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Abstract

Modern language models generate chain-of-thought traces by autoregressively sam-
pling tokens from a finite vocabulary. While this discrete sampling has achieved
remarkable success, conducting chain-of-thought with continuously-valued tokens
(CoT2) offers a richer and more expressive alternative. Our work provides new the-
oretical guarantees and algorithms for CoT2, motivated by logical reasoning tasks
that inherently require search capabilities. Theoretically, we establish how CoT2
facilitates the model to track multiple discrete traces in parallel; and quantify the
level of achievable parallelism and its benefits for inference efficiency. We also pro-
vide a CoT2-based one-layer transformer construction that solves the combinatorial
“subset sum problem” given a sufficient embedding dimension. These insights arise
from a novel and effective supervision strategy where we match the language model
outputs to the empirical token distributions of a set of target traces. Complementing
this, we introduce sampling strategies that unlock policy optimization methods
for CoT2. Our primary strategy samples and composes K discrete tokens at each
decoding step to control the level of parallelism. Experiments confirm that (i)
the optimal level of parallelism is governed by the embedding dimension, (ii) our
continuous supervision strategy can outperform alternative methods, and (iii) policy
optimization with CoT2 indeed improves the performance of the model beyond its
initial discrete or continuous supervision.

1 Introduction

Chain-of-thought (CoT) strategies (Wei et al., 2022), when paired with strong base models, have
achieved immense success and facilitated progress in remarkably challenging tasks, such as solving
American Invitational Mathematics Examination (AIME) or International Olympiad in Informatics
(IOI) problems (Guo et al., 2025; Jaech et al., 2024). Despite these advances, modern language model
architectures may fail to utilize their full potential for a few reasons. First is their discrete sampling
of tokens—selecting a single token at each decoding step from a vocabulary of v tokens. This limits
the model to emitting at most log2(v) bits per sample, or more specifically, the Shannon entropy of
the softmax output. This contrasts with the O(d) bits each token embedding can store, where d is
the embedding dimension. Secondly, discrete sampling can cause the model to commit to certain
solutions and avoid exploring alternatives (Yao et al., 2023). A practical method to address this is
sampling multiple CoT traces and aggregating them, either through consistency (Wang et al., 2022)
or best-of-N decoding (Ouyang et al., 2022) through more test-time computation.

In this work, we propose and investigate CoT with Continuous Tokens (CoT2) to address these
challenges, building on COCONUT (Hao et al., 2024). The fundamental idea in our CoT2 proposal is
that rather than the model sampling a single token from the vocabulary, it samples or deterministically
selects a continuous superposition of tokens according to the softmax output. Intuitively, this capabil-
ity—effectively selecting multiple tokens simultaneously through a continuous superposition—would
allow the model to pack more information within each token embedding and also enable it to track
multiple reasoning paths in parallel—potentially emulating self-consistency or best-of-N decoding
with a single trace. Toward this vision, we make the following technical contributions:

• Budget-constrained supervision: We introduce the continuous supervision strategy (CSFT) for
CoT2 models to explicitly track multiple teacher traces in parallel, constrained by a budget. This
is done by fitting the model to the empirical distribution of the tokens within the expert traces
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Figure 1: Illustration of CoT2 with varying budgets B for Minimum Non-Negative Sum (MNNS) task with
m = 3 and input numbers 2, 1, 4. CoT2 supervision with budget B at steps t ∈ {1, . . . ,m − 1} is the average of
embeddings of states visited by B selected trajectories among the 8 possible, and for t = m is the embedding
corresponding to the single correct final answer, here e1 for the minimal non-negative sum 1. For B = 1 (discrete
CoT), the correct trajectory (−2, −3, 1) highlighted with yellow is used; for B = 2, the red and yellow trajectories
are used; for B = 8, all trajectories are included in supervision.

as visualized in Figure 1. Through budget choice, CoT2 can interpolate from discrete CoT to
track all reasoning traces. Our method reveals fundamental trade-offs between the budget and
embedding dimension in terms of accuracy, validated by an information-packing bound in App. E.
Experiments highlight a sweet spot for the level of parallelism (see Figure 2) in line with theory.

