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Abstract

In constrained MDPs (CMDPs) with adversarial rewards and constraints, a known
impossibility result prevents any algorithm from attaining sublinear regret and
constraint violation, when competing against a best-in-hindsight policy that satisfies
the constraints on average. In this paper, we show how to ease such a negative result,
by considering settings that generalize both stochastic CMDPs and adversarial
ones. We provide algorithms whose performances smoothly degrade as the level of
environment adverseness increases. Specifically, they attain Õ(

√
T + C) regret

and positive constraint violation under bandit feedback, where C measures the
adverseness of rewards and constraints. This is C = Θ(T ) in the worst case,
coherently with the impossibility result for adversarial CMDPs. First, we design
an algorithm with the desired guarantees when C is known. Then, in the case C
is unknown, we obtain the same results by embedding multiple instances of such
an algorithm in a general meta-procedure, which suitably selects them so as to
balance the trade-off between regret and constraint violation.

1 Introduction

Reinforcement learning [Sutton and Barto, 2018] is concerned with settings where a learner sequen-
tially interacts with an environment modeled as a Markov decision process (MDP) [Puterman, 2014].
Most of the works in the field focus on learning policies that maximize learner’s rewards. However,
in most of the real-world applications of interest, the learner also has to meet some additional require-
ments. For instance, bidding agents in ad auctions must not deplete their budget [Wu et al., 2018, He
et al., 2021], users of recommender systems must not be exposed to offending content [Singh et al.,
2020], and online companies must ensure a minimum number of items are sold while maximizing the
associated profits [Stradi et al., 2024a]. Requirements of this kind can be usually captured by means
of constrained MDPs (CMDPs) [Altman, 1999], which generalize MDPs by specifying constraints
that the learner has to satisfy while maximizing their rewards.

In this paper, we study online learning problems in episodic CMDPs (see, e.g., [Efroni et al., 2020]),
where the goal of the learner is twofold. On the one hand, the learner wants to minimize their regret,
which measures how much reward they lost over the episodes compared to what they would have
obtained by always using a best-in-hindsight constraint-satisfying policy. On the other hand, the
learner wants to ensure that the (cumulative) constraint violation is minimized during the learning
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process. Ideally, one seeks to design algorithms with both regret and constraint violation growing
sublinearly in the number of episodes T . A crucial feature distinguishing online learning problems
in CMDPs is whether rewards and constraints are selected stochastically or adversarially. Most
of the works in the literature focus on the case in which constraints are stochastic (see, e.g., [Wei
et al., 2018, Zheng and Ratliff, 2020, Efroni et al., 2020, Qiu et al., 2020, Liu et al., 2021, Bai et al.,
2023]), with only one exception addressing settings with adversarial constraints [Stradi et al., 2024b,
2025c]. This is primarily motivated by a well-known impossibility result by Mannor et al. [2009],
which prevents any learning algorithm from attaining both sublinear regret and sublinear constraint
violation, when competing against a best-in-hindsight policy that satisfies the constraints on average.
However, dealing with adversarially-selected rewards and constraints is of paramount importance
to cope with real-world environments, which are typically non-stationary. For instance, adversarial
reward and constraints are present in those settings where the environment encompasses other agents.

1.1 Original Contributions

The main contribution of this paper is to show how to ease the negative result by Mannor et al.
[2009]. In order to do so, we consider non-stationary settings that generalize both stochastic CMDPs
and adversarial ones. Specifically, we address CMDPs where rewards and constraints are selected
from probability distributions that are allowed to change adversarially from episode to episode.
Thus, our CMDPs bridge the gap between fully-stochastic and fully-adversarial ones. We design
algorithms whose performances—in terms of regret and constraint violation—smoothly degrade as a
suitable measure of the adverseness of rewards and constraints increases. This is called (adversarial)
corruption, and it intuitively quantifies how much the distributions of rewards and constraints vary
over the episodes with respect to some suitable “fictitious” non-corrupted counterparts.

We propose algorithms that attain Õ(
√
T + C) regret and constraint violation, where C denotes the

corruption of the setting. We remark that C = Θ(T ) in the worst case, and, thus, our bounds are
coherent with the impossibility result by Mannor et al. [2009]. Moreover, in stochastic CMDPs, our
bounds reduce to state-of-the-art Õ(

√
T ) bounds [Efroni et al., 2020]. Notably, our algorithms work

under bandit feedback, namely by only observing rewards and constraint costs of the state-action
pairs visited during episodes. Moreover, they are able to manage positive constraint violation. This
means that they do not allow for a negative violation (i.e., a constraint satisfaction) to cancel out a
positive one across different episodes. This is a crucial for most of the practical applications. For
instance, in autonomous driving, avoiding a collision does not “repair” a previous crash.

In the first part of the paper, we design an algorithm (NS-SOPS) that works assuming C is known.
NS-SOPS achieves Õ(

√
T + C) regret and positive constraint violation by using a policy search

method optimistic in both reward maximization and constraint satisfaction. Specifically, NS-SOPS
incorporates C in confidence bounds, so as to “boost” optimism and achieve the desired guarantees.

In the second part of the paper, we show how to embed the NS-SOPS algorithm in a meta-procedure
that allows to achieve Õ(

√
T + C) regret and positive constraint violation when C is unknown. The

meta-procedure works by instantiating multiple instances of an algorithm for the case in which C is
known, each one taking care of a different “guess” on the value of C. Specifically, the meta-procedure
acts as a master by choosing which instance to follow in order to select a policy at each episode. To do
so, it employs an adversarial online learning algorithm, which is fed with losses constructed starting
from the Lagrangian of the CMDP problem, suitably modified to account for positive constraint
violation.

1.2 Related Works

CMDPs with stochastic rewards and constraints have been widely investigated. However, their
adversarial counterparts are still largely unexplored. In the following, we discuss the works that are
most related to ours, while Appendix A provides a comprehensive survey of related works.

Qiu et al. [2020] provide the first primal-dual approach to deal with episodic CMDPs with adversarial
losses and stochastic constraints, achieving, under full feedback, both sublinear regret and sublinear
(non-positive) constraint violation (i.e., allowing for cancellations). Stradi et al. [2025a] are the first to
tackle CMDPs with adversarial losses and stochastic constraints under bandit feedback, by proposing
an algorithm that achieves sublinear regret and sublinear positive constraint violation. These works
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do not consider settings where constraints may change over the episodes. Stradi et al. [2024b, 2025c]
study CMDPs with adversarial constraints: the former studies CMDPs with full feedback, the latter
focuses on the bandit-feedback setting. Given the impossibility result by Mannor et al. [2009], they
propose algorithms that attain sublinear (non-positive) constraint violation (i.e., with cancellations
allowed) and a fraction of the optimal reward, thus resulting in a regret growing linearly in T . We
show that sublinear regret and sublinear constraint violation can indeed be attained simultaneously
if one takes into account the corruption C. Moreover, let us remark that our algorithms deal with
positive constraint violation, and, thus, they are much more general than those in [Stradi et al., 2024b,
2025c].

The work is also closely related to corruption-robust online learning, which, while well-established in
different settings, such as unconstrained MDPs with corrupted transitions, remains largely unexplored
for CMDPs. Specifically, Lykouris et al. [2021] are the first to establish sublinear regret guarantees
for MDPs with corrupted rewards and transitions under bandit feedback, achieving Õ(C

√
T ) regret

without requiring prior knowledge of C. Chen et al. [2021] are the first to provide a regret bound
that additively depends on C, namely of the order of Õ(

√
T + C2). This result is improved by Wei

et al. [2022], who show a regret bound of order Õ(
√
T + C) under the same conditions. Finally,

very recently Jin et al. [2024] study MDPs with adversarial rewards and corrupted transitions, under
bandit feedback and unknown corruption value, attaining regret Õ(

√
T + CP ), where CP is the

corruption associated with the transitions. While the techniques employed in these works share some
similarities with ours, they cannot be easily extended to CMDPs. This is because CMDPs involve
a dual objective: minimizing the regret while ensuring low constraint violation. This cannot be
achieved through standard corralling techniques that are commonly used in the corruption-robust
online learning [Agarwal et al., 2017], as these are designed to deal with single-objective settings.

Finally, there is also a related literature that focuses on non-stationary CMDPs. While in such settings
the learner-environment interaction closely resembles ours, the performance metrics are different
from ours and not easily comparable. Specifically, Ding and Lavaei [2023] and Wei et al. [2023]
consider the case in which rewards and constraints are non-stationary, assuming that their variation
is bounded. Our work differs from theirs in multiple aspects. First, we consider positive constraint
violation, while they allow for cancellations. As concerns the definition of regret, ours and that by
Ding and Lavaei [2023] and Wei et al. [2023] are not comparable. Indeed, they employ a dynamic
regret baseline, which, in general, is harder than the static regret employed in our work. However,
they compare learner’s performances against a dynamic policy that satisfies the constraints at every
round. Instead, we consider a policy that satisfies the constraints on average, which can perform
arbitrarily better than a policy satisfying the constraints at every round. Furthermore, the dependence
on T in their regret bound is much worse than ours, even when the non-stationarity is small, namely
when it is a constant independent of T and does not affect our regret bound. Finally, we do not make
any assumption on T , while the bounds in [Wei et al., 2023] only hold for large T .

2 Constrained Markov Decision Processes

We study episodic constrained MDPs (CMDPs) [Altman, 1999], in which a learner interacts with an
unknown environment over T episodes, with the goal of maximizing long-term rewards subject to
some constraints. X is a finite set of states of the environment, A is a finite set of actions available
to the learner in each state, while the environment dynamics is governed by a transition function
P : X × A ×X → [0, 1], with P (x′|x, a) denoting the probability of going from state x ∈ X to
x′ ∈ X by taking action a ∈ A.1 At each episode t ∈ [T ],2 a reward vector rt ∈ [0, 1]|X×A| is
sampled according to a probability distributionRt, with rt(x, a) being the reward of taking action
a ∈ A in state x ∈ X at episode t. Moreover, a constraint cost matrixGt ∈ [0, 1]|X×A|×m is sampled
according to a probability distribution Gt, with gt,i(x, a) being the cost of constraint i ∈ [m] when

1In this paper, we consider w.l.o.g. loop-free CMDPs. This means that X is partitioned into L layers
X0, . . . , XL such that the first and the last layers are singletons, i.e., X0 = {x0} and XL = {xL}. Moreover,
the loop-free property implies that P (x′|x, a) > 0 only if x′ ∈ Xk+1 and x ∈ Xk for some k ∈ [0 . . . L− 1].
Notice that any episodic CMDP with horizon L that is not loop-free can be cast into a loop-free one by suitably
duplicating the state space L times, i.e., a state x is mapped to a set of new states (x, k), where k ∈ [0 . . . L].

2In this paper, we denote by [a . . . b] the set of all the natural numbers from a ∈ N to b ∈ N (both included),
while [b] := [1 . . . b] is the set of the first b ∈ N natural numbers.
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taking action a ∈ A in state x ∈ X at episode t. We also denote by gt,i ∈ [0, 1]|X×A| the vector
of all the costs gt,i(x, a) associated with constraint i at episode t. Each constraint requires that its
corresponding expected cost is kept below a given threshold. The thresholds of all the m constraints
are encoded in a vector α ∈ [0, L]m, with αi denoting the threshold of the i-th constraint.

We consider a setting in which the sequences of probability distributions {Rt}Tt=1 and {Gt}Tt=1
are selected adversarially. Thus, reward vectors rt and constraint cost matrices Gt are random
variables whose distributions are allowed to change arbitrarily from episode to episode. In other
terms, they exhibit non-stationarity. To measure how much such probability distributions change
over the episodes, we introduce the notion of (adversarial) corruption. In particular, we define the
adversarial corruption Cr for the rewards as:

Cr := min
r∈[0,1]|X×A|

∑
t∈[T ]

∥E[rt]− r∥1 . (1)

Intuitively, the corruption Cr encodes the sum over all episodes of the distances between the means
E[rt] of the adversarial distributions Rt and a “fictitious” non-corrupted reward vector r. Notice
that a similar notion of corruption has been employed in unconstrained MDPs to measure the non-
stationarity of transition probabilities; see [Jin et al., 2024]. In the following, we let r◦ ∈ [0, 1]|X×A|

be a reward vector that attains the minimum in the definition of Cr. Similarly, we introduce the
adversarial corruption CG for constraint costs, which is defined as follows:

CG := min
G∈[0,1]|X×A|×m

∑
t∈[T ]

max
i∈[m]
∥E[gt,i]− gi∥1, (2)

where gi is the i-th component of G. In the following, we let G◦ ∈ [0, 1]|X×A|×m be the constraint
cost matrix that attains the minimum in the definition of CG. Finally, the total adversarial corruption
C is defined as C := max{CG, Cr}.

Algorithm 1 Learner-Environment Interaction

1: Rt and Gt are chosen adversarially
2: Choose a policy πt : X ×A→ [0, 1]
3: Observe initial state x0
4: for k = 0, . . . , L− 1 do
5: Play ak ∼ πt(·|xk)
6: Observe rt(xk, ak) and gt,i(xk, ak) for i ∈ [m]
7: Observe new state xk+1 ∼ P (·|xk, ak)

Algorithm 1 summarizes how the learner
interacts with the environment at episode
t ∈ [T ]. In particular, the learner chooses a
policy π : X ×A→ [0, 1] at each episode,
defining a probability distribution over ac-
tions to be employed in each state. For ease
of notation, we denote by π(·|x) the prob-
ability distribution for a state x ∈ X , with
π(a|x) being the probability of selecting
action a ∈ A. Let us remark that we as-
sume that the learner knows X and A, but they do not know anything about P . Moreover, the
feedback received by the learner after each episode is bandit, as they observe the realizations of
rewards and costs only for the state-action pairs (xk, ak) actually visited during that episode.

Occupancy Measures Given a transition function P and a policy π, we let qP,π ∈ [0, 1]|X×A×X|

be the occupancy measure induced by P and π. For x ∈ Xk, a ∈ A, x′ ∈ Xk+1 with k ∈ [0 . . . L−1]:
qP,π(x, a, x′) := P[xk = x, ak = a, xk+1 = x′|P, π],

which is the probability that the learner reaches state x, plays action a, and gets to state x′. Moreover,
we also define qP,π(x, a) :=

∑
x′∈Xk+1

qP,π(x, a, x′) and qP,π(x) :=
∑

a∈A q
P,π(x, a). Follow-

ing [Rosenberg and Mansour, 2019b], we say that q ∈ [0, 1]|X×A×X| is a valid occupancy measure
of an episodic loop-free CMDP if and only if it satisfies the following three conditions:

(i)
∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) = 1 ∀k ∈ [0 . . . L− 1],

(ii)
∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) =
∑

x′∈Xk−1

∑
a∈A

q(x′, a, x) ∀k ∈ [1 . . . L− 1],∀x ∈ Xk,

(iii) P q = P,

where P is the transition function of the CMDP and P q is the one induced by q (as outlined next).
Notice that any valid occupancy measure q induces a transition function P q and a policy πq, which
are defined as P q(x′|x, a) = q(x,a,x′)

q(x,a) and πq(a|x) = q(x,a)
q(x) .
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2.1 Performance Metrics

In order to define the performance metrics used to evaluate our online learning algorithms, we need
to introduce an offline optimization problem. Given a CMDP with transition function P , we define
the following parametric linear program (Program (3)), which is parametrized by a reward vector
r ∈ [0, 1]|X×A|, a constraint cost matrix G ∈ [0, 1]|X×A|×m and a threshold vector α ∈ [0, L]m.

OPTr,G,α :=

{
maxq∈∆(P ) r⊤q s.t.

G⊤q ≤ α, (3)

where q ∈ [0, 1]|X×A| is a vector encoding an occupancy measure, and ∆(P ) is the set of all valid
occupancy measures given the transition function P . We say that an instance of Program (3) satisfies
Slater’s condition if the following condition holds.
Condition 1 (Slater). There exists an occupancy measure q◦ ∈ ∆(P ) such that G⊤q◦ < α.

