling off the cliff). Taking the expert action keeps the agent in \mathbf{E} with high probability $(1 - \beta)$, and with a small probability β , moves the agent to \mathbf{E}' (e.g., a safe slope).

- Unrecoverable state $\mathbf{B} = \{\mathbf{b}\}$: a special absorbing state that is unrecoverable by any action (dead).
- Expert recoverable states \mathbf{E}' : this models the agent getting off from the edge of the cliff to a safe slope. When in \mathbf{E}' , taking the expert action allows the agent to return to a uniformly sampled state in \mathbf{E} . Taking a wrong action from \mathbf{E}' leads to $\mathbf{B}' := \{\mathbf{b}'\}$ (e.g., rest area).
- Recoverable state $\mathbf{B}' = \{\mathbf{b}'\}$: Not knowing how to act in \mathbf{b}' will result in the agent getting trapped in \mathbf{b}' for the episode.

We now briefly justify each algorithm’s performance as stated in Theorem 7. (1) BC only observes expert actions in \mathbf{E} and \mathbf{E}' , but never in \mathbf{b}' . As a result, near-expert performance at test time requires high coverage over \mathbf{E}' ; otherwise, BC’s trained policy will likely incur compounding errors and get trapped in \mathbf{b}' . (2) STAGGER suffers from a cold-start problem: early policies fail to explore \mathbf{E} efficiently, and incorrect actions can cause transitions into \mathbf{b} . Consequently, coverage over \mathbf{E} grows slowly, and the policy may still fail on unannotated states in \mathbf{E} even with $\Omega(HS)$ queries. (3) WARM-STAGGER benefits from offline data that fully covers \mathbf{E} , and uses a small number of interactions to visit \mathbf{b}' and query the expert, avoiding costly exploration in \mathbf{E}' while matching expert performance.

We also conduct a simulation of the aforementioned three algorithms in a variant of the above MDP with $N_0 = 200$, $N_1 = 1000$, $H = 100$, and $\beta = 0.08$, using another reward function that assigns a reward of 1 only when the agent visits the states in \mathbf{E} . Here, we let the online learning oracle \mathbb{A} optimize 0-1 loss, which is equivalent to minimizing log loss under a deterministic learner policy class and discrete actions. Figure 2 shows return and state coverage as functions of the number of expert annotations, averaged over 200 runs.

We observe that: (1) BC exhibits slow improvement, as \mathbf{b}' remains unseen (and thus unannotated) throughout training, resulting in poor performance even with substantial coverage (e.g., 80%) over \mathbf{E}' ; (2) STAGGER is sample-inefficient due to slow exploration over \mathbf{E} states, consistent with the cold-start intuition; (3) WARM-STAGGER (WS), when initialized with limited (200) offline (state, expert action) pairs, still needs to explore \mathbf{E} first before it can safely reach \mathbf{E}' without failure; and (4) WARM-STAGGER with sufficient offline coverage on \mathbf{E} (e.g., initialized with 3200 offline (state, expert action) pairs) directly benefits from exploring \mathbf{b}' with immediate performance gain, and enables safe and even faster exploration than the expert in \mathbf{E}' .

4.3 Hybrid IL on Continuous Control Benchmarks

Following our earlier MuJoCo-based comparison of Behavior Cloning and STAGGER, we now evaluate WARM-STAGGER (WS) on the same benchmarks. This experiment aims to answer: Does WS reduce total annotation cost compared to the baselines?

Based on the observation in Figure 1, we assign 400 total state-wise annotations for Hopper and Ant, and 1200 for HalfCheetah and Walker2D. For WARM-STAGGER, we allocate 1/8, 1/4, or 1/2 of the total annotations to offline data, with the remainder used for interactive queries. For a fair comparison, all methods are evaluated under the same total annotation cost, with $C = 1$ or $C = 2$. This makes the baselines stronger, as they have full cost budget assigned to a single source.

In terms of the number of state-wise annotations ($C = 1$), the results align with our theoretical findings: WS performs not significantly worse than BC or STAGGER, regardless of the offline dataset size. WS still achieves performance competitive with STAGGER, and even outperforms it on Ant when $C = 1$. Furthermore, as shown by the purple curves, WS with appropriate offline sample size has preferable performance over 4 tasks when $C = 2$, highlighting its utility in cost-aware regimes. These results confirm that WARM-STAGGER reduces total annotation cost for moderate C .

5 Related Work

Imitation Learning with offline demonstrations, pioneered in autonomous driving [45], was solved by offline, state-wise supervised learning in early works [49, 71] and named Behavior Cloning (BC).

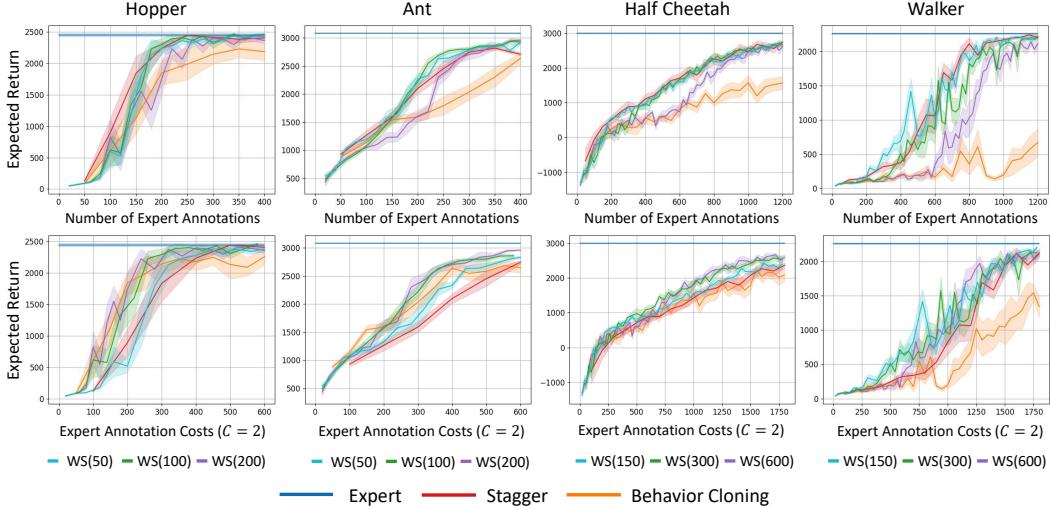


Figure 3: Sample and cost efficiency on MuJoCo tasks. The top row shows expected return vs. number of annotations ($C = 1$); the bottom row shows performance under a cost-aware setting ($C = 2$). WARM-STAGGER (WS) is initialized with 1/8, 1/4, or 1/2 of the total annotation budget as offline demonstrations. Specifically, $WS(n)$ refers to WS with offline expert trajectory demonstrations of total length n . For a good range of n 's, $WS(n)$ matches STAGGER in sample efficiency and outperforms the baselines when $C = 2$.

A recent analysis by [16] employs trajectory-wise Hellinger distance to tighten the dependence of BC on the horizon at the trajectory level, although its sample complexity measured per state still grows quadratically with the horizon in the worst case. This shortcoming, often termed covariate shift or compounding error [45], arises when imperfect imitation drives the learner to unseen states, resulting in a cascading sequence of mistakes. From a data collection perspective, this can be mitigated by noise-injection approaches such as [29, 25]. By leveraging additional environment interactions, generative-adversarial IL methods [18, 66, 24, 64] frame learning as a two-player game that aims to find a policy that matches expert's state-action visitation distributions. This setting is also known as “apprenticeship learning using inverse reinforcement learning” in earlier works [1, 70], which also starts from offline demonstrations and assumes the ability to interact with the environment MDP. Quantitative comparisons with these methods are beyond our scope, as they rely on extensive interactions with the MDP and access to a class of discriminator functions, while we focus on understanding the utility of state-wise interactive annotations. This line work also include recent work of [48], who introduce “Hybrid Inverse Reinforcement Learning”, which leverages hybrid Reinforcement Learning to accelerate its inner loop of policy search; in contrast, our “hybrid” setting focus on utilizing heterogeneous data modalities. Recent offline imitation learning approaches [9, 76] do not require MDP access but still require access to strong offline datasets, either with broad expert coverage or a large transition buffer. Our work assumes that interacting with the environment does not incur costs; we leave a detailed analysis that takes into account environment interaction cost as future work.

Imitation Learning with interactive demonstrations, first proposed by [49], allows the expert to provide corrective feedback to the learner's action retroactively. Assuming low costs of expert recovery from mistakes, termed recoverability, DAgger [51], and following works [27, 50, 67, 10, 11, 46] outperform traditional BC both theoretically and empirically. However, this efficiency demands substantial annotation effort [36]. Although DAgger [51] and some subsequent works [67, 46, 68, 16] popularized the practice of annotating full trajectories, there has also been growing interest in state-wise annotations [32, 54, 33], which appeared as early as [49, 21]. In fact, practical applications of DAgger often adopt partial trajectory annotation in expert-in-the-loop [36, 62, 35] designs, as seen in [78, 26, 19, 74], where issues such as inconsistencies caused by retroactive relabeling [28] can be mitigated. These methods often leverage human- or machine-gated expert interventions to ensure safety during data collection [79, 37], provide more targeted feedback [38, 12], and enable

learning on the fly [59]. The use of selective state-wise queries aligns with our goal of promoting interactive imitation learning with efficient supervision and provable sample efficiency. We regard our contribution as providing a theoretical foundation for this increasingly popular paradigm of partial trajectory annotation.

Utilizing Offline Data for Interactive Learning. Many practical deployments of interactive learning systems do not start from tabula rasa; instead, prior knowledge of various forms is oftentimes available. Combining offline and interactive feedback has recently gained much popularity in applications such as instruction finetuning large language models [15, 44], and bandit machine translation [40]. Many recent theoretical works in reinforcement learning try to quantify the computational and statistical benefit of combining offline and online feedback: for example, [31, 72] show provable reduction of sample complexity using hybrid reinforcement learning, using novel notions of partial coverage; [61] shows that under some structural assumptions on the MDP, hybrid RL can bypass computational barriers in online RL [23]. Many works also quantify the benefit of utilizing additional offline data sources in the contextual bandit domain; for example, [41, 58, 77] study warm-starting contextual bandits using offline bandit data and supervised learning data. While some variants of DAgger [79, 19] also operate in a hybrid setting, our work focuses on a fundamental formulation that explicitly accounts for the cost asymmetry between offline and interactive annotations [56], and, to the best of our knowledge, is the first to provide a rigorous framework with provable sample efficiency guarantees.

6 Conclusion

We revisit imitation learning from the perspective of state-wise annotation. We show via the STAGGER algorithm that, interaction with the demonstrating expert, with its cost properly measured, can enable provable cost efficiency gains over Behavior Cloning. We also propose WARM-STAGGER that combines the benefits of offline data and interactive feedback. Our theoretical construction shows that such a hybrid method can strictly outperform both pure offline and pure interactive baselines under realistic cost models. Empirical results on the synthetic MDP support our theoretical findings, while MuJoCo experiments demonstrate the practical viability and competitive performance of our methods on continuous control tasks. Additionally, we show a trajectory-wise annotation variant of DAgger can match the sample complexity of log-loss Behavior Cloning without recoverability assumptions (Appendix E), with additional experiments (Appendix G.3).

Limitations: Our design of imitation learning algorithm only aims at closing the gap between the performance of the expert and the trained policy; thus, the performance of our learned policy is bottlenecked by the expert’s performance. In this respect, designing imitation learners outputting policies that surpass expert performance is an important direction.

Our theory provide sample complexity guarantees for the discrete-action setting with deterministic and realizable expert. When such assumptions are relaxed, additional challenges arise [60]. In this respect, there remains a gap between our theoretical analysis and our MuJoCo experiment results. In future work, we are interested in conducting additional experiments on discrete-action control problems (e.g., Atari) as well as language model distillation tasks.

Acknowledgments. We thank the anonymous NeurIPS reviewers for their helpful feedback, which significantly improved the presentation of the paper. We thank National Science Foundation IIS-2440266 (CAREER) for research support.

References

- [1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In *Proceedings of the twenty-first international conference on Machine learning*, page 1, 2004.
- [2] Philip Amortila, Nan Jiang, Dhruv Madeka, and Dean P Foster. A few expert queries suffices for sample-efficient rl with resets and linear value approximation. *Advances in Neural Information Processing Systems*, 35:29637–29648, 2022.
- [3] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M Paixao, Filipe Mutz, et al. Self-driving cars: A survey. *Expert systems with applications*, 165:113816, 2021.

[4] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst. [arXiv preprint arXiv:1812.03079](#), 2018.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving cars. [arXiv preprint arXiv:1604.07316](#), 2016.

[6] Kiante Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In [International Conference on Learning Representations](#), 2019.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. [arXiv preprint arXiv:1606.01540](#), 2016.

[8] Nicolo Cesa-Bianchi and Gábor Lugosi. [Prediction, learning, and games](#). Cambridge university press, 2006.

[9] Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating covariate shift in imitation learning via offline data with partial coverage. [Advances in Neural Information Processing Systems](#), 34:965–979, 2021.

[10] Ching-An Cheng and Byron Boots. Convergence of value aggregation for imitation learning. In [International Conference on Artificial Intelligence and Statistics](#), pages 1801–1809. PMLR, 2018.

[11] Ching-An Cheng, Xinyan Yan, Nathan Ratliff, and Byron Boots. Predictor-corrector policy optimization. In [International Conference on Machine Learning](#), pages 1151–1161. PMLR, 2019.

[12] Yuchen Cui, David Isele, Scott Niekum, and Kikuo Fujimura. Uncertainty-aware data aggregation for deep imitation learning. In [2019 International Conference on Robotics and Automation \(ICRA\)](#), pages 761–767. IEEE, 2019.

[13] Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. [Machine learning](#), 75(3):297–325, 2009.

[14] Thomas J DiCiccio and Bradley Efron. Bootstrap confidence intervals. [Statistical science](#), 11(3):189–228, 1996.

[15] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. [Transactions on Machine Learning Research](#).

[16] Dylan J Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding horizon in imitation learning. [arXiv preprint arXiv:2407.15007](#), 2024.

[17] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of interactive decision making. [arXiv preprint arXiv:2112.13487](#).

[18] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. [Advances in neural information processing systems](#), 29, 2016.

[19] Ryan Hoque, Ashwin Balakrishna, Ellen Novoseller, Albert Wilcox, Daniel S Brown, and Ken Goldberg. Thriftydagger: Budget-aware novelty and risk gating for interactive imitation learning. [arXiv preprint arXiv:2109.08273](#), 2021.

[20] Pooria Joulan, Andras Gyorgy, and Csaba Szepesvári. Online learning under delayed feedback. In [International conference on machine learning](#), pages 1453–1461. PMLR, 2013.

[21] Kshitij Judah, Alan P Fern, Thomas G Dietterich, and Prasad Tadepalli. Active imitation learning: Formal and practical reductions to iid learning. [Journal of Machine Learning Research](#), 15(120):4105–4143, 2014.

[22] Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement learning. In [ICML](#), 2002.

[23] Daniel Kane, Sihan Liu, Shachar Lovett, and Gaurav Mahajan. Computational-statistical gap in reinforcement learning. In *Conference on Learning Theory*, pages 1282–1302. PMLR, 2022.

[24] Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srinivasa. Imitation learning as f-divergence minimization. In *International Workshop on the Algorithmic Foundations of Robotics*, pages 313–329. Springer, 2020.

[25] Liyiming Ke, Jingqiang Wang, Tapomayukh Bhattacharjee, Byron Boots, and Siddhartha Srinivasa. Grasping with chopsticks: Combating covariate shift in model-free imitation learning for fine manipulation. In *2021 IEEE international conference on robotics and automation (ICRA)*, pages 6185–6191. IEEE, 2021.

[26] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Hgdagger: Interactive imitation learning with human experts. In *2019 International Conference on Robotics and Automation (ICRA)*, pages 8077–8083. IEEE, 2019.

[27] Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from limited demonstrations. *Advances in Neural Information Processing Systems*, 26, 2013.

[28] Michael Laskey, Caleb Chuck, Jonathan Lee, Jeffrey Mahler, Sanjay Krishnan, Kevin Jamieson, Anca Dragan, and Ken Goldberg. Comparing human-centric and robot-centric sampling for robot deep learning from demonstrations. In *2017 IEEE International Conference on Robotics and Automation (ICRA)*, pages 358–365. IEEE, 2017.

[29] Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection for robust imitation learning. In *Conference on robot learning*, pages 143–156. PMLR, 2017.

[30] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, and Hal Daumé III. Hierarchical imitation and reinforcement learning. In *International conference on machine learning*, pages 2917–2926. PMLR, 2018.

[31] Gen Li, Wenhao Zhan, Jason D Lee, Yuejie Chi, and Yuxin Chen. Reward-agnostic fine-tuning: Provable statistical benefits of hybrid reinforcement learning. *Advances in Neural Information Processing Systems*, 36:55582–55615, 2023.

