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ABSTRACT

Pruning overparameterized neural networks to obtain memory-and-compute-
efficient sparse networks is an active area of research. Recent works attempt
to prune neural networks at initialization to design sparse networks that can be
trained efficiently. In this paper we propose One-Shot Supermasking (OSSuM),
a gradient-free, compute-efficient technique to efficiently prune neurons in fully-
connected networks. In theory we frame this problem as a neuron subset selection
problem, wherein we prune neurons to obtain a better accuracy by optimizing
on the cross-entropy loss. In our experiments we show that OSSuM can perform
similar to gradient-based pruning techniques at initialization, prior to training. For
example, OSSuM can achieve a test set accuracy of 82.4% on MNIST by prun-
ing a 2-layer fully-connected neural network at initialization with just a single
forward-pass over the training data. Further, we empirically demonstrate that OS-
SuM can be used to efficiently prune trained networks as well. We also propose
various variants of OSSuM that can be used to prune deeper neural networks.

1 INTRODUCTION

With the growth in the size of the neural networks, training them has become prohibitively expensive.
Methods that can help tame this complexity have thus been subject of much research. Pruning is
one the most common, and effective way of dealing with large networks. Most of the initial works
on pruning deal with trained networks, aiming to reduce inference time. However, more recent
papers try to use pruning to reduce training complexity. Apart from reducing the computational
burden, the existence of sparse networks can often give us insights into the structural characteristics
of overparameterized networks, and how gradient-based training behaves on them — a well known
such example is the lottery-ticket hypothesis (LTH) (Frankle & Carbin, 2018). LTH demonstrates
that at initialization, there exist a subnetwork (lottery ticket or LT) that can be trained in isolation
to obtain a classification performance similar to that of the full network. But, it leaves open the
question of how to create that subnetwork efficiently without training the full network.

A further dimension to the above question of finding a sparser subnetwork without training the full
network is whether we should be looking at structured (e.g. neuron-based pruning) or unstructured
(e.g. weight-based pruning) sparsity. On one hand, it is known that neuron pruning is strictly
weaker than edge pruning (Malach et al., 2020). But on the other hand, the existing hardware may
not necessarily be able to take memory or computational advantage of unstructured sparsity during
training.

In this work we tackle the following question — in an overparameterized network, does there exist
a neuron subnetwork at initialization, of sufficiently small size, that has a performance that outper-
forms the performance of the full network at initialization. Furthermore, we attempt to find such
a subnetwork without training the full network, or indeed, without using any gradient steps at all!
Notice that if such neuron subnetworks exist at initialization, we have the following attractive prop-
erties — 1) the entire network at initialization can be stored by just storing the binary mask and a
random seed, and 2) training can be remarkably efficient.

Our contributions can be summarized as follows:

• We give the first gradient-free algorithm (OSSuM) that prunes a two-layer network at ini-
tialization to obtain sparse networks with significantly higher classification performances.
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• We demonstrate that even without any scaling or fine-tuning, the above neuron subnet-
work has accuracy that is comparable to masks that has been learned via gradient descent,
especially at high sparsity.

• For deeper networks, we propose variants of our OSSuM algoithm. Here too, at high to
moderate sparsity, the OSSuM variants emerge to be among the most successful ones out
of all the considered baselines.

• We also propose OSSuM as a method to prune trained networks and show that it performs
much better than the standard default of magnitude pruning, while having a similar com-
putational burden.

2 RELATED WORK

Early works on pruning either use penalties (e.g. L0 or L1 norms) to enforce sparsity (Chauvin,
1988; Weigend et al., 1991; Ishikawa, 1996) or prune network weights based on some importance
criteria (LeCun et al., 1990; Hassibi et al., 1993; Hagiwara, 1993). Mozer & Smolensky (1989)
introduce an importance criterion to incorporate the loss function by pruning neurons while Karnin
(1990) perform the same by pruning weight edges in the network. These works are sensitive to the
scale of the networks since they are designed to be a part of the learning process.