• Expressivity and statistical benefits: We introduce the problem of Minimum Non-Negative
Sum (MNNS) as a generalization of the classical Subset Sum problem. These problems, as well
as related tasks like ProntoQA (Saparov & He, 2022), inherently benefit from parallel search
capability. We prove that a single-layer transformer can solve MNNS using CoT2, showcasing the
capability of the transformer block to track and expand multiple reasoning traces in latent space.
On the statistical side, we study CoT2 decoding methods: (i) Base CoT2: deterministic inference
which creates and feeds continuous tokens using raw softmax output at each step (Sec. 2&3); and
CoT2-MTS (multi-token sampling): budget-constrained method which samples and averages K
discrete tokens to form a continuous token (Sec. 5); and standard CoT, which is a special case of
MTS with K = 1. Under suitable conditions, we first prove that base CoT2 tracks the “ideal state”
by aggregating all reasoning paths, whereas MTS provides an unbiased but noisy estimate of this
“ideal state”. Finally, Prop. 3 establishes that the MTS estimate is as powerful as aggregating the
outputs of K standard CoT trajectories. In plain language, this formalizes that CoT2 with a budget
K can be just as expressive as self-consistency prompting with K traces.

• Reinforcement learning for CoT2: We introduce policy optimization methods for CoT2 (Sec.
5). Our primary strategy MTS samples and composes K discrete tokens at each forward pass to
control the level of parallelism. We also introduce a purely continuous sampling scheme over the
probability simplex via Dirichlet sampling. Experiments on the MNNS, ProntoQA, and ProsQA
tasks show that GRPO-based RL with CoT2 further improves the accuracy over SFT or CSFT
(Sec. 5.2). This demonstrates that the RL phase helps the model better prioritize relevant reasoning
traces and offers a promising strategy for training CoT2-based language models.

The paper is organized as follows: Section 2 introduces the technical setup, Section 3 presents our
continuous supervision strategy and the MNNS, ProntoQA, and ProsQA tasks. Section 4 provides
constructive results and sample-complexity guarantees for CoT2. Section 5 describes our sampling
strategies and GRPO-based policy optimization methods, and Section 6 concludes with a discussion.

1.1 RelatedWork

The efficacy of eliciting reasoning in LLMs through chain-of-thought (CoT) prompting has been
well-established (Nye et al., 2021; Wei et al., 2022; Kojima et al., 2022; Suzgun et al., 2023; Guo
et al., 2025). CoT prompting conveniently increases inference-time compute and computational depth,
both of are independently useful (Pfau et al., 2024; Goyal et al., 2024; Feng et al., 2023; Merrill &
Sabharwal, 2024). However, the discrete nature of CoT tokens forces sequential exploration of rea-
soning paths, resulting in longer reasoning paths and consequently increased inference-time compute.
Furthermore, restricting reasoning to natural language can be inefficient, as groups of tokens can
often be more effectively represented by a single continuous token. Thus, CoT2 offers an alternative
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Figure 2: (a): Discrete CoT model requires multiple samplings (Pass@k) to match the single-shot performance
of CoT2 model on MNNS (10-run avgs). (b): CoT2 model outperforms COCONUT, discrete CoT, and no-CoT
in tasks involving search, like MNNS and ProsQA (5-run avgs). (c): Tradeoff between the number of trajectories
superposed and the embedding dimension (5-run avgs). Setting: MNNS with 4 input digits in 1–9. In (a-b), B is
the full budget for CoT2, and B = 1 for discrete CoT. (a): 1-layer, 1-head GPT2 with d = 24. (b): MNNS: 2-layer
2-head GPT2, d = 32; ProsQA: 4-layer 4-head GPT2, d = 32. (c): 2-layer, 2-head GPT2 with d ∈ {16, 24, 32}.

strategy for compute-efficient reasoning and complements methods that aim to shorten/control the
trace length of CoT (Aggarwal & Welleck, 2025; Zhang et al., 2025a; Sui et al., 2025).