[32] Yichen Li and Chicheng Zhang. On efficient online imitation learning via classification. *Advances in Neural Information Processing Systems*, 35:32383–32397, 2022.

[33] Yichen Li and Chicheng Zhang. Agnostic interactive imitation learning: New theory and practical algorithms, 2023.

[34] Alexander Lin, Jeremy Wohlwend, Howard Chen, and Tao Lei. Autoregressive knowledge distillation through imitation learning. *arXiv preprint arXiv:2009.07253*, 2020.

[35] Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, and Yuke Zhu. Robot learning on the job: Human-in-the-loop autonomy and learning during deployment. *The International Journal of Robotics Research*, page 02783649241273901, 2022.

[36] Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Yuke Zhu, Li Fei-Fei, and Silvio Savarese. Human-in-the-loop imitation learning using remote teleoperation. *arXiv preprint arXiv:2012.06733*, 2020.

[37] Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Dropoutdagger: A bayesian approach to safe imitation learning. *arXiv preprint arXiv:1709.06166*, 2017.

[38] Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Ensembledagger: A bayesian approach to safe imitation learning. In *2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages 5041–5048. IEEE, 2019.

[39] Khanh Nguyen and Hal Daumé III. Active imitation learning from multiple non-deterministic teachers: Formulation, challenges, and algorithms. *arXiv preprint arXiv:2006.07777*, 2020.

[40] Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. Reinforcement learning for bandit neural machine translation with simulated human feedback. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 1464–1474, 2017.

[41] Bastian Oetomo, R Malinga Perera, Renata Borovica-Gajic, and Benjamin IP Rubinstein. Cutting to the chase with warm-start contextual bandits. *Knowledge and Information Systems*, 65(9):3533–3565, 2023.

[42] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al. An algorithmic perspective on imitation learning. *Foundations and Trends® in Robotics*, 7(1-2):1–179, 2018.

[43] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped dqn. *Advances in neural information processing systems*, 29, 2016.

[44] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.

[45] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. *Advances in neural information processing systems*, 1, 1988.

[46] Nived Rajaraman, Yanjun Han, Lin Yang, Jingbo Liu, Jiantao Jiao, and Kannan Ramchandran. On the value of interaction and function approximation in imitation learning. *Advances in Neural Information Processing Systems*, 34, 2021.

[47] Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits of imitation learning. *Advances in Neural Information Processing Systems*, 33:2914–2924, 2020.

[48] Juntao Ren, Gokul Swamy, Steven Wu, Drew Bagnell, and Sanjiban Choudhury. Hybrid inverse reinforcement learning. In *International Conference on Machine Learning*, pages 42428–42448. PMLR, 2024.

[49] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In *Proceedings of the thirteenth international conference on artificial intelligence and statistics*, pages 661–668. JMLR Workshop and Conference Proceedings, 2010.

[50] Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret learning. *arXiv preprint arXiv:1406.5979*, 2014.

[51] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pages 627–635, 2011.

[52] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pages 1889–1897. PMLR, 2015.

[53] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[54] Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Selective sampling and imitation learning via online regression, 2023.

[55] Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Selective sampling and imitation learning via online regression. *Advances in Neural Information Processing Systems*, 36, 2024.

[56] Burr Settles, Mark Craven, and Lewis Friedland. Active learning with real annotation costs. In *Proceedings of the NIPS workshop on cost-sensitive learning*, volume 1. Vancouver, CA:, 2008.

[57] Shai Shalev-Shwartz et al. Online learning and online convex optimization. *Foundations and trends in Machine Learning*, 4(2):107–194, 2011.

[58] Nihal Sharma, Soumya Basu, Karthikeyan Shanmugam, and Sanjay Shakkottai. Warm starting bandits with side information from confounded data. *arXiv preprint arXiv:2002.08405*, 2020.

[59] Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z Zhao, Archit Sharma, Karl Pertsch, Jianlan Luo, Sergey Levine, and Chelsea Finn. Yell at your robot: Improving on-the-fly from language corrections. *arXiv preprint arXiv:2403.12910*, 2024.

[60] Max Simchowitz, Daniel Pfrommer, and Ali Jadbabaie. The pitfalls of imitation learning when actions are continuous. *arXiv preprint arXiv:2503.09722*, 2025.

[61] Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid rl: Using both offline and online data can make rl efficient. In *The Eleventh International Conference on Learning Representations*.

[62] Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle, Mung Chiang, Peter Ramadge, and Sidd Srinivasa. Expert intervention learning: An online framework for robot learning from explicit and implicit human feedback. *Autonomous Robots*, pages 1–15, 2022.

[63] Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle, Mung Chiang, Peter Ramadge, and Siddhartha Srinivasa. Learning from interventions: Human-robot interaction as both explicit and implicit feedback. In *16th robotics: science and systems, RSS 2020*. MIT Press Journals, 2020.

[64] Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, and J Andrew Bagnell. Feedback in imitation learning: The three regimes of covariate shift. *arXiv preprint arXiv:2102.02872*, 2021.

[65] Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Combining reinforcement learning & imitation learning. *arXiv preprint arXiv:1805.11240*, 2018.

[66] Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. Provably efficient imitation learning from observation alone. In *International conference on machine learning*, pages 6036–6045. PMLR, 2019.

[67] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply aggravated: Differentiable imitation learning for sequential prediction. In *International Conference on Machine Learning*, pages 3309–3318. PMLR, 2017.

[68] Gokul Swamy, Nived Rajaraman, Matt Peng, Sanjiban Choudhury, J Bagnell, Steven Z Wu, Jiantao Jiao, and Kannan Ramchandran. Minimax optimal online imitation learning via replay estimation. *Advances in Neural Information Processing Systems*, 35:7077–7088, 2022.

[69] Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear programming. In *Proceedings of the 25th international conference on Machine learning*, pages 1032–1039, 2008.

[70] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. *Advances in neural information processing systems*, 20, 2007.

[71] Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to classification. *Advances in neural information processing systems*, 23, 2010.

[72] Kevin Tan, Wei Fan, and Yuting Wei. Hybrid reinforcement learning breaks sample size barriers in linear mdps. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*.

[73] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pages 5026–5033. IEEE, 2012.

[74] Mitchell Torok, Mohammad Dehghat, and Yang Song. Greedy-dagger-a student rollout efficient imitation learning algorithm. *IEEE Robotics and Automation Letters*, 2025.

[75] Yuanyu Wan, Wei-Wei Tu, and Lijun Zhang. Online strongly convex optimization with unknown delays. *Machine Learning*, 111(3):871–893, 2022.

- [76] Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. When demonstrations meet generative world models: A maximum likelihood framework for offline inverse reinforcement learning. *Advances in Neural Information Processing Systems*, 36:65531–65565, 2023.
- [77] Chicheng Zhang, Alekh Agarwal, Hal Daumé Iii, John Langford, and Sahand Negahban. Warm-starting contextual bandits: Robustly combining supervised and bandit feedback. In *International Conference on Machine Learning*, pages 7335–7344. PMLR, 2019.
- [78] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end autonomous driving. *arXiv preprint arXiv:1605.06450*, 2016.
- [79] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end simulated driving. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31, 2017.
- [80] Zhouqiao Zhao, Xishun Liao, Amr Abdelraouf, Kyungtae Han, Rohit Gupta, Matthew J Barth, and Guoyuan Wu. Real-time learning of driving gap preference for personalized adaptive cruise control. In *2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)*, pages 4675–4682. IEEE, 2023.
- [81] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of maximum causal entropy. 2010.

Interactive and Hybrid Imitation Learning: Provably Beating Behavior Cloning — Supplementary Materials

A Additional Related Work

First-step mixing and each-step mixing policies. The emergence of first-step mixing policies originated from technical considerations. In many interactive IL methods [51, 50], the returned policy was not a uniform first-step mixture but rather the best policy selected through validation. However, performing such validation in an interactive setting often requires additional expert annotations. Subsequent works [46, 32, 33, 16] circumvented the need for validation by employing a uniform first-step mixture of policies across learning rounds, thereby directly translating online regret guarantees into performance differences. Our TRAGGER algorithm (Algorithm 3 in Appendix E) also employs a first-step mixing policy at each iteration, and has sample complexity on par with behavior cloning.

On the other hand, each-step mixing between the learned policy across rounds and the expert policy has been a prevalent strategy in interactive IL approaches [13, 49, 51, 50]. For each-step mixture policies, [32] was the first to explicitly distinguish this approach from first-step mixing. In other works [46, 16], each-step mixing can be interpreted as learning H separate mixture policies, one for each step within an episode.

Alternative algorithm designs and practical implementations. Though this work follows [16] and focuses on log loss, we believe the $1/n$ -rate is not exclusive to log loss. Despite requiring an additional supervision oracle, [30] suggests that trajectory-wise annotation complexity similar to Theorem 3 (and Theorem 27) can be achieved using Halving [57] and 0-1 loss.

From an algorithmic perspective, we explored trajectory-wise annotation with first-step mixing (Algorithm 3 in Appendix E) and state-wise annotation with each-step mixing (Algorithm 1). For trajectory-wise annotation with each-step mixing, naively learning a parameter-sharing policy may encounter a batch-summed log loss, introducing an (undesirable) additional H factor to the sample complexity. Analyzing state-wise annotation with each-step mixing remains an open question for future research.

In terms of practical implementation, it is worth noting that even with oracle-efficient implementations (e.g. [32, 33]), interactive IL may require multiple supervised learning oracle calls per iteration. In contrast, offline IL requires only a single oracle call to obtain the returned policy, which provides a clear computational advantage. We also note that real-world experts can be suboptimal; in some applications it may be preferable to combine imitation and reinforcement learning signals (e.g., [50, 65, 2]).

Lower bounds in interactive imitation learning. From an information-theoretic perspective, a line of work [47, 46, 16] provides lower bounds for imitation learning under the realizable setting and considers μ -recoverability. [46] is the first to demonstrate a gap between the lower bounds of offline IL and interactive IL in trajectory-wise annotation, focusing on the tabular and non-parameter-sharing setting. [16] establishes a $\Omega\left(\frac{H}{\epsilon}\right)$ sample-complexity lower bound for trajectory-wise annotation in the parameter-sharing setting.

We observe that the proof of [16, Theorem 2.2] also implicitly implies a $\Omega\left(\frac{H}{\epsilon}\right)$ sample complexity lower bound for the state-wise annotation setting. Their proof relies on an MDP consisting only of self-absorbing states, where annotating a full trajectory gives the same amount of information as annotating a single state. In that MDP (which is 1-recoverable), Algorithm 1 achieves $\tilde{O}\left(\frac{H \log(B)}{\epsilon}\right)$ state-wise sample complexity, which does not contradict this lower bound. Nonetheless, obtaining lower bounds for state-wise sample complexity for general MDPs, policy classes, and general recoverability constants remains an open question.

B Proof for STAGGER

We first present 2 useful distance measures for pair of policies.

Definition 8 (Trajectory-wise L_1 -divergence). *For a pair of Markovian policies π and π' , define their trajectory-wise L_1 -divergence as*

$$\lambda(\pi \parallel \pi') := \mathbb{E}^\pi \mathbb{E}_{a'_{1:H} \sim \pi'(\cdot | s_{1:H})} \left[\sum_{h=1}^H \mathbb{I}(a_h \neq a'_h) \right].$$

$\lambda(\pi \parallel \pi')$ is the expected total number of actions taken by π' that deviates from actions in trajectories induced by π . Note that $\lambda(\cdot \parallel \cdot)$ is asymmetric, while the same concept is applied in offline and interactive IL [49, 51] with different guarantees for $\lambda(\pi \parallel \pi^E)$ and $\lambda(\pi^E \parallel \pi)$ (Lemma 36).

Definition 9 (State-wise Hellinger distance). *For a pair of policies π and π' , define their state-wise Hellinger distance as $\mathbb{E}_{s \sim d^\pi} [D_H^2(\pi(\cdot | s), \pi'(\cdot | s))]$.*

State-wise Hellinger distance represents the expected Hellinger distance between the action distribution of π and π' on $s \sim d^\pi$. One notable feature here is that the distance is evaluated between $\pi(\cdot | s)$ and $\pi'(\cdot | s)$, independent of the original action a taken by π when visiting s . By Lemma 36, state-wise Hellinger distance can relate to trajectory-wise L_1 -divergence.

In the following, we show that the performance difference between the policy $\hat{\pi}$ returned by STAGGER (Algorithm 1) and the expert policy π^E can be bounded by the state-wise Hellinger estimation error:

$$\text{OnEst}_N^{\text{State}} := \sum_{n=1}^N \mathbb{E}_{s \sim d^{\pi^n}} [D_H^2(\pi^n(\cdot | s), \pi^E(\cdot | s))],$$

where $\pi^n(\cdot | s)$ and $\pi_h^E(\cdot | s)$ denote the action distributions over \mathcal{A} produced by the policies π^n and π^E at state s .

We first prove this in Lemma 10, and then prove the state-wise annotation complexity of Algorithm 1 in Theorem 11.

Different from [16], where access to full action demonstrations is assumed, we consider a more restrictive model where, at each round n , only a single state (s^n, h^n) from the trajectory induced by π^n is sampled and annotated by the expert.

Lemma 10. *For any MDP \mathcal{M} , deterministic expert π^E , and sequence of policies $\{\pi^n\}_{n=1}^N$, then $\hat{\pi}$, the first-step uniform mixture of $\{\pi^1, \dots, \pi^N\}$ satisfies:*

$$J(\pi^E) - J(\hat{\pi}) \leq \mu H \cdot \frac{\text{OnEst}_N^{\text{State}}}{N}.$$

Proof. By Lemma 36, under the assumption of recoverability, the performance difference between $\hat{\pi}$ and the expert is bounded by

$$J(\pi^E) - J(\hat{\pi}) \leq \mu \cdot \lambda(\hat{\pi} \parallel \pi^E),$$

where we recall the notation that

$$\lambda(\pi \parallel \pi^E) = \mathbb{E}^\pi \left[\sum_{h=1}^H \mathbb{I}(a_h \neq \pi^E(s_h)) \right] = \frac{1}{2} \sum_{h=1}^H \mathbb{E}^\pi \|\pi(s_h) - \pi^E(s_h)\|_1.$$

The proof follows by upper-bounding $\sum_{n=1}^N \lambda(\pi^n \parallel \pi^E)$ by $H \cdot \text{OnEst}_N^{\text{State}}$. To this end, it suffices to show that for any stationary policy π ,

$$H \cdot \mathbb{E}_{s \sim d^\pi} [D_H^2(\pi(\cdot | s), \pi^E(\cdot | s))] \geq \frac{1}{2} \sum_{h=1}^H \mathbb{E}^\pi \|\pi(\cdot | s_h) - \pi^E(\cdot | s_h)\|_1.$$

Observe that $H \cdot \mathbb{E}_{s \sim d^\pi} [D_H^2(\pi(\cdot | s), \pi^E(\cdot | s))] = \sum_{h=1}^H \mathbb{E}^\pi [D_H^2(\pi(\cdot | s_h), \pi^E(\cdot | s_h))]$, we conclude the proof by applying Lemma 35 with $p = \pi(s_h)$ and $q = \pi^E(s_h)$, which gives

$$D_H^2(\pi(\cdot | s_h), \pi^E(\cdot | s_h)) \geq \frac{1}{2} \|\pi(\cdot | s_h) - \pi^E(\cdot | s_h)\|_1.$$

□

Theorem 11 (Theorem 3 Restated). *If STAGGER (Algorithm 1) is run with a state-wise expert annotation oracle $\mathcal{O}^{\text{State}}$, an MDP \mathcal{M} where (\mathcal{M}, π^E) is μ -recoverable, a policy class \mathcal{B} such that deterministic realizability (Assumption 1) holds, and the online learning oracle \mathbb{A} set as the exponential weight algorithm, then it returns $\hat{\pi}$ such that, with probability at least $1 - \delta$,*

$$\text{OnEst}_{N_{\text{int}}}^{\text{State}} \leq \log(B) + 2 \log(1/\delta),$$

and furthermore, the returned $\hat{\pi}$ satisfies

$$J(\hat{\pi}) - J(\pi^E) \leq \mu H \frac{\log(B) + 2 \log(1/\delta)}{N_{\text{int}}}.$$

Proof. Recall the each-step mixing in Definition 1, since $\bar{\pi}_u$ is a each-step mixing policy, where $\forall h \in [H], s \in \mathcal{S}, \bar{\pi}_u(a|s) = \sum_{\pi \in \mathcal{B}} u(\pi) \pi(a|s)$.