In recent years, large overparameterized networks are shown to be successfully pruned with great
results via simple, magnitude-based pruning techniques (Han et al., 2015; Gale et al., 2019; Hayou
et al., 2021). Random pruning is also shown to be a strong baseline in the modern pruning literature
(Hoefler et al., 2021; Liu et al., 2018). The effectiveness of magnitude-based pruning resulted in
works (Guo et al., 2016; Carreira-Perpinán & Idelbayev, 2018) that prune trained networks and then
fine-tune them for efficient inference. While the classical methods seek to improve the efficiency of
networks at inference, the modern works aim towards finding sparser networks for compute-efficient
training and, in turn, faster inference. Zhu & Gupta (2018); Gale et al. (2019) propose techniques
that gradually prune the network through out the training process. Evci et al. (2019); Dettmers
& Zettlemoyer (2019) introduce methods that update the weight masks dynamically during sparse
training. Dai et al. (2019); Ye et al. (2020) suggest techniques to grow the network by adding neurons
instead of just pruning.

Frankle & Carbin (2018) show the existence of LTs at initialization and Frankle et al. (2019b;a);
You et al. (2019) show the same early in training, obtained using iterative magnitude pruning. Zhou
et al. (2019) empirically show that a subnetwork exist at initialization with a good classification
performance. They use a gradient-based approach to learn the binary mask at initialization, known as
supermask, by optimizing on the loss function. Malach et al. (2020) theoretically show the existence
of supermasks in fully-connected networks. Lee et al. (2018); Wang et al. (2020); Tanaka et al.
(2020); Verdenius et al. (2020); Lee et al. (2020) introduce various gradient-based techniques to find
LTs at initialization. LTs obtained by these algorithms are not shown to be effective supermasks.
Frankle et al. (2021) analyze these works and find that iterative magnitude pruning after training
networks is better than training pruned networks at initialization.

As pointed out in Blalock et al. (2020), the sparsity in neural networks community suffers from a
lack of standardized benchmarks and metrics. Liu et al. (2018) suggests that pruned networks might
only perform as good as randomly initialized sparse networks after training with some fixed budget.
Most of the works that perform highly sparse pruning use unstructured sparsity. This might not be
helpful in making compute or memory efficient networks (Hoefler et al., 2021). Works that focus
on structured sparsity rather weight pruning include — coreset-based pruning (Mussay et al., 2019),
pruning convolutional filters (Li et al., 2016; Molchanov et al., 2016), sparsity with regularizers (Wen
et al., 2016), low-rank approximation (Jaderberg et al., 2014), and tensor factorization (Novikov
et al., 2015).

Ranganathan & Lewandowski (2020); Taylor et al. (2016) are works that iteratively perform
gradient-free network training by updating the weight parameters. In this work we majorly focus
on using our one-shot, gradient-free OSSuM algorithm to prune randomly initialized networks with
structural constraints (neuron pruning) to obtain subnetworks with significantly higher classification
performances.
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3 NEURON SCORING

In this section we derive the neuron scoring strategy. We assume the following setup — we have
a fully-connected network with only one hidden layer having d neurons. The jth neuron in the
hidden layer is represented by a weight vector pj ∈ <m, where m is the size of the input layer. We
denote each input data point as a tuple (xi, yi) where xi ∈ <m and yi ∈ [K], X = {(xi, yi)}Ni=1.
We denote Xα to be the subset of examples with class label α, |Xα| = nα, and N =

∑K
α=1 nα.

We further assume that the activation function of the hidden layer is given by a function φ(·). The
weights for the final layer is given by the matrix W ∈ <K×d, the individual weights being denoted
by wkj . Hence, for the ith data point, the activation of the jth hidden layer neuron is given by aij =

φ(ptjxi). The value generated by the kth output neuron for the input xi is thus oik =
∑
j≤d a

i
jwkj .

Let Θ denote the entire set of parameters.

The softmax cross-entropy loss for the training data point (xi, yi = α) is given as

L(xi, yi = α; Θ) = − log

(
exp(−oiα)∑
k exp(−oik)

)
= log

1 +
∑
k 6=α

exp(−oik + oiα)

 .

The average cross-entropy loss for the subset Xα is given by

L̄α(Θ) =
1

nα

∑
i∈Xα

log

1 +
∑
k 6=α

exp(−oik + oiα)

 .