We also introduce a problem-specific feasibility parameter ρ ∈ [0, L] related to Program (3), defined
as ρ := supq∈∆(P ) mini∈[m]

[
α−G⊤q

]
i
.3. Intuitively, ρ represents by how much feasible solutions

to Program (3) strictly satisfy the constraints. Condition 1 is equivalent to say ρ > 0, and, whenever
ρ = 0, there is no occupancy measure that strictly satisfies the constraints in Program (3).

Now, we introduce the notion of (cumulative) regret and (cumulative) positive constraint violation,
which are the performance metrics used to evaluate algorithms. The regret over T episodes is

RT := T · OPTr,G,α −
∑
t∈[T ]

E[rt]⊤qP,πt ,

where r := 1
T

∑T
t=1 E[rt] and G := 1

T

∑T
t=1 E[Gt]. In the following, we denote by q∗ an occupancy

measure solving Program (3) instantiated with r,G, and α, while its corresponding policy is π∗. Thus,
OPTr,G,α = r⊤q∗ and the regret can be written as RT :=

∑T
t=1 E[rt]⊤(q∗ − qP,πt). Furthermore,

the cumulative positive constraint violation over T episodes is defined as

VT := max
i∈[m]

∑
t∈[T ]

[
E[Gt]

⊤qP,πt − α
]+
i
, where we let [·]+ := max{0, ·}.

For ease of notation, we refer to qP,πt as qt, thus omitting the dependency on P and π.
Remark 1 (Relation with adversarial/stochastic CMDPs). Our setting naturally encompasses both
stochastic and adversarial CMDPs. Indeed, if the distributions Rt and Gt do not change over the
episodes, then we recover a CMDP with stochastic rewards and constraints. Moreover, when the
supports ofRt and Gt are singletons (and, thus, mean values are fully revealed), our setting reduces
to a CMDP with adversarial rewards and constraints, sinceRt and Gt are selected adversarially.
Remark 2 (Impossibility results carrying over from adversarial CMDPs). Mannor et al. [2009] show
that, in online learning problems with constraints selected adversarially, it is impossible to achieve
both regret and constraint violation growing sublinearly in T . This result holds for a regret definition
that corresponds to ours. Thus, it carries over to our setting. This is why we look for algorithms
whose regret and positive constraint violation scale as Õ(

√
T +C), with a linear dependency on the

adversarial corruption C. Notice that the impossibility result by Mannor et al. [2009] does not rule
out the possibility of achieving such a guarantee, since regret and positive constraint violation are
not sublinear when C grows linearly in T , as it could be the case in a classical adversarial setting.

3 Learning When C is Known: More Optimism is All You Need

We start studying the case in which the learner knows the adversarial corruption C. We propose an
algorithm (called NS-SOPS, see Algorithm 2), which adopts a suitably-designed UCB-like approach
encompassing the adversarial corruption C in the confidence bounds of rewards and constraint costs.
This effectively results in “boosting” the optimism of the algorithm, and it allows to achieve regret
and positive constraint violation of the order of Õ(

√
T + C). The NS-SOPS algorithm is a crucial

building block to deal with the case in which C is not known, as we show in the following section.
3Given a vector y, we denote by [y]i its i-th component.
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3.1 NS-SOPS: Non-Stationary Safe Optimistic Policy Search

Algorithm 2 provides the pseudocode of the non-stationary safe optimistic policy search (NS-SOPS)
algorithm. The algorithm keeps track of suitably-defined confidence bounds for transitions, rewards,
and constraint costs. At each episode t ∈ [T ], the algorithm builds a confidence set Pt for the
transition function P by following the same approach as Jin et al. [2020] (see Appendix G for its
definition). Instead, for rewards and constraint costs, the algorithm adopts novel enlarged confidence
bounds, which are suitably designed to tackle non-stationarity.

Given any confidence parameter δ ∈ (0, 1), by letting Nt(x, a) be the total number of visits to the
state-action pair (x, a) ∈ X × A up to episode t, the confidence bound for the reward rt(x, a) is

ϕt(x, a) := min
{
1,
√

ln(2T |X||A|/δ)
2max{Nt(x,a),1} + C

max{Nt(x,a),1} + C
T

}
, while the bound for the constraint

cost gt,i(x, a) is ξt(x, a) := min
{
1,
√

ln(2mT |X||A|/δ)
2max{Nt(x,a),1} + C

max{Nt(x,a),1} + C
T

}
. Intuitively, the

first term in the expressions above is derived from Azuma-Hoeffding inequality, the second term
allows to deal with the non-stationarity of rewards and constraint costs, while the third term is
needed to bound how much the averages r and [G]i differ from their “fictitious” non-corrupted
counterparts r◦ and [G◦]i, respectively. Algorithm 2 also computes empirical rewards and constraint
costs. At each episode t ∈ [T ], for any state-action pair (x, a) ∈ X × A and constraint i ∈ [m],

such estimates are defined as r̂t(x, a) :=
∑

τ∈[t] Iτ (x,a)rτ (x,a)
max{Nt(x,a),1} and ĝt,i(x, a) :=

∑
τ∈[t] Iτ (x,a)gτ,i(x,a)
max{Nt(x,a),1} ,

where Iτ (x, a) = 1 if and only if the pair (x, a) is visited during episode τ , while Iτ (x, a) = 0

otherwise. For ease of notation, we let Ĝt ∈ [0, 1]|X×A|×m be the matrix with components ĝt,i(x, a).
We refer to Appendix C for a detailed treatment of all the results related to confidence bounds.

Algorithm 2 NS-SOPS

Require: C, δ ∈ (0, 1)
1: π1 ← select any policy
2: for t ∈ [T ] do
3: Choose policy πt in Algorithm 1 and

..... observe feedback from interaction
4: Compute Pt, rt, and Gt
5: q ← solution to OPT-CB∆(Pt),rt,Gt,α

6: if problem is feasible then
7: q̂t+1 ← q
8: else
9: q̂t+1 ← take any q ∈ ∆(Pt)

10: πt+1 ← πq̂t+1

Algorithm 2 selects policies with an UCB-like ap-
proach encompassing optimism in both rewards
and constraints satisfaction, following an approach
similar to that employed by Efroni et al. [2020].
Specifically, at each episode t ∈ [T ] and for any
state-action pair (x, a) ∈ X × A, the algorithm
employs an upper confidence bound for the reward
rt(x, a), defined as rt(x, a) := r̂t(x, a)+ϕt(x, a),
while it uses lower confidence bounds for the con-
straint costs gt,i(x, a), defined as g

t,i
(x, a) :=

ĝt,i(x, a) − ξt(x, a) for every constraint i ∈ [m].
Then, by letting rt ∈ [0, 1]|X×A| be the vector with
components rt(x, a) and Gt be the matrix with en-
tries g

t,i
(x, a), Algorithm 2 chooses the policy to

be employed in the next episode t+ 1 by solving the following linear program:

OPT-CB∆(Pt),rt,Gt,α
:=

{
argmaxq∈∆(Pt) r⊤t q s.t.

G⊤
t q ≤ α,

(4)

where ∆(Pt) is the set of all the possible valid occupancy measures given the confidence set Pt

(see Appendix G). If OPT-CB∆(Pt),rt,Gt,α
is feasible, its solution is used to compute a policy to be

employed in the next episode, otherwise the algorithm uses any occupancy measure in ∆(Pt).

3.2 Theoretical Guarantees of NS-SOPS

Next, we prove the theoretical guarantees attained by Algorithm 2 (see Appendix D for complete
proofs of the theorems and associated lemmas). First, we analyze the positive cumulative violation
incurred by the algorithm. Formally, we can state the following result.
Theorem 2. Given any δ ∈ (0, 1), with probability at least 1 − 8δ, Algorithm 2 attains positive

violation VT = O
(
L|X|

√
|A|T ln (mT |X||A|/δ) + ln(T )|X||A|C

)
.

Intuitively, Theorem 2 is proved by showing that every constraint-satisfying occupancy measure is
also feasible for Program (4) with high probability. This holds since Program (4) employs lower
confidence bounds for constraint costs. Thus, in order to bound VT , it is sufficient to analyze at which

6



rate the feasible region of Program (4) concentrates to the true one (i.e., the one defined by G in
Program (3)). Since by definition of ξt(x, a) the feasibility region of Program (4) concentrates as
1/
√
t+ C/t, the resulting bound for the positive violation VT is of the order of Õ(

√
T + C).

The regret guaranteed by Algorithm 2 is formalized by the following theorem.

Theorem 3. Given any δ ∈ (0, 1), with probability at least 1 − 9δ, Algorithm 2 attains regret

RT = O
(
L|X|

√
|A|T ln (T |X||A|/δ) + ln(T )|X||A|C

)
.

Theorem 3 is proved similarly to Theorem 2. Indeed, since every constraint-satisfying occupancy
measure is feasible for Program (4) with high probability, this also holds for q∗, as it satisfies
constraints by definition. Thus, since by definition of ϕt(x, a) the upper confidence bound for the
rewards maximized by Program (4) concentrates as 1/

√
t+ C/t, the regret bound follows.

Remark 3 (What if some under/overestimate of C is available). We also study what happens if the
learner runs Algorithm 2 with an under/overestimate on the adversarial corruption as input. We
defer to Appendix E all the technical results related to this analysis. In particular, it is possible to
show that any underestimate on C does not detriment the bound on VT , which remains the one in
Theorem 2. On the other hand, an overestimate on C, say Ĉ > C, results in a bound on VT of the
order of Õ(

√
T + Ĉ), which is worse than the one in Theorem 2. Intuitively, this is because using

an overestimate makes Algorithm 2 too conservative. As a result, one could be tempted to conclude
that running Algorithm 2 with an underestimate of C as input is satisfactory when the true value
of C is unknown. However, this would lead to a regret RT growing linearly in T , since, intuitively,
a regret-minimizing policy could be cut off from the algorithm decision space. This motivates the
introduction of additional tools to deal with the case in which C is unknown, as we do in Section 4.

4 Learning When C is Not Known: A Lagrangified Meta-Procedure

Algorithm 3 Lag-FTRL

Require: δ ∈ (0, 1)
1: Λ← Lm+1

ρ , M ← ⌈log2 T ⌉
2: γ ←

√
ln(M/δ)/TM, η ← 1

2Λm(
√
β1T+β2+β5+

√
β4T)

3: for j ∈ [M ] do
4: Algj ← stabilized Algorithm 2 with C = 2j

5: w1,j ← 1/M for all j ∈ [M ]
6: for t ∈ [T ] do
7: Sample index jt ∼ wt

8: πjt
t ← policy that Algjt would choose

9: Choose policy πjt
t in Algorithm 1 and observe .....

......feedback from interaction
10: Let Algjt observe received feedback
11: for j ∈ [M ] do
12: Build ℓt,j as in Equation (5)
13: Build bt,j as in Equation (6)

14: wt+1← argmin
w∈∆M ,
wj≥1/T

w⊤
∑
τ∈[t]

(ℓt− bt)+
1

η

∑
j∈[M ]

ln
1

wj

In this section, we go beyond Sec-
tion 3 by studying the more relevant
case in which the learner does not
know the value of the adversarial cor-
ruption C. In order to tackle this chal-
lenging scenario, we develop a meta-
procedure (called Lag-FTRL, see Al-
gorithm 3) that instantiates multiple
instances of an algorithm working
for the case in which C is known,
with each instance taking care of
a different “guess” on the value of
C. The Lag-FTRL algorithm is in-
spired by the work of Agarwal et al.
[2017] in the context of classical (un-
constrained) multi-armed bandit prob-
lems. Let us remark that standard
“coralling” techniques, such as the one
proposed by Agarwal et al. [2017],
cannot be easily generalized to our
setting, since our objective is twofold:
minimizing the regret while simulta-
neously ensuring small constraint vio-
lation. In this section, to deal with our non-stationary CMDP setting, we let Lag-FTRL instantiate
multiple instances of the NS-SOPS algorithm in Section 3.

4.1 Lag-FTRL: Lagrangified FTRL

At a high level, the Lagrangified follow-the-regularized-leader (Lag-FTRL for short) algorithm works
by instantiating several instances of Algorithm 2, suitably stabilized (see section H), with each
instance Algj being run for a different “guess” of the (unknown) adversarial corruption value C.
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The algorithm plays the role of a master by choosing which instance Algj to use at each episode.
The selection is done by employing an FTRL approach with a suitable log-barrier regularization. In
particular, at each episode t ∈ [T ], by letting Algjt be the selected instance, the Lag-FTRL algorithm
employs the policy πji

t prescribed by Algjt and provides feedback to instance Algjt only.

The Lag-FTRL algorithm faces two main challenges. First, the feedback available to the FTRL
procedure implemented at the master level is partial. This is because, at each episode t ∈ [T ], the
algorithm only observes the result of using the policy πji

t prescribed by the chosen instance Algjt ,
and not those of the policies suggested by other instances. The algorithm tackles this challenge
by employing optimistic loss estimators in the FTRL selection procedure, following an approach
originally introduced by Neu [2015]. The second challenge originates from the fact that the goal of
the algorithm is to keep under control both the regret and the positive constraint violation. This is
accomplished by feeding the FTRL procedure with losses constructed starting from the Lagrangian of
the offline optimization problem in Program (3), and suitably modified to manage positive violations.

The pseudocode of the Lag-FTRL algorithm is provided in Algorithm 3. At Line 4, it instantiates
M := ⌈log2 T ⌉ instances of Algorithm 2, with each instance Algj , for j ∈ [M ], receiving as input
a “guess” on the adversarial corruption C = 2j . Notice that, to every instance of Algorithm 2,
a standard doubling trick and a stabilization procedure is applied (see Algorithm 4 for additional
details). This modification to Algorithm 2 is necessary to guarantee that each instance j attains a
regret and positive cumulative constraints violation which linearly degrade in νT,j = 1/mint∈[T ] wt,j

and C, when employed by the master algorithm. The algorithm assigns weights defining a probability
distribution to instances Algj , with wt,j ∈ [0, 1] denoting the weight of instance Algj at episode
t ∈ [T ]. We denote by wt ∈ ∆M the weight vector at episode t, with ∆M being the M -dimensional
simplex. At the first episode, all the weights w1,j are initialized to the value 1/M (Line 5). Then, at
each episode t ∈ [T ], the algorithm samples an instance index jt ∈ [M ] according to the probability
distribution defined by the weight vector wt (Line 7), and it employs the policy πjt

t prescribed by
Algjt (Line 8). The algorithm observes the feedback from the interaction described in Algorithm 1
and it sends such a feedback to instance Algjt (Line 10). Then, at Line 12, the algorithm builds an
optimistic loss estimator to be fed into each instance Algj . In particular, at episode t ∈ [T ] and for
every j ∈ [M ], the optimistic loss estimator is defined as:

ℓt,j :=
I(jt = j)

wt,j + γ

(
L−

∑
k∈[0...L−1]

rt(x
t
k, a

t
k) + Λ

∑
i∈[m]

[(
Ĝj

t

)⊤
q̂jt − α

]+
i

)
, (5)

where γ is a suitably-defined implicit exploration factor, (xtk, a
t
k) is the state-action pair visited at

layer k during episode t, Λ is a suitably-defined upper bound on the optimal values of Lagrangian
multipliers,4 Ĝj

t is the matrix of empirical constraint costs built by the instance Algj of Algorithm 2
at episode t, while q̂jt is the occupancy measure computed by instance Algj of Algorithm 2 at t.
Finally, the algorithm updates the weight vector according to an FTRL update on a cut decision space
with a suitable log-barrier regularization and a bonus term bt defined as:

bt,j :=
(
(mΛβ5 + β2) +

(√
β1 +mΛ

√
β4

)√
T
)
· (νt,j − νt−1,j), (6)

where νt,j = maxτ≤t
1

wτ,j
and the parameters β are linked to the performance of Algorithm 2 (see

Line 13 and Section F.2.1 for additional details). See Line 14 for the complete definition of the update.
The bonus term purpose is to balance out the term related to the difference between the performance
of Algorithm 2 updated at each episode and the performance of its stabilized version, which works
under the condition imposed by the master algorithm.

4.2 Theoretical Guarantees of Lag-FTRL

Next, we prove the theoretical guarantees attained by Algorithm 3 (see Appendix F for complete
proofs of the theorems and associated lemmas). As a first preliminary step, we extend the well-known
strong duality result for CMDPs [Altman, 1999] to the case of bounded Lagrangian multipliers.