By using $\bar{\pi}_u$, the loss functions at each round that passed through online learning oracle \mathbb{A} , $\ell^n(\pi)$ is of the form

$$\ell^n(\pi) = \log(1/\bar{\pi}_u(a^{n,*}|s^n)) = \log\left(\frac{1}{\sum_{\pi \in \mathcal{B}} u(\pi) \pi(a^{n,*}|s^n)}\right),$$

which is 1-exp-concave with respect to u . Thus, implementing \mathbb{A} using the exponential weights algorithm (Proposition 38) achieves:

$$\sum_{n=1}^{N_{\text{int}}} \log(1/\bar{\pi}_{h^n}(a^{*,n}|s^n)) \leq \sum_{n=1}^{N_{\text{int}}} \log(1/\pi_{h^n}^E(a^{*,n}|s^n)) + \log(B) = \log(B).$$

Then, Lemma 39, a standard online-to-batch conversion argument with $x^n = (s^n, h^n)$, $y^n = a^{*,n}$, $g_* = \pi^E$, and $\mathcal{H}^n = \{o^{n'}\}_{n'=1}^n$, where $o^n = (s^n, h^n, a^n, a^{*,n})$, implies that with probability at least $1 - \delta$,

$$\text{OnEst}_{N_{\text{int}}}^{\text{State}} = \sum_{n=1}^{N_{\text{int}}} \mathbb{E}_{(s^n, h^n) \sim d^{\pi^n}} [D_H^2(\pi_{h^n}^n(\cdot|s^n), \pi_{h^n}^E(\cdot|s^n))] \leq \log(B) + 2 \log(1/\delta).$$

The second part of the theorem follows by applying Lemma 10. \square

C Proof for WARM-STAGGER

In this section, we analyze the guarantees of WARM-STAGGER under the realizable and deterministic expert assumption. We show that all intermediate policies, as well as the final returned mixture policy, enjoy small Hellinger distance to the expert's trajectory distribution, due to their agreement on the offline dataset. Our analysis builds on maximum likelihood estimator (MLE) generalization guarantees under log-loss minimization, and leverages the fact that each each-step mixing policy in WARM-STAGGER can be viewed as a first-step policy mixture. The following claim shows that any Markovian policy π can be represented as a first-step mixing over deterministic Markovian policies from a finite class.

Lemma 12. *Let $\bar{\pi}_u$ be a each-step mixing policy that, at each step $h \in [H]$, samples a base policy $\pi \in \mathcal{B}$ independently according to $u \in \Delta(\mathcal{B})$. Then, its induced trajectory distribution is equivalent to a first-step mixing the each-step policy completion of \mathcal{B} , denoted by $\tilde{\mathcal{B}} := \{(\pi_1, \dots, \pi) : \pi \in \mathcal{B}\}$ (see Definition 4).*

Proof. Let $\nu = (\pi_1, \dots, \pi_H) \in \tilde{\mathcal{B}}$. Define $u(\nu) := \prod_{h=1}^H u(\pi_h)$, which is a valid distribution over $\tilde{\mathcal{B}}$. Consider the joint action distribution under $\bar{\pi}_u$, which samples $\pi_h \sim u$ independently for each step and executes $a_h \sim \pi_h(\cdot|s_h)$. The resulting conditional distribution over actions given the state sequence is

$$\bar{\pi}_u(a_{1:H} | s_{1:H}) = \prod_{h=1}^H \left(\sum_{\pi_h \in \mathcal{B}} u(\pi_h) \pi_h(a_h | s_h) \right).$$

Under the first-step mixture policy $\pi_{u(\nu)}$ over $\tilde{\mathcal{B}}$, a full tuple $\nu = (\pi_1, \dots, \pi_H)$ is sampled once from $u(\nu)$, and actions are drawn as $a_h \sim \pi_h(\cdot | s_h)$. The resulting action distribution is

$$\pi_{u(\nu)}(a_{1:H} | s_{1:H}) = \sum_{\nu \in \tilde{\mathcal{B}}} u(\nu) \prod_{h=1}^H \pi_h(a_h | s_h).$$

Expanding the sum yields

$$\sum_{(\pi_1, \dots, \pi_H)} \left(\prod_{h=1}^H u(\pi_h) \pi_h(a_h | s_h) \right) = \prod_{h=1}^H \sum_{\pi_h \in \mathcal{B}} u(\pi_h) \pi_h(a_h | s_h),$$

by the distributive property and independence of the product.

Therefore, $\bar{\pi}_u(a_{1:H} | s_{1:H}) = \pi_{u(\nu)}(a_{1:H} | s_{1:H})$, and both policies induce the same trajectory distribution by Lemma 41. \square

Lemma 13. *Let $\mathcal{B}_{bc} := \{\pi \in \mathcal{B} : \pi(s) = \pi^E(s) \forall s \in D_{off}\}$ be the set of policies that agree with the expert on the offline dataset of N_{off} expert trajectories. Assume the expert π^E is deterministic and realizable. Then, with probability at least $1 - \delta$, for all π^i generated in WARM-STAGGER (Algorithm 2), it holds that:*

$$D_H^2(P_{\pi^i}, P_{\pi^E}) \leq O\left(\frac{\log(\tilde{B}/\delta)}{N_{off}}\right).$$

Furthermore, the returned policy $\hat{\pi}$ satisfies:

$$D_H^2(P_{\hat{\pi}}, P_{\pi^E}) \leq O\left(\frac{H \log(\tilde{B}/\delta)}{N_{off}}\right).$$

Proof. Let \mathcal{B}_{bc} denote the realizable class of policies that agree with π^E on the offline dataset. By the MLE generalization bound [16], for any single policy $\pi \in \mathcal{B}_{bc}$, we have with probability at least $1 - \delta$:

$$D_H^2(P_{\pi}, P_{\pi^E}) \leq O\left(\frac{\log(B/\delta)}{N_{off}}\right).$$

However, in WARM-STAGGER, policies π^i are not selected directly from \mathcal{B}_{bc} , but are instead mixtures over \mathcal{B}_{bc} at each time step. A full trajectory is therefore sampled by first choosing a policy π^h at each step $h \in [H]$, inducing an effective policy over sequences from $\tilde{\mathcal{B}}_{bc}$. Therefore, by applying $\tilde{\mathcal{B}}$ for Theorem 2, the BC guarantee holds for all $\pi \in \tilde{\mathcal{B}}$, with a factor of $\log |\tilde{\mathcal{B}}| \leq H \log B$ in the worst case instead of $\log B$. Therefore, by Lemma 12, each π^i can be viewed as first-step mixing and satisfies:

$$D_H^2(P_{\pi^i}, P_{\pi^E}) \leq O\left(\frac{H \log(\tilde{B}/\delta)}{N_{off}}\right).$$

This remains a worst-case bound. If the per-step base policies are drawn from a factored structure (e.g., $\pi = (\pi_1, \dots, \pi_H)$ with $\pi_h \in \mathcal{B}_{bc}$), and the support is shared across steps, the effective covering number can be much smaller, reducing the overhead back to $\log B$.

Finally, the returned policy $\hat{\pi}$ is a first-step mixing of $\{\pi_1, \dots, \pi_N\}$, and thus the same Hellinger bound carries over by convexity. \square

Theorem 14 (Theorem 5 Restated). *If Algorithm 2 is run with a deterministic expert policy π^E , an MDP \mathcal{M} such that (\mathcal{M}, π^E) is μ -recoverable, a policy class \mathcal{B} such that realizability holds, and the online learning oracle \mathcal{O} set as the exponential weight algorithm, then it returns $\hat{\pi}$ such that, with probability at least $1 - \delta$,*

$$J(\hat{\pi}) - J(\pi^E) \leq O\left(\min\left(\frac{R \log(\tilde{B}/\delta)}{N_{off}}, \frac{\mu H \log(B_{bc}/\delta)}{N_{on}}\right)\right),$$

Proof. By Lemma 13, with probability at least $1 - \delta/2$, for all $\pi \in \{\pi_1, \dots, \pi_N\}$, it satisfies that $D_H^2(P_\pi, P_{\pi^E}) \leq O\left(\frac{\log(\tilde{B}/\delta)}{N_{\text{off}}}\right)$. This implies the first-step uniform mixture of $\{\pi_1, \dots, \pi_N\}$ satisfies

$$D_H^2(P_{\hat{\pi}}, P_{\pi^E}) = \frac{1}{N} \sum_{i=1}^N D_H^2(P_{\pi^i}, P_{\pi^E}) \leq O\left(\frac{\log(\tilde{B}/\delta)}{N_{\text{off}}}\right)$$

By invoking Theorem [16][2.1], we have,

$$J(\hat{\pi}) - J(\pi^E) \leq O\left(\frac{R \log(\tilde{B}/\delta)}{N_{\text{off}}}\right)$$

For the second half of the proof, we notice that by definition $\pi^E \in \mathcal{B}_{\text{bc}}$. Then, by applying Theorem 3, with probability at least $1 - \delta/2$, the returned $\hat{\pi}$ satisfies

$$J(\hat{\pi}) - J(\pi^E) \leq O\left(\frac{\mu H \log(B_{\text{bc}}/\delta)}{N_{\text{int}}}\right).$$

Together, we conclude our proof by applying union bound. \square

D Proof for Theorem 7

We formally define the MDP \mathcal{M} from Section 4.2, where the expert policy π^E is deterministic and the transition dynamics are time-homogeneous across all steps $h \in [H]$.

- **State Space** $\mathcal{S} = \mathbf{E} \cup \mathbf{E}' \cup \mathbf{B} \cup \mathbf{B}'$, where:
 - \mathbf{E} : ideal expert states, $|\mathbf{E}| = N_0$;
 - \mathbf{E}' : recoverable expert states, $|\mathbf{E}'| = N_1$;
 - $\mathbf{B} = \{\mathbf{b}\}$: absorbing failure state (unrecoverable);
 - $\mathbf{B}' = \{\mathbf{b}'\}$: recoverable reset state.
- **Action Space** \mathcal{A} : $A = |\mathcal{A}|$ discrete actions. For each state $s \in \mathcal{S}$, there is a unique action $\pi^E(s)$ taken by the expert.
- **Episode length** H .
- **Initial State Distribution** ρ :

$$\rho(s) = \frac{1}{(1 + \beta)N_0} \text{ for all } s \in \mathbf{E}, \quad \rho(s) = \frac{\beta}{(1 + \beta)N_1} \text{ for all } s \in \mathbf{E}'.$$

- **Transition Dynamics:**
 - $s \in \mathbf{E}$:
 - * $a = \pi^E(s)$: with probability $1 - \beta$, transitions to a uniformly random $s' \in \mathbf{E}$; with probability β , transitions to a uniformly random $s' \in \mathbf{E}'$;
 - * $a \neq \pi^E(s)$: transitions to \mathbf{b} .
 - $s \in \mathbf{E}'$:
 - * $a = \pi^E(s)$: transitions to a uniformly random $s' \in \mathbf{E}$;
 - * $a \neq \pi^E(s)$: transitions to \mathbf{b}' .
 - $s \in \mathbf{B} = \{\mathbf{b}\}$: absorbing for all actions. Specifically, $P(s' = \mathbf{b} | s = \mathbf{b}, a) = 1$.
 - $s \in \mathbf{B}' = \{\mathbf{b}'\}$:
 - * $a = \pi^E(\mathbf{b}')$: transitions to a uniformly random $s' \in \mathbf{E}$;
 - * $a \neq \pi^E(\mathbf{b}')$: remains in \mathbf{b}' .
- **Reward Function:** For theoretical analysis, we consider the following reward function R_1 :

$$R_1(s, a) = \begin{cases} 1 & \text{if } s \in \mathbf{E} \cup \mathbf{E}' \\ 1 & \text{if } s = \mathbf{b}' \text{ and } a = \pi^E(s) \\ 0 & \text{otherwise} \end{cases}$$

- **Specification of Parameters:** In the following proofs, we consider $H \geq 50$, $H \geq \frac{5}{4} \log(10N_0)$, $A \geq 10H$, $\beta = \frac{8}{H-8}$, $N_1 \geq 500$, and $N_1 \geq 160N_0$.

We also make the following assumption on the output policy of our learning algorithms (BC, STAGGER, and WARM-STAGGER). At any stage of learning, denote the set of states that are annotated by the expert by $\mathcal{S}_{\text{annotated}}$. Given the annotated (state, expert action) pairs, the learner calls some offline or online learning oracle \mathbb{A} to return a policy π . We require π 's behavior as follows:

$$\pi(\cdot | s) = \begin{cases} \pi^E(\cdot | s), & s \in \mathcal{S}_{\text{annotated}}, \\ (\frac{1}{A}, \dots, \frac{1}{A}), & s \notin \mathcal{S}_{\text{annotated}}. \end{cases}$$

In other words, π follows the expert's action whenever such information is available; otherwise, it takes an action uniformly at random.

We next make a simple observation that by the construction of \mathcal{M} , the expert policy's state-visitation distribution in \mathcal{M} is stationary over all time steps:

Observation 1. *For MDP \mathcal{M} , the expert policy π^E 's visitation distribution at time step h , $d_h^{\pi^E}$ equals ρ , for all $h \in [H]$.*

Proof. The initial distribution gives:

$$\rho(s) = \begin{cases} \frac{1}{N_0(1+\beta)}, & s \in \mathbf{E}, \\ \frac{\beta}{N_1(1+\beta)}, & s \in \mathbf{E}', \\ 0, & \text{otherwise.} \end{cases}$$

Under π^E , the induced transition kernel on $\mathbf{E} \cup \mathbf{E}'$ satisfies:

$$P(s' | s, \pi^E(s)) = \begin{cases} \frac{1-\beta}{N_0}, & s \in \mathbf{E}, s' \in \mathbf{E}, \\ \frac{\beta}{N_1}, & s \in \mathbf{E}, s' \in \mathbf{E}', \\ \frac{1}{N_0}, & s \in \mathbf{E}', s' \in \mathbf{E}, \\ 0, & \text{otherwise.} \end{cases}$$

For any fixed $s \in \mathbf{E}$, using the kernel above,

$$\sum_{s'} \rho(s') P(s | s', \pi^E(s')) = \sum_{s' \in \mathbf{E}} \frac{1}{N_0(1+\beta)} \cdot \frac{1-\beta}{N_0} + \sum_{s' \in \mathbf{E}'} \frac{\beta}{N_1(1+\beta)} \cdot \frac{1}{N_0} = \frac{1}{N_0(1+\beta)} = \rho(s).$$

Similarly, for any fixed $s \in \mathbf{E}'$,

$$\sum_{s'} \rho(s') P(s | s', \pi^E(s')) = \sum_{s' \in \mathbf{E}} \frac{1}{N_0(1+\beta)} \cdot \frac{\beta}{N_1} = \frac{\beta}{N_1(1+\beta)} = \rho(s).$$

Thus, for any $s \in \mathbf{E} \cup \mathbf{E}'$,

$$\rho(s) = \sum_{s'} \rho(s') P(s | s', \pi^E(s')).$$

Hence ρ is a stationary distribution for the Markov chain induced by π^E (and \mathbf{B}, \mathbf{B}' are never reached under π^E). Since $d_1^{\pi^E} = \rho$ and the dynamics are time-homogeneous, induction gives $\forall h \in [H]$, $d_h^{\pi^E} = \rho$, i.e.,

$$d_h^{\pi^E}(s) = \begin{cases} \frac{1}{N_0(1+\beta)}, & s \in \mathbf{E}, \\ \frac{\beta}{N_1(1+\beta)}, & s \in \mathbf{E}', \\ 0, & \text{otherwise.} \end{cases}$$

□

Theorem 15 (Restatement of Theorem 7). *To achieve smaller than $\frac{H}{2}$ suboptimality compared to expert in MDP \mathcal{M} with probability $\frac{1}{2}$:*

- *Behavior Cloning (BC) using offline expert trajectories requires*

$$N_{\text{off}} = \Omega(N_1) \quad \text{with total annotation cost } \Omega(HN_1).$$

- STAGGER that collects interactive state-wise annotations requires

$$N_{\text{int}} = \Omega(HN_0) \quad \text{with total annotation cost } \Omega(CHN_0).$$

In contrast, WARM-STAGGER learns a policy that achieves expert performance with probability at least $\frac{1}{2}$, using

$$\begin{aligned} N_{\text{off}} &= O\left(\frac{N_0}{H} \log(N_0)\right) \quad \text{expert trajectories, and} \\ N_{\text{int}} &\leq 3 \quad \text{interactive annotations,} \\ &\quad \text{with total annotation cost } \tilde{O}(N_0 + C). \end{aligned} \tag{3}$$

Proof. The proof is divided into three parts:

First, by Lemma 16, we show that in \mathcal{M} , Behavior Cloning requires $\Omega(HN_1)$ expert trajectories to achieve suboptimality $H/2$ with probability $\frac{1}{2}$.

Next, in Lemma 20, we show that STAGGER, which rolls out the learner policy and queries the expert on only one state sampled uniformly from its learned policy's rollout, requires $N_{\text{int}} = \Omega(HN_0)$ interactive annotations to achieve suboptimality no greater than $H/2$ with probability $\frac{1}{2}$.

Finally, by Lemma 22, we demonstrate that WARM-STAGGER achieves expert performance using $O\left(\frac{N_0}{H} \log(N_0)\right)$ offline expert trajectories and 3 interactive annotations with probability $\frac{1}{2}$. \square

D.1 Lower Bound for Behavior Cloning

Throughout this subsection, we denote by $\mathbf{E}'_{\text{annotated}}$ the set of states in \mathbf{E}' that are visited and annotated by the expert's N_{off} offline trajectories.