Our work is most related to a recent body of work introducing LLMs capable of reasoning with explicit
continuous tokens decoded autoregressively. In particular, recently proposed COCONUT (Hao et al.,
2024) autoregressively feeds the last token’s final-layer representation as input to the next step. Given
labeled CoT data, COCONUT is trained to progressively replace discrete tokens with continuous
tokens (from left to right). While COCONUT and our CoT2 aim to reason in continuous space, we
propose distinct algorithmic approaches that also address the exploration challenge. Key differences
include: (1) Our continuous tokens are simplex-weighted compositions of vocabulary tokens. (2) Our
supervision method is novel and explicitly targets implicit parallelism. (3) CoT2 does not initialize
from, nor attempt to mimic, discrete CoT. (4) By introducing sampling strategies and associated
GRPO variations, we realize the "Supervised Training → Reinforcement Learning" paradigm in
the context of CoT2. A concurrent work Zhu et al. (2025) provides a theoretical construction for
a continuous chain of thought on graph reachability problems, which is at a high level similar to
our supervision CSFT. We provide further discussion of the literature on multi-token prediction and
reinforcement learning in Appendix B.

2 Problem Setup

Notation. For an integer n ≥ 1, we use the shorthand [n] = {1, . . . , n}, and denote vectors by bold
lowercase letters (e.g. x) and matrices by bold uppercase letters (e.g. X). For a vector x ∈ Rn, the
component xi is its i-th entry. The zero vector in Rn is 0n, and the zero matrix in Rm×n is 0m×n. Finally,
we let ∆v−1 denote the standard v − 1 simplex in Rv.

Assume we have an input context X ∈ Rn×d, where each row is a d-dimensional embedding vector.
Our goal is to output m tokens given the context X with mth output token being the final answer that
is evaluated under a performance metric (e.g. accuracy or reward). For the first m− 1 steps, the model
outputs continuous thought tokens {zt}t∈[m−1] that enable a reasoning process. In the final step t = m,
the model outputs a discrete token zm from a vocabulary of size v. In the remainder of this paper, we
investigate strategies for training this system in a way that improves final performance over standard
discrete next-token prediction.

Formally, let E = [e1, . . . , ev]⊤ ∈ Rv×d be the embedding matrix for the vocabulary of v tokens, where
ei ∈ R

d represents the embedding of the ith token. We define the next-token prediction model LMθ
parameterized by θ that assigns, at each step t, a probability distribution over possible next tokens
given the prefix z<t and context X. Concretely, for 1 ≤ t ≤ m − 1, the model outputs the following
distribution over the v vocabulary entries via a softmax operation:

LMθ(· | z<t, X) := αt where αt =
[
αt,1, . . . , αt,v

]
∈ ∆v−1,

i.e. αt,i ≥ 0 and
∑v

i=1 αt,i = 1. We then form the continuous token as a convex combination of all
tokens in the vocabulary:

zt = E⊤αt ∈ R
d, ∀1 ≤ t ≤ m − 1.

3
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At the final step t = m, the model samples a discrete token zm ∈ {e1, . . . , ev} from policy distribution
LMθ (· | z<m, X) = αm. We note that we assume that the answer depends only on the final discrete
token zm merely for simplicity; the same framework naturally extends to decoding multiple final dis-
crete tokens after continuous ones. We refer to this decoding strategy as base CoT2 and observe that
it results in a deterministic reasoning chain because the continuous tokens are precisely determined
by the softmax map. In Section 5, we will introduce stochastic alternatives, such as CoT2-MTS, to
facilitate generative reasoning.

Remark on scalability of base CoT2 decoding. Computing the continuous token zt = E⊤αt adds
a single additional O(vd) matrix-vector multiply per step. This matches the O(vd) cost already
incurred by the standard output projection that produces the logits ℓt = Woutht and distribution
αt = softmax(ℓt). Moreover, this additional cost is independent of the context length N and is
dominated by the transformer stack’s per-token compute, so in practice the overhead is minor even
for larger language models.