We now define the loss-preserving neuron selection problem as following: given a target s ≤ d
that represents the number of neurons, let S ⊆ [d] with |S| = s be a selected subset of the hidden
neurons. For each i, for each k, define õik =

∑
j∈S a

i
jwkj as the activation of the kth neuron in the

final layer. Also define

L̄Sα(Θ) =
1

nα

∑
i∈Xα

log

1 +
∑
k 6=α

exp(−õik + õiα)

 and

L̄S(Θ) =
1

N

∑
α

nαL̄Sα(Θ).

The optimal set of neurons to be selected can thus be defined as S∗ where,

S∗ = arg min
S⊆[d]

L̄S(Θ). (1)

In its full generality, the above algorithm is potentially a hard problem. One possible way to try to
tackle this selection problem is to see whether it has structural properties e.g. submodularity, which
would ensure that algorithms for approximate minimization exist. However, given that we want to
claim a result for all possible initializations it is not clear how to show such a property. Our approach
tackles the above problem by essentially replacing both the logarithmic and the exponential function
with their first order approximations. If such approximations hold, then the above problem can be
solved easily. We summarize this in Theorem 3.1.

Theorem 3.1. Take any combination of a class α and data point i, and S ⊆ [d]. Note that the choice
of S is reflected in the õ values. For all such possible combinations, we assume that the following
properties hold:

1. log
(

1 +
∑
k 6=α exp(−õik + õiα)

)
≈
∑
k 6=α exp(−õik + õiα)

2. ∀k 6= α, exp(−õik + õiα) ≈ 1 + (−õik + õiα).

Under these assumptions, there exists a one-shot (i.e. single forward pass over the data) algorithm
that finds S̃∗ that has a cross-entropy loss similar to S∗.

3



Under review as a conference paper at ICLR 2022

Proof. By simply substituting the above claims in the expression that we are optimizing (Equation
1), we have that

N L̄S(Θ) =

K∑
α=1

nαL̄Sα(Θ) =

K∑
α=1

∑
i∈Xα

log

1 +
∑
k 6=α

exp(−õik + õiα)


≈

K∑
α=1

∑
i∈Xα

∑
k 6=α

exp(−õik + õiα) ≈
K∑
α=1

∑
i∈Xα

∑
k 6=α

(1− õik + õiα)

= N(K − 1)−
K∑
α=1

∑
i∈Xα

(K − 1)õiα −
∑
k 6=α

õik


= N(K − 1)−

K∑
α=1

∑
i∈Xα

(
Kõiα −

∑
k

õik

)

= N(K − 1)−
K∑
α=1

∑
i∈Xα

∑
j∈S

aij(Kwαj −
∑
k

wkj)


= N(K − 1)−

∑
j∈S

K∑
α=1

(∑
i∈Xα

aij

)
(Kwαj −

∑
k

wkj)

Notice that in order to minimize the above expression, we need to maximize the second term. Hence
we define the OSSuM score for each neuron j as follows:

score OSSuM(j) =

K∑
α=1

(∑
i∈Xα

aij

)
(Kwαj −

∑
k

wkj) (2)

It is clear that given a target cardinality s, if we pick the top-s neurons with the highest
score OSSuM(·) values, we minimize the above cross-entropy loss expression.

While the above derivation is for a specific loss function, the expression derived captures a more
general intuition. First, notice that the score is higher for neurons that help differentiate the output
of the correct output unit from the wrong one. Furthermore, while the derivation depends on the
stated assumptions, the following is true — at higher sparsity, i.e. small |S|, assumption (1) is
more accurate. Also note that we can derive tighter expressions based on a Taylor series expansion.
However, we only work with the first-order expansion that leads to the above Equation 2.

We propose variants of OSSuM using a class-wise score defined in Equation 3. The class-wise ranks
of neurons, obtained from the class-wise OSSuM scores, are combined to obtain Linear (Equation
4) and Log OSSuM (Equation 5).

score OSSuM class-wise(j, α) =

(∑
i∈Xα

aij

)
(Kwαj −

∑
k

wkj) (3)

score Linear OSSuM(j) = −
K∑
α=1

rank(score OSSuM class-wise(j, α)) (4)

score Log OSSuM(j) = −
K∑
α=1

log [rank(score OSSuM class-wise(j, α)))] (5)
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Algorithm 1 Prune with neuron
scores.