Lemma 16 (BC suboptimality lower bound). *Consider the MDP \mathcal{M} and the expert policy π^E constructed as above. If Behavior Cloning uses*

$$N_{\text{off}} < \frac{N_1}{160}$$

expert trajectories, then with probability at least $\frac{1}{2}$, the suboptimality of its returned policy $\hat{\pi}$ is lower bounded by:

$$J(\pi^E) - J(\hat{\pi}) \geq \frac{H}{2}.$$

Proof. Note that if the learned policy $\hat{\pi}$ ever takes a wrong action at a state in \mathbf{E} , the trajectory deterministically falls into the absorbing bad state \mathbf{b} , yielding even smaller return. Thus, we here define a modified policy $\tilde{\pi}$ that agrees with $\hat{\pi}$ everywhere except that it always take the expert's action on \mathbf{E} . By construction, $J(\tilde{\pi}) \geq J(\hat{\pi})$, so it suffices to prove the claimed lower bound for $\tilde{\pi}$. In the remainder we analyze $\tilde{\pi}$.

In the following, we show that an insufficient number of expert trajectories leads to small $\mathbf{E}'_{\text{annotated}}$ and poor coverage on states in \mathbf{E}' . This, in turn, causes the BC-learned policy to frequently fail to recover and get trapped in the absorbing bad state \mathbf{b}' , incurring a large suboptimality compared to the expert.

By Lemma 17, when N_{off} is below the stated threshold, at most $1/10$ of the states in \mathbf{E}' is annotated by expert trajectories with probability $\frac{1}{2}$. Suppose we roll out the policy $\tilde{\pi}$ in \mathcal{M} ; let τ be the first step such that $s_\tau \in \mathbf{E}'$.

By Lemma 18,

$$\Pr_{\mathcal{M}, \tilde{\pi}}(\tau \leq H/5) \geq 0.79, \quad \text{and} \quad \Pr_{\mathcal{M}, \tilde{\pi}}(s_\tau \notin \mathbf{E}'_{\text{annotated}} \mid \tau \leq H/5) \geq 0.9.$$

We henceforth condition on the event $\{\tau \leq H/5, s_\tau \notin \mathbf{E}'_{\text{annotated}}\}$. Applying Lemma 19, we have, with probability at least 0.9, $\tilde{\pi}$ takes a wrong action at s_τ and transitions to \mathbf{b}' , and subsequently never takes the expert recovery action at \mathbf{b}' . Therefore the trajectory remains in \mathbf{b}' from time $H/5$ onward, yielding zero reward for at least $\frac{4H}{5}$ steps.

Multiplying all factors, with probability greater than $\frac{1}{2}$,

$$J(\pi^E) - J(\tilde{\pi}) \geq \underbrace{0.79}_{\text{reach } \mathbf{E}'} \times \underbrace{0.9}_{\text{unannotated } s_\tau} \times \underbrace{0.9}_{\text{action errors}} \times \underbrace{0.8H}_{\text{zero reward}} > \frac{H}{2},$$

which concludes the proof. \square

Lemma 17 (Bounded \mathbf{E}' coverage). *If the number of expert trajectories satisfies:*

$$N_{\text{off}} \leq \frac{N_1}{160},$$

then, with probability at least $\frac{1}{2}$,

$$|\mathbf{E}'_{\text{annotated}}| \leq \frac{N_1}{10}.$$

Proof. Recall that by Observation 1, $d_h^{\pi^E}(s) = \frac{\beta}{N_1(1+\beta)} = \frac{8}{HN_1}$ for $s \in \mathbf{E}'$, where $\beta = \frac{8}{H-8}$. Denote $X := |\mathbf{E}'_{\text{annotated}}|$ to be the number of annotated states in \mathbf{E}' . Consider N_{off} expert trajectories, each of length H , and let $s_{i,h}$ be the state at step h of trajectory i . Fix any $s \in \mathbf{E}'$. By a union bound over all time indices,

$$\Pr(s \in \mathbf{E}'_{\text{annotated}}) = \Pr\left(\bigcup_{i=1}^{N_{\text{off}}} \bigcup_{h=1}^H \{s_{i,h} = s\}\right) \leq \sum_{i=1}^{N_{\text{off}}} \sum_{h=1}^H \Pr(s_{i,h} = s) = \sum_{i=1}^{N_{\text{off}}} \sum_{h=1}^H d_h^{\pi^E}(s) = \frac{8N_{\text{off}}}{N_1}.$$

Under the assumption $N_{\text{off}} \leq N_1/160$, this gives

$$\Pr(s \in \mathbf{E}'_{\text{annotated}}) \leq \frac{1}{20}.$$

Let Z_s be the indicator that s is visited by the expert trajectories, by linearity of expectation,

$$\mathbb{E}[X] = \sum_{s \in \mathbf{E}'} \mathbb{E}[Z_s] = \sum_{s \in \mathbf{E}'} \Pr(s \in \mathbf{E}'_{\text{annotated}}) \leq \frac{N_1}{20}.$$

Applying Markov's inequality at the threshold $N_1/10$,

$$\Pr\left(X > \frac{N_1}{10}\right) \leq \frac{\mathbb{E}[X]}{N_1/10} \leq \frac{N_1/20}{N_1/10} = \frac{1}{2}.$$

Equivalently,

$$\Pr\left(X \leq \frac{N_1}{10}\right) \geq \frac{1}{2}.$$

\square

Lemma 18 (First \mathbf{E}' visit). *For the MDP \mathcal{M} , for any policy π that agrees with π^E on \mathbf{E} :*

$$\Pr_{\mathcal{M}, \pi}(\exists h \in [H/5], s_t \in \mathbf{E}') \geq 0.79$$

Proof. Since π agrees with π^E on \mathbf{E} ,

$$\Pr_{\mathcal{M}, \pi}(\exists h \in [H/5], s_t \in \mathbf{E}') = \Pr_{\mathcal{M}, \pi^E}(\exists h \in [H/5], s_t \in \mathbf{E}').$$

It suffices to consider the expert policy π^E 's visitation. By Observation 1, the state visitation distribution for π^E satisfies that for all $h \in [H]$,

$$d_h^{\pi^E}(s) = \begin{cases} \frac{1}{N_0(1+\beta)}, & s' \in \mathbf{E}, \\ \frac{\beta}{N_1(1+\beta)}, & s' \in \mathbf{E}, \\ 0, & \text{otherwise.} \end{cases}$$

The probability of *no* $s \in \mathbf{E}'$ visit in $\frac{H}{5}$ steps is:

$$\begin{aligned}
\frac{1}{1+\beta} \cdot (1-\beta)^{\frac{H}{5}-1} &= \frac{1}{(1+\beta)(1-\beta)} \left(\frac{1}{1+\beta} \right)^{\frac{H}{5}} \\
&= \frac{1}{1-\beta^2} \left(1 - \frac{8}{H} \right)^{\frac{H}{5}} \\
&\leq \frac{1}{1 - \frac{64}{(H-8)^2}} e^{-\frac{8}{H} \cdot \frac{H}{5}} \\
&< 1.038 \cdot e^{-\frac{8}{5}} < 0.21,
\end{aligned} \tag{4}$$

where we apply $\beta = \frac{8}{H-8}$, $1-x \leq e^{-x}$, and $H \geq 50$. Thus:

$$\Pr_{\mathcal{M}, \pi^E} (\exists h \in [H/5], s_t \in \mathbf{E}') > 1 - 0.2095 = 0.79$$

□

Lemma 19 (Action Errors on Unannotated States). *Let $\mathcal{S}_{\text{unannotated}} \subseteq \mathcal{S}$ be the set of unannotated states for a policy π . Consider MDP \mathcal{M} with action space size $A \geq 10H$.*

$$\Pr (\forall h \in [H] : s_h \notin \mathcal{S}_{\text{annotated}} \implies \pi(s_h) \neq \pi^E(s_h)) \geq 0.9.$$

Proof. Since for any unannotated state s , the learner's policy selects the expert action with probability exactly $\frac{1}{A}$. Condition on any realization with $|\mathcal{H}_{\text{unannotated}}| \leq H$. By union bound,

$$\Pr (\exists h \in [H] : s_h \in \mathcal{S}_{\text{unannotated}} \text{ and } \pi(s_h) = \pi^E(s_h)) \leq \frac{H}{A} \leq \frac{H}{10H} = 0.1.$$

Thus

$$\Pr (\forall h \in [H] : s_h \notin \mathcal{S}_{\text{annotated}} \implies \pi(s_h) \neq \pi^E(s_h)) \geq 0.9.$$

□

D.2 Lower Bound for STAGGER

Throughout the proof, denote by $\mathbf{E}_{\text{annotated}}$ the final set of states in \mathbf{E} on which STAGGER have requested expert annotations.

Lemma 20 (STAGGER suboptimality lower bound). *Consider the MDP \mathcal{M} from Section 4.2 with $H \geq 50$, $A \geq 10H$, and $\beta = \frac{8}{H-8}$. If STAGGER collects no more than*

$$N_{\text{int}} \leq \frac{HN_0}{12}$$

interactive state-wise annotations, then, with probability at least $\frac{1}{2}$, the returned policy $\hat{\pi}$ suffers suboptimality at least

$$J(\pi^E) - J(\hat{\pi}) \geq \frac{H}{2}.$$

Proof. By Lemma 21, if STAGGER collects at most $\frac{HN_0}{12}$ interactive state-wise annotations as above, then with probability at least $\frac{1}{2}$, $|\mathbf{E}_{\text{annotated}}|$, the number of distinct states in \mathbf{E} annotated is fewer than $N_0/3$. Consider a random rollout of $\hat{\pi}$, define the following events:

$$\begin{aligned}
F_1 &:= \{s_1 \notin \mathbf{E}_{\text{annotated}}\}, \\
F_2 &:= \{a_1 \neq \pi^E(s_1)\}.
\end{aligned}$$

We now lower bound their probabilities:

$$\begin{aligned}
\Pr_{\hat{\pi}}(F_1) &\geq \frac{2}{3(1+\beta)}, \\
\Pr_{\hat{\pi}}(F_2 | F_1) &\geq 1 - \frac{1}{A} \geq 1 - \frac{1}{10H}.
\end{aligned}$$

Conditioned on the two events, the agent will get trapped at state \mathbf{b} from step 2 on, and thus its conditional expected return satisfies

$$\mathbb{E}_{\hat{\pi}} \left[\sum_{h=1}^H r_h \mid F_1, F_2 \right] \leq 1.$$

Also, by the definition of the reward function R_1 , $J(\pi^E) = H$. Thus,

$$\begin{aligned} J(\pi^E) - J(\hat{\pi}) &= \mathbb{E}_{\hat{\pi}} \left[H - \sum_{h=1}^H r_h \right] \\ &\geq \mathbb{E}_{\hat{\pi}} \left[H - \sum_{h=1}^H r_h \mid F_1, F_2 \right] P_{\hat{\pi}}(F_1, F_2) \\ &\geq \frac{2}{3} \cdot \frac{H-8}{H} \cdot \frac{10H-1}{10H} \cdot (H-1) \geq \frac{H}{2} \end{aligned}$$

Where we use our setting of $\beta = \frac{8}{H-8}$ and apply $H \geq 50$.

□

Lemma 21 (Bounded \mathbf{E} coverage under STAGGER). *Suppose STAGGER collects at most*

$$N_{\text{int}} \leq \frac{HN_0}{12}$$

interactive annotations. Then,

$$\Pr \left(|\mathbf{E}_{\text{annotated}}| \geq \frac{N_0}{3} \right) \leq \frac{1}{2}.$$

Proof. In this proof, we say that state s is *annotated at iteration i* , if it has been annotated by the expert before iteration i (excluding iteration i). Since each iteration of STAGGER samples only one state uniformly from the current episode for annotation, we denote the indicator of expert annotating an unannotated state from \mathbf{E} at iteration i as $X_i \in \{0, 1\}$. With this notation, we have the total number of annotated states by the end of iteration N_{int} as

$$|\mathbf{E}_{\text{annotated}}| = \sum_{i=1}^{N_{\text{int}}} X_i.$$

Let \mathcal{F}_j be the sigma-algebra generated by all information seen by STAGGER up to iteration j . We now upper bound the expected value of X_i conditioned on \mathcal{F}_{i-1} , for each i .

Denote by Y_i the number of unannotated states in \mathbf{E} visited by round i 's rollout (by policy π^i). We claim that conditioned on \mathcal{F}_{i-1} , Y_i is stochastically dominated by a geometric distribution with parameter $\frac{A-1}{A}$. Indeed, whenever an unannotated state in \mathbf{E} is encountered when rolling out π^i , the probability that the agent takes a wrong action is $\frac{A-1}{A}$; if so, the agent gets absorbed to \mathbf{b} immediately, and thus never sees any new unannotated states in this episode. In summary,

$$\mathbb{E}[Y_i \mid \mathcal{F}_{i-1}] \leq \mathbb{E}_{Z \sim \text{Geometric}(\frac{A-1}{A})}[Z] = \frac{A}{A-1} \leq 2.$$

Since the state sampled for expert annotation is uniformly at random from the trajectory, conditioned on Y_i , the probability that it lands on a unannotated state in \mathbf{E} is at most $\frac{Y_i}{H}$. Hence,

$$\mathbb{E}[X_i \mid \mathcal{F}_{i-1}] = \mathbb{E}[\mathbb{E}[X_i \mid Y_i, \mathcal{F}_{i-1}] \mid \mathcal{F}_{i-1}] = \mathbb{E} \left[\frac{Y_i}{H} \mid \mathcal{F}_{i-1} \right] \leq \frac{2}{H}.$$

By linearity of expectation:

$$\mathbb{E}[|\mathbf{E}_{\text{annotated}}|] = \sum_{i=1}^{N_{\text{int}}} \mathbb{E}[X_i] \leq \frac{2N_{\text{int}}}{H}.$$

Applying Markov's inequality:

$$\Pr(|\mathbf{E}_{\text{annotated}}| \geq N_0/3) \leq \frac{\mathbb{E}[X]}{N_0/3} \leq \frac{6N_{\text{int}}}{HN_0} \leq \frac{1}{2}.$$

where the last inequality is by our assumption that $N_{\text{int}} \leq \frac{HN_0}{12}$. This completes the proof. \square

D.3 Upper Bound for WARM-STAGGER

Lemma 22 (Hybrid IL achieves expert performance under R_1). *Consider the MDP \mathcal{M} and expert policy π^E as above, then, with probability at least 1/2, WARM-STAGGER outputs a policy that achieves expert performance using $N_{\text{off}} = O\left(\frac{N_0}{H} \log(N_0)\right)$ offline expert trajectories and $N_{\text{int}} \leq 3$ interactive annotations.*

Proof. We divide the proof into four parts. In this proof, we denote by $\mathbf{E}_{\text{annotated}}$ and $\mathbf{E}'_{\text{annotated}}$ the subsets of \mathbf{E} and \mathbf{E}' , respectively, that are annotated by the N_{off} offline expert demonstration trajectories.

First, we state a high probability event for the N_{off} offline expert demonstration trajectories to provide annotations on all states in \mathbf{E} . Define event

$$F_3 := \{\mathbf{E}_{\text{annotated}} = \mathbf{E}\}.$$

By Lemma 23, the choice

$$N_{\text{off}} = \frac{N_0}{(1-\beta)H} \log(10N_0)$$

ensures that $\Pr(F_3) \geq 0.9$. On event F_3 , the learner takes the correct action on every state in \mathbf{E} .

Next, we define the event under which only a small fraction of \mathbf{E}' is covered by the expert. With $H \geq 50$, $H \geq \frac{5}{4} \log(10N_0)$, $\beta = \frac{8}{H-8}$, $N_1 \geq 500$, and $N_1 \geq 160N_0$, the number of offline trajectories satisfies

$$N_{\text{off}} = \frac{N_0}{(1-\beta)H} \log(10N_0) \leq \frac{4}{5(1-\beta)}N_0 = \frac{4(H-8)}{5(H-16)}N_0 \leq N_0 < \frac{N_1}{160},$$

where we apply $H \geq \frac{5}{4} \log(10N_0)$ and $\frac{H-16}{H-8} < \frac{4}{5}$ when $H \geq 50$. Thus, by Lemma 17,

$$\mathbb{E}[|\mathbf{E}'_{\text{annotated}}|] \leq \frac{N_1}{20}.$$

Applying Markov's inequality at threshold $\frac{N_1}{4} - 2$ gives

$$\Pr\left(|\mathbf{E}'_{\text{annotated}}| > \frac{N_1}{4} - 2\right) \leq \Pr\left(|\mathbf{E}'_{\text{annotated}}| > \frac{N_1}{4} - \frac{2N_1}{500}\right) \leq \frac{25}{121} < 0.21.$$

Define event

$$F_4 := \left\{|\mathbf{E}'_{\text{annotated}}| \leq \frac{N_1}{4} - 2\right\}.$$

Then $\Pr(F_4) \geq 0.79$.