3 CSFT: A Supervised TrainingMethod for CoT2

In this section, we present our method of continuous supervised training to learn intermediate thought
tokens as "soft" targets rather than "hard" target tokens. Specifically, we provide the model with
convex combinations of vocabulary embeddings, which allows the model flexibility in those reasoning
steps. Such an approach is particularly suitable when the task accuracy depends only on the final
token or token distribution. Formally, at each reasoning step t = 1, . . . ,m−1, the supervision specifies
a target probability distribution

α∗t =
[
α∗t,1, . . . , α

∗
t,v

]
∈ ∆v−1,

where α∗t,i ≥ 0 and
∑v

i=1 α
∗
t,i = 1. We train the model to align its predicted distribution αt to the

supervision distribution α∗t rather than one-hot labels by using a divergence-based loss:

Lcont(θ; X, t) = D
(
α∗t

∥∥∥αt

)
,

where D (·∥·) is the cross-entropy (or equivalently KL divergence) between two distributions. This
approach can also be viewed as token-level knowledge-distillation, where the teacher distribution
α∗t is obtained through a logic/search algorithm. At the final step t = m, we have a discrete target
z∗m ∈ {e1, . . . , ev}, so that α∗m is one-hot distribution placing probability 1 on target token and 0
elsewhere. This is equivalent to using a standard cross-entropy loss − log LMθ

(
z∗m | z<m, X

)
at the

final step. Hence, for each training example, the total loss for continuous supervised training is the
sum of the continuous-token divergence losses:

LCSFT(θ; X) =
m∑

t=1

Lcont(θ; X, t). (1)

By minimizing LCSFT(θ), we teach the model the soft targets α∗t at each step and to predict the correct
final discrete token. Inspired by the discussions in Bachmann & Nagarajan (2024); Bengio et al.
(2015), we consider two ways of providing prefixes to the language model:

1. Teacher forcing: Each step t is conditioned on the ground-truth prefix z∗<t, meaning the model
has access to all previous ground-truth tokens during prediction. Formally, for each step t′ < t, the
corresponding input z∗t′ = E⊤α∗t′ is a convex combination of all vocabulary tokens.

2. Self-feeding: Each step t autoregressively uses the model’s previously generated outputs, z<t,
during training. In particular the continuous output token zt = E⊤αt, is a convex combination of
vocabulary embeddings, which is then fed back to the model as part of the prefix.

It is also worth noting that one may apply temperature scaling or thresholding to αt before forming
zt in order to filter the model’s predictions. In our experiments, we find that teacher forcing leads to
superior performance for CSFT, even though at inference time, the model runs in an autoregressive
manner, as discussed below. See Appendix D for further discussion.

Inference. At inference, the model does not rely on the ground-truth distributions α∗t . Instead, at
each continuous step t < m, it autoregressively produces the output distribution αt, converts it to a
continuous token zt = E⊤αt, and appends zt to the prefix for the next prediction. In the final step, the
model samples a discrete token from αm = LMθ(· | z<m, X).

4
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Baselines. Our first baseline is discrete CoT, which uses teacher-forced training where the next token
prediction is performed conditioned on the previous ground-truth tokens with standard cross-entropy
loss. Discrete baseline enforces z∗t to be a token in vocabulary {e1, . . . , ev}, which means that it is
a special case of CSFT where the α∗t are one-hot vectors rather than an arbitrary element of ∆v−1.
The model minimizes the following objective, which is obtained by summing over all steps of
teacher-forced next-token prediction:

LSFT(θ; X) =
m∑

t=1

− log LMθ
(
z∗t | z

∗
<t, X

)
. (2)

Here, setting m = 1 gives the discrete no-CoT baseline, where the model directly predicts the
final answer. Another baseline we compare against is COCONUT, which replaces discrete tokens
sequentially with the last hidden state of the LLM following a left-to-right curriculum learning
strategy. In inference, the COCONUT model directly outputs the answer at the final step (t = m),
following m − 1 intermediate continuous thought tokens produced by the hidden state output.