4Notice that, in the definition of Λ, ρ is the feasibility parameter of Program (3) for the reward vector r, the
constraint cost matrix G, and the threshold vector α. In order to compute Λ, Algorithm 3 needs knowledge of ρ.
Nevertheless, our results continue to hold even if Algorithm 3 is only given access to a lower bound on ρ.
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Lemma 1. Given a CMDP with a transition function P , for every reward vector r ∈ [0, 1]|X×A|,
constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m, if Program (3) satisfies
Slater’s condition (Condition 1):

min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

r⊤q −
∑
i∈[m]

λi
[
G⊤q − α

]
i
= max

q∈∆(P )
min

∥λ∥1∈[0,L/ρ]
r⊤q −

∑
i∈[m]

λi
[
G⊤q − α

]
i

= OPTr,G,α,

where λ ∈ Rm
≥0 is a vector of Lagrangian multipliers and ρ is the feasibility parameter of Program (3).

Intuitively, Lemma 1 states that, under Slater’s condition, strong duality continues to hold even
when restricting the set of Lagrangian multipliers to the λ ∈ Rm

≥0 having ∥λ∥1 bounded by L/ρ.
Furthermore, we extend the result in Lemma 1 to the case of a Lagrangian function suitably-modified
to encompass positive violations. We call it positive Lagrangian of Program (3), defined as follows.
Definition 1 (Positive Lagrangian). Given a CMDP with a transitions P , for every reward vector
r ∈ [0, 1]|X×A|, constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m,
the positive Lagrangian of Program (3) is defined as a function L : R+ × ∆(P ) → R such that
L (β, q) := r⊤q − β

∑
i∈[m]

[
G⊤q − α

]+
i

for every β ≥ 0 and q ∈ ∆(P ).

The positive Lagrangian is related to the Lagrangian of a variation of Program (3) in which the [·]+
operator is applied to the constraints. Notice that such a problem does not meet Slater’s condition,
since, by definition of [·]+, it does not exist an occupancy measure q◦ such that

[
G⊤q◦ − α

]+
i
< 0 for

every i ∈ [m]. Nevertheless, we show that some sort of strong duality result still holds for L(L/ρ, q),
when Slater’s condition is met by Program (3). This is made formal by the following theorem.

Theorem 4. Given a CMDP with a transition function P , for every reward vector r ∈ [0, 1]|X×A|,
constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m, if Program (3) satisfies
Slater’s condition (Condition 1), then the following holds:

max
q∈∆(P )

L(L/ρ, q) = max
q∈∆(P )

r⊤q − L

ρ

∑
i∈[m]

[
G⊤q − α

]+
i
= OPTr,G,α,

where ρ is the feasibility parameter of Program (3).

Theorem 4 intuitively shows that a L/ρ multiplicative factor on the positive constraint violation is
enough to compensate the large rewards that non-feasible policies would attain when employed by
the learner. This result is crucial since, without properly defining the Lagrangian function optimized
by Algorithm 3, the FTRL optimization procedure would choose instances with both large rewards
and large constraint violation, thus preventing the violation bound from being sublinear. By means of
Theorem 4, it is possible to provide the following result.

Theorem 5. If Program (3) instantiated with r, G and α satisfies Slater’s condition (Condition 1),
then, given any δ ∈ (0, 1), with probability at least 1−34δ, Algorithm 3 attains positive constraint vi-
olation VT = O(m2L2|X|

√
|A|T log (mT |X||A|/δ) log(T )2+m2L|X|2|A|2 log(T )3 log (log(T )/δ)+

m2L log(T )2|X||A|C).

Intuitively, to prove Theorem 5, it is necessary to bound the negative regret attained by the algorithm,
i.e., how better Algorithm 3 can perform in terms of rewards with respect to an optimal occupancy in
hindsight q∗. Notice that this is equivalent to showing that the FTRL procedure cannot gain more
than OPTr,G,α by playing policies that are not feasible, or, equivalently, by choosing instances Algj

with a large corruption guess, which, by definition of the confidence sets employed by Algorithm 2,
may play non-feasible policies attaining large rewards. This is done by employing Theorem 4, which
shows that the positive Lagrangian does not allow the algorithm to achieve too large rewards with
respect to q∗. Thus, the violations are still upper bounded by Õ(

√
T + C).

Finally, we prove the regret bound attained by Algorithm 3.

Theorem 6. If Program (3) instantiated with r, G and α satisfies Slater’s condition (Condi-
tion 1), then, given any δ ∈ (0, 1), with probability at least 1 − 30δ, Algorithm 3 attains re-
gret RT = O(m2L2|X|

√
|A|T log (mT |X||A|/δ) log(T )2 + m2L|X|2|A|2 log(T )3 log (log(T )/δ) +

m2L log(T )2|X||A|C).
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Bounding the regret attained by Algorithm 3 requires different techniques with respect to bounding
constraint violation. Indeed, strong duality is not needed, since, even if Λ is set to a too small value
and thus the algorithm plays non-feasible policies, then the regret would still be sublinear. The regret
bound is strongly related to the optimal value of the problem associated with the positive Lagrangian,
which, by definition of [·]+ cannot perform worse than the optimum of Program (3), in terms of
rewards gained. Thus, by letting j∗ be the index of the instance associated with true corruption value
C, proving Theorem 6 reduces to bounding the regret and the constraint violation of instance Algj

∗
,

with the additional challenge of bounding the estimation error of the optimistic loss estimator. Finally,
by means of the results for the known C case derived in Section 3, we are able to show that the regret
is at most Õ(

√
T + C), which is the desired bound.
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed, since the work is mainly
theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The appendix is structured as follows:

• In Appendix A we provide the complete related works.
• In Appendix B we provide the events dictionary.
• In Appendix C we provide the preliminary results on the confidence sets employed to

estimate the unknown parameters of the environment.
• In Appendix D we provide the omitted proofs related to the theoretical guarantees when the

corruption value is known by the learner, namely, the results attained by Algorithm 2.
• In Appendix E we provide the omitted proofs of the theoretical guarantees attained by

Algorithm 2, when a guess on the corruption is given as input to the algorithm.
• In Appendix F we provide the omitted proofs related to the theoretical guarantees when the

corruption value is not known by the learner, namely, the results attained by Algorithm 3.
• In Appendix G we restate useful results from existing works.
• In Appendix H we provide the results related to stability a corruption-robustness.

A Related works

In the following, we discuss some works that are tightly related to ours. In particular, we first describe
works dealing with the online learning problem in MDPs, and, then, we discuss some works studying
the constrained version of the classical online learning problem.

Online learning in MDPs The literature on online learning problems [Cesa-Bianchi and Lugosi,
2006] in MDPs is wide (see [Auer et al., 2008, Even-Dar et al., 2009, Neu et al., 2010] for some
initial results on the topic). In such settings, two types of feedback are usually studied: in the
full-information feedback model, the entire loss function is observed after the learner’s choice, while
in the bandit feedback model, the learner only observes the loss due to the chosen action. Azar et al.
[2017] study the problem of optimal exploration in episodic MDPs with unknown transitions and
stochastic losses when the feedback is bandit. The authors present an algorithm whose regret upper
bound is Õ(

√
T ), thus matching the lower bound for this class of MDPs and improving the previous

result by Auer et al. [2008].

Online learning in non-stationary MDPs The literature on non-stationary MDPs encompasses
both works on non-stationary rewards and non-stationary transitions. As concerns the first research
line, Rosenberg and Mansour [2019b] study the online learning problem in episodic MDPs with
adversarial losses and unknown transitions when the feedback is full information. The authors present
an online algorithm exploiting entropic regularization and providing a regret upper bound of Õ(

√
T ).

The same setting is investigated by Rosenberg and Mansour [2019a] when the feedback is bandit. In
such a case, the authors provide a regret upper bound of the order of Õ(T 3/4), which is improved by
Jin et al. [2020] by providing an algorithm that achieves in the same setting a regret upper bound
of Õ(

√
T ). Related to the non-stationarity of the transitions, Wei et al. [2022] study MDPs with

adversarial corruption on transition functions and rewards, reaching a regret upper bound of order
Õ(
√
T + C) (where C is the amount of adversarial corruption) with respect to the optimal policy of

the non-corrupted MDP . Finally, Jin et al. [2024] is the first to study completely adversarial MDPs
with changing transition functions, providing a Õ(

√
T + C) regret bounds, where C is a corruption

measure of the adversarially changing transition functions.

Online learning with constraints A central result is provided by Mannor et al. [2009], who
show that it is impossible to suffer from sublinear regret and sublinear constraint violation when
an adversary chooses losses and constraints. Liakopoulos et al. [2019] try to overcome such an
impossibility result by defining a new notion of regret. They study a class of online learning problems
with long-term budget constraints that can be chosen by an adversary. The learner’s regret metric is
modified by introducing the notion of a K-benchmark, i.e., a comparator that meets the problem’s
allotted budget over any window of length K. Castiglioni et al. [2022a,b] deal with the problem
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of online learning with stochastic and adversarial losses, providing the first best-of-both-worlds
algorithm for online learning problems with long-term constraints.

Online learning in CMDPs Online Learning In MDPs with constraints is generally studied when
the constraints are selected stochastically. Precisely, Zheng and Ratliff [2020] deal with episodic
CMDPs with stochastic losses and constraints, where the transition probabilities are known and the
feedback is bandit. The regret upper bound of their algorithm is of the order of Õ(T 3/4), while
the cumulative constraint violation is guaranteed to be below a threshold with a given probability.
Wei et al. [2018] deal with adversarial losses and stochastic constraints, assuming the transition
probabilities are known and the feedback is full information. The authors present an algorithm that
guarantees an upper bound of the order of Õ(

√
T ) on both regret and constraint violation. Bai et al.

[2020] provide the first algorithm that achieves sublinear regret when the transition probabilities
are unknown, assuming that the rewards are deterministic and the constraints are stochastic with
a particular structure. Efroni et al. [2020] propose two approaches to deal with the exploration-
exploitation dilemma in episodic CMDPs. These approaches guarantee sublinear regret and constraint
violation when transition probabilities, rewards, and constraints are unknown and stochastic, while
the feedback is bandit. Stradi et al. [2025b] are the first to attain sublinear positive violation in
stochastic CMDPs employing a primal-dual method. Qiu et al. [2020] provide a primal-dual approach
based on optimism in the face of uncertainty. This work shows the effectiveness of such an approach
when dealing with episodic CMDPs with adversarial losses and stochastic constraints, achieving
both sublinear regret and constraint violation with full-information feedback. Stradi et al. [2025a]
is the first work to tackle CMDPs with adversarial losses and bandit feedback. They propose an
algorithm which achieves sublinear regret and sublinear positive constraints violations, assuming
that the constraints are stochastic. Stradi et al. [2024b] are the first to study CMDPs with adversarial
constraints. Given the well-known impossibility result to learn with adversarial constraints, they
propose an algorithm that attains sublinear violation (with cancellations allowed) and a fraction of
the optimal reward when the feedback is full. Finally, Ding and Lavaei [2023] and Wei et al. [2023]
consider the case in which rewards and constraints are non-stationary, assuming that their variation is
bounded, as in our work. Nevertheless, our settings differ in multiple aspects. First of all, we consider
positive constraints violations, while the aforementioned works allow the cancellations in their
definition. We consider a static regret adversarial baseline, while Ding and Lavaei [2023] and Wei
et al. [2023] consider the stronger baseline of dynamic regret. Nevertheless, our bounds are not
comparable, since we achieve linear regret and violations only in the worst case scenario in which
C = T , while a sublinear corruption would lead to linear dynamic regret in their work. Finally, we
do not make any assumption on the number of episodes, while both the regret and violations bounds
presented in Wei et al. [2023] hold only for large T .

B Events dictionary

In the following, we introduce the main events which are related to estimation of the unknown
stochastic parameters of the environment.

• Event EP : for all t ∈ [T ], P ∈ Pt. EP holds with probability at least 1− 4δ by Lemma 18.
The event is related to the estimation of the unknown transition function.

• Event EG: for all t ∈ [T ], i ∈ [m], (x, a) ∈ X ×A:∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣ ≤ ξt(x, a).

Similarly, ∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤ ξt(x, a),
where g◦i ∈ [0, 1]|X×A| := [G◦]i.
EG holds with probability at least 1− δ by Corollary 2. The event is related to the estimation
of the unknown constraint functions.
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• Event Er: for all t ∈ [T ], (x, a) ∈ X ×A:∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣ ≤ ϕt(x, a).

Similarly, ∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤ ϕt(x, a).
Er holds with probability at least 1− δ by Corollary 4. The event is related to the estimation
of the unknown reward function.

• Event Eq̂ : for any P x
t ∈ Pt:∑

t∈[T ]

∑
x∈X,a∈A

∣∣∣qPx
t ,πt(x, a)− qt(x, a)

∣∣∣ ≤ O(L|X|√|A|T ln

(
T |X||A|

δ

))
.

Eq̂ holds with probability at least 1 − 6δ by Lemma 19. The event is related to the
convergence to the true unknown occupancy measure. Notice that P [Eq̂ ∩ EP ] ≥ 1− 6δ by
construction.

C Confidence intervals

In this section we will provide the preliminary results related to the high probability confidence sets
for the estimation of the cost constraints matrices and the reward vectors.

We start bounding the distance between the non-corrupted costs and rewards with respect to the mean
of the adversarial distributions.
Lemma 2. For all i ∈ [m], fixing (x, a) ∈ X ×A, it holds:∣∣∣∣g◦i (x, a)− 1

T

∑
t∈[T ]

E[gt,i(x, a)]
∣∣∣∣ ≤ CG

T
.

Similarly, fixing (x, a) ∈ X ×A, it holds:∣∣∣∣r◦(x, a)− 1

T

∑
t∈[T ]

E[rt(x, a)]
∣∣∣∣ ≤ Cr

T
.

Proof. By triangle inequality and from the definition of CG, it holds:∣∣∣∣g◦i (x, a)− 1

T

∑
t∈[T ]

E[gt,i(x, a)]
∣∣∣∣ = ∣∣∣∣ 1T ∑

t∈[T ]

(g◦i (x, a)− E[gt,i(x, a)])
∣∣∣∣

≤ 1

T

∑
t∈[T ]

∣∣∣∣g◦i (x, a)− E[gt,i(x, a)]
∣∣∣∣

≤ CG

T
.

Notice that the proof holds for all i ∈ [m] since CG is defined employing the maximum over i ∈ [m].
Following the same steps, it holds:∣∣∣∣∣∣r◦(x, a)− 1

T

∑
t∈[T ]

E[rt(x, a)]

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1T
∑
t∈[T ]

(r◦(x, a)− E[rt(x, a)])

∣∣∣∣∣∣
≤ 1

T

∑
t∈[T ]

∣∣∣∣r◦(x, a)− E[rt(x, a)]
∣∣∣∣

≤ Cr

T
,

which concludes the proof.
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In the following lemma, we bound the distance between the empirical mean of the constraints function
and the true non-corrupted value.

Lemma 3. Fixing i ∈ [m], (x, a) ∈ X ×A , t ∈ [T ], for any δ ∈ (0, 1), it holds with probability at
least 1− δ:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2

δ

)
+

CG

max{Nt(x, a), 1}
.

Proof. We start bounding the quantity of interest as follows:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ =
∣∣∣∣∣
(∑

τ∈[t] Iτ (x, a)gτ,i(x, a)
max{Nt(x, a), 1}

)
− g◦i (x, a)

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a) (gτ,i(x, a)− E[gτ,i(x, a)])

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a)[E[gτ,i(x, a)]− g◦i (x, a)]

∣∣∣∣∣∣ , (7)

where we employed the triangle inequality and the definition of ĝt,i(x, a).