Third, we show that under events F_3 and F_4 , the interactive phase of WARM-STAGGER annotates \mathbf{b}' with probability greater than 0.4 in each of the first three rollouts, such that \mathbf{b}' is annotated within three expert annotations with probability greater than 0.78.

Conditioned on F_3 , the learner acts optimally on all states in \mathbf{E} . Conditioned on F_4 , at least $\frac{3}{4}$ of the states in \mathbf{E}' are unannotated for each of the first three rollouts. Let τ be the first index with $s_\tau \in \mathbf{E}'$. By Lemma 18,

$$\Pr(\tau \leq H/5) \geq 0.79.$$

Since s_τ is drawn uniformly from \mathbf{E}' and at most $N_1/4$ states are annotated under B ,

$$\Pr(s_\tau \notin \mathbf{E}'_{\text{annotated}} \mid F_3, F_4, \tau \leq H/5) \geq \frac{3}{4}.$$

With $A \geq 10H$, by Lemma 19,

$$\Pr(\pi(s_\tau) \neq \pi^E(s_\tau) \mid s_\tau \notin \mathbf{E}'_{\text{annotated}}, F_3, F_4, \tau \leq H/5) \geq 0.9,$$

so with probability at least 0.9 the learner transitions to \mathbf{b}' at time $\tau + 1$ and stays there till the end of episode, accumulating no less than $0.8H$ \mathbf{b}' states with $H \geq 50$. Since WARM-STAGGER samples one state uniformly from each rollout for annotation, this gives 0.8 probability of sampling \mathbf{b}' in this specific case.

Combining these factors, we obtain

$$\Pr(\text{sample } \mathbf{b}' \text{ in a rollout} \mid F_3, F_4) \geq \underbrace{0.79}_{\text{reach } \mathbf{E}'} \times \underbrace{0.75}_{\text{unannotated } s_\tau} \times \underbrace{0.9}_{\text{wrong actions}} \times \underbrace{0.8}_{\text{pick } \mathbf{b}'} > 0.4.$$

Define event

$$F_5 := \{\mathbf{b}' \text{ is annotated within 3 rollouts}\}.$$

Conditioned on F_3 and F_4 , the three rollouts has in each rollout the probability of sampling \mathbf{b}' is at least 0.4. Hence

$$\Pr(F_5 \mid F_3, F_4) \geq 1 - (1 - 0.4)^3 = 1 - 0.6^3 > 0.78.$$

Combining the three events, we have

$$\Pr(F_3 \cap F_4 \cap F_5) \geq \Pr(F_3 \cap F_4) \Pr(F_5 \mid F_3, F_4) \geq (0.9 + 0.79 - 1) \times 0.78 > 0.5.$$

Finally, on $F_3 \cap F_4 \cap F_5$, all states in \mathbf{E} and the reset state \mathbf{b}' are annotated, under reward function R_1 , the learner receives reward 1 at any step if it is in \mathbf{E} or \mathbf{E}' or it is in \mathbf{b}' and takes the recovery action same as the expert. Since the learner now behaves like π^E on all states in \mathbf{E} and can successfully recovers in \mathbf{B}' , its total return is the same as the expert, which concludes the proof. \square

Lemma 23 (Coverage of expert with N_{off} trajectories). *Consider the MDP \mathcal{M} . For N_{off} trajectories of length H rolled out by expert policy π^E , all N_0 states in \mathbf{E} are annotated with probability $\geq 1 - \delta$ if:*

$$N_{\text{off}} \geq \frac{N_0}{(1 - \beta)H} \log\left(\frac{N_0}{\delta}\right).$$

Proof. Recall that we denote by $\mathbf{E}_{\text{annotated}}$ the set of states in \mathbf{E} visited and annotated by offline expert demonstrations. Fix any $s \in \mathbf{E}$ and concatenate all expert trajectories into a single sequence $\{s_t\}_{t=1}^T$ of length $T := HN_{\text{off}}$, ordered from the first state of the first trajectory to the last state of the last trajectory. Let \mathcal{F}_t be the sigma-algebra generated by all states s_1, \dots, s_t , and define the set of initial indices

$$I_0 := \{1, H + 1, 2H + 1, \dots, (N_{\text{off}} - 1)H + 1\}.$$

For any $t + 1 \in I_0$, s_{t+1} is drawn from ρ , so

$$\Pr(s_{t+1} = s \mid \mathcal{F}_t) = \rho(s) = \frac{1}{(1 + \beta)N_0}.$$

For $t + 1 \notin I_0$, we have $s_t \in \mathbf{E} \cup \mathbf{E}'$ and under π^E :

$$\Pr(s_{t+1} = s \mid s_t) = \begin{cases} \frac{1 - \beta}{N_0}, & s_t \in \mathbf{E}, \\ \frac{1}{N_0}, & s_t \in \mathbf{E}'. \end{cases}$$

Therefore, in all cases,

$$\Pr(s_{t+1} = s \mid \mathcal{F}_t) \geq \frac{1 - \beta}{N_0}, \quad \Pr(s_{t+1} \neq s \mid \mathcal{F}_t) \leq 1 - \frac{1 - \beta}{N_0}.$$

Let $A_t := \{s_1 \neq s, \dots, s_t \neq s\}$. Then

$$\Pr(A_{t+1}) \leq \left(1 - \frac{1 - \beta}{N_0}\right) \Pr(A_t),$$

so by induction,

$$\Pr(A_T) \leq \left(1 - \frac{1-\beta}{N_0}\right)^T \leq \exp\left(-\frac{(1-\beta)T}{N_0}\right) = \exp\left(-\frac{(1-\beta)HN_{\text{off}}}{N_0}\right).$$

Therefore,

$$\Pr(s \notin \mathbf{E}_{\text{annotated}}) = \Pr(A_T) \leq \exp\left(-\frac{(1-\beta)HN_{\text{off}}}{N_0}\right).$$

By a union bound over all $s \in \mathbf{E}$,

$$\Pr(\exists s \in \mathbf{E}, s \notin \mathbf{E}_{\text{annotated}}) \leq N_0 \exp\left(-\frac{(1-\beta)HN_{\text{off}}}{N_0}\right),$$

which is at most δ whenever

$$N_{\text{off}} \geq \frac{N_0}{(1-\beta)H} \log\left(\frac{N_0}{\delta}\right).$$

□

E Additional Guarantees for DAgger Variant Without Recoverability Assumption

In this section, we revisit and conduct a refined analysis of another variant of DAgger with trajectory-wise annotations. We show that without the recoverability assumption, an interactive IL algorithm has sample complexity no worse than that of behavior cloning. This result complements prior work [16] that analyzes a different version of DAgger, which they proved to have a worse sample complexity guarantee than behavior cloning.

E.1 Additional Notations and Useful Distance Measures

In line with [16], we consider another oracle that models interacting with the demonstration expert: the *trajectory-wise demonstration oracle* $\mathcal{O}^{\text{Traj}}$ that takes into a state-sequence $s_{1:H}$ and returns $a_{1:H}^* \sim \pi^E(\cdot \parallel s_{1:H})$. Different from other sections, in the following we adopt Markovian policy, which is a collection of H mappings from states to probability distributions over actions $\pi = \{\pi_h : \mathcal{S} \rightarrow \Delta(\mathcal{A})\}_{h=1}^H$.

We here provide a formal definition of first-step policy mixing—used in the definition of $\hat{\pi}$ (see Algorithm 1, Algorithm 2), which is a common technique (e.g., [67, 69, 43]), defined as follows:

Definition 24 (First-step mixing of \mathcal{B}). $\Pi_{\mathcal{B}} := \{\pi_u : u \in \Delta(\mathcal{B})\}$, where policy π_u is executed in an an episode of an MDP \mathcal{M} by: draw $\pi \sim u$ at the beginning of the episode, and execute policy π throughout the episode.

Importantly, π_u is not a stationary policy (note its difference with $\bar{\pi}_u$ in Definition 1); as a result, $a_{1:H}$ are *dependent* conditioned on $s_{1:H}$, while $a_{1:H}$ are only conditionally independent given $s_{1:H}$ and the random policy π drawn.

Additionally, we use $\pi(\cdot \parallel s_{1:H})$ to denote the causally-conditioned probability of action sequence $a_{1:H}$ induced by π , given state sequence $s_{1:H}$ [81].² To elaborate:

- For Markovian policy π , $\pi(a_{1:H} \parallel s_{1:H}) := \prod_{h=1}^H \pi_h(a_h | s_h)$.
- For first-step mixing of Markovian policies π_u , $\pi_u(\cdot \parallel s_{1:H}) := \sum_{\pi \in \mathcal{B}} u(\pi) \pi(\cdot \parallel s_{1:H})$.

It is well-known that the trajectory distribution induced by Markovian policies and their first-step mixings π can be factorized to the product of $\pi(a_{1:H} \parallel s_{1:H})$ and the causally-conditioned probability of the state sequence given the action sequence (Definition 40 and Lemma 41). When it is clear from context, we use shorthand $\pi(s_{1:H})$ for $\pi(\cdot \parallel s_{1:H})$.

In the following, we present another 2 useful distance measures for pair of policies.

²The use of \parallel highlights its distinction from standard conditioning on $s_{1:H}$.

Definition 25 (Trajectory-wise L_∞ -semi-metric [16]). *For a pair of Markovian policies π and π' , define their trajectory-wise L_∞ -semi-metric as*

$$\rho(\pi \parallel \pi') := \mathbb{E}^\pi \mathbb{E}_{a'_{1:H} \sim \pi'(s_{1:H})} [\mathbb{I}\{\exists h : a_h \neq a'_h\}].$$

$\rho(\pi \parallel \pi')$ is the probability of any action taken by π' deviating from actions in trajectories induced by π , which is symmetric [16]. A bound on $\rho(\pi \parallel \pi^E)$ leads to straightforward performance difference guarantee: $J(\pi^E) - J(\pi) \leq R \cdot \rho(\pi \parallel \pi^E)$ [16] (Lemma 37).

Definition 26 (Decoupled Hellinger distance). *For a pair of Markovian policies π and π' , define their decoupled Hellinger distance as $\mathbb{E}^\pi [D_H^2(\pi(s_{1:H}), \pi'(s_{1:H}))]$.*

Similarly, $\mathbb{E}^\pi [D_H^2(\pi(s_{1:H}), \pi'(s_{1:H}))]$ denotes the expected Hellinger distance between the distribution of actions $\pi(s_{1:H})$ and $\pi'(s_{1:H})$ on state sequence $s_{1:H}$ visited by π . This allows decoupled analysis for state and action sequences, which is useful for the proof of Theorem 27.

E.2 Interactive IL Matches Offline IL on Trajectory-wise Annotation

Next, we consider the trajectory-wise sampling model. We present TRAGGER, another DAgger variant, namely Algorithm 3 and provide its sample complexity bounds.

Algorithm 3 TRAGGER: DAgger with trajectory-wise annotation oracle

- 1: **Input:** MDP \mathcal{M} , deterministic expert π^E , Markovian policy class \mathcal{B} , online learning oracle \mathbb{A} with decision space $\Delta(\mathcal{B})$ and benchmark set $\{e_\pi : \pi \in \mathcal{B}\}$.
- 2: **for** $n = 1, \dots, N$ **do**
- 3: Query \mathbb{A} and receive $u^n \in \Delta(\mathcal{B})$.
- 4: Execute $\pi^n := \pi_{u^n}$ and sample $s_{1:H}^n$ following \mathbb{P}^{π^n} . Query $\mathcal{O}^{\text{Traj}}$ for $a_{1:H}^{*,n} = \pi^E(s_{1:H}^n)$.
- 5: Update \mathbb{A} with loss function

$$\ell^n(\pi) := \log \left(\frac{1}{\pi^n(a_{1:H}^{*,n} \parallel s_{1:H}^n)} \right). \quad (5)$$

- 6: **end for**
- 7: Output $\hat{\pi}$, the first-step uniform mixture of policies in $\{\pi^1, \dots, \pi^n\}$.

Algorithm 3 uses first-step mixing policies $\pi_u \in \Pi_{\mathcal{B}}$ (recall Definition 24). At round n , it rolls out $\pi^n = \pi_{u^n}$ whose mixing weight u^n is obtained from an online learning oracle \mathbb{A} and samples a full state sequence $s_{1:H}^n$. Same as Algorithm 1, Algorithm 3 also requires \mathbb{A} to have decision space $\Delta(\mathcal{B})$ and benchmark set $\{e_\pi : \pi \in \mathcal{B}\}$. It then requests expert's trajectory-wise annotation $a_{1:H}^{*,n}$ and updates \mathbb{A} by $\ell^n(\pi)$ (Eq. (5)). At the end of round N , the uniform first-step mixing of $\{\pi^n\}_{n=1}^N$ is returned, which is equivalent to returning $\pi_{\hat{u}}$, where $\hat{u} := \frac{1}{H} \sum_{n=1}^N u^n$. We provide the following performance guarantee of Algorithm 3:

Theorem 27. *If Algorithm 3 is run with a deterministic expert policy π^E , a policy class \mathcal{B} such that realizability holds, and the online learning oracle \mathbb{A} set as the exponential weight algorithm, then it returns $\hat{\pi}$ such that, with probability at least $1 - \delta$,*

$$J(\pi^E) - J(\hat{\pi}) \leq 2R \frac{\log(B) + 2\log(1/\delta)}{N}.$$

Theorem 27 shows that the interactive IL Algorithm 3 matches the trajectory-wise sample complexity of behavior cloning in [16]. In contrast, prior state-of-the-art analysis of interactive IL algorithms [16, Appendix C.2] gives sample complexity results that are in general worse than behavior cloning.³

³For [16, Appendix C.2]'s sample complexity to improve over behavior cloning, we need $\mu H \max_{h \in [H]} \log |\mathcal{B}_h|$ to be significantly smaller $R \log |\mathcal{B}|$ (where \mathcal{B}_h is the projection of \mathcal{B} onto step h). This may require the strong condition that $\mu < R/H < 1$ in the practically-popular parameter sharing settings ($|\mathcal{B}_h| = |\mathcal{B}|$).

For the proof of Theorem 27, we introduce a new notion of decoupled Hellinger estimation error:

$$\text{OnEst}_N^{\text{Traj}} := \sum_{n=1}^N \mathbb{E}^{\pi^n} [D_H^2(\pi^n(\cdot | s_{1:H}), \pi^E(\cdot | s_{1:H}))].$$

$\text{OnEst}_N^{\text{Traj}}$ decouples the dependence between the state sequence and the distribution of action sequence induced by the learner. Perhaps surprisingly, it is compatible with non-Markovian first-step mixing of policies, while still being well-behaved enough to be translated to a policy suboptimality guarantee, which could be of independent interest.

E.3 Decoupling State and Action Sequences by Decoupled Hellinger Distance

In this section, we demonstrate that similar to $D_H^2(\mathbb{P}^\pi(s_{1:H}, a_{1:H}), \mathbb{P}^{\pi^E}(s_{1:H}, a_{1:H}))$ [16], the decoupled Hellinger distance $\mathbb{E}^\pi [D_H^2(\pi(\cdot | s_{1:H}), \pi^E(\cdot | s_{1:H}))]$ that decouples states and actions is also proportionally lower bounded by a constant factor of $\rho(\pi \| \pi^E)$. The following two lemma shows that such relationship holds for both Markovian policies and their first-step mixings.

Lemma 28. *Let π^E be a deterministic policy, and let π be an Markovian policy. Then we have*

$$\frac{1}{2} \cdot \rho(\pi \| \pi^E) \leq \mathbb{E}^\pi [D_H^2(\pi(\cdot | s_{1:H}), \pi^E(\cdot | s_{1:H}))].$$

Lemma 29. *Let π^E be a deterministic policy, and let π_u be a first-step mixing of Markovian policies. Then we have*

$$\frac{1}{2} \cdot \rho(\pi_u \| \pi^E) \leq \mathbb{E}^{\pi_u} [D_H^2(\pi_u(\cdot | s_{1:H}), \pi^E(\cdot | s_{1:H}))].$$

To prove these two lemmas, we first prove a special case, i.e. Lemma 30 with first-step mixing of deterministic policies. To facilitate the proofs, we introduce the following additional notations:

- Let \mathcal{B}^{Det} denote the set of all deterministic, Markovian policies. We will use ν, ν' to denote members of \mathcal{B}^{Det} and $\nu_h(s)$ to denote the action taken by ν at (s, h) when it is clear from the context.
- Let $\mathcal{B}^E(s_{1:H})$ represent the subset of \mathcal{B}^{Det} that agrees with π^E on the state sequence $s_{1:H}$.
- Define $F(\nu; \nu'; \pi^E) := \sum_{s_{1:H}} \mathbb{P}^\nu(s_{1:H}) \mathbb{I}[\nu' \notin \mathcal{B}^E(s_{1:H})]$, which evaluates the probability that ν' disagrees with π^E over the distribution of H -step state sequences induced by π .