3.1 Tasks Requiring Exploration over States

In this subsection, we illustrate CSFT training described in (1) on tasks that require exploration over
multiple states but have a single final correct state. We consider a directed graph exploration problem
where the aim is to follow a m-step trajectory through reachable states starting from g0 and arriving
at a desired state g∗m. Suppose that the vocabulary is sufficiently large that each state g of the task
can be assigned a unique embedding. Let Γt denote the set of states reachable at step t building upon
step (t − 1) with Γ0 = {g0}, and let T be the set of complete trajectories π of length m, each inducing
a state sequence (g1(π), . . . , gm(π)) with gt(π) ∈ Γt. Next, we describe how to obtain CSFT targets
{α∗t }

m
t=1 by curating a set of complete trajectories and projecting them back to intermediate steps.

CSFT Targets Through Hindsight Top-B Superposition. Let F : T → R≥0 be a task-specific final
score function with lower is better, and fix a budget B ≥ 1 for the number of trajectories. We form the
set ΠB by filtering trajectories using F and taking the top B:

ΠB = arg min
Π⊆T , |Π|=B

∑
π∈Π

F(π).

At step t < m, we form the supervision α∗t by superposing the states visited by ΠB and at step t = m,
we select one correct final state from Γm, so that α∗m is a one-hot vector:

α∗t,g =
1
B

∑
π∈ΠB

1{gt(π) = g}, g ∈ Γt, t < m; α∗m,g =

{
1, if g is the correct final state g∗m,
0, otherwise.

(3)

This rule is retrospective in the sense that it ranks trajectories and then supervises the previous steps
accordingly. If B = 1, the supervision reduces to discrete CoT using ground-truth trajectory in (2)
by simply choosing F to penalize any trajectory with incorrect final answer. If B = |T | is the full
trajectory budget, then ΠB = T , and the supervision (α∗t,g) becomes the superposition of all reachable
states. As a result, the described methodology provides flexibility to select the number of superposed
states based on model capacity and the task structure.

3.1.1 Minimum Non-Negative Sum Task

We now introduce the Minimum Non-Negative Sum (MNNS) task, where the goal is to assign signs
to a list of numbers so that their sum is as small as possible while being nonnegative. The MNNS
task can also be viewed as partitioning a set of numbers into two subsets with a minimal difference,
which makes it closely related to the subset-sum problems explored in Dziri et al. (2023); Thomm
et al. (2024). Formally, given m integers d1, . . . , dm, the task is to assign signs σi ∈ {+1,−1} such
that s = σ1 d1 + · · · + σm dm ≥ 0 and s is minimized. Let σopt = (σopt

1 , . . . , σ
opt
m ) denote the optimal

assignment that achieves the minimal nonnegative sum sopt out of 2m possible sign assignments.
Here, every possible partial sum σ1d1 + · · · + σtdt ∈ Γt is treated as a state and assigned a unique
embedding eϕ(σ1d1+···+σtdt), where ϕ(·) maps each sum to a distinct id in [v]. At step t, the state
σ1d1 + · · · + σt−1dt−1 + σtdt is reachable from the state σ1d1 + · · · + σt−1dt−1 at step t − 1.

We supervise the model with CSFT targets α∗t,g defined in (3) with different budgets B between 1
and |T | = 2m. For MNNS, we rank trajectories by the absolute value of the final sum for budgets

5
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1 < B ≤ 2m, while for B = 1 we select the ground-truth trajectory. We split the training and validation
datasets by ensuring that any permutation of numbers appears in exactly one split in order to prevent
memorization and make a fair evaluation. We encode input and output numbers with separate tokens
in our vocabulary. As an example, an input appears as ⟨BOS⟩ d1 d2 . . . →, and the corresponding
output as s1 s2 . . . sopt ⟨EOS⟩, where sopt is the minimal nonnegative sum for {d1, . . . , dm}. For the
model, we use the GPT2 architecture (Radford et al., 2019) with different head, layer, and embedding
dimension configurations, and train it from scratch. During evaluations, we only assess the final
answers of both approaches. For more details on the experiments, see Appendix C.