We bound the two terms in Equation (7) separately. For the first term, by Hoeffding’s inequality and
noticing that constraints values are bounded in [0, 1], it holds that:

P
[
A ≥ c

max{Nt(x, a), 1}

]
≤ 2 exp

(
− 2c2

max{Nt(x, a), 1}

)
,

where,

A =

∣∣∣∣∣
(∑

τ∈[t] Iτ (x, a)gτ,i(x, a)
max{Nt(x, a), 1}

)
−

(∑
τ∈[t] Iτ (x, a)E[gτ,i(x, a)]
max{Nt(x, a), 1}

)∣∣∣∣∣ ,
Setting δ = 2 exp

(
− 2c2

max{Nt(x,a),1}

)
and solving to find a proper value of c we get that with

probability at least 1− δ:∣∣∣∣∣∣ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a) (gτ,i(x, a)− E[gτ,i(x, a)])

∣∣∣∣∣∣ ≤
√

1

2max{Nt(x, a), 1}
ln

(
2

δ

)
.

Finally, we focus on the second term. Thus, employing the triangle inequality and the definition of
CG, it holds:∣∣∣∣∣ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a) [E[gτ,i(x, a)]− g◦i (x, a)]

∣∣∣∣∣
≤ 1

max{Nt(x, a), 1}
∑
τ∈[t]

Iτ (x, a)
∣∣∣∣E[gτ,i(x, a)]− g◦i (x, a)∣∣∣∣

≤ 1

max{Nt(x, a), 1}
∑
τ∈[T ]

∣∣∣∣E[gτ,i(x, a)]− g◦i (x, a)∣∣∣∣
≤ CG

max{Nt(x, a), 1}
,

which concludes the proof.

We now prove a similar result for the rewards function.
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Lemma 4. Fixing (x, a) ∈ X × A , t ∈ [T ], for any δ ∈ (0, 1), it holds with probability at least
1− δ: ∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2

δ

)
+

Cr

max{Nt(x, a), 1}
.

Proof. The proof is analogous to the one of Lemma 3.

We now generalize the previous results as follows.
Lemma 5. Given any δ ∈ (0, 1), for any (x, a) ∈ X × A, t ∈ [T ], and i ∈ [m], it holds with
probability at least 1− δ:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
.

Proof. First let’s define ζt(x, a) as:

ζt(x, a) :=

√
1

2max{Nt(x, a), 1}
ln

(
2

δ

)
+

CG

max{Nt(x, a), 1}
.

From Lemma 3, given δ′ ∈ (0, 1), we have, fixed any i ∈ [m], t ∈ [T ] and (x, a) ∈ X ×A:

P

[∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤ ζt(x, a)
]
≥ 1− δ′.

Now, we are interested in the intersection of all the events, namely,

P

[ ⋂
x,a,i,t

{∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣ ≤ ζt(x, a)}
]
.

Thus, we have:

P

[ ⋂
x,a,i,t

{∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣ ≤ ζt(x, a)}
]

= 1− P

[ ⋃
x,a,i,t

{∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣ ≤ ζt(x, a)}c
]

≥ 1−
∑

x,a,i,t

P

[{∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣ ≤ ζt(x, a)}c
]

(8)

≥ 1− |X||A|mTδ′,

where Inequality (8) holds by Union Bound. Noticing that gt,i(x, a) ≤ 1, substituting δ′ with
δ := δ′/|X||A|mT in ζt(x, a) with an additional Union Bound over the possible values of Nt(x, a),
we have, with probability at least 1− δ:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
,

which concludes the proof.

We provide a similar result for the rewards function.
Lemma 6. Given any δ ∈ (0, 1), for any (x, a) ∈ X ×A, t ∈ [T ], it holds with probability at least
1− δ:∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Cr

max{Nt(x, a), 1}
.
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Proof. First let’s define ψt(x, a) as:

ψt(x, a) :=

√
1

2max{Nt(x, a), 1}
ln

(
2

δ

)
+

Cr

max{Nt(x, a), 1}
.

From Lemma 4, given δ′ ∈ (0, 1), we have fixed any t ∈ [T ] and (x, a) ∈ X ×A:

P

[∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤ ψt(x, a)

]
≥ 1− δ′.

Now, we are interested in the intersection of all the events, namely,

P

[ ⋂
x,a,t

{∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣ ≤ ψt(x, a)
}]
.

Thus, we have:

P

[ ⋂
x,a,t

{∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣ ≤ ψt(x, a)
}]

= 1− P

[ ⋃
x,a,t

{∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣ ≤ ψt(x, a)
}c
]

≥ 1−
∑
x,a,t

P

[{∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣ ≤ ψt(x, a)
}c
]

(9)

≥ 1− |X||A|Tδ′,

where Inequality (9) holds by Union Bound. Noticing that rt(x, a) ≤ 1, substituting δ′ with
δ := δ′/|X||A|T in ψt(x, a) with an additional Union Bound over the possible values of Nt(x, a),
we have, with probability at least 1− δ:∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣ ≤

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Cr

max{Nt(x, a), 1}
,

which concludes the proof.

In the following, we bound the distance between the empirical estimation of the constraints and the
empirical mean of the mean values of the constraints distribution during the learning dynamic.
Lemma 7. Given δ ∈ (0, 1), for all episodes t ∈ [T ], state-action pairs (x, a) ∈ X × A and
constraint i ∈ [m],it holds, with probability at least 1− δ:∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣ ≤ ξt(x, a),

where,

ξt(x, a) := min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
+
CG

T

}
.

Proof. We first notice that if ξt(x, a) = 1, the results is derived trivially by definition on the cost

function. We prove now the non trivial case
√

1
2max{Nt(x,a),1} ln

(
2mT |X||A|

δ

)
+ CG

max{Nt(x,a),1} +

CG

T ≤ 1. Employing Lemma 2 and Lemma 5, with probability 1− δ for all (x, a) ∈ X ×A, for all
t ∈ [T ] and for all i ∈ [m], it holds that:∣∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]

∣∣∣∣∣
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≤

∣∣∣∣∣ĝt,i(x, a)− g◦i (x, a)
∣∣∣∣∣+
∣∣∣∣∣g◦i (x, a)− 1

T

∑
t∈[T ]

E[gt,i(x, a)]

∣∣∣∣∣
≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
+
CG

T
,

where the first inequality follows from the triangle inequality. This concludes the proof.

For the sake of simplicity, we analyze our algorithm with respect to the total corruption of the
environment, defined as the maximum between the reward and the constraints corruption. In the
following, we show that this choice does not prevent the confidence set events from holding.

Corollary 1. Given a corruption guess Ĉ ≥ CG and δ ∈ (0, 1), for all episodes t ∈ [T ], state-action
pairs (x, a) ∈ X ×A and constraint i ∈ [m], with probability at least 1− δ, it holds:∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣ ≤ ξt(x, a),

where,

ξt(x, a) = min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

Ĉ

max{Nt(x, a), 1}
+
Ĉ

T

}
.

Proof. Following the same analysis of Lemma 7 for Ĉ ≥ CG, it holds∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣

≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
+
CG

T

≤

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

Ĉ

max{Nt(x, a), 1}
+
Ĉ

T
,

which concludes the proof.

Corollary 2. Taking the definition of ξt employed in Lemma 7 and defining EG as the intersection
event:

EG :=

{∣∣ĝt,i(x, a)− g◦i (x, a)∣∣ ≤ ξt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [T ],∀i ∈ [m]

} ⋂

∣∣∣∣ĝt,i(x, a)− 1

T

∑
τ∈[T ]

E[gτ,i(x, a)]
∣∣∣∣ ≤ ξt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [T ],∀i ∈ [m]

 ,

it holds that P[EG] ≥ 1− δ.

Notice that by Corollary 1, EG includes all the analogous events where ξt is built employing an
arbitrary adversarial corruption Ĉ such that Ĉ ≥ CG.

In the following, we provide similar results for the reward function.
Lemma 8. Given δ ∈ (0, 1), for all episodes t ∈ [T ] and for all state-action pairs (x, a) ∈ X ×A,
with probability at least 1− δ, it holds:∣∣∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]

∣∣∣∣∣∣ ≤ ϕt(x, a),
where,

ϕt(x, a) := min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Cr

max{Nt(x, a), 1}
+
Cr

T

}
.
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Proof. Employing Lemma 2 and Lemma 6, with probability at least 1− δ, for all (x, a) ∈ X ×A
and for all t ∈ [T ], it holds:∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣

≤
∣∣∣∣r̂t(x, a)− r◦(x, a)∣∣∣∣+ ∣∣∣∣r◦(x, a)− 1

T

∑
t∈[T ]

E[rt(x, a)]
∣∣∣∣

≤

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Cr

max{Nt(x, a), 1}
+
Cr

T
,

where the first inequality follows from the triangle inequality. Noticing that, by construction,∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣ ≤ 1,

for all episodes t ∈ [T ] and (x, a) ∈ X ×A concludes the proof.

We conclude the section, showing the overestimating the reward corruption does not invalidate the
confidence set estimation.
Corollary 3. Given a corruption guess Ĉ ≥ Cr and δ ∈ (0, 1), for all episodes t ∈ [T ] and for all
state-action pairs (x, a) ∈ X ×A, with probability at least 1− δ, it holds:∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣ ≤ ϕt(x, a),

where,

ϕt(x, a) := min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2T |X||A|

δ

)
+

Ĉ

max{Nt(x, a), 1}
+
Ĉ

T

}
.

Proof. The proof is analogous to the one of Corollary 1.

Corollary 4. Taking the definition of ϕt employed in Lemma 8 and defining Er as the intersection
event:

Er :=

{∣∣r̂t(x, a)−r◦(x, a)∣∣ ≤ ϕt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [T ]

} ⋂

∣∣∣∣r̂t(x, a)− 1

T

∑
τ∈[T ]

E[rτ (x, a)]
∣∣∣∣ ≤ ϕt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [T ]

 ,

it holds that P[Er] ≥ 1− δ.

Notice that by Corollary 3, Er includes all the analogous events where ϕt is built employing an
arbitrary adversarial corruption Ĉ such that Ĉ ≥ Cr.

D Omitted proofs when the corruption is known

In the following, we provide the main results attained by Algorithm 2 in term of regret and constraints
violations. The following results hold when the corruption of the environment is known to the learner.

We start providing a preliminary result, which shows that the linear program solved by Algorithm 2
at each t ∈ [T ] admits a feasible solution, with high probability.
Lemma 9. For any δ ∈ (0, 1), for all episodes t ∈ [T ], with probability at least 1− 5δ, the space

defined by linear constraints
{
q ∈ ∆(Pt) : G

⊤
t q ≤ α

}
admits a feasible solution and it holds:{

q ∈ ∆(P ) : G
⊤
q ≤ α

}
⊆
{
q ∈ ∆(Pt) : G

⊤
t q ≤ α

}
.
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Proof. Under the event EP , we have that ∆(P ) ⊆ ∆(Pt), for all episodes t ∈ [T ]. Similarly, under

the event EG, it holds that

{
q : 1

T

∑
t∈[T ]

E[Gt]
⊤q ≤ α

}
⊆
{
q : G⊤

t q ≤ α
}

. This implies that any fea-

sible solution of the offline problem, is included in the optimistic safe set
{
q ∈ ∆(Pt) : G

⊤
t q ≤ α

}
.

Taking the intersection event EP ∩ EG concludes the proof.

We are now ready to provide the violation bound attained by Algorithm 2.

Theorem 2. Given any δ ∈ (0, 1), with probability at least 1 − 8δ, Algorithm 2 attains positive

violation VT = O
(
L|X|

√
|A|T ln (mT |X||A|/δ) + ln(T )|X||A|C

)
.

Proof. In the following, we will refer as Eq̂ to the event described in Lemma 19, which holds with
probability at least 1− 6δ . Thus, under EG ∩ Eq̂ , the linear program solved by Algorithm 2 has a
feasible solution (see Lemma 9) and it holds:

VT = max
i∈[m]

∑
t∈[T ]

[
E[Gt]

⊤qt − α
]+
i

= max
i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt + g◦i

⊤qt − αi

]+
≤ max

i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt +

(
g
t−1,i

+ 2ξt−1

)⊤
qt − αi

]+
(10a)

= max
i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt + g⊤

t−1,i
(qt − q̂t) + g⊤

t−1,i
q̂t + 2ξ⊤t−1qt − αi

]+
≤ max

i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt + g⊤

t−1,i
(qt − q̂t) + 2ξ⊤t−1qt

]+
(10b)

≤ max
i∈[m]

∑
t∈[T ]

∣∣∣(E[gt,i]− g◦i )⊤ qt∣∣∣+ 2max
i∈[m]

∑
t∈[T ]

∣∣ξ⊤t−1qt
∣∣+ max

i∈[m]

∑
t∈[T ]

∣∣∣g⊤
t−1,i

(qt − q̂t)
∣∣∣ (10c)

≤ max
i∈[m]

∑
t∈[T ]

∥E[gt,i]− g◦i ∥1 + 2max
i∈[m]

∑
t∈[T ]

ξ⊤t−1qt + max
i∈[m]

∑
t∈[T ]

∥qt − q̂t∥1 (10d)

≤ CG + 2max
i∈[m]

∑
t∈[T ]

ξ⊤t−1qt +
∑
t∈[T ]

∥qt − q̂t∥1, (10e)

where Inequality (10a) follows from Corollary 2, Inequality (10b) holds since Algorithm 2 ensures,
for all t ∈ [T ] and for all i ∈ [m], that g⊤

t,i
q̂t ≤ αi, Inequality (10c) holds since [a+ b]+ ≤ |a|+ |b|,

for all a, b ∈ R, Inequality (10d) follows from Hölder inequality since ||g
t,i
(x, a)||∞ ≤ 1 and

||qt(x, a)||∞ ≤ 1, and finally Equation (10e) holds for the definition of CG.

To bound the last term of Equation (10e), we notice that, under Eq̂ , by Lemma 19, it holds:

∑
t∈[T ]

∥qt − q̂t∥1 = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

To bound the second term of Equation (10e) we proceed as follows. Under Eq̂ ,with probability at
least 1− δ, it holds:∑

t∈[T ]

ξ⊤t−1qt ≤
∑
t∈[T ]

∑
x,a

ξt−1(x, a)It(x, a) + L

√
2T ln

1

δ
(11a)

≤
∑
x,a

∑
t∈[T ]

It(x, a)

(√
1

2max{Nt−1(x, a), 1}
ln

(
2mT |X||A|

δ

)
+
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+
CG

max{Nt−1(x, a), 1}
+
CG

T

)
+ L

√
2T ln

1

δ
(11b)

≤

√
1

2
ln

(
2mT |X||A|

δ

)∑
x,a

∑
t∈[T ]

It(x, a)

√
1

max{Nt−1(x, a), 1}
+

+ CG

∑
x,a

∑
t∈[T ]

(
It(x, a)

max{Nt−1(x, a), 1}
+

1

T

)
+ L

√
2T ln

1

δ

≤ 3

√
1

2
|X||A|LT ln

(
2mT |X||A|

δ

)
+ |X||A|(2 + ln(T ))CG + |X||A|CG + L

√
2T ln

1

δ

(11c)

≤ 3

√
1

2
|X||A|LT ln

(
2mT |X||A|

δ

)
+ (3 + ln(T ))|X||A|CG + L

√
2T ln

1

δ

= O

(√
|X||A|LT ln

(
mT |X||A|

δ

)
+ ln(T )|X||A|CG

)
,

where Inequality (11a) follows from the Azuma-Hoeffding inequality and noticing that∑
x,a ξt−1(x, a)qt(x, a) ≤ L, Equality (11b) follows from the definition of ξt and finally, In-

equality (11c) holds since 1 +
∑NT (x,a)

t=1

√
1
t ≤ 1 + 2

√
NT (x, a) ≤ 3

√
NT (x, a) , since

1 +
∑NT (x,a)

t=1
1
t ≤ 2 + ln(T ) and by Cauchy-Schwarz inequality. Finally, we notice that the

intersection event EG ∩ Eq̂ ∩ EAzuma holds with the following probability,

P [EG ∩ Eq̂ ∩ EAzuma] = 1− P
[
ECG ∪ ECq̂ ∪ ECAzuma

]
≥ 1−

(
P
[
ECG
]
+ P

[
ECq̂
]
+ P

[
ECAzuma

])
≥ 1− 8δ.

Noticing that, by Corollary 1, what holds for a ξt built with corruption value CG, still holds for a
higher corruption (by definition, C ≥ CG) concludes the proof.

We conclude the section providing the regret bound attained by Algorithm 2.
Theorem 3. Given any δ ∈ (0, 1), with probability at least 1 − 9δ, Algorithm 2 attains regret

RT = O
(
L|X|

√
|A|T ln (T |X||A|/δ) + ln(T )|X||A|C

)
.