Input: Data X , neuron scoring
function score, a fully-connected net-
work f , pruning parameter ∆.

Output: A pruned subnetwork f̃ .
1: neurons ← a list of hidden neu-

rons in f
2: Scoresi ← score(neuronsi;X)

compute ∀i
3: f̃ ← prune bottom-∆ neurons

from f based on {Scoresi}
4: return network f̃

Algorithm 2 OSSuM + PAB.
Input: Data X , number of hidden layers in subnetwork

L, number of neurons in ith hidden layer hi, build parameter
b.

Output: An L+ 1 layer fully-connected network f .
1: f ← ∅
2: for (i = 1; L− 1; 1) do
3: build two randomly initialized layers to f such that

the last hidden layer has b neurons while asserting f to
be a valid network for data X

4: prune b− hi neurons from f using OSSuM and X
5: remove the final layer from f if i 6= L− 1
6: end for
7: return network f

Algorithm 1 provides the generic pruning algorithm for a neural network given a neuron scoring
function and training data. Theorem 3.1 is for two-layer networks. For deeper networks, we use
a combination of OSSuM + Norm based pruning — the initial layers being pruned using norm of
the neurons, followed by the use of OSSuM in the last layer. We also use a variant OSSuM +
PAB (prune-and-build), given in Algorithm 2, in which we take as input the size parameters of the
full network and the pruned subnetwork, and then we build the desired network using OSSuM on
random network.

4 EXPERIMENTS

In this section we empirically show that OSSuM is effective in pruning fully-connected neural net-
works both at initialization (prior to training) as well as after training. We compare the variants of
our OSSuM algorithm with gradient-based Zhou et al. (2019), magnitude-based Hagiwara (1993);
Han et al. (2015), coreset-based (Mussay et al., 2019) and random pruning baselines. We denote
a (l + 1)-layer fully-connected perceptron network with m input neurons, hi hidden neurons in the
ith hidden layer, andK output neurons by the notation FC-m-h1-h2-...hl-K. In shorthand, we write
this as FC-h1-h2-...hl in the remaining text. We use hyperbolic tangent activations and uniform
weight initializations in our experiments, if not mentioned explicitly. See Appendix A.1 for more
details regarding our experimental setup.

4.1 BASELINES

Pruning at initialization: To the best of our knowledge there is no existing gradient-free algorithm
that prunes a network at initialization to obtain a sparse network with a higher classification per-
formance. Hence, we propose a gradient-based mask learning technique (Algorithm 3) to learn the
mask at initialization, similar to supermasking in Zhou et al. (2019), as a baseline. The major dif-
ference is that our baseline is neuron-based supermask when compared to edge-based supermaskin
in Zhou et al. (2019). Zhou et al. (2019) first use stochastic gradient descent to learn a continuous
mask for a network at initialization, and then discretize this mask to obtain a binary gradient-mask.

Pruning after training: Most of the pruning literature focuses on pruning after training large over-
parameterized networks. One of the most effective methods for pruning post-training is magnitude-
based pruning, that uses the magnitude of the weights as the pruning criterion (Han et al., 2015). We
use a norm-based pruning approach (Hagiwara, 1993), the neuron pruning counterpart of magnitude-
based approach, as a baseline. We also compare OSSuM with coreset-based pruning by Mussay et al.
(2019) and random pruning baselines.

Training the pruned networks: Recent works focus on finding memory-and-compute efficient
sparse networks at initialization (Lee et al., 2018; Wang et al., 2020; Tanaka et al., 2020) or early
during training (You et al., 2019; Frankle et al., 2019a) that can be used for training for various
classification tasks. We use variants of OSSuM to obtain sparse subnetworks from a large network
without any gradient information, that can be trained in isolation to obtain a network comparable to
large trained networks. We use norm-based and random pruning baselines for this setting.
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4.2 TWO-LAYER NETWORKS
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(a) FC-1000 + MNIST
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(b) FC-1000 + CIFAR-10
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(c) FC-10000 + MNIST
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(d) FC-10000 + CIFAR-10
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(e) FC-100000 + MNIST