3.1.2 ProntoQA and ProsQA Datasets

Other datasets we explore in our investigation of the CSFT approach are the ProntoQA (Saparov &
He, 2022) and ProsQA (Hao et al., 2024), which are logical reasoning tasks that require exploration
over multiple paths. Each question in ProntoQA asks whether a certain target word (node) T is
reachable from a root word (node) R within a fixed number of hops, while for ProsQA it asks which
of the target words T1 or T2 is reachable. We use 5-hop questions and present the graph in a structured
format by representing nodes and edges using embeddings inside the context for each question, and
use these the model input rather than raw text input.

The graph structure of the ProntoQA and ProsQA tasks naturally obeys the supervision in (3). For
CoT2 model, we use the full trajectory budget B = |T |, so at step t the target α∗t is the weighted
distribution over all nodes reachable from R in t hops, thus tracking all possible trajectories without
filtering. In final step m, the supervision assigns probability 1 to the correct label: yes or no for
ProntoQA, and T1 or T2 for ProsQA. For discrete CoT model (B = 1), we provide the ground-truth
path from A to the target node (T1 or T2) as the supervision. Please refer to Appendix C.2 for
additional details on supervision and data format.

Remark. While we focus on search-based tasks MNNS, ProntoQA, and ProsQA, one can
also extend to training with continuous tokens in the language-model context. The distribu-
tions {α∗t } at each step can be collected by (1) running a beam or best-first search to generate
multiple partial trajectories; (2) scoring these trajectories with a reward function; and (3) curat-
ing them into a distribution that assigns higher mass to states that leads to higher rewards.
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Figure 3: Training performance vs. embedding
dimension for CoT2 (B = 16) and discrete CoT
(B = 1) on MNNS with 4 input digits from 1-9
and 2-layer, 2-head GPT2 with d ∈ {16, 24, 32}.

3.2 Results and Discussion of CoT2 Supervision

CoT2 with full trajectory budget B = |T |. As demon-
strated in Figure 1, training with full budget B = |T |
corresponds to forming supervision by superposing all
reachable states at each step. In experiments on MNNS,
ProsQA, and ProntoQA tasks, we observe that the CoT2
model trained with CSFT using full trajectory budget
B significantly outperforms other baselines, as shown
in Figures 2b and 3. Moreover, this enables faster con-
vergence as illustrated in Figure 3. In particular, when
trained with full trajectory budget B, the model does
not make intermediate decisions but instead conducts
search over states through continuous tokens and defers the decision to the last step. This mitigates
error accumulation by avoiding early commitments. Supporting this, Figure 2a applies Pass@k to
both methods and shows that CoT2 consistently outperforms discrete CoT at every k; importantly,
the discrete CoT requires multiple attempts to approach the single-attempt (k = 1) performance of
CoT2 model, aligning with the “snowballing errors” phenomenon observed in discrete autoregressive
generation Bachmann & Nagarajan (2024). Our results also indicate that when supervision from a
search algorithm is available, leveraging this denser signal via CSFT is preferable to approaches that
internalize discrete CoT with continuous tokens, such as COCONUT. Furthermore, once the CoT2
model is given a moderate threshold embedding capacity (i.e., d = 24 in Figure 3) to represent all
possible states at each step, it solves the search-based tasks with near-perfect accuracy and achieves
superior performance with fewer layers/heads compared to the discrete CoT model (Appendix D.1).
We also provide additional experiments on ProntoQA and ProsQA in Appendix D.1 that confirm
similar findings to the MNNS task in Figures 2a and 3.
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Budget–embedding dimension tradeoff. Fig. 2c varies supervision trajectory budget B ∈ {1, 4, 8, 16}
(with |T | = 16) across embeddings d ∈ {16, 24, 32}. With a small embedding (d = 16), the model
capacity is not enough to learn large budget B = 16 superposing all reachable states, whereas a
moderate budget B = 8 performs best by reducing representational load relative to B = 16 and
avoiding the per-step harder commitments of B = 1, 4. Note that B = 16 imitates search by
representing all possible states with decision taken only in the last step, whereas B = 4, 8 forces
earlier decisions but reduces the representational load. Accordingly, as d grows (e.g., 24 or 32), the
performance improves monotonically with budget B and reaches near-ceiling performance when
B = 16. This indicates a capacity–parallelism tradeoff in which larger B helps only when d is
sufficiently large to represent the superposed traces.