Proof. First, we notice that under the event Er it holds that, for all (x, a) ∈ X×A and for all t ∈ [T ]:

rt(x, a)− 2ϕt(x, a) ≤
1

T

∑
t∈[T ]

E[rt(x, a)].

Let’s observe that, by Lemma 9, under the event EG ∩ EP , q̂t is optimal solution for rt−1 in{
q ∈ ∆(Pt) : G

⊤
t q ≤ α

}
. Thus, under EG ∩ EP the optimal feasible solution q∗ is such that:

r⊤t−1q̂t ≥ r⊤t−1q
∗.

Thus under the event Er, it holds:

1

T

∑
t∈[T ]

E[rt]⊤q∗ ≤ r⊤t−1q
∗

≤ r⊤t−1q̂t

≤

 1

T

∑
t∈[T ]

E[rt] + 2ϕt−1

⊤

q̂t.
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Thus, we can rewrite the regret (under the event EG ∩ Er ∩ EP ) as,

RT =
∑
t∈[T ]

E[rt]⊤(q∗ − qt)

=
∑
t∈[T ]

1

T

∑
τ∈[T ]

E[rτ ]⊤(q∗ − qt) +
∑
t∈[T ]

(E[rt]− r)⊤ (q∗ − qt)

=
∑
t∈[T ]

1

T

∑
τ∈[T ]

E[rτ ]⊤(q∗ − q̂t + q̂t − qt) +
∑
t∈[T ]

(E[rt]− r◦ + r◦ − r)⊤ (q∗ − qt)

≤
∑
t∈[T ]

 1

T

∑
τ∈[T ]

E [rτ ]
⊤
(q∗ − q̂t)

+
∑
t∈[T ]

∥q̂t − qt∥1 +
∑
t∈[T ]

∥E[rt]− r◦∥1 +
∑
t∈[T ]

∥r◦ − r∥1

≤
∑
t∈[T ]

2ϕ⊤t−1qt +
∑
t∈[T ]

∥q̂t − qt∥1 + 2Cr.

By Lemma 18 with probability at least 1− 6δ under event Eq̂ we can bound
∑

t∈[T ]∥q̂t − qt∥1 as:

∑
t∈[T ]

∥q̂t − qt∥1 = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

Finally with probability at least 1− δ it holds:∑
t∈[T ]

ϕ⊤t−1qt ≤
∑
t∈[T ]

∑
x,a

ϕt−1(x, a)It(x, a) + L

√
2T ln

1

δ
(12a)

≤
∑
x,a

∑
t∈[T ]

It(x, a)

(√
1

2max{Nt−1(x, a), 1}
ln

(
2T |X||A|

δ

)
+

+
Cr

max{Nt−1(x, a), 1}
+
Cr

T

)
+ L

√
2T ln

1

δ
(12b)

≤

√
1

2
ln

(
2T |X||A|

δ

)∑
x,a

∑
t∈[T ]

It(x, a)

√
1

max{Nt−1(x, a), 1}
+

+ Cr

∑
x,a

∑
t∈[T ]

(
It(x, a)

max{Nt−1(x, a), 1}
+

1

T

)
+ L

√
2T ln

1

δ

≤ 3

√
1

2
|X||A|LT ln

(
2T |X||A|

δ

)
+ |X||A|(2 + ln(T ))Cr + |X||A|Cr + L

√
2T ln

1

δ
(12c)

≤ 3

√
1

2
|X||A|LT ln

(
2T |X||A|

δ

)
+ (3 + ln(T ))|X||A|Cr + L

√
2T ln

1

δ

= O

(√
|X||A|LT ln

(
T |X||A|

δ

)
+ ln(T )|X||A|Cr

)
,

where Inequality (12a) follows from Azuma-Hoeffding inequality, Equality (12b) holds for the defini-

tion of ϕt, and Inequality (12c) holds since 1 +
∑NT (x,a)

t=1

√
1
t ≤ 1 + 2

√
NT (x, a) ≤ 3

√
NT (x, a),

1 +
∑NT (x,a)

t=1
1
t ≤ 2 + ln(T ) and by Cauchy-Schwarz inequality. Thus, we observe that with

probability at least 1− 9δ it holds:

RT = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ ln(T )|X||A|Cr

)
.

Employing Corollary 3 and the definition of C, which is at least equal to Cr, concludes the proof.
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E Omitted proofs when the knowledge of C is not precise

In this section, we focus on the performances of Algorithm 2 when a guess on the corruption value is
given as input. These preliminary results are "the first step" to relax the assumption on the knowledge
about the corruption.

First, we present some preliminary results on the confidence set.

Lemma 10. Given the corruption guess ĈG, where CG = ĈG + ϵ, with ϵ > 0, and confidence ξt as
defined in Algorithm 2 using ĈG as corruption value, for any δ ∈ (0, 1), with probability at least
1− δ, for all episodes t ∈ [T ], state-action pair (x, a) ∈ X×A and constraint i ∈ [m], the following
result holds:

g◦i (x, a) ≤ ĝt,i(x, a) + ξt(x, a) +

(
ϵ

max{Nt(x, a), 1}
+
ϵ

T

)
.

Similarly, recalling the definition of Gt, for all episodes t ∈ [T ], state-action pairs (x, a) ∈ X ×A
and constraints i ∈ [m], it holds:

g◦i (x, a) ≤ gt,i(x, a) + 2ξt(x, a) +

(
ϵ

max{Nt(x, a), 1}
+
ϵ

T

)
.

Proof. To prove the result, we recall that, by Corollary 2, with probability at least 1−δ, the following
holds, for all episodes t ∈ [T ], state-action pairs (x, a) ∈ X ×A and constraints i ∈ [m]:∣∣∣∣ĝt,i(x, a)−g◦i (x, a)]∣∣∣∣ ≤√

1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

CG

max{Nt(x, a), 1}
+
CG

T
,

which can be rewritten as:∣∣∣∣ĝt,i(x, a)− g◦i (x, a)]∣∣∣∣ ≤ ξt(x, a) + ϵ

max{Nt(x, a), 1}
+
ϵ

T
,

where,

ξt(x, a) := min

{
1,

√
1

2max{Nt(x, a), 1}
ln

(
2mT |X||A|

δ

)
+

ĈG

max{Nt(x, a), 1}
+
ĈG

T

}
,

and CG = ĈG + ϵ, which concludes the proof.

We are now ready study the regret bound attained by the algorithm when the guess on the corruption
is an overestimate.
Theorem 7. For any δ ∈ (0, 1), Algorithm 2, when instantiated with corruption value Ĉ which is
an overestimate of the true value of C, i.e. Ĉ > CG and Ĉ > Cr, attains with probability at least
1− 8δ:

RT = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ ln(T )|X||A|Ĉ

)
.

Proof. By Corollary 1, it holds that the decision space of the linear program performed by Algorithm 2
contains with high probability the optimal solution that respects to the constraints. Furthermore,
employing Corollary 3 and following the proof of Theorem 3 concludes the proof.

We proceed bounding the violation attained by our algorithm when an underestimate of the corruption
is given as input.

Theorem 8. For any δ ∈ (0, 1), Algorithm 2, when instantiated with corruption value Ĉ which is an
underestimate of the true value of CG, i.e. Ĉ < CG, attains with probability at least 1− 9δ:

VT = O

(
L|X|

√
|A|T ln

(
mT |X||A|

δ

)
+ ln(T )|X||A|CG

)
.
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Proof. First, let’s define ϵ ∈ R+ such that ϵ := CG − Ĉ. Then, with probability at least 1− δ:

VT = max
i∈[m]

∑
t∈[T ]

[
E[Gt]

⊤qt − α
]+
i

(13a)

= max
i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )

⊤
qt + g◦i

⊤qt − αi

]+
≤ max

i∈[m]

∑
t∈[T ]

[
(E[gt,i]− g◦i )⊤qt + g⊤

t−1,i
(qt − q̂t) + g⊤

t−1,i
q̂t + 2ξ⊤t−1qt+

+
∑
x,a

(
ϵ

max{Nt−1(x, a), 1}
+
ϵ

T

)
qt(x, a)− αi

]+
(13b)

≤ CG + 2max
i∈[m]

∑
t∈[T ]

ξ⊤t−1qt +
∑
t∈[T ]

∥qt − q̂t∥1+

+
∑
t∈[T ]

∑
x,a

ϵ

max{Nt−1(x, a), 1}
qt(x, a) + ϵL, (13c)

where Inequality (13b) follows from Lemma 10 and Inequality (13c) is derived as in the proof of
Theorem 2, and considering that ∥qt∥1 = L, ∀t ∈ [T ]. Now, employing the Azuma-Hoeffding
inequality, we can bound, with probability at least 1−δ the term

∑T
t=1

∑
x,a

ϵ
max{Nt−1(x,a),1}qt(x, a)

as follows:∑
t∈[T ]

∑
x,a

ϵ

max{Nt−1(x, a), 1}
qt(x, a) ≤ L

√
2T ln

1

δ
+
∑
t∈[T ]

∑
x,a

ϵ

max{Nt−1(x, a), 1}
It(x, a)

≤ L
√
2T ln

1

δ
+ ϵ|X||A|(1 + ln(T )),

where we applied Azume Hoeffding inequality and the fact that
∑

t∈[NT (x,a)]
1
t ≤ 1+ ln(T ). Finally,

following the steps of the proof of Theorem 2 to bound the first 3 elements of Inequality (13c) under
Eq̂ with probability at least 1−δ, and considering that ϵ ≤ CG and Ĉ ≤ CG, it holds, with probability
at least 1− 9δ,

VT = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ ln(T )|X||A|CG

)
,

which concludes the proof.

Finally, we provide the violation bound attained by Algorithm 2 when an overestimate of the
corruption value is given as input.

Theorem 9. For any δ ∈ (0, 1), Algorithm 2, when instantiated with corruption value Ĉ which is an
overestimate of the true value of CG, i.e. Ĉ > CG, attains with probability at least 1− 8δ:

VT = O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ ln(T )|X||A|Ĉ

)
.

Proof. The proof follows by employing Corollary 1 to the proof of Theorem 2.

F Omitted proofs when the corruption is not known

In the following section we provide the omitted proofs of the theoretical guarantees attained by
Algorithm 3. The algorithm is designed to work when the corruption value is not known.
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F.1 Lagrangian formulation of the constrained optimization problem

Since Algorithm 3 is based on a Lagrangian formulation of the constrained problem, it is necessary
to show that this approach is well characterized. Precisely, we show that a strong duality-like result
holds even when the Lagrangian function is defined taking the positive violations.

First, we show that strong duality holds with respect to the standard Lagrangian function, even
considering a subset of the Lagrangian multiplier space.
Lemma 1. Given a CMDP with a transition function P , for every reward vector r ∈ [0, 1]|X×A|,
constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m, if Program (3) satisfies
Slater’s condition (Condition 1):

min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

r⊤q −
∑
i∈[m]

λi
[
G⊤q − α

]
i
= max

q∈∆(P )
min

∥λ∥1∈[0,L/ρ]
r⊤q −

∑
i∈[m]

λi
[
G⊤q − α

]
i

= OPTr,G,α,

where λ ∈ Rm
≥0 is a vector of Lagrangian multipliers and ρ is the feasibility parameter of Program (3).

Proof. The proof follows the one of Theorem 3.3 in [Castiglioni et al., 2022b]. First we prove that,
given the Lagrangian function Q(λ, q) := r⊤q −

∑
i∈[m] λi

(
G⊤

i q − αi

)
, it holds:

min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

Q(λ, q) = min
λ∈Rm

≥0

max
q∈∆(P )

Q(λ, q),

with λ ∈ Rm
≥0. In fact notice that for all λ ∈ Rm

≥0 such that ∥λ∥1 > L/ρ :

max
q∈∆(P )

Q(λ, q) ≥ Q(λ, q◦) ≥ −
∑
i∈[m]

λi
(
G⊤

i q
◦ − αi

)
≥ ∥λ∥1ρ > L,

where q◦ is defined as q◦ := argmaxq∈∆(P ) mini∈[m]

[
αi −G⊤

i q
]
. Moreover since

min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

Q(λ, q) ≤ max
q∈∆(P )

Q(0, q) = max
q∈∆(P )

r⊤q ≤ L,

it holds:

min
λ∈Rm

≥0

max
q∈∆(P )

Q(λ, q) = min

{
min

∥λ∥1∈[0,L/ρ]
max

q∈∆(P )
Q(λ, q), min

∥λ∥1≥L/ρ
max

q∈∆(P )
Q(λ, q)

}
= min

∥λ∥1∈[0,L/ρ]
max

q∈∆(P )
Q(λ, q).

Thus,
OPTr,G,α = max

q∈∆(P )
min

λ∈Rm
≥0

Q(λ, q)

≤ max
q∈∆(P )

min
∥λ∥1≥L/ρ

Q(λ, q)

≤ min
∥λ∥1≥L/ρ

max
q∈∆(P )

Q(λ, q)

= min
λ∈Rm

≥0

max
q∈∆(P )

Q(λ, q)

= OPTr,G,α,

where the second inequality holds by the max-min inequality and the last step holds by the well-known
strong duality result in CMDPs [Altman, 1999]. This concludes the proof.

In the following, we extend the previous result for the Lagrangian function which encompasses the
positive violations.
Theorem 4. Given a CMDP with a transition function P , for every reward vector r ∈ [0, 1]|X×A|,
constraint cost matrix G ∈ [0, 1]|X×A|×m, and threshold vector α ∈ [0, L]m, if Program (3) satisfies
Slater’s condition (Condition 1), then the following holds:

max
q∈∆(P )

L(L/ρ, q) = max
q∈∆(P )

r⊤q − L

ρ

∑
i∈[m]

[
G⊤q − α

]+
i
= OPTr,G,α,

where ρ is the feasibility parameter of Program (3).
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Proof. Following the definition of Lagrangian function, we have:

max
q∈∆(P )

L(L/ρ, q) = max
q∈∆(P )

r⊤q − L

ρ

∑
i∈[m]

[
G⊤

i q − αi

]+
≤ max

q∈∆(P )
min

∥λ∥1∈[0,L/ρ]
r⊤q −

∑
i∈[m]

λi[G
⊤
i q − αi]

+

≤ min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

r⊤q −
∑
i∈[m]

λi[G
⊤
i q − αi]

+

≤ min
∥λ∥1∈[0,L/ρ]

max
q∈∆(P )

r⊤q −
∑
i∈[m]

λi
(
G⊤

i q − αi

)
= OPTr,G,α

where λ ∈ Rm
≥0 is the Lagrangian vector, the second inequality holds by the max-min inequality and

the last step follows from Lemma 1. Noticing that for all q belonging to
{
q ∈ ∆(P ) : G⊤q ≤ α

}
,

we have L(1/ρ, q) = r⊤q, which implies that maxq∈∆(P ) L(1/ρ, q) ≥ OPTr,G,α, concludes the
proof.

F.2 Preliminary results

In the following sections we will refer as:

V̂T :=
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
ĝ j⊤
t,i q̂

j
t − αi

]+
, (14)

to the estimated violation attained by the instances of Algorithm 3. Furthermore, we will refer as:

V̂T,j∗ :=
∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

[
ĝ j∗⊤
t,i q̂ j∗

t − αi

]+
, (15)

to the estimated violation attained by the optimal instance j∗, namely, the integer in [M ] such that
the true corruption C ∈ [2j

∗−1, 2j
∗
].

Furthermore, we will refer as qjt to the occupancy measure induced by the policy proposed by Algj
at episode t, with j ∈ [M ], t ∈ [T ], and we will refer as:

ĝjt,i(x, a) :=

∑
τ∈[t] Iτ (x, a)I(jτ = j)gτ,i(x, a)

max{N j
t (x, a), 1}

,

to the estimate of the cost computed for j-th algorithm, where N j
t (x, a) is a counter initialize to 0 in

t = 0, and which increases by one from episode t to episode t+ 1 whenever It(x, a)I(jt = j) = 1.