0
30

00
0

60
00

0
90

00
0

93
00

0
96

00
0

99
00

0
99

30
0

99
60

0
99

90
0

Number of neurons pruned

0.10

0.15

0.20

0.25

0.30

Te
st

 a
cc

ur
ac

y

(f) FC-100000 + CIFAR-10

Figure 1: Test accuracies of various two layer pruned networks at different sparsity from ran-
domly initialized full networks (FC-1000, FC-1000-1000, and FC-1000-1000-1000) on MNIST and
CIFAR-10 datasets. Each experiment is run for five independent trials and the mean accuracies
are reported. The error bands show the standard deviations over five trials. The accuracies of full
networks (when 0 neurons are pruned from the hidden layer) at initialization is ∼ 10%.

Pruning at intialization: In this experiment setting we consider three different fully-connected
architectures, namely, FC-1000, FC-1000-1000 and FC-1000-1000-1000 with MNIST and CIFAR-
10 data. Figure 1 shows that OSSuM algorithms perform similar (better in some cases) to the
gradient-based masking baseline. OSSuM algorithms obtain maximum test accuracies of ∼ 82%
and ∼ 29% over MNIST and CIFAR-10 datasets, respectively.

Pruning after training: In this experiment setting, we train the full networks prior to pruning.
Figure 2 compares our OSSuM algorithms with coreset-based and norm-based pruning baselines.
We do not compare with random pruning since coreset pruning is shown to be better than random
pruning by Mussay et al. (2019). We observe that the pruned networks obtained (from trained
networks) from our OSSuM algorithms dominate over the baselines especially at high sparsity.
This effect is more evident with the harder CIFAR-10 dataset. The drop in accuracies of the pruned
networks obtained using OSSuM algorithms (towards higher sparsity) is significantly less when
compared to the baselines. We also fine-tune the pruned networks to observe that the networks
obtained from OSSuM algorithms perform slightly better than other networks at moderate sparsity.

6



Under review as a conference paper at ICLR 2022

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
98

0
Number of neurons pruned

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

Log OSSuM
Linear OSSuM
OSSuM
Norm
Coreset

(a) FC-1000 + MNIST
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(b) FC-1000 + CIFAR-10
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(c) FC-10000 + MNIST
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(d) FC-10000 + CIFAR-10
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(e) FC-100000 + MNIST
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(f) FC-100000 + CIFAR-10

Figure 2: Dashed lines (with marker +) show the test accuracies of two layer networks pruned from
trained full networks (FC-1000, FC-10000, and FC-100000) at different sparsity. Solid lines (with
marker ×) show the test accuracies of the pruned networks after fine-tuning. The mean accuracies
over three independent trials are reported. Error bands show the standard deviations of accuracies
over three trials.
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(a) Pruning at initialization
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(b) Training after pruning

Figure 3: (FC-1000-1000-1000 + CIFAR-10). 3(a) shows the accuracies of sparse networks obtained
by pruning the randomly initialized full network at various sparsity. The sparse networks are then
trained on CIFAR-10 and compared in 3(b). Mean and standard deviation of accuracies over three
independent trials are reported.

4.3 DEEPER PERCEPTRON NETWORKS

In this subsection we evaluate the performance of our OSSuM algorithms in pruning fully-connected
networks with more than two layers. In all the experiments we prune the same fraction of neurons
from each hidden layer.
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(a) Pruning after training
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(b) Fine-tuning after pruning (post train-
ing)

Figure 4: (FC-1000-1000-1000 + CIFAR-10). 4(a) shows the accuracies of sparse networks obtained
by pruning the trained full network at various sparsity. The sparse networks are then fine-tuned and
compared in 4(b). Mean and standard deviation of accuracies over three independent trials are
reported.