Lemma 30. *Let π^E be a deterministic Markovian policy, and let π_u be a first-step mixing of deterministic Markovian policies (elements of \mathcal{B}^{Det}). Then we have that*

$$\frac{1}{2} \cdot \rho(\pi_u \| \pi^E) \leq \mathbb{E}^{\pi_u} [D_H^2(\pi_u(\cdot | s_{1:H}), \pi^E(\cdot | s_{1:H}))].$$

The key idea in the following proof is to lower bound $\mathbb{E}^{\pi_u} [D_H^2(\pi_u(\cdot | s_{1:H}), \pi^E(\cdot | s_{1:H}))]$, which reflects the asymmetric roles of the two appearances of π_u 's, using a symmetric formulation via function F (as shown in (9)).

Proof. Recall the first-step mixing policy in Definition 24, we start by rewriting

$$\begin{aligned} \rho(\pi_u \| \pi^E) &= \mathbb{E}^{\pi_u} [\mathbb{I}\{\exists h : a_h \neq \pi_h^E(s_h)\}] \\ &= \sum_{\nu \in \mathcal{B}^{\text{Det}}} u(\nu) \sum_{s_{1:H}} \mathbb{P}^\nu(s_{1:H}, a_{1:H}) \mathbb{I}\{\exists h : a_h \neq \pi_h^E(s_h)\} \\ &= \sum_{\nu \in \mathcal{B}^{\text{Det}}} u(\nu) \rho(\nu \| \pi^E), \end{aligned} \tag{6}$$

which is a weighted combination of $\rho(\nu \parallel \pi^E)$ for $\nu \in \mathcal{B}^{\text{Det}}$.

Next, we turn to analyzing $D_H^2(\pi_u(\cdot \mid s_{1:H}), \pi^E(\cdot \mid s_{1:H}))$. Since the deterministic expert induces a delta mass distribution over actions, we apply the elementary fact about the Hellinger distance with delta mass distribution stated in Lemma 35, yielding:

$$\frac{1}{2} \parallel \pi_u(s_{1:H}) - \pi^E(s_{1:H}) \parallel_1 \leq D_H^2(\pi_u(\cdot \mid s_{1:H}), \pi^E(\cdot \mid s_{1:H})).$$

We recall that $\mathcal{B}^E(s_{1:H})$ denotes the subset of \mathcal{B}^{Det} that agrees with π^E on $s_{1:H}$ and define the total weight assigned by u on it as $u(\mathcal{B}^E(s_{1:H})) := \sum_{\nu \in \mathcal{B}^E(s_{1:H})} u(\nu)$. Then,

$$\frac{1}{2} \parallel \pi_u(s_{1:H}) - \pi^E(s_{1:H}) \parallel_1 = 1 - u(\mathcal{B}^E(s_{1:H})),$$

which implies:

$$1 - u(\mathcal{B}^E(s_{1:H})) \leq D_H^2(\pi_u(\cdot \mid s_{1:H}), \pi^E(\cdot \mid s_{1:H})). \quad (7)$$

Therefore, by taking expectation over $s_{1:H} \sim \mathbb{P}^{\pi_u}$ in Eq. (7),

$$\sum_{s_{1:H}} \mathbb{P}^{\pi_u}(s_{1:H}) (1 - u(\mathcal{B}^E(s_{1:H}))) \leq \mathbb{E}^{\pi_u} [D_H^2(\pi_u(\cdot \mid s_{1:H}), \pi^E(\cdot \mid s_{1:H}))]. \quad (8)$$

We now examine the expression

$$\sum_{s_{1:H}} \mathbb{P}^{\pi_u}(s_{1:H}) (1 - u(\mathcal{B}^E(s_{1:H}))). \quad (*)$$

Since π_u is a first-step mixing of policies in \mathcal{B}^{Det} with weight u , we have $\mathbb{P}^{\pi_u}(s_{1:H}) = \sum_{\nu \in \mathcal{B}^{\text{Det}}} u(\nu) \mathbb{P}^\nu(s_{1:H})$. This allows us to rewrite $(*)$ using the definition of $F(\nu; \nu', \pi^E)$ as:

$$\begin{aligned} (*) &= \sum_{s_{1:H}} \sum_{\nu \in \mathcal{B}^{\text{Det}}} u(\nu) \mathbb{P}^\nu(s_{1:H}) \sum_{\nu' \in \mathcal{B}^{\text{Det}}} u(\nu') \mathbb{I}[\nu' \notin \mathcal{B}^E(s_{1:H})] \\ &= \sum_{\nu, \nu' \in \mathcal{B}^{\text{Det}}} u(\nu) u(\nu') \sum_{s_{1:H}} \mathbb{P}^\nu(s_{1:H}) \mathbb{I}[\nu' \notin \mathcal{B}^E(s_{1:H})] \\ &= \sum_{\nu, \nu' \in \mathcal{B}^{\text{Det}}} u(\nu) u(\nu') F(\nu; \nu'; \pi^E) \\ &= \frac{1}{2} \sum_{\nu, \nu' \in \mathcal{B}^{\text{Det}}} u(\nu) u(\nu') (F(\nu; \nu'; \pi^E) + F(\nu; \nu'; \pi^E)), \end{aligned} \quad (9)$$

where the first three equalities are by algebra and the definition of $F(\nu; \nu'; \pi^E)$. In the last equality, we use the observation that

$$\sum_{\nu, \nu' \in \mathcal{B}^{\text{Det}}} u(\nu) u(\nu') F(\nu; \nu'; \pi^E) = \sum_{\nu, \nu' \in \mathcal{B}^{\text{Det}}} u(\nu) u(\nu') F(\nu'; \nu; \pi^E).$$

By Lemma 31 (stated below),

$$\begin{aligned} (*) &\geq \frac{1}{2} \cdot \frac{1}{2} \cdot \sum_{\nu, \nu' \in \mathcal{B}^{\text{Det}}} u(\nu) u(\nu') (\rho(\nu \parallel \pi^E) + \rho(\nu' \parallel \pi^E)) \\ &= \frac{1}{2} \cdot \sum_{\nu \in \mathcal{B}^{\text{Det}}} u(\nu) \rho(\nu \parallel \pi^E) = \frac{1}{2} \cdot \rho(\pi_u \parallel \pi^E). \end{aligned}$$

Combining the above two inequalities with Eq (8) we conclude the proof by

$$\frac{1}{2} \cdot \rho(\pi_u \parallel \pi^E) \leq (*) \leq \mathbb{E}^{\pi_u} [D_H^2(\pi_u(\cdot \mid s_{1:H}), \pi^E(\cdot \mid s_{1:H}))].$$

□

Lemma 31 (Symmetric Evaluation Lemma). *Given deterministic Markovian policies ν, ν' , and π^E , the following holds*

$$\frac{1}{2} \cdot (\rho(\nu \parallel \pi^E) + \rho(\nu' \parallel \pi^E)) \leq F(\nu; \nu'; \pi^E) + F(\nu'; \nu; \pi^E). \quad (10)$$

Proof. Recall that

$$F(\nu; \nu'; \pi^E) + F(\nu'; \nu; \pi^E) = \sum_{s_{1:H}} \left(\mathbb{P}^\nu(s_{1:H}) \mathbb{I}[\nu' \notin \mathcal{B}^E(s_{1:H})] + \mathbb{P}^{\nu'}(s_{1:H}) \mathbb{I}[\nu \notin \mathcal{B}^E(s_{1:H})] \right).$$

Throughout the proof, we say that ν makes a *mistake* at step h , if $\nu_h(s_h) \neq \pi_h^E(s_h)$. Then, we can partition all state sequences $s_{1:H} \in \mathcal{S}^H$ into 4 subsets, \mathcal{X}_i , indexed by $i \in \{1, 2, 3, 4\}$:

1. $\mathcal{X}_1 := \{s_{1:H} \mid \nu, \nu' \in \mathcal{B}^E(s_{1:H})\};$
2. $\mathcal{X}_2 := \{s_{1:H} \mid \exists h, s.t. \nu \in \mathcal{B}^E(s_{1:h}), \nu' \notin \mathcal{B}^E(s_{1:h}), \nu' \in \mathcal{B}^E(s_{1:h-1})\};$
3. $\mathcal{X}_3 := \{s_{1:H} \mid \exists h, s.t. \nu \notin \mathcal{B}^E(s_{1:h}), \nu' \in \mathcal{B}^E(s_{1:h}), \nu \in \mathcal{B}^E(s_{1:h-1})\};$
4. $\mathcal{X}_4 := \{s_{1:H} \mid \exists h, s.t. \nu \notin \mathcal{B}^E(s_{1:h}), \nu' \notin \mathcal{B}^E(s_{1:h}), \nu \in \mathcal{B}^E(s_{1:h-1}), \nu' \in \mathcal{B}^E(s_{1:h-1})\}.$

In words, the four subsets divide state sequences into cases where: (1) both ν, ν' agree with the π^E throughout, (2)&(3) one of ν, ν' makes its first mistake earlier than the other, and (4) ν, ν' make their first mistake at the same time. It can now be easily seen that each $s_{1:H} \in \mathcal{S}^H$ lies in exactly one of such \mathcal{X}_i , and

$$\mathcal{X}_1 \cup \mathcal{X}_2 \cup \mathcal{X}_3 \cup \mathcal{X}_4 = \mathcal{S}^H.$$

To see this, consider h^{err} , the first time step h such that one of ν and ν' disagree with π^E . If h^{err} does not exist, then $s_{1:H} \in \mathcal{X}_1$. Otherwise, $s_{1:H}$ lies in one of $\mathcal{X}_2, \mathcal{X}_3, \mathcal{X}_4$ depending on whether ν and ν' makes mistakes at step h^{err} .

By definition, subset \mathcal{X}_1 denotes trajectories $s_{1:H}$ where $\nu, \nu' \in \mathcal{B}^E(s_{1:H})$, meaning that

$$\sum_{s_{1:H} \in \mathcal{X}_1} \left(\mathbb{P}^\nu(s_{1:H}) \mathbb{I}[\nu' \notin \mathcal{B}^E(s_{1:H})] + \mathbb{P}^{\nu'}(s_{1:H}) \mathbb{I}[\nu \notin \mathcal{B}^E(s_{1:H})] \right) = 0.$$

For the other 3 sets, i.e. \mathcal{X}_i for $i \in \{2, 3, 4\}$, we can further divide each set based on the time step where the first error occurs, formally:

$$\begin{aligned} \mathcal{X}_2^h &:= \{s_{1:H} \mid \nu \in \mathcal{B}^E(s_{1:h}), \nu' \notin \mathcal{B}^E(s_{1:h}), \nu' \in \mathcal{B}^E(s_{1:h-1})\}; \\ \mathcal{X}_3^h &:= \{s_{1:H} \mid \nu \notin \mathcal{B}^E(s_{1:h}), \nu' \in \mathcal{B}^E(s_{1:h}), \nu \in \mathcal{B}^E(s_{1:h-1})\}; \\ \mathcal{X}_4^h &:= \{s_{1:H} \mid \nu \notin \mathcal{B}^E(s_{1:h}), \nu' \notin \mathcal{B}^E(s_{1:h}), \nu \in \mathcal{B}^E(s_{1:h-1}), \nu' \in \mathcal{B}^E(s_{1:h-1})\}. \end{aligned} \quad (11)$$

By definition, each pair of subsets is disjoint and $\cup_{h \in [H]} \mathcal{X}_i^h = \mathcal{X}_i$, for $i = 2, 3, 4$. Note that the determination of whether $s_{1:H} \in \mathcal{X}_i^h$ only depends on $s_{1:h}$; therefore, \mathcal{X}_i^h can be represented as $\tilde{\mathcal{X}}_i^h \times \mathcal{S}^{H-h}$, where

$$\tilde{\mathcal{X}}_i^h := \{s_{1:h} \mid s_{1:H} \in \mathcal{X}_i^h\}.$$

Based on this observation, we have

$$\sum_{s_{1:H} \in \mathcal{X}_i^h} \mathbb{P}^\nu(s_{1:H}) = \sum_{s_{1:h} \in \tilde{\mathcal{X}}_i^h, s_{h+1:H} \in \mathcal{S}^{H-h}} \mathbb{P}^\nu(s_{1:H}) = \sum_{s_{1:h} \in \tilde{\mathcal{X}}_i^h} \mathbb{P}^\nu(s_{1:h}).$$

Furthermore, since deterministic policies ν, ν', π^E agrees with each other for all $\{s_{1:h-1} | s_{1:h} \in \tilde{\mathcal{X}}_i^h\}$,

$$\begin{aligned} \sum_{s_{1:h} \in \tilde{\mathcal{X}}_i^h} \mathbb{P}^\nu(s_{1:h}) &= \sum_{s_{1:h} \in \tilde{\mathcal{X}}_i^h} P_0(\mathbf{E}') \prod_{h'=1}^{h-1} P_h(s_{h+1} | s_h, \nu_h(s_h)) \\ &= \sum_{s_{1:h} \in \tilde{\mathcal{X}}_i^h} P_0(\mathbf{E}') \prod_{h'=1}^{h-1} P_h(s_{h+1} | s_h, \nu'_h(s_h)) = \sum_{s_{1:h} \in \tilde{\mathcal{X}}_i^h} \mathbb{P}^{\nu'}(s_{1:h}) \end{aligned} \quad (12)$$

This implies that

$$\sum_{s_{1:H} \in \mathcal{X}_i^h} \mathbb{P}^\nu(s_{1:H}) = \sum_{s_{1:H} \in \mathcal{X}_i^h} \mathbb{P}^{\nu'}(s_{1:H}),$$

and therefore, summing over all $h \in [H]$,

$$\sum_{s_{1:H} \in \mathcal{X}_i} \mathbb{P}^\nu(s_{1:H}) = \sum_{s_{1:H} \in \mathcal{X}_i} \mathbb{P}^{\nu'}(s_{1:H}).$$

Now, for \mathcal{X}_2 , we have

$$\sum_{s_{1:H} \in \mathcal{X}_2} \left(\mathbb{P}^\nu(s_{1:H}) \mathbb{I}[\nu' \notin \mathcal{B}^E(s_{1:H})] + \mathbb{P}^{\nu'}(s_{1:H}) \mathbb{I}[\nu \notin \mathcal{B}^E(s_{1:H})] \right) \geq \sum_{s_{1:H} \in \mathcal{X}_2} \mathbb{P}^\nu(s_{1:H}), \quad (13)$$

where we apply the fact that for all $s_{1:H} \in \mathcal{X}_2$, $\nu' \notin \mathcal{B}^E(s_{1:H})$, and dropping the second term which is nonnegative.