F.2.1 Stability parameters

In the following sections, we will employ the stability parameters β defined as follows:

• β1 = O
(
L2|X|2|A| ln

(
T |X||A|

δ

))
• β2 = O

(
|X|2|A|2 log(T ) log (log(T )/δ)

)
• β3 = O

(
ln(T )2|X||A|

)
• β4 = O

(
L2|X|2|A| ln

(
mT |X||A|

δ

))
• β5 = O

(
|X|2|A|2 log(T ) log (log(T )/δ)

)
• β6 = O

(
ln(T )2|X||A|

)
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F.2.2 Omitted proofs and lemmas

We start providing some preliminary results on the optimistic estimator employed by Algorithm 3.
Lemma 11. For any δ ∈ (0, 1), given γ ∈ R≥0, with probability at least 1− δ, it holds:

R̂T ≤ O

(
γTLM + L

√
2T ln

(
1

δ

))
,

where R̂T =
∑

t∈[T ]

∑
j∈[M ]

(
wt,j

(
L− E[rt]⊤qjt

)
− wt,jI(jt=j)

wt,j+γ

∑
(xt

k,a
t
k)
(1− rt (xtk, atk))

)
.

Proof. We first observe that by construction:

E

∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
(xt

k,a
t
k)

(
1− rt

(
xtk, a

t
k

)) =
∑
t∈[T ]

∑
j∈[M ]

w2
t,j

wt,j + γ

(
L− E[rt]⊤qjt

)
.

Moreover, still by construction, for all episodes t ∈ [T ], it holds:∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
(xt

k,a
t
k)

(
1− rt

(
xtk, a

t
k

))
≤
∑

j∈[M ]

I(jt = j)
∑

(xt
k,a

t
k)

(
1− rt

(
xtk, a

t
k

))
≤ L.

Thus, employing Azuma-Hoeffding inequality, with probability at least 1− δ, it holds:

∑
t∈[T ]

∑
j∈[M ]

 w2
t,j

wt,j + γ
(L− E[rt]⊤qjt )−

wt,jI(jt = j)

wt,j + γ

∑
(xt

k,a
t
k)

(1− rt(xtk, atk))

 ≤ L√2T ln

(
1

δ

)
.

Finally we notice that:∑
t∈[T ]

∑
j∈[M ]

wt,j

(
L− E[rt]⊤qjt

)
−
∑
t∈[T ]

∑
j∈[M ]

w2
t,j

wt,j + γ

(
L− E[rt]⊤qjt

)
=
∑
t∈[T ]

∑
j∈[M ]

(
wt,j

wt,j + γ

)
γ
(
L− E[rt]⊤qjt

)
≤ γTLM.

Adding and subtracting E
[∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
(xt

k,a
t
k)
(1− rt (xtk, atk))

]
to the quantity of

interest and employing the previous bound concludes the proof.

We provide an additional result on the optimistic estimator employed by Algorithm 3.
Lemma 12. For any δ ∈ (0, 1), given γ ∈ R≥0, with probability at least 1− δ, it holds:∑

t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
(xt

k,a
t
k)

(
1− rt

(
xtk, a

t
k

))
−
∑
t∈[T ]

(
L− E[rt]⊤qj

∗

t

)
= O

(
L

γ
ln

(
1

δ

))

Proof. The proof closely follows the idea of Corollary 5. We define the loss ℓ̄t =
∑

(xt
k,a

t
k)
(1 −

rt(x
t
k, a

t
k)), the optimistic loss estimator ℓ̂t :=

I(jt=j∗)
wt,j∗+γ

∑
(xt

k,a
t
k)
(1− rt(xtk, atk)) and the unbiased

estimator ℓ̃t :=
I(jt=j∗)
wt,j∗

∑
(xt

k,a
t
k)
(1− rt(xtk, atk)).

Employing the same argument as Neu [2015] it holds:

ℓ̂t =
I(jt = j∗)

wt,j∗ + γ
ℓ̄t ≤

I(jt = j∗)

wt,j∗ + γℓ̄t/L
ℓ̄t ≤

L

2γ

2γℓ̄t/wt,j∗L

1 + γℓ̄t/wt,j∗L
I(jt = j∗) ≤ L

2γ
ln

(
1 +

2γ

L
ℓ̃t

)
,

since z
1+z/2 ≤ ln(1 + z), z ∈ R+. Employing the previous inequality, it holds:

E

[
exp

(
2γ

L
ℓ̂t

) ∣∣∣∣∣Ft−1

]
≤ E

[
exp

(
2γ

L

L

2γ
ln

(
1 +

2γ

L
ℓ̃t

)) ∣∣∣∣∣Ft−1

]
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= E

[
1 +

2γ

L
ℓ̃t

∣∣∣∣∣Ft−1

]

= 1 +
2γ

L
E

 I(jt = j∗)

wt,j∗

∑
(xt

k,a
t
k)

(1− rt(xtk, atk))

∣∣∣∣∣Ft−1


≤ 1 +

2γ

L

(
L− E[rt]⊤qj

∗

t

)
≤ exp

(
2γ

L

(
L− E[rt]⊤qj

∗

t

))
,

where Ft−1 is the filtration up to episode t. We conclude the proof employing the Markov inequality
as follows:

P

( ∑
t∈[T ]

2γ

L

(
ℓ̂t −

(
L− E[rt]⊤qj

∗

t

))
≥ ϵ

)

≤ E

exp
∑

t∈[T ]

2γ

L

(
ℓ̂t −

(
L− E[rt]⊤qj

∗

t

)) exp(−ϵ)

≤ exp(−ϵ).

Solving δ = exp(−ϵ) for ϵ we obtain:

P

∑
t∈[T ]

(
ℓ̂t −

(
L− E[rt]⊤qj

∗

t

))
≥ L

2γ
ln

(
1

δ

) ≤ δ.
This concludes the proof.

We are now ready to prove the regret bound attained by FTRL with respect to the Lagrangian
underlying problem.
Lemma 13. For any δ ∈ (0, 1) and properly setting the learning rate η such that η ≤

1

2Λm(
√
β1T+β2+β5+

√
β4T)

, Algorithm 3 attains, with probability at least 1− 2δ:

∑
t∈[T ]

E[rt]⊤qj
∗

t −
∑
t∈[T ]

∑
j∈[M ]

wt,jE[rt]⊤qjt +
Lm+ 1

ρ
V̂T −

Lm+ 1

ρ
V̂T,j∗

+

(
m(mL+ 1)

ρ
β5 + β2

)
νT,j∗ +

(√
β1 +

(
m(Lm+ 1)

ρ

)√
β4

)√
TνT,j∗

≤ O
(
M lnT

η
+ η m4L4TM + η M ln(T )m4L2β2

5 + η M ln(T )β2
2

+ ηT (β1 + L2m4β4)M log(T ) + γTLM + L
√
T ln (1/δ) +

L

γ
ln (1/δ)

)
.

Proof. First, we define ℓt,j , for all t ∈ [T ], for all j ∈ [M ] as:

ℓt,j :=
I(jt = j)

wt,j + γ

 ∑
(xt

k,a
t
k)

(1− rt(xtk, atk)) +
Lm+ 1

ρ

∑
i∈[m]

[
ĝ j⊤
t,i q̂

j
t − αi

]+ ,

and bt,j for all t ∈ [T ], for all j ∈ [M ] as:

bt,j :=

((
m(mL+ 1)

ρ
β5 + β2

)
+

(√
β1 +

m(Lm+ 1)

ρ

√
β4

)√
T

)
(νt,j − νt−1,j),

with νt,j = maxτ∈[t]
1

wτ,j
.

First we prove that ηwt,j |ℓt,j − bt,j | ≤ 1/2 for all t ∈ [T ], j ∈ [M ], to apply Lemma 16. It
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holds that ηwt,j |ℓt,j | ≤ η(Lρ+L2m2+Lm)
ρ ≤ 1

2 for all j ∈ [M ], for all t ∈ [T ] as long as η ≤
ρ

2(Lρ+L2m2+Lm) ≤
ρ

2(L2m2+Lm) , which is true if η ≤ ρ
2Lm(Lm+1) . It also holds that

ηwt,j |bt,j | = ηwt,j

((
m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)
(νt,j − νt−1,j)

≤ η
((

m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)(
1− νt−1,j

νt,j

)
≤ η

((
m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)
≤ 1

2
,

if η ≤ 1

2Λm(
√
β1T+β2+β5+

√
β4T)

, where we used the fact that νt,j ̸= νt−1,j ⇐⇒ 1/wt,j = νt,j .

Thus, if the previous conditions on η hold, and notice that the second condition implies the first,
Algorithm 3 attains, by Lemma 16 :∑
t∈[T ]

[ ∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
(xt

k,a
t
k)

(1− rt(xtk, atk))−
I(jt = j∗)

wt,j∗ + γ

∑
(xt

k,a
t
k)

(1− rt(xtk, atk))

]
+
Lm+ 1

ρ
V̂T

≤ M lnT

η
+ 2η

TM(Lρ+ L2m2 + Lm)2

ρ2

+ 2η

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

M ln (T ) + 2T

(√
β1 +

(
m(Lm+ 1)

ρ

)√
β4

)2

M ln(T )

)

+
Lm+ 1

ρ
V̂T,j∗ +

∑
t∈[T ]

∑
j∈[M ]

wt,jbt,j −
∑
t∈[T ]

bt,j∗ , (16)

where we used the following inequalities:

• First inequality:∑
t∈[T ]

∑
j∈[M ]

w2
t,j(ℓt,j − bt,j)2 ≤ 2

∑
t∈[T ]

∑
j∈[M ]

w2
t,jℓ

2
t,j + 2

∑
t∈[T ]

∑
j∈[M ]

w2
t,jb

2
t,j ,

• Second inequality: ∑
(xt

k,a
t
k)

(1− rt(xtk, atk)) +
Lm+ 1

ρ

∑
i∈[m]

[
ĝ j⊤
t,i q̂

j
t − αi

]+ ≤ (Lρ+ L2m2 + Lm)

ρ
,

• Third inequality: ∑
t∈[T ]

∑
j∈[M ]

w2
t,jℓ

2
t,j ≤

TM(Lρ+ L2m2 + Lm)2

ρ2
,

and that, it holds:∑
t∈[T ]

∑
j∈[M ]

w2
t,jb

2
t,j

=
∑
t∈[T ]

∑
j∈[M ]

(wt,jbt,j)
2

≤
((

m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)2 ∑
j∈[M ]

∑
t∈[T ]

(
1

νt,j
(νt,j − νt−1,j)

)2

(17a)
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≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

∑
t∈[T ]

(
1− νt−1,j

νt,j

)2

≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

∑
t∈[T ]

(
1− νt−1,j

νt,j

)

≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

∑
t∈[T ]

ln

(
νt,j
νt−1,j

)
(17b)

≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

ln

∏
t∈[T ]

νt,j
νt−1,j


≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
) ∑

j∈[M ]

ln

(
νT,j

ν0,j

)

≤

(
2

(
m(mL+ 1)

ρ
β5 + β2

)2

+ 2T

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)2
)
M ln (T ) , (17c)

where Inequality (17a) is true since νt,j − νt−1,j ̸= 0 only when wt,j = 1/νt,j by definition,
Inequality (17b) holds since 1− a ≤ − ln a, and Inequality (17c) holds since by definition νT,j ≤ T
and ν0,j =M . Notice also that, following a similar reasoning, it holds:∑

t∈[T ]

wt,jbt,j −
∑
t∈[T ]

bt,j∗

=

((
m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

) ∑
t∈[T ]

∑
j∈[M ]

(
1− νt−1,i

νt,i

)

−
((

m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

) ∑
t∈[T ]

(νt,j∗ − νt−1,j∗)

≤ O
(
m2Lβ5M log(T ) + β2M log(T ) + (

√
β1 + Lm2

√
β4)
√
TM log(T )

)
−
((

m(Lm+ 1)

ρ
β5 + β2

)
+

(
m(Lm+ 1)

ρ

√
β4 +

√
β1

)√
T

)
νT,j∗

Thus, with probability at least 1− 2δ, it holds:∑
t∈[T ]

E[rt]⊤qj
∗

t −
∑
t∈[T ]

∑
j∈[M ]

wt,jE[rt]⊤qjt +
Lm+ 1

ρ
V̂T

=
∑
t∈[T ]

∑
j∈[M ]

wt,j

(
L− E[rt]⊤qjt

)
−
∑
t∈[T ]

(
L− E[rt]⊤qj

∗

t

)
+
Lm+ 1

ρ
V̂T (18)

≤ O
(
M lnT

η
+ η m4L4TM + η M ln(T )m4L2β2

5 + η M ln(T )β2
2

+ ηT (β1 + L2m4β4)M log(T ) + γTLM + L
√
T ln (1/δ) +

L

γ
ln (1/δ)

)
+
Lm+ 1

ρ
V̂T,j∗

−
(
m(mL+ 1)

ρ
β5 + β2

)
νT,j∗ −

(√
β1 +

(
m(Lm+ 1)

ρ

)√
β4

)√
TνT,j∗, (19)

where Equation (18) holds since
∑

j∈[M ] wt,j = 1, ∀t ∈ [T ], and Inequality (19) holds, with
probability at least 1 − 2δ, by Lemma 11, Lemma 12 and Equation (16). This concludes the
proof.
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In order to provide the desired bound RT and VT for Algorithm 3, it is necessary to study the relation
between the aforementioned performance measures and the terms appearing from the FTRL analysis
in Lemma 13.

Thus, we bound the distance between the incurred violation and the estimated one.
Lemma 14. For any γ ∈ R≥0, given δ ∈ (0, 1), with probability at least 1− 10δ, it holds:

VT − V̂T = O

(
mL|X|

√
|A|T ln

(
mT |X||A|

δ

)
+m ln(T )|X||A|C + γTLM

)
.

Proof. We start defining the quantity ξ̂t,j(x, a) – for all episode t ∈ [T ], for all state-action pairs
(x, a) ∈ X × A, for all instance j ∈ [M ] – as in Theorem 2 but using the true value of adversarial
corruption C, considering that the counter N j

t (x, a) increases on one unit from episode t to t+ 1,
if and only if I(jt = j)It(x, a) = 1, and by applying a Union Bound over all instances j ∈ [M ]
namely,

ξ̂t,j(x, a) := min

{
1,

√
1

2max{N j
t (x, a), 1}

ln

(
2mMT |X||A|

δ

)
+

C

max{N j
t (x, a), 1}

+
C

T

}
,

(20)
By Corollary 2, and applying a Union Bound on instances j ∈ [M ] simultaneously ∀t ∈ [T ],∀i ∈
[m],∀(x, a) ∈ X ×A,∀j ∈ [M ], with probability at least 1− δ, it holds:

ĝjt,i(x, a) + ξ̂t,j(x, a) ≥ g◦i (x, a). (21)

Resorting to the definition of V̂T , we obtain that, with probability at least 1− δ, under Eq̂:

V̂T =
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
ĝjt,i

⊤q̂jt − αi

]+
=
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
(ĝjt,i

⊤qjt + ξ̂ ⊤
t,jq

j
t − αi)− ξ̂ ⊤

t,jq
j
t − ĝ

j
t,i

⊤(qjt − q̂
j
t )
]+

≥
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

([
(ĝjt,i + ξ̂t,j)

⊤qjt − αi

]+
− ξ̂ ⊤

t,jq
j
t − ĝ

j
t,i

⊤|qjt − q̂
j
t |
)

(22a)

≥
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

([
g◦⊤i qjt − αi

]+
− ξ̂ ⊤

t,jq
j
t − ∥q

j
t − q̂

j
t ∥1
)

(22b)

≥
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

([
E[gt,i]⊤qjt − αi

]+
− ξ̂ ⊤

t,jq
j
t

)
−
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

·
∑
i∈[m]

[
(g◦i − E[gt,i])⊤qjt

]+
−O

(
mL|X|

√
|A|T ln

(
T |X||A|

δ

))
, (22c)

where Inequality (22a) holds since [a− b]+ ≥ [a]+ − b, a ∈ R, b ∈ R≥0, Inequality (22b) follows
from Inequality (21) and since, by definition, ĝjt,i(x, a) ≤ 1,∀(x, a) ∈ X × A,∀i ∈ [m],∀t ∈
[T ],∀j ∈ [M ] and, finally, Inequality (22c) holds under event Eq̂ by Lemma 19 after noticing that∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
i∈[m]∥q

j
t − q̂

j
t ∥1 ≤

∑
t∈[T ]

∑
j∈[M ] I(jt = j)

(
wt,j

wt,j+γ

)∑
i∈[m]∥q

j
t −

q̂jt ∥1 ≤ m
∑

t∈[T ]∥q
jt
t − q̂

jt
t ∥1.