Training sparse networks: In this experiment setting we consider randomly initialized full network
FC-1000-1000-1000 with CIFAR-10 dataset. First, we use the pruning algorithms to prune networks
at initialization to obtain sparse networks. Next, we train the sparse networks on CIFAR-10. In
Figure 3, we compare the performance of OSSuM variants after pruning (at initialization) and after
training (post-pruning) with other baseline methods (norm and random). OSSuM + PAB prunes the
full network at initialization to obtain the best classification performance (Figure 3(a)). In sparsity
ranges of 50% − 75% and 96.8% − 98.4% OSSuM variants are observed to have an upper hand
over the baselines in training post-pruning (Figure 3(b)). The comparison between all the OSSuM
variants is shown in appendix (Figure 9). Prior to training the sparse networks, we rescale the
weights in a layer with fan in input neurons so that their maximum absolute value is 1/

√
fan in

based on Glorot & Bengio (2010); He et al. (2015). In Figure 7 we show that trained OSSuM
subnetworks are better than other baselines.

Pruning after training: In this experiment setting, we consider trained FC-1000-1000-1000 with
CIFAR-10 dataset. We use our OSSuM algorithms and the baseline methods (coreset, norm, and
random) to prune the trained networks, and compare their classification performances at various
sparsity (see Figure 4). The pruned networks are then compared after fine-tuning. We find that at
very high sparsity OSSuM + PAB and OSSuM + Norm give the best performing subnetwork after
pruning the trained full network (Figure 4(a)). At very high sparsity OSSuM + PAB gives the best
performing subnetwork obtained by fine-tuning the pruned subnetworks (Figure 4(b)).

4.4 ABLATION STUDIES: PRUNING AT INITIALIZATION

Activation functions: In this experiment we study the effect of OSSuM with various activation
functions with FC-10000 on MNIST. We observe that tanh activation is the best for pruning at
initialization, followed by ReLU and then sigmoid (see Figure 5(a)). Tanh is significantly better
when compared to ReLU and sigmoid at high sparsity.

Network initializations: We use three kinds of initializations for the network (FC-10000 + MNIST)
weight parameters for pruning at initialization – 1) Const, where weight parameters can be −r or
r with equal probability, 2) Normal, where weight parameters are sampled from the distribution
N (0, r), and 3) Uniform, where weight parameters are sampled from the distribution U(−r, r) for
r = 1/

√
fan in. fan in is the number of input neurons in the layer corresponding to the weight

parameter. We infer from Figure 5(b) that Const and Uniform distributions are better than Normal
distribution for pruning FC-10000 at initialization. Const is observed to be slightly better than
Uniform. But, we use Uniform distribution in our experiments since it is one of the most commonly
used weight initializations (Glorot & Bengio, 2010; He et al., 2015).

Variance of initialized weights: In this setting we study the effect of variance of the uniform weight
intialization distributions for pruning FC-10000 with MNIST datatset at initialization. In Figure 5(c)
we find that uniform distributions with zero mean and higher variances work the best.
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(a) Activation functions
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(d) Architecture search

Figure 5: Ablation studies. In Figures 5(a)–5(c) we compare the performance of FC-10000 on
MNIST dataset with various activation functions, network parameter initializations, and uniform
weight distributions, respectively. In Figure 5(d) we compare 730 network architectures searched
with our OSSuM algorithms over FC-1000-1000-1000 with MNIST dataset.

Architecture search: We perform pruning using OSSuM on FC-1000-1000-1000 at initialization
to obtain a total of 1460 subnetworks. We search using OSSuM over the subnetwork space corre-
sponding to the full network to find out the subnetwork that has the best classification accuracy at
initialization for MNIST dataset. We provide the scatter plot in Figure 5(d). Most of the highly
sparse networks obtained from OSSuM have over 50% accuracy at initialization. OSSuM + PAB
seems to be better than OSSuM + Norm for this task since the former builds each layer using the
OSSuM algorithm while the latter uses norm-based approach for pruning the intermediate layers
except the final hidden layer. At ∼ 82% sparsity, we observe the maximum accuracy of 66% on
MNIST with a four layer network.