Similarly, for \mathcal{X}_3 , we have that

$$\sum_{s_{1:H} \in \mathcal{X}_3} \left(\mathbb{P}^\nu(s_{1:H}) \mathbb{I}[\nu' \notin \mathcal{B}^E(s_{1:H})] + \mathbb{P}^{\nu'}(s_{1:H}) \mathbb{I}[\nu \notin \mathcal{B}^E(s_{1:H})] \right) \geq \sum_{s_{1:H} \in \mathcal{X}_3} \mathbb{P}^{\nu'}(s_{1:H}) = \sum_{s_{1:H} \in \mathcal{X}_3} \mathbb{P}^\nu(s_{1:H}). \quad (14)$$

Finally, for \mathcal{X}_4 , we use the fact that for $s_{1:H} \in \mathcal{X}_4$, $\nu, \nu' \notin \mathcal{B}^E(s_{1:H})$ and obtain

$$\begin{aligned} & \sum_{s_{1:H} \in \mathcal{X}_4} \left(\mathbb{P}^\nu(s_{1:H}) \mathbb{I}[\nu' \notin \mathcal{B}^E(s_{1:H})] + \mathbb{P}^{\nu'}(s_{1:H}) \mathbb{I}[\nu \notin \mathcal{B}^E(s_{1:H})] \right) \\ &= \sum_{s_{1:H} \in \mathcal{X}_4} (\mathbb{P}^\nu(s_{1:H}) + \mathbb{P}^{\nu'}(s_{1:H})) \geq \sum_{s_{1:H} \in \mathcal{X}_4} \mathbb{P}^\nu(s_{1:H}). \end{aligned} \quad (15)$$

Now, we combine Eqs. (13), (14), (15) and observe that

$$\sum_{s_{1:H} \in \mathcal{X}_2} \mathbb{P}^\nu(s_{1:H}) + \sum_{s_{1:H} \in \mathcal{X}_3} \mathbb{P}^\nu(s_{1:H}) + \sum_{s_{1:H} \in \mathcal{X}_4} \mathbb{P}^\nu(s_{1:H}) \geq \frac{1}{2} \sum_{s_{1:H} \in \mathcal{X}_2 \cup \mathcal{X}_3 \cup \mathcal{X}_4} (\mathbb{P}^\nu(s_{1:H}) + \mathbb{P}^{\nu'}(s_{1:H})), \quad (16)$$

which implies

$$F(\nu; \nu'; \pi^E) + F(\nu'; \nu; \pi^E) \geq \frac{1}{2} \sum_{s_{1:H} \in \mathcal{X}_2 \cup \mathcal{X}_3 \cup \mathcal{X}_4} (\mathbb{P}^\nu(s_{1:H}) + \mathbb{P}^{\nu'}(s_{1:H})). \quad (17)$$

Based on the definitions of $\mathcal{X}_2, \mathcal{X}_3, \mathcal{X}_4$ and $\rho(\cdot \parallel \cdot)$,

$$\begin{aligned} \sum_{s_{1:H} \in \mathcal{X}_2 \cup \mathcal{X}_3 \cup \mathcal{X}_4} (\mathbb{P}^\nu(s_{1:H}) + \mathbb{P}^{\nu'}(s_{1:H})) &= \sum_{s_{1:H}} \mathbb{P}^\nu(s_{1:H}) \mathbb{I}\{\exists h : \nu_h(s_h) \neq \pi_h^E(s_h) \text{ or } \nu'_h(s_h) \neq \pi_h^E(s_h)\} \\ &\quad + \sum_{s_{1:H}} \mathbb{P}^{\nu'}(s_{1:H}) \mathbb{I}\{\exists h : \nu_h(s_h) \neq \pi_h^E(s_h) \text{ or } \nu'_h(s_h) \neq \pi_h^E(s_h)\} \\ &\geq \sum_{s_{1:H}} \mathbb{P}^\nu(s_{1:H}) \mathbb{I}\{\exists h : \nu_h(s_h) \neq \pi_h^E(s_h)\} \\ &\quad + \sum_{s_{1:H}} \mathbb{P}^{\nu'}(s_{1:H}) \mathbb{I}\{\exists h : \nu'_h(s_h) \neq \pi_h^E(s_h)\} \\ &= \rho(\nu \parallel \pi^E) + \rho(\nu' \parallel \pi^E), \end{aligned} \quad (18)$$

where $s_{1:H} \in \mathcal{X}_2 \cup \mathcal{X}_3 \cup \mathcal{X}_4$ implies either ν or ν' disagrees with π^E , while the inequality relaxes the condition by splitting it into separate contributions for ν and ν' .

We conclude the proof by plugging (18) into (17). \square

E.3.1 Proof of Lemma 28

Proof. The key to this proof is showing that any Markovian policy π is equivalent, in terms of action distribution on any state sequence, to a first-step mixing of a set of deterministic Markovian policies. This leads to equivalence on trajectory distribution and decoupled Hellinger distance. To clarify further, we present the following claim, which allows us to apply guarantees for mixtures of deterministic policies in Lemma 30.

Claim 32. *For a Markovian policy π , there exists a first-step mixing of deterministic policy π_u such that for any $s_{1:H} \in \mathcal{S}^H$, 1. $\pi(s_{1:H}) = \pi_u(s_{1:H})$, and 2. $\mathbb{P}^\pi(s_{1:H}) = \mathbb{P}^{\pi_u}(s_{1:H})$.*

Given an MDP with finite state space size S and action space size A , the set of all deterministic, Markovian policies, denoted by \mathcal{B}^{Det} , contains A^{SH} deterministic policies, which can be indexed by a tuple of actions $(a_{h,s})_{h \in [H], s \in \mathcal{S}}$.

To construct policy π_u , we will set the weight vector u such that its weight on policy ν indexed by $(a_{h,s})_{h \in [H], s \in \mathcal{S}}$ as:

$$u(\nu) = \prod_{h=1}^H \prod_{s \in \mathcal{S}} \pi_h(a_{h,s}|s) \quad (19)$$

It can be easily verified by that $\sum_{\nu \in \mathcal{B}^{\text{Det}}} u(\nu) = 1$.

We now verify the first item. By first-step mixing, we rewrite $\pi_u(a_{1:H} \parallel s_{1:H})$ as

$$\begin{aligned} \pi_u(a_{1:H} \parallel s_{1:H}) &= \sum_{\nu \in \mathcal{B}^{\text{Det}}} u(\nu) \prod_{h=1}^H \nu(a_h|s_h) \\ &= \sum_{(a'_{h,s})_{h \in [H], s \in \mathcal{S}}} \prod_{h=1}^H \prod_{s \in \mathcal{S}} \pi_h(a'_{h,s}|s) \prod_{h=1}^H \mathbb{I}[a'_{h,s_h} = a_h] \\ &= \sum_{(a'_{h,s})_{h \in [H], s \neq s_h}} \prod_{h=1}^H \prod_{s \neq s_h} \pi_h(a'_{h,s}|s) \sum_{(a'_{h,s})_{h \in [H], s=s_h}} \prod_{h=1}^H \pi_h(a'_{h,s_h}|s_h) \prod_{h=1}^H \mathbb{I}[a'_{h,s_h} = a_h] \\ &= \sum_{(a'_{h,s})_{h \in [H], s \neq s_h}} \prod_{h=1}^H \prod_{s \neq s_h} \pi_h(a'_{h,s}|s) \prod_{h=1}^H \pi_h(a_h|s_h) \\ &= \prod_{h=1}^H \pi_h(a_h|s_h) = \pi(a_{1:H} \parallel s_{1:H}). \end{aligned} \quad (20)$$

Since this holds for any action sequence $a_{1:H} \in \mathcal{A}^H$, we derive the first part of Claim 32 that $\pi(s_{1:H}) = \pi_u(s_{1:H})$. The second item follows from the first item in combination with Lemma 41.

We conclude that for the π_u in the statement of the claim,

$$\mathbb{E}^\pi [D_H^2(\pi(\cdot | s_{1:H}), \pi^E(\cdot | s_{1:H}))] = \mathbb{E}^{\pi_u} [D_H^2(\pi_u(\cdot | s_{1:H}), \pi^E(\cdot | s_{1:H}))].$$

Finally, the proof follows by applying Lemma 30 to π_u . \square

E.3.2 Proof of Lemma 29

Proof. By Claim 32, any Markovian policy can be viewed as a first-step mixing of A^{SH} deterministic policies from \mathcal{B}^{Det} , then any first-step mixing of Markovian policies π_u can also be viewed as a first-step mixing of A^{SH} deterministic policies from \mathcal{B}^{Det} . The proof follows by applying Lemma 30. \square

E.4 New Guarantees for DAgger Variant with Trajectory-wise Annotation

Recall that we have defined decoupled Hellinger estimation error:

$$\text{OnEst}_N^{\text{Traj}} = \sum_{n=1}^N \mathbb{E}^{\pi^n} [D_{\text{H}}^2(\pi^n(\cdot | s_{1:H}), \pi^{\text{E}}(\cdot | s_{1:H}))].$$

In the following, we first demonstrate that the performance difference between expert and the the uniform first-step mixing of any Markovian policy sequence $\{\pi^n\}_{n=1}^N$ is upper-bounded by $2R \text{OnEst}_N^{\text{Traj}} / N$, and then show the trajectory-wise sample complexity of Algorithm 3 in Theorem 27.

Lemma 33. *For any MDP \mathcal{M} , deterministic expert π^{E} , and sequence of policies $\{\pi^n\}_{n=1}^N$, each of which can be Markovian or a first-step mixing of Markovian policies, their first step uniform mixture policy $\hat{\pi}$ satisfies.*

$$J(\pi^{\text{E}}) - J(\hat{\pi}) \leq 2R \cdot \frac{\text{OnEst}_N^{\text{Traj}}}{N}.$$

Proof. By Lemma 28 and Lemma 29, for each π^n , whether it is Markovian or a first-step mixing of Markovian policies, the following holds:

$$\mathbb{E}^{\pi^n} [D_{\text{H}}^2(\pi^n(\cdot | s_{1:H}), \pi^{\text{E}}(\cdot | s_{1:H}))] \geq \frac{1}{2} \rho(\pi^n \| \pi^{\text{E}}).$$

Then, by the definition of $\text{OnEst}_N^{\text{Traj}}$,

$$\frac{\text{OnEst}_N^{\text{Traj}}}{N} = \frac{1}{N} \sum_{n=1}^N \mathbb{E}^{\pi^n} [D_{\text{H}}^2(\pi^n(\cdot | s_{1:H}^n), \pi^{\text{E}}(\cdot | s_{1:H}^n))] \geq \frac{1}{2N} \sum_{n=1}^N \rho(\pi^n \| \pi^{\text{E}}) = \frac{1}{2} \rho(\hat{\pi} \| \pi^{\text{E}}),$$

where we apply the fact that $\hat{\pi}$ is a first-step mixing of $\{\pi^n\}_{n=1}^N$ with uniform weights. Finally, we conclude the proof by applying Lemma 37. \square

Theorem 34 (Theorem 27 Restated). *If Algorithm 3 is run with a deterministic expert policy π^{E} , a policy class \mathcal{B} such that realizability holds, and the online learning oracle \mathbb{A} set to exponential weight algorithm (see Proposition 38). Then, with probability at least $1 - \delta$,*

$$\text{OnEst}_N^{\text{Traj}} \leq \log(B) + 2\log(1/\delta),$$

and furthermore, the returned $\hat{\pi}$ satisfies

$$J(\pi^{\text{E}}) - J(\hat{\pi}) \leq 2R \frac{\log(B) + 2\log(1/\delta)}{N}.$$

Proof. The proof closely follows Proposition C.2 in [16], tailored for another DAgger variant. However, in this case, we leverage the distribution of the state sequence $s_{1:H}$ instead of the per-step state distribution.

Observe that the log loss functions passed through online learning oracle \mathbb{A} , $\ell^n(\pi)$ is of the form

$$\ell^n(\pi) = \log(1/\pi_u(a_{1:H}^{n,*} \| s_{1:H}^n)) = \log\left(\frac{1}{\sum_{\pi \in \mathcal{B}} u(\pi) \pi(a_{1:H}^{n,*} \| s_{1:H}^n)}\right).$$

It can be observed that ℓ^n 's are 1-exp-concave. Therefore, implementing \mathbb{A} using the exponential weights algorithm (Proposition 38) ensures that the following bound holds almost surely:

$$\sum_{n=1}^N \log(1/\pi^n(a_{1:H}^{n,*} \| s_{1:H}^n)) \leq \sum_{n=1}^N \log(1/\pi^{\text{E}}(a_{1:H}^{n,*} \| s_{1:H}^n)) + \log(B) = \log(B).$$

Then, Lemma 39 with $x^n = s_{1:H}^n$, $y^n = a_{1:H}^{*,n}$, $g_* = \pi^E$, and $\mathcal{H}^n = \{o^{n'}\}_{n'=1}^n$, where $o^n = (\mathbf{E}'^n, a_1^n, a_1^{*,n}, \dots, s_H^n, a_H^n, a_H^{*,n})$, implies that with probability at least $1 - \delta$,

$$\text{OnEst}_N^{\text{Traj}} = \sum_{n=1}^N \mathbb{E}^{\pi^n} [D_H^2(\pi^n(\cdot | s_{1:H}^n), \pi^E(\cdot | s_{1:H}^n))] \leq \log(B) + 2 \log(1/\delta).$$

Finally, the second part of the theorem follows by applying Lemma 33. \square

F Auxiliary Results

Lemma 35. *If p, q are two distributions over some discrete domain \mathcal{Z} , and q is a delta mass on an element in \mathcal{Z} . Then*

$$\frac{1}{2} \|p - q\|_1 \leq D_H^2(p \| q) \leq \|p - q\|_1$$

Lemma 36 (Performance Difference Lemma [22][49]). *For two Markovian policies π and $\pi^E : \mathcal{S} \rightarrow \Delta(\mathcal{A})$, we have*

$$J(\pi^E) - J(\pi) = \mathbb{E}^{\pi} \left[\sum_{h=1}^H A_h^E(s_h, a_h) \right],$$

where $A_h^E(s_h, a_h) := Q_h^{\pi^E}(s_h, a_h) - V_h^{\pi^E}(s_h)$. Furthermore:

- It holds that (recall Definition 8)

$$J(\pi) - J(\pi^E) \leq H \cdot \lambda(\pi^E \| \pi).$$

- suppose (\mathcal{M}, π^E) is μ -recoverable, then

$$J(\pi) - J(\pi^E) \leq \mu \cdot \lambda(\pi \| \pi^E).$$

Lemma 37 (Lemma D.2. of [16]). *For all (potentially stochastic) policies π and π' , it holds that*

$$J(\pi) - J(\pi') \leq R \cdot \rho(\pi \| \pi').$$

Proposition 38 (Proposition 3.1 of [8]). *Suppose $\{\ell^n(u)\}_{n=1}^N$ is a sequence of η -exp-concave functions from $\Delta(\mathcal{X})$ to \mathbb{R} . For all $x \in \mathcal{X}$, define the weights w_x^{n-1} and probabilities $u^n(x)$ as follows:*

$$w_x^{n-1} = e^{-\eta \sum_{i=1}^{n-1} \ell_i(e_x)}, \quad u^n(x) = \frac{w_x^{n-1}}{\sum_{x' \in \mathcal{X}} w_{x'}^{n-1}},$$

where e_x is the x -th standard basis vector in $\mathbb{R}^{|\mathcal{X}|}$. Then, choosing $u^n = \{u^n(x)\}_{x \in \mathcal{X}}$ (exponential weights used with learning rate η) satisfies:

$$\sum_{n=1}^N \ell^n(u^n) \leq \min_{x \in \mathcal{X}} \sum_{n=1}^N \ell^n(e_x) + \frac{\log |\mathcal{X}|}{\eta}.$$

Lemma 39 (Restatement of Lemma A.14 in [17]). *Under the realizability assumption, where there exists $g_* := g_{i_*} \in \mathcal{G}$ such that for all $n \in [N]$,*

$$y^n \sim g_*^n(\cdot | x^n) \mid x^n, \mathcal{H}^{n-1},$$

where \mathcal{H}^{n-1} denotes all histories at the beginning of round n .

Then, for any estimation algorithm and any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\sum_{n=1}^N \mathbb{E}_{n-1} [D_{\mathcal{H}}^2(\hat{g}^n(x^n), g_*^n(x^n))] \leq \sum_{n=1}^N (\ell_{\log}^n(\hat{g}^n) - \ell_{\log}^n(g_*^n)) + 2 \log(\delta^{-1}).$$

where $\ell_{\log}^n(g) := \log(1/g(y^n | x^n))$, and $\mathbb{E}_n[\cdot] := \mathbb{E}[\cdot | \mathcal{H}^n]$.

We have the following well-known lemma for causally-conditioned probability (e.g. [81]).

Definition 40. *The causally-conditioned probability of state sequence $s_{1:H}$ given action sequence $a_{1:H-1}$, is defined as*

$$\mathbb{P}^{\mathcal{M}}(s_{1:H} \parallel a_{1:H-1}) = P_0(\mathbf{E}') \prod_{h=1}^{H-1} P_h(s_{h+1} \mid s_h, a_h)$$

Lemma 41. *For any Markovian policy π ,*

$$\mathbb{P}^{\pi}(s_{1:H}, a_{1:H}) = \mathbb{P}^{\mathcal{M}}(s_{1:H} \parallel a_{1:H-1}) \cdot \pi(a_{1:H} \parallel s_{1:H}), \quad (21)$$

and for any first-step mixing of Markovian policy π_u ,

$$\mathbb{P}^{\pi_u}(s_{1:H}, a_{1:H}) = \mathbb{P}^{\mathcal{M}}(s_{1:H} \parallel a_{1:H-1}) \cdot \pi_u(a_{1:H} \parallel s_{1:H}). \quad (22)$$

Proof. Eq. (21) follows by noticing that both sides are equal to

$$P_0(\mathbf{E}') \prod_{h=1}^{H-1} P_h(s_{h+1} \mid s_h, a_h) \prod_{h=1}^H \pi_h(a_h \mid s_h).$$

Eq. (22) follows by noticing that both sides are equal to

$$\sum_{\nu} u(\nu) P_0(\mathbf{E}') \prod_{h=1}^{H-1} P_h(s_{h+1} \mid s_h, a_h) \prod_{h=1}^H \nu_h(a_h \mid s_h).$$

□

G Experiment Details

We compare WARM-STAGGER with Behavior Cloning (BC) and STAGGER on continuous-control tasks from OpenAI Gym MuJoCo [73, 7] with episode length $H = 1000$.

Infrastructure and Implementation. All experiments were conducted on a Linux workstation equipped with an Intel Core i9 CPU (3.3GHz) and four NVIDIA GeForce RTX 2080 Ti GPUs. Our implementation builds on the publicly available DRIL framework [6] (<https://github.com/xkianteb/dril>), with modifications to support online learning. The continuous control environments used in our experiments are: “HalfCheetahBulletEnv-v0”, “AntBulletEnv-v0”, “Walker2DBulletEnv-v0”, and “HopperBulletEnv-v0”. We include an anonymous link to our implementation here: <https://github.com/liyichen1998/Interactive-and-Hybrid-Imitation-Learning-Provably-Beating-Behavior-Cloning>.