We will bound the previous terms separately.

Lower-bound to
∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
.

We bound the term by the Azuma-Hoeffding inequality. Indeed, with probability at least 1 − δ, it
holds: ∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
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≥

∑
t∈[T ]

∑
j∈[M ]

w2
t,j

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+−mL√2T ln

(
1

δ

)
,

where we used the following upper-bound to the martingale sequence:∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
≤
∑

j∈[M ]

I(jt = j)

(
wt,j

wt,j + γ

) ∑
i∈[m]

[
E[gt,i]⊤qjt

]+
≤
∑

j∈[M ]

I(jt = j)
∑
i∈[m]

∥qjt ∥1

≤ m∥qjtt ∥1
≤ mL.

Moreover, we observe the following bounds:∑
t∈[T ]

∑
j∈[M ]

wt,j

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
−
∑
t∈[T ]

∑
j∈[M ]

w2
t,j

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
≤ γTLm,

and, ∑
t∈[T ]

∑
j∈[M ]

wt,j

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+
≥
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

wt,j

[
E[gt,i]⊤qjt − αi

]+
.

Combining the previous results, we obtain, with probability at least 1− δ:∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
E[gt,i]⊤qjt − αi

]+

≥
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

wt,j

[
E[gt,i]⊤qjt − αi

]+
−

(
γTLm+ Lm

√
2T ln

(
1

δ

))
.

Upper-bound to
∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
i∈[m] ξ̂

⊤
t,jq

j
t .

We bound the term noticing that, with probability at least 1− δ, it holds:∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

ξ̂ ⊤
t,jq

j
t

≤
∑

j∈[M ]

mmax
i∈[m]

∑
t∈[T ]

wt,jI(jt = j)

wt,j + γ
ξ̂ ⊤
t,jq

j
t

≤
∑

j∈[M ]

mmax
i∈[m]

∑
t∈[T ]

∑
x,a

I(jt = j)It(x, a)ξ̂t,j(x, a) + L

√
2T ln

1

δ

= O

(
m

√
|X||A|LT ln

(
mMT |X||A|

δ

)
+m lnT |X||A|C + L

√
T ln

1

δ

)
,

where we employed the Azuma-Hoeffding inequality and where the last step holds following the
proof of Theorem 2.

Upper-bound to
∑

t∈[T ]

∑
j∈[M ]

wt,jI(jt=j)
wt,j+γ

∑
i∈[m]

[
(g◦i − E[gt,i])⊤ qjt

]+
.

We simply bound the quantity of interest as follows:∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
(g◦i − E[gt,i])⊤ qjt

]+
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≤ mmax
i∈[m]

∑
t∈[T ]

∑
j∈[M ]

I(jt = j)∥g◦i − E[gt,i]∥1

≤ mC.

Final result. To conclude we employ the Azuma-Hoeffding inequality on the violation definition,
obtaining, with probability at least 1− δ:

VT =
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

I(jt = j)
[
E[gt,i]⊤qjt − αi

]+

≤
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

wt,j

[
E[gt,i]⊤qjt − αi

]+
+ L

√
2T ln

(
1

δ

)
.

Thus, plugging the previous bounds in Equation (22c), we obtain, with probability at least 1− 10δ:

VT − V̂T

≤
∑

j∈[M ]

max
i∈[m]

∑
t∈[T ]

I(jt = j)
[
E[gt,i]⊤qjt − αi

]+
−
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

[
ĝjt,i

⊤q̂jt − αi

]+

≤ m
∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ
ξ̂ ⊤
t,jq

j
t +

∑
t∈[T ]

∑
j∈[M ]

wt,jI(jt = j)

wt,j + γ

∑
i∈[m]

 1

T

∑
τ∈[T ]

(E[gτ,i]− E[gt,i])⊤qjt

+

+ γTLm+ 2Lm

√
2T

(
1

δ

)
+O

(
mL|X|

√
|A|T ln

(
T |X||A|

δ

))

= O

(
mL|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+m ln(T )|X||A|C + γTLM

)
This concludes the proof.

We proceed bounding the estimated violation attained by the optimal instance j∗.

Lemma 15. For any δ ∈ (0, 1), with probability at least 1− 16δ, it holds:

V̂T,j∗ ≤ O

(
mL|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+mβ6C +m ln(T )|X||A|C + Lm

ln
(
M
δ

)
2γ

)
+m

√
β4TνT,j∗ +mβ5νT,j∗ .

Proof. We start by observing that with, probability at least 1− δ under Eq̂ , the quantity of interest is
bounded as follows:∑

t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

[
ĝj

∗

t,i
⊤q̂j

∗

t − αi

]+
≤
∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

([
ĝj

∗

t,i
⊤(q̂j

∗

t − q
j∗

t ) + ĝj
∗

t,i
⊤qj

∗

t − ξ̂ ⊤
t,j∗q

j∗

t − αi

]+
+ ξ̂ ⊤

t,j∗q
j∗

t

)
(23a)

≤
∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

([
E[gt,i]⊤qj

∗

t − αi

]+
+ ξ̂ ⊤

t,j∗q
j∗

t +

+
[
g◦i

⊤qj
∗

t − E[gt,i]⊤qj
∗

t

]+
+ ∥q̂j

∗

t − q
j∗

t ∥1

)
(23b)

≤
∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

([
E[gt,i]⊤qj

∗

t − αi

]+
+ ξ̂ ⊤

t,j∗q
j∗

t +
[
(g◦i − E[gt,i])⊤ qj

∗

t

]+)
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+O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, (23c)

where Inequality (23a) holds since [a + b]+ ≤ [a]+ + [b]+, ∀a, b ∈ R and by the definition of
ξ̂t,j∗ (see Equation (20)) which implies that all its elements are positive, Inequality (23b) holds with
probability at least 1− δ by Corollary 2 and by union bound over M , and since that ∥ĝt,i∥∞ ≤ 1 and
Inequality (23c) holds with probability at least 1− 6δ by Lemma 19.

Upper-bound to
∑

t∈[T ]
I(jt=j∗)
wt,j∗+γ

∑
i∈[m]

[
(g◦i − E[gt,i])⊤ qj

∗

t

]+
.

It is immediate to bound the quantity of interest employing the definition of corruption C and by
Lemma 17. Indeed, with probability at least 1− δ:∑

t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

[
(g◦i − E[gt,i])⊤ qj

∗

t

]+
≤ Lm

√
2T ln

(
1

δ

)
+mC.

Upper-bound to
∑

t∈[T ]
I(jt=j∗)
wt,j∗+γ

∑
i∈[m]

[
E[gt,i]⊤qj

∗

t − αi

]+
.

We bound the quantity of interest as follows. With probability at least 1− 11δ, it holds:∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

[
E[gt,i]⊤qj

∗

t − αi

]+
≤ m

√
β4TνT,j∗ +mβ5νT,j∗ + 2mβ6C + Lm

ln
(
M
δ

)
2γ

, (24a)

thank to Corollary 5 and Corollary 6 .

Upper-bound to
∑

t∈[T ]
I(jt=j∗)
wt,j∗+γ

∑
i∈[m] ξ̂

⊤
t,j∗q

j∗

t .

First, notice that, with probability at least 1− δ, it holds:∑
t∈[T ]

I(jt = j∗)

wt,j∗ + γ

∑
i∈[m]

ξ̂ ⊤
t,j∗q

j∗

t −m
∑
t∈[T ]

I(jt = j∗)ξ̂ ⊤
t,j∗q

j∗

t ≤ L

√
2T ln

(
1

δ

)
,

where we employed Lemma 17. Now we observe that, with probability at least 1− δ, it holds:
T∑

t=1

ξ̂ ⊤
t−1,j∗qtI(jt = j∗) =

T∑
t=1

∑
x,a

ξ̂t−1,j∗(x, a)q
j∗

t (x, a)I(jt = j∗)

≤
T∑

t=1

∑
x,a

ξ̂t−1,j∗(x, a)It(x, a)I(jt = j∗) + L

√
2T ln

1

δ

= O

(√
|X||A|LT ln

(
mMT |X||A|

δ

)
+ ln(T )|X||A|C + L

√
T ln

1

δ

)
,

where employed the same steps as in the proof of Theorem 2, considering that the counter increases
if and only if It(x, a)I(jt = j∗) = 1.

Combining the previous bounds concludes the proof.

F.3 Main results

In the following, we provide the main results attained by Algorithm 3 in terms of regret and violations.
We start providing the regret bound and the related proof.

Theorem 6. If Program (3) instantiated with r, G and α satisfies Slater’s condition (Condi-
tion 1), then, given any δ ∈ (0, 1), with probability at least 1 − 30δ, Algorithm 3 attains re-
gret RT = O(m2L2|X|

√
|A|T log (mT |X||A|/δ) log(T )2 + m2L|X|2|A|2 log(T )3 log (log(T )/δ) +

m2L log(T )2|X||A|C).
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Proof. Employing algorithm 3, with probability at least 1− 14δ, it holds:

RT =
∑
t∈[T ]

r⊤q∗ −
∑
t∈[T ]

r⊤qt

=
∑
t∈[T ]

r⊤(q∗ − qj
∗

t ) +
∑
t∈[T ]

r⊤(qj
∗

t − qt)

=
√
β1TνT,j∗ + β2νT,j∗ + 2β3C +

∑
t∈[T ]

r⊤(qj
∗

t − qt) (25a)

≤
√
β1TνT,j∗ + β2νT,j∗ + 2β3C + 2C − Lm+ 1

ρ
V̂T +

Lm+ 1

ρ
V̂T,j∗

− (
√
β1 +

m(Lm+ 1)

ρ

√
β4)
√
TνT,j∗ −

(
β2 +

m(mL+ 1)

ρ
β5

)
νT,j∗

+O
(
M lnT

η
+ η m4L4TM + η M ln(T )m4L2

(
β2
2 + β2

5

)
+ ηT (β1 + L2m4β4)M log(T ) + γTLM + L

√
T ln (1/δ) +

Lm

γ
ln (1/δ)

)
. (25b)

where Inequality (25a) hold with probability at least 1− 11δ by Corollary 7,Inequality (25b) holds
with probability at least 1− 3δ thanks to Lemma 13 and to the following reasoning, which holds with
probability at least 1− δ:∑

t∈[T ]

r⊤(qj∗t − qt) =
∑
t∈[T ]

(r − E[rt])⊤(qj∗t − qt) +
∑
t∈[T ]

E[rt]⊤(qj∗t − qt)

≤
∑
t∈[T ]

∥r − E[rt]∥1 +
∑
t∈[T ]

E[rt]⊤
(
qj∗t − qt

)
(26a)

≤ 2C +
∑
t∈[T ]

E[rt]⊤
(
qj∗t − qt

)
(26b)

≤ 2C +
∑
t∈[T ]

E[rt]⊤qj∗t −
∑
t∈[T ]

∑
j∈[M ]

wt,jE[rt]⊤qjt + L
√
2T ln(1/δ) (26c)

where Inequality (26a) holds since |qt(x, a) − qj
∗

t (x, a)| ≤ 1, ∀(x, a) ∈ X × A, where Inequal-
ity (26b) holds by definition of C, and where Inequality (26c) use Azuma-Hoeffding inequality.

We can apply Lemma 15 to bound V̂T,j∗ with high probability. In fact we observe that with probability
at least 1− 16δ, it holds:
Lm+ 1

ρ
V̂T,j∗

≤ O

(
m2L2|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+m2Lβ6C +m2L ln(T )|X||A|C + L2m2 ln

(
M
δ

)
2γ

)

+
(Lm+ 1)m

ρ
β5νT,j∗ +

m(Lm+ 1)

ρ

√
β4TνT,j∗ .

Finally, combining the previous results and by Union Bound, with probability at least 1 − 30δ, it
holds:

RT +
Lm+ 1

ρ
V̂T

≤ O
(
M lnT

η
+ η m4L4TM + η M ln(T )m4L2(β2

2 + β2
5) + ηT (β1 + L2m4β4)M log(T )

+ γTLM + L
√
T ln (1/δ) +

Lm

γ
ln (1/δ)

+m2L2|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+mLβ6C + β3C +m2L|X||A| ln(T )C

)
(27)
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which concludes the proof after observing that V̂T ≥ 0, by definition, and setting γ =
√

ln(M/δ)
TM ,

η ≤ 1

2Λm(
√
β1T+β2+β5+

√
β4T)

.

We conclude the section providing the violations bound and the related proof.

Theorem 5. If Program (3) instantiated with r, G and α satisfies Slater’s condition (Condition 1),
then, given any δ ∈ (0, 1), with probability at least 1−34δ, Algorithm 3 attains positive constraint vi-
olation VT = O(m2L2|X|

√
|A|T log (mT |X||A|/δ) log(T )2+m2L|X|2|A|2 log(T )3 log (log(T )/δ)+

m2L log(T )2|X||A|C).

Proof. Starting from Inequality (27), in order to obtain the final violations bound, it is necessary to
find an upper bound for −RT . We proceed as follows,

r⊤q∗ = OPTr,G,α (28a)

= max
q∈∆(P )

r⊤q − L

ρ

∑
i∈[m]

[
G

⊤
i q − αi

]+ (28b)

≥ r⊤qt −
L

ρ

∑
i∈[m]

[
G

⊤
i qt − αi

]+
,

where Equality (28a) holds since q∗ is the feasible occupancy that maximizes the reward vector r

and Equality (28b) holds by Theorem 4 . This implies r⊤qt − r⊤q∗ ≤ L
ρ

∑
i∈[m]

[
G

⊤
i qt − αi

]+
.

Moreover, it holds:∑
t∈[T ]

∑
i∈[m]

[
G

⊤
i qt − αi

]+

≤
∑
t∈[T ]

∑
i∈[m]

[
E[gt,i]⊤qt − αi

]+
+
∑
i∈[m]

[
(Gi − E[gt,i])⊤qt

]+ (29a)

≤
∑
t∈[T ]

∑
i∈[m]

[
E[gt,i]⊤qt − αi

]+
+
∑
i∈[m]

∥∥Gi − E[gt,i]
∥∥
1

 (29b)

≤
∑
t∈[T ]

∑
i∈[m]

[
E[gt,i]⊤qt − αi

]+
+
∑
i∈[m]

(∥∥Gi − g◦i
∥∥
1
+ ∥g◦i − E[gt,i]∥1

)
≤ mVT + 2mC, (29c)

where Inequality (29a) holds since [a + b]+ ≤ [a]+ + [b]+, a ∈ R, b ∈ R, Inequality (29b) holds
since qt(x, a) ≤ 1∀t ∈ [T ],∀(x, a) ∈ X × A, and finally Inequality (29c) holds by definition of
C and VT and noticing that mmaxi∈[m] ai ≥

∑
i∈[m] ai, ∀{ai}i∈[m] ⊂ Rm. Thus, combining the

previous bounds we lower bound the quantity of interest as follows:

RT +
Lm+ 1

ρ
VT =

∑
t∈[T ]

E[rt]⊤ (q∗ − qt) +
Lm+ 1

ρ
VT

=
∑
t∈[T ]

(E[rt]− r)⊤ (q∗ − qt) +
∑
t∈[T ]

r⊤(q∗ − qt) +
Lm+ 1

ρ
VT

≥ −
∑
t∈[T ]

∥E[rt]− r∥1 +
∑
t∈[T ]

r⊤(q∗ − qt) +
Lm+ 1

ρ
VT (30a)

≥ −2C − L

ρ
(mVT + 2mC) +

Lm+ 1

ρ
VT (30b)

= −2C − 2LmC

ρ
+ VT

(
Lm+ 1

ρ
− Lm

ρ

)
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=
1

ρ
VT −

(
2C +

2LmC

ρ

)
, (30c)

where Inequality (30a) holds since v⊤w ≥ −∥v∥1∥w∥∞,∀v, w ∈ Rp, p ∈ N, and where In-

equality (30b) holds since r⊤(q∗ − qt) ≥ −L
ρ

∑
i∈[m]

[
G

⊤
i qt − αi

]+
≥ − (mVT + 2mC) and by

definition of C. Thus, rearranging Inequality (30c), we finally bound the cumulative violation as
follows:

VT ≤ 2ρC + 2LmC + ρRT + (Lm+ 1)VT

= 2ρC + 2LmC + (Lm+ 1)
(
VT − V̂T

)
+ ρ

(
RT +

Lm+ 1

ρ
V̂T

)
≤ O

(
m2L2|X|

√
|A|T ln

(
mMT |X||A|

δ

)
+m2L ln(T )|X||A|C + γmTL2M

)

+O
(
RT +

Lm+ 1

ρ
V̂T

)
,

where the last inequality holds by Lemma 14, with probability at least 1− 4δ under Eq̂. Employing

Equation (27) and a Union Bound, setting γ =
√

ln(M/δ)
TM and η ≤ 1

2Λm(
√
β1T+β2+β5+

√
β4T)

concludes the proof.