5 DISCUSSION

Finding the optimal supermask (neuron mask at initialization) is an NP-hard problem. In this work
we consider this problem as a neuron subset selection problem. Using some heuristics, we de-
sign OSSuM (the first one-shot, gradient-free, compute-efficient pruning technique) that can prune
fully-connected perceptron networks at initialization to obtain subnetworks with significantly higher
classification performances. We show that our algorithm can effectively prune two layer networks at
initialization to get maximum test set accuracies of 82% and 29% on MNIST and CIFAR-10 datasets,
respectively. We also give theoretical backing for our network optimization via neuron pruning. We
propose variants of OSSuM that can successfully prune deeper networks with more than two fully-
connected layers. OSSuM variants get maximum test set accuracies of 62% and 23% on MNIST and
CIFAR-10 datasets, respectively, by pruning four layer networks. We also show that OSSuM can
efficiently prune trained networks with significantly lesser drop in accuracy when compared with
other baseline pruning methods, at high sparsity. OSSuM can be used to obtain sparse networks that
can be used for training. These networks have a slight improvement in classification performance
compared to other baseline networks at moderate sparsity. We perform ablation studies with OSSuM
to find out that it works the best with uniformly initialized networks with tanh activations. In future
work we plan to focus on extending OSSuM for pruning intermediate fully-connected hidden layers
and convolutional neural networks.
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Reproducibility Statement: We give all the details for implementing our algorithms in Algorithms
1, 2 and Appendix A.1. Moreover, we will make our codes public after the review period. We will
submit our codes for reviewing once the discussion phase for all the papers start.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

For our experiments, we use a computer with Nvidia Tesla V100 GPU with 32 GB memory and
28 CPUs. Codes for our work will be made public after the review period. We consider fully-
connected perceptron networks for our experiments. We use networks with tanh activations since in
Section 4.4 we observe them to give the best results when pruned at initialization. We use uniform
weight initializations based on results from Section 4.4. We use two main distributions for weight
parameter initializations – 1) Uniform U(−r, r), and 2) Normal N (0, r), where r = 1/

√
fan in.

fan in refers to the number of input neurons to the layer corresponding to the weight parameter
(He et al., 2015).

Architectures: In the two-layer network setting we consider three full network architectures each
for MNIST and CIFAR-10 – 1) FC-1000, 2) FC-10000, and 3) FC-100000. Note that for MNIST
FC-1000 refers to a perceptron network with 784 − 1000 − 10 neuron architecture (from input to
output layer) while for CIFAR-10 it refers to network with 3072 − 1000 − 10 neuron architecture.
In the deeper network setting we consider the full network architecture FC-1000-1000-1000.

Datasets and training: MNIST dataset is normalized assuming it’s mean to be 0.13066 and stan-
dard deviation (std) to be 0.30810. CIFAR-10 is normalized assuming it’s channel-wise mean to be
(0.5, 0.5, 0.5) and std to be (0.5, 0.5, 0.5). We use cross-entropy loss for training all of our networks.
SGD + momentum (Qian, 1999) is the optimizer that we use. We train the sparse networks using
Adam Kingma & Ba (2014) with its default parameters, to avoid the need of any hyper-parameter
tuning. To be fair, in all the experiments we do not perform any hyperparameter tuning with respect
to any algorithm. Refer to our codes provided in the supplementary files for more details.

Pruning at initialization: We use pruning algorithms to prune randomly initialized networks (su-
permasking) and then compare OSSuM with gradient-based pruning (Algorithm 3). For MNIST
dataset, we learn gradient-mask using the learning rate η = 0.1 for 10 epochs and then η = 0.01
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Algorithm 3 Gradient supermasking.
Input: Data X , batch size b, number of training steps T , a randomly initialized L-layer network

f = fL ◦ fL−1 · · · ◦ f1, a randomly initialized neuron mask matrix M0, number of neurons to be
pruned per layer delete.

Output: Discretized neuron binary mask M̃T .
1: freeze weight parameters of f
2: masked network at training step t, f̃ t = fL ◦ (fL−1 �M t

L−1) · · · ◦ (f1 �M t
1) where masks

M t
i ’s are trainable parameters

3: for (t = 1; T ; 1) do
4: uniformly sample mini-batch Bt of size b from X
5: use SGD to update M t

i ’s with cross-entropy loss on mini-batch Bt

6: end for
7: M̃T ← select bottom-delete neurons from each MT

i for i = 1, · · · , L − 1 and assign corre-
sponding MT

i values to 0 and the rest to 1.
8: return binary neuron mask M̃T

for 5 epochs. For CIFAR-10 dataset, we learn gradient-mask using the learning rate η = 0.1 for 20
epochs and then η = 0.01 for 10 epochs.