Environments and Expert Policies. We use four MuJoCo environments: Ant, Hopper, HalfCheetah, and Walker2D. The expert policy is a deterministic MLP pretrained via TRPO [52, 53], with two hidden layers of size 64.

Learner Architecture. The learner uses the same MLP architecture as the expert. Following [16], we use a diagonal Gaussian policy:

$$\pi(a \mid s) = \mathcal{N}(f_{\theta}(s), \text{diag}(\sigma^2)),$$

where $f_{\theta}(s) \in \mathbb{R}^{d_{\mathcal{A}}}$ is the learned mean, and $\sigma \in \mathbb{R}^{d_{\mathcal{A}}}$ is a learnable log-standard deviation vector.

Each model is trained from random initialization using a batch size of 100, a learning rate of 10^{-3} , and up to 2000 passes over the dataset, with early stopping evaluated every 250 passes using a 20% held-out validation set.

Learning Protocols. To evaluate the performance of BC against the number of states annotated, we reveal expert state-action pairs sequentially along expert trajectories until the annotation budget is reached. For STAGGER, each round it rolls out the latest policy, samples a state uniformly from the trajectory, queries it for the expert action, and updates immediately.

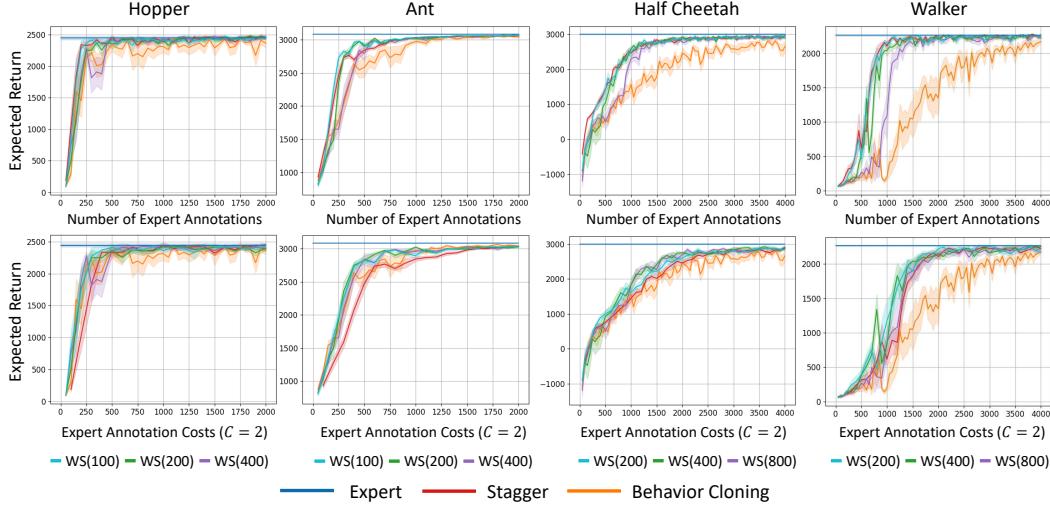


Figure 4: Sample and cost efficiency on MuJoCo tasks. The top row shows expected return vs. number of annotations ($C = 1$); the bottom row shows performance under a cost-aware setting ($C = 2$). WARM-STAGGER (WS) is initialized with 1/20, 1/10, or 1/5 of the samples as offline demonstrations. It matches STAGGER in sample efficiency and outperforms the baselines when $C = 2$, especially WS(1/5).

For WARM-STAGGER, we begin with BC and switch to STAGGER after a predefined number of offline state-action pairs has been used, denoted as N . We set N to be 100, 200, or 400 for easier tasks (e.g., Hopper, Ant) and 200, 400, or 800 for harder tasks (e.g., HalfCheetah, Walker2D).

Cost Model and Evaluation. We assign a cost of 1 to each offline state-action pair and a cost of $C = 1$ or 2 to each interactive query. We run each method for 10 random seeds. For every 50 new state-action pairs collected, we evaluate the current policy by running 25 full-episode rollouts and reporting the average return.

Though the nonrealizable setting is beyond the scope of this work, we expect that some variant of our algorithm can still give reasonable performance, provided that the policy class is expressive enough (so that the approximation error is nonzero but small). For example, [33] observed that with nonrealizable stochastic experts, DAgger variants outperform BC, and exhibit learning curves similar to ours.

G.1 Additional Experiment Plots

We present extended experiment results with larger cost budgets. As shown in Figure 4, we allocate a total annotation budget of 2000 for Hopper and Ant, and 4000 for HalfCheetah and Walker. This complements Figure 3 in the main paper by showing the full training curves without zooming into the stage with small cost budget. The trends are consistent with our earlier observations: WARM-STAGGER achieves similar or better sample efficiency compared to STAGGER when $C = 1$, and clearly outperforms both baselines under the cost-aware setting where $C = 2$.

G.2 Experiment with MSE Loss

We additionally evaluate our algorithms using mean squared error (MSE) as the loss function for optimization. All training settings remain identical to the main experiments with log loss, except that we use a learning rate of 2.5×10^{-4} . As shown in Figure 5, we observe qualitatively similar results to those under log loss shown in 3, consistent with prior observations in [16], with the added benefit of more stable training dynamics.

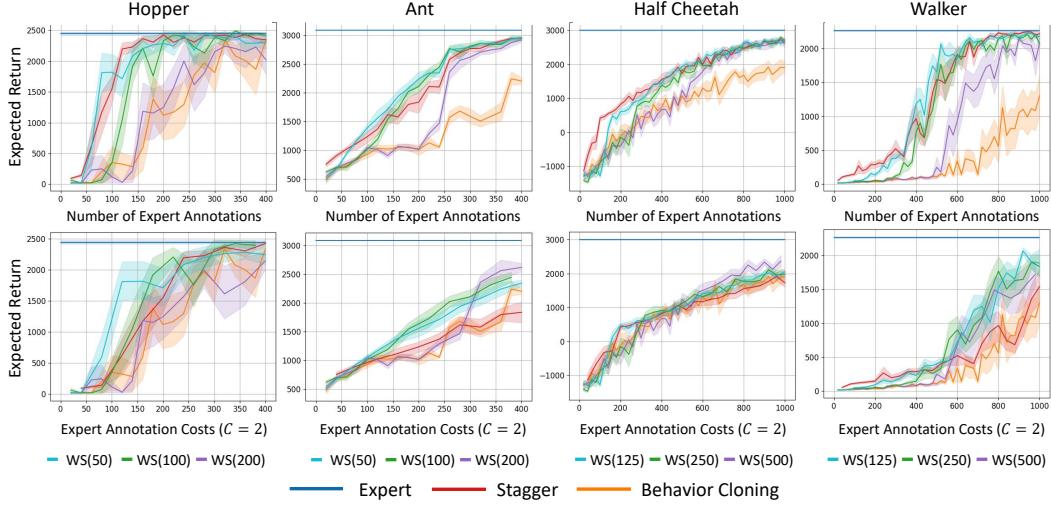


Figure 5: Performance comparison under MSE loss across MuJoCo tasks. Results show that WARM-STAGGER (WS) achieves comparable sample efficiency and performance to the log loss setting, with improved training stability. Each curve represents the average over 10 seeds.

G.3 Additional Experiments with Algorithm 3

For completeness, we evaluate TRAGGER and its warm-start variant (WARM-TRAGGER), as shown in Algorithm 4, on continuous control tasks and the same MDP setup as in Figure 2. The key distinction between WARM-TRAGGER and WARM-STAGGER lies in the annotation mode: the former employs trajectory-wise oracle feedback instead of state-wise annotation, leading to notably different behaviors, as shown in Figure 6.

In particular, for Ant and HalfCheetah, the sample efficiency ($C = 1$) of TRAGGER and WARM-TRAGGER is significantly worse than that of STAGGER due to the cold-start problem: early DAgger rollouts have poor state coverage but must still proceed until the end of each trajectory. In contrast, STAGGER samples only a single state per trajectory, thereby better leveraging interactive feedback.

For Hopper and Walker, however, TRAGGER and WARM-TRAGGER achieve performance closer to STAGGER. These environments feature hard resets when the agent fails (unlikely in Ant and never in HalfCheetah), which truncate poor trajectories and consequently improve sample efficiency.

Overall, these observations suggest a natural middle ground between full-trajectory and single-state annotation—namely, batch queries (e.g., sampling 50 states per trajectory), as explored by [33] with comparable results.

A head-to-head comparison between TRAGGER and STAGGER, as well as between WARM-TRAGGER and WARM-STAGGER, is shown in Figure 7, highlighting the advantage of state-wise over trajectory-wise annotation.

However, this advantage does not hold in general: in the toy MDP in Figure 2, TRAGGER and WARM-TRAGGER achieve performance nearly identical to STAGGER and WARM-STAGGER, as shown in Figure 8.

Algorithm 4 WARM-TRAGGER: Warm-start TRAGGER with offline demonstrations

1: **Input:** MDP \mathcal{M} , trajectory-wise expert annotation oracle $\mathcal{O}^{\text{Traj}}$, Markovian policy class \mathcal{B} , online learning oracle \mathbb{A} , offline expert dataset D_{off} of size N_{off} , online budget N_{int}
2: Initialize \mathbb{A} with policy class $\mathcal{B}_{\text{bc}} := \{\pi \in \mathcal{B} : \pi(s) = \pi^{\text{E}}(s), \forall s \in D_{\text{off}}\}$.
3: **for** $n = 1, \dots, N_{\text{int}}/H$ **do**
4: Query \mathbb{A} and receive π^n .
5: Execute π^n and sample $s_{1:H}^n$ following \mathbb{P}^{π^n} . Query $\mathcal{O}^{\text{Traj}}$ for $a_{1:H}^{*,n} = \pi^{\text{E}}(s_{1:H}^n)$.
6: Update \mathbb{A} with loss function

$$\ell^n(\pi) := \log \left(\frac{1}{\pi(a_{1:H}^{*,n} \parallel s_{1:H}^n)} \right). \quad (23)$$

7: **end for**
8: **Output:** $\hat{\pi}$, a first-step uniform mixture of $\{\pi^1, \dots, \pi^N\}$.

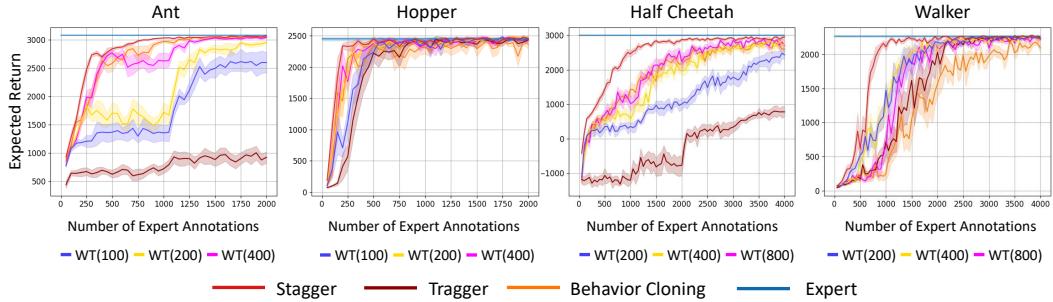


Figure 6: Sample efficiency of algorithms on MuJoCo tasks, showing expected return vs. number of annotations ($C = 1$). WARM-TRAGGER (WT) is initialized with 1/20, 1/10, or 1/5 of the total annotation budget as offline demonstrations. Specifically, $WT(n)$ refers to WT with offline demonstrations of total length n . Although the performance of WT improves with more offline demonstrations, both TRAGGER and WARM-TRAGGER remain inferior to STAGGER and, in many cases, even underperform Behavior Cloning, confirming the advantage of state-wise over trajectory-wise annotations.

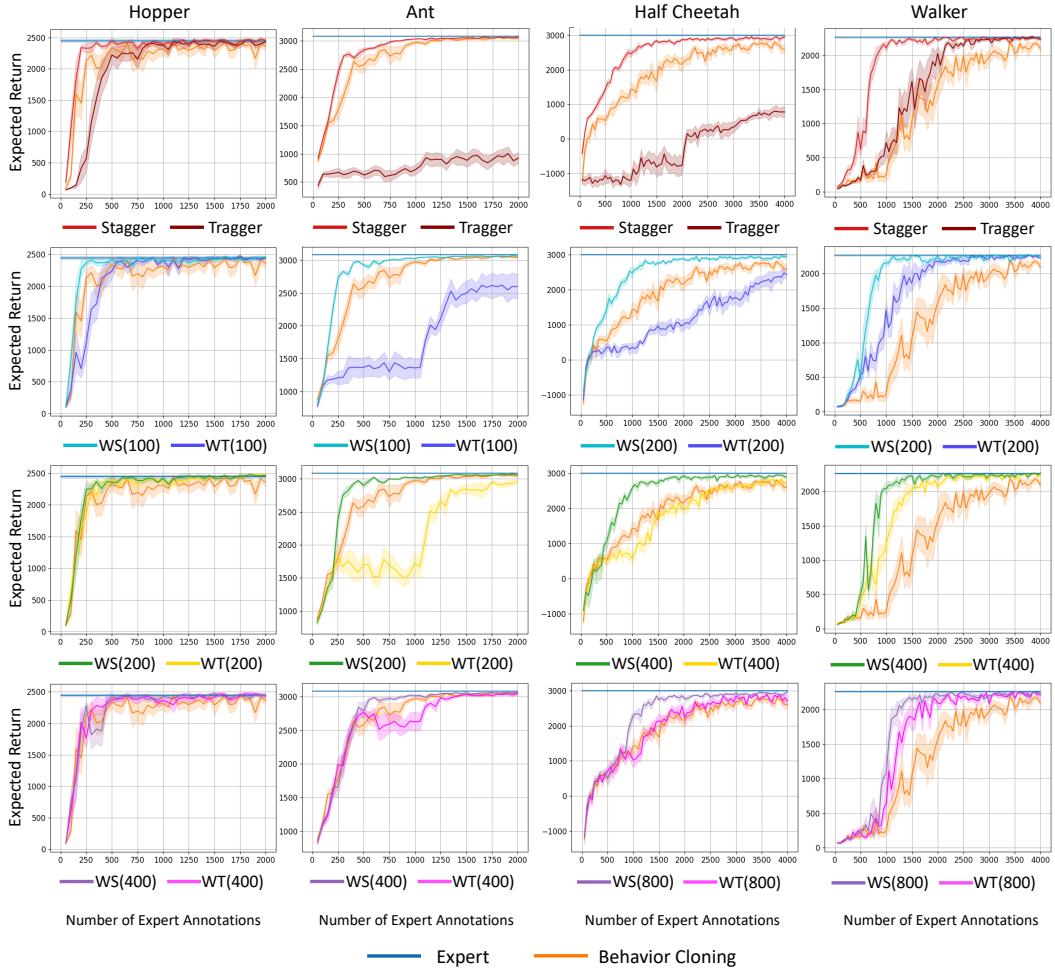


Figure 7: Head-to-head sample efficiency comparison between TRAGGER and STAGGER, and between WARM-TRAGGER and WARM-STAGGER under equal (since we are talking about comparison here) offline demonstration budgets. STAGGER and WARM-STAGGER consistently outperform TRAGGER and WARM-TRAGGER. The performance gap narrows as the offline budget increases, effectively alleviating the cold-start problem suffered by TRAGGER.

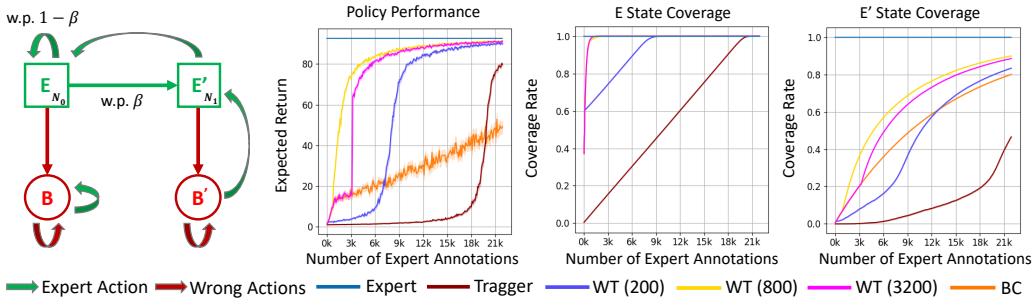


Figure 8: Similar to Figure 2, we evaluate TRAGGER and WARM-TRAGGER (WT) with 200, 800, 3200 offline (state, expert action) pairs in the toy MDP therein. All methods are evaluated under equal total annotation cost with $C = 1$. With 800 offline (state, expert action) pairs, WT significantly improves the sample efficiency over the baselines and explores E' more effectively. The performance of TRAGGER and WARM-TRAGGER is almost the same as STAGGER and WARM-STAGGER in Figure 2.