G Auxiliary lemmas from existing works

In the following section, we provide useful lemma from existing works.

G.1 Auxiliary lemmas for the FTRL master algorithm

In the following, we provide the optimization bound attained by the FTRL instance employed by
Algorithm 3.

Lemma 16 (Jin et al. [2024]). The FTRL algorithm over a convex subset Ω of the (M−1)-dimensional
simplex ∆M :

wt+1 = argmin
w∈Ω

∑
τ∈[t]

ℓ⊤τ w +
1

η

∑
j∈[M ]

ln

(
1

wj

) ,

ensures for all u ∈ Ω: ∑
t∈[T ]

ℓ⊤t (wt − u) ≤
M lnT

η
+ η

∑
t∈[T ]

∑
j∈[M ]

w2
t,jℓ

2
t,j ,

as long as ηwt,j |ℓt,j | ≤ 1
2 for all t, j.

G.2 Auxiliary lemmas for the optimistic loss estimator

In the following, we provide some results related to the optimistic biased estimator of the loss
function. Notice that, given any loss vector ℓt ∈ [0, 1]M , the following results are provided for
ℓ̂t,j :=

It(j)
wt,j+γt

ℓt,j , where j ∈ [M ], ℓt,j is the j-th component of the loss vector, It(j) is the indicator
functions which is 1 when arm j is played and γt is defined as in the following lemmas.

Lemma 17 (Neu [2015]). Let (γt) be a fixed non-increasing sequence with γt ≥ 0 and let αt,j be
nonnegative Ft−1-measurable random variables satisfying αt,j ≤ 2γt for all t and j. Then, with
probability at least 1− δ, ∑

t∈[T ]

∑
j∈[M ]

αt,j

(
ℓ̂t,j − ℓt,j

)
≤ ln

(
1

δ

)
.
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Corollary 5 (Neu [2015]). Let γt = γ ≥ 0 for all t. With probability at least 1− δ,∑
t∈[T ]

(
ℓ̂t,j − ℓt,j

)
≤

ln
(
M
δ

)
2γ

,

simultaneously holds for all j ∈ [M ].

G.3 Auxiliary lemmas for the transitions estimation

Next, we introduce confidence sets for the transition function of a CMDP, by exploiting suitable
concentration bounds for estimated transition probabilities. By letting Mt(x, a, x

′) be the total
number of episodes up to t ∈ [T ] in which (x, a) ∈ X ×A is visited and the environment transitions
to state x′ ∈ X , the estimated transition probability at t for (x, a, x′) is:

P t (x
′|x, a) = Mt(x, a, x

′)

max {1, Nt(x, a)}
.

Then, the confidence set for P at episode t ∈ [T ] is defined as:

Pt :=

{
P̂ :

∣∣∣P t(x
′|x, a)− P̂ (x′|x, a)

∣∣∣ ≤ ϵt(x′|x, a),
∀(x, a, x′) ∈ Xk ×A×Xk+1, k ∈ [0...L− 1]

}
,

where ϵt(x′|x, a) is defined as:

ϵt(x
′|x, a) := 2

√
P t (x′|x, a) ln (T |X||A|/δ)
max {1, Nt(x, a)− 1}

+
14 ln (T |X||A|/δ)

3max {1, Nt(x, a)− 1}
,

for some confidence δ ∈ (0, 1).

Given the estimated transition function space Pt, the following result can be proved.
Lemma 18 (Jin et al. [2020]). With probability at least 1− 4δ, we have P ∈ Pt for all t ∈ [T ].

Notice that we refer to the event P ∈ Pt for all t ∈ [T ] as EP .

We underline that the estimated occupancy measure space by Algorithm 2 is the following:

∆(Pt) :=



∀k,
∑

x∈Xk,a∈A,x′∈Xk+1

q (x, a, x′) = 1

∀k, ∀x,
∑

a∈A,x′∈Xk+1

q (x, a, x′) =
∑

x′∈Xk−1,a∈A

q (x′, a, x)

∀k, ∀ (x, a, x′) , q (x, a, x′) ≤
[
P t (x

′|x, a) + ϵt (x
′ | x, a)

] ∑
y∈Xk+1

q(x, a, y)

q (x, a, x′) ≥
[
P t (x

′|x, a)− ϵt (x′ | x, a)
] ∑
y∈Xk+1

q(x, a, y)

q (x, a, x′) ≥ 0

.

To conclude, we restate the result which bounds the cumulative distance between the estimated
occupancy measure and the real one.
Lemma 19 (Jin et al. [2020]). With probability at least 1 − 6δ, for any collection of transition
functions {P x

t }x∈X such that P x
t ∈ Pt, we have, for all x,∑

t∈[T ]

∑
x∈X,a∈A

∣∣∣qPx
t ,πt(x, a)− qt(x, a)

∣∣∣ ≤ O(L|X|√|A|T ln

(
T |X||A|

δ

))
.

H Auxiliary lemmas for stability

In this section we state the results related to the stability of the arm-algorithms when C is not
known. The procedure is inspired by Jin et al. [2024] and Agarwal et al. [2017], but adapted to the
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case of Constrained MDP in high probability. We first give some important definitions. In these
definitions we will use Ct as the value of adversarial corruption at episode t ∈ [T ], where Ct is
defined as Ct := max{CG

t , C
r
t }, which meets the requirement of upper bounding the adversarial

corruption at each considered episode. In addition it holds that
∑

t∈[T ] Ct ≤ Cr+CG or equivalently
C ≤

∑
t∈[T ] Ct ≤ 2C, which does not influence the order of the analysis.

Definition 2. A CMDP algorithm is corruption-robust if it takes θ (a guess on the corruption amount)
as input, and achieves for any random stopping time t′ ≤ T , whenever

∑
t∈[t′] Ct < θ:∑

t∈[t′]

r⊤(q∗ − qt) ≤
√
β1t′ + (β2 + β3θ) I(t′ ≥ 1),

and
max
i∈[m]

∑
t∈[t′]

[
g⊤t,iqt − αi

]+ ≤√β4t′ + (β5 + β6θ) I(t′ ≥ 1).

Notice that Algorithm 2 is corruption-robust after applying a doubling trick to make it work for any
stopping time, with probability at least 1− 9δ thank to Theorem 7 and Theorem 9 Furthermore, we
introduce the notion of α-stability. An algorithm is considered to be α-stable, if its regret under
condition imposed by Algorithm 3 is of order ναT · Õ (RT ), where RT is the upper bound on the
regret attained by the algorithm if it receives feedback at each episode. In particular, we are interested
in the 1-stability.
Definition 3. An algorithm is 1-stable if, under the condition imposed by Algorithm 3, it holds:∑

t∈[T ]

r⊤(q∗ − qt) ≤
√
β1Tνj,T + β2νj,T + β3C,

and
max
i∈[m]

∑
t∈[T ]

[
g⊤t,iqt − αi

]+ ≤√β4Tνj,T + β5νj,T + β6C.

We can use the procedure defined by Algorithm 4 - and originally proposed by Jin et al. [2024]
- to transform a generic corruption robust algorithm to a 1-stable algorithm. Differently from Jin
et al. [2024], in our setting, we use the natural symmetry between regret and positive cumulative
constraints violation to stabilize both the regret and the positive cumulative constraints violation.
We have a different bound for Ct (value of adversarial corruption at episode t): indeed, Ct ≤
max{∥E[rt]− r◦∥1,maxi∈[m]∥E[gt,i]− g◦i ∥1} is bounded by |X||A|. Finally, we are interested in
obtaining results that hold in high probability rather than in expectation. To do so, we focus on
1-stability guarantee rather than 1/2-stability as in Jin et al. [2024] since removing the expectation
prevents us from achieving the result above with lower coefficients. We can state the following result.

Lemma 20. Given an algorithm which is corruption robust according to Definition 2 with pa-
rameters (β1, β2, β3, β4, β5, β6) and β1 ≥ O(L2 log(T/δ)), β4 ≥ O(L2 log(T/δ)), with probability
at least 1 − p with p ∈ (0, 1), then, it is possible convert it to an 1-stable algorithm with prob-
ability at least 1 − p − 2δ according to Definition 3 with parameters (β′

1, β
′
2, β

′
3, β

′
4, β

′
5, β

′
6) as

β′
1 = O (β1) , β

′
2 = O (β2 + β3|X||A| log(log(T )/δ)) , β′

3 = O (β3 log(T )) , β
′
4 = O (β4) , β

′
5 =

O (β5 + β6|X||A| log(log(T )/δ)) , β′
6 = O (β6 log(T )), employing Algorithm 4.

Proof. Suppose Algorithm 4 is initialized with the true value of adversarial corruption C.
We will first prove the result for the regret. We will start by considering a generic in-
stance algorithm k ∈ [M ]. Define the quantity dt,k = I(wt ∈ (2−k−1, 2−k]) and ht,k =
I(Instance k receives feedback at episode t). We observe that with probability at least 1 −(
p+ P

(⋃
k∈[log2(T )]{

∑
t∈[T ] Ctdt,kht,k > θk}

))
it holds:∑

t∈[T ]

r⊤(q∗ − qt)dt,kht,k ≤
√
β1
∑
t∈[T ]

dt,kht,k + (β2 + β3θ)max
t∈[T ]

dt,k,

by the corruption-robust property of instance k. We study now the quantity
P
(⋃

k∈[M ]{
∑

t∈[T ] Ctdt,kht,k > θk}
)

. Notice that E[ht,k|dt,k] = 2−k−1dt,k, and since
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dt,k is an indicator function then E[ht,k|dt,k]dt,k = E[ht,k|dt,k]. In addition, since
∑

t∈[T ] Ct ≤ 2C,
it holds: ∑

t∈[T ]

CtE[ht,k|dt,k]dt,k = 2−k−1
∑
t∈[T ]

Ctdt,k ≤ 2−kC,

and with probability at least 1− δ/log2(T ) noticing that M = log2(T ):∑
t∈[T ]

Ctdt,kht,k −
∑
t∈[T ]

CtE[ht,k|dt,k]dt,k

≤ 2

√√√√∑
t∈[T ]

C2
t dt,kE[ht,k|dt,k] log

(
log2(T )

δ

)
+ |X||A| log

(
log2(T )

δ

)
(31a)

≤ 2

√√√√|X||A|∑
t∈[T ]

Ctdt,kE[ht,k|dt,k] log
(
log2(T )

δ

)
+ |X||A| log

(
log2(T )

δ

)
(31b)

≤
∑
t∈[T ]

CtE[ht,k|dt,k]dt,k + 2|X||A| log
(
log2(T )

δ

)
, (31c)

where Inequality (31a) holds with probability at least 1− δ/log(T ) by Freedman inequality, Inequality
(31b) holds since Ct ≤ |X||A|, and Inequality (31c) holds by AM-GM inequality. Therefore, it holds
simultaneously for all k ∈ [M ]:∑

t∈[T ]

Ctdt,kht,k ≤ 2
∑
t∈[T ]

CtE[ht,k|dt,k]dt,k + 2|X||A| log
(
log2(T )

δ

)

≤ 2−k+1C + 2|X||A| log
(
log2(T )

δ

)
= θk,

with probability at least 1− δ, so P
(⋃

k∈[M ]{
∑

t∈[T ] Ctdt,kht,k > θk}
)
≤ δ. Moreover, notice that

with probability at least 1−p−2δ thanks to the definition of corruption robust and Azuma-Hoeffding
inequality, it holds simultaneously for all k:∑

t∈[T ]

r⊤(q∗ − qt)dt,k

=
1

2−k−1

∑
t∈[T ]

r⊤(q∗ − qt)2−k−1dt,k

=
1

2−k−1

∑
t∈[T ]

r⊤(q∗ − qt)dt,kE[ht,k | dt,k]

=
1

2−k−1

∑
t∈[T ]

r⊤(q∗ − qt)dt,k (E[ht,k | dt,k]− ht,k) +
∑
t∈[T ]

r⊤(q∗ − qt)dt,kht,k


≤ 1

2−k−1

L√√√√2 ln

(
log2(T )

δ

) ∑
t∈[T ]

dt,k +

√
β1
∑
t∈[T ]

dt,k + (β2 + β3θk)max
t∈[T ]

dt,k


≤ O

(
1

2−k−1

((√
β1 + L

√
log

(
T

δ

))√
T max

t∈[T ]
dt,k + (β2 + β3θ)max

t∈[T ]
dt,k

))
,

noticing that E [dt,k (E [ht,k|dt,k]− ht,k)] = E [ht,k|dt,k] − E[ht,k]dt,k = E [ht,k|dt,k] −
E [ht,k|dt,k] = 0, since the expectation is taken w.r.t. the randomization of Algorithm 4 and the
distribution generated given the external probability of receiving feedback wt.

To conclude with probability at least 1− p− 2δ:∑
t∈[T ]

r⊤(q∗ − qt)I
(
wt ≥

1

T

)
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≤
∑

k∈[M ]

∑
t∈[T ]

r⊤(q∗ − qt)dt,k

≤ O
(√

β1T max
t∈[T ]

1

wt
+ (β2 + β3|X||A| log(log(T )/δ))max

t∈[T ]

1

wt
+ β3 log(T )C

)
≤ O

((√
β′
1T + β′

2

)
νT + β′

3C
)
,

with
√
β1 ≥ O(L

√
log(T/δ)). Notice that the analogous reasoning can be applied to the positive

cumulative constraints violation with parameters β4, β5, β6.

Algorithm 4 Adapted STABILIZE Jin et al. [2024]

Require: C, δ ∈ (0, 1)
1: Initialize M = log2(T ) instance of Algorithm 2, each instance k ∈ [M ] initialized with

corruption parameter:

θk := 2−k+1C + 2|X||A| log
(
log2(T )

δ

)
2: for t ∈ [T ] do
3: Observe wt, probability of receiving feedback.
4: if wt >

1
T then

5: Let kt be such that wt ∈ (2−kt−1, 2−kt ]
6: Choose πt as policy proposed by instance kt
7: If the algorithm receives feedback send it to instance kt with probability 2−kt−1

wt

8: if wt ≤ 1
T then

9: Propose random policy πt

Corollary 6. Being j∗ such that C ∈ (2j
∗−1, 2j

∗
] then with probability at least 1− 11δ it holds:

max
i∈[m]

∑
t∈[T ]

[
E[gt,i]⊤qj

∗

t − αi

]+
≤
√
β4TνT,j∗ + β5νT,j∗ + 2β6C,

with
√
β4 = O

(
L|X|

√
|A| ln(mT |X||A|/δ)

)
, β5 = O

(
|X|2|A|2 log(T ) log (log(T )/δ)

)
and β6 =

O
(
ln(T )2|X||A|

)
.

Corollary 7. Being j∗ such that C ∈ (2j
∗−1, 2j

∗
] then with probability at least 1− 11δ it holds:∑

t∈[T ]

r⊤(q∗ − qj
∗

t ) ≤
√
β1TνT,j∗ + β2νT,j∗ + 2β3C,

where
√
β1 = O

(
L|X|

√
|A| ln(T |X||A|/δ)

)
, β2 = O

(
|X|2|A|2 log(T ) log (log(T )/δ)

)
and β3 =

O
(
ln(T )2|X||A|

)
.
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