Pruning after training: We use pruning algorithms to prune randomly initialized networks (su-
permasking) and then compare OSSuM with gradient-based pruning (Algorithm 3). For two-layer
networks, we have the following training schedule (η is the learning rate) for: 1) MNIST – η = 0.1
for 5 epochs, η = 0.01 for 5 epochs and then η = 0.001 for 5 epochs, and 2) CIFAR-10 – η = 0.1
for 10 epochs, η = 0.01 for 10 epochs and η = 0.001 for 10 epochs. We train with SGD and
momentum (= 0.9). We perform fine-tuning post-pruning. With MNIST dataset the pruned net-
work is fine-tuned for 7 epochs with η = 0.01 . With MNIST dataset the pruned network is
fine-tuned for 15 epochs with η = 0.01. For deeper networks, we use Adam optimizer with de-
fault parameters. For this setting networks with MNIST datasets are trained for 20 epochs while
that for CIFAR-10 is 50 epochs. Fine-tuning for MNIST is performed for 10 epochs while that for
CIFAR-10 is 15 epochs. We use the GitHub code from https://github.com/BenMussay/
Data-Independent-Neural-Pruning-via-Coresets by Mussay et al. (2019) for im-
plementing the coreset-based pruning.

Training the pruned networks: In this setting we use our pruning algorithms to compute super-
masks. The weight parameters of the pruned networks are scaled to have a maximum absolute value
of 1/

√
fan in. Scaling is required for having good initializations when training deeper networks

(He et al., 2015; Glorot & Bengio, 2010). We use Adam optimizer to train networks on MNIST
dataset for 20 epochs and CIFAR-10 dataset for 50 epochs.

Extended observations:

• While training the pruned subnetworks, we find that at some sparsity levels the learning
curve of networks obtained from OSSuM algorithms is faster and superior to other base-
lines. We show two such instances in Figure 6.

• We notice that OSSuM + PAB performs the best while training the pruned subnetworks
obtained from deeper networks without rescaling the weights after pruning at most of the
sparsity range (see Figure 7).

• Using OSSuM pruning at initialization, we observe that the distribution of weights post-
pruning is preserved. Figure 8 shows that at various sparsity mean, variance, minimum
value, maximum value, and ratio of positive to negative weight parameters remain approx-
imately the same.

• We compare all the OSSuM variants in Figure 9 where they are used to obtain sparse
networks at initialization for training.
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(a) 128× smaller network + MNIST

1 6 11 16 21 26 31 36 41 46
Training epoch

0.39

0.40

0.41

0.42

0.43

0.44

Te
st

 a
cc

ur
ac

y

OSSuM + PAB
OSSuM + Norm
Norm
Random

(b) 64× smaller network + CIFAR-10

Figure 6: In Figure 6(a), the learning curve of a pruned subnetwork from FC-1000-1000-1000 (128×
compressed network) on MNIST is shown. In Figure 6(b), the learning curve of a pruned subnetwork
from FC-1000-1000-1000 (64× compressed network) on CIFAR-10 is shown.
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Figure 7: FC-1000-1000-1000 full networ. Pruning the full network and training the subnetworks at
various sparsity over MNIST and CIFAR-10 data. Mean and standard deviation of accuracies over
three independent trials are reported.
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Figure 8: FC-10000 + MNIST. Figure 8(a) shows the maximum, minimum, and the ratio of the
number of positive to negative weight parameters in the hidden layer of pruned networks at various
sparsity obtained from OSSuM. Figure 8(b) shows the mean and variance of the weight parameters
in the hidden layer of pruned networks at various sparsity obtained from OSSuM.
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(b) Training pruned subnetworks

Figure 9: Full network FC-1000-1000-1000 + CIFAR-10. Figure 9(a) shows the performance of all
the OSSuM variants when the randomly initialized full network is pruned at various sparsity. Figure
9(b) compares the performance of pruned subnetworks post-training.
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