Theoretical Perspective on Embedding Capacity. The embedding-capacity threshold behavior in
Fig. 2c aligns with the information-packing bound we discuss in Appendix E, showing that robust
decoding of a budget-B superposition over v candidate states requires embedding d = Ω

(
B log(v/B)

)
in the worst case. This implies, once d > log2 v, discrete CoT (B = 1) becomes information-inefficient
as each discrete token carries at most log2 v bits, whereas CoT2 can pack B ≈ Θ

(
d/ log(v/B)

)
states

per step, which is intuitively consistent with the entropy being ≈ log2

(
v
B

)
≈ B log2(v/B) ≲ d.

4 Theoretical Analysis of CoT2

In this section, we construct one-layer transformer solving the MNNS task using an attention layer
followed by an MLP layer, inspired by the capability of one-layer, one-head transformer under CSFT
supervision to solve this task with sufficient embedding dimension. We then provide a theoretical
comparison on the sample complexities of base CoT2, CoT2-MTS, and discrete CoT models.
Proposition 1 (Solving MNNS). There exists a 1-layer transformer architecture with embedding
dimension d = de + dp, where de = 2n+1 is the state-encoding dimension and dp = n + 2 is the
positional-encoding dimension that solves the MNNS task using CoT2 by storing (sine, cosine)
embeddings of all 2k states at the k-th iteration in a non-overlapping manner.

The above construction utilizes trigonometric embeddings, inspired by the mechanistic insights
given by Nanda et al. (2023). Our approach leverages these trigonometric embeddings to provide
a theoretical guarantee that the transformer can track and add/subtract multiple numbers in
parallel by benefiting from the embedding capacity and reading off the minimum non-negative
number at the final step. An important observation regarding our construction is that the trajectories
at each intermediate reasoning step are truly decoupled as it stores each state using non-overlapping
(sine, cosine) representations. This closely parallels the left side of Figure 1, but we also utilize
rotations/shifts to ensure distinct states are orthogonal and are easy to read out.

In the rest of this section, we argue that CoT2 equips the model with the ability to track multiple
paths in parallel, which is formalized through Assumption 1 below. To improve expressivity, we
allow a step-indexed (t) policy LM(t)

θ throughout, while remaining consistent with the problem setup.
Assumption 1. Recall the model LMθ in Section 2. For any step t and prefix tokens z≤t, we assume
(i) the next token probabilities depend only on the last token zt and the query X and (ii) if the last
token is zt =

∑v
j=1 αt, j e j so that

∑v
j=1 αt, j = 1, the output distribution αt+1 decouples as follows:

LM(t)
θ (· | z≤t, X)

(i)
= LM(t)

θ (· | zt, X)
(ii)
=

v∑
j=1

αt, j LM(t)
θ (· | e j, X).

This assumption holds for inherently serial tasks, such as MNNS construction in Proposition 1, where
previous reasoning history is summarized in the final token and different trajectories are decoupled
at intermediate reasoning steps. Under Assumption 1, the token distribution αt+1 = LM(t)

θ (· | zt, X)
evolves with the equation αt+1 = αt Mt(zt; X), starting from α1 = LM(0)

θ (· | X) until αm. Here,
Mt(zt; X) ∈ Rv×v is a Markov transition matrix that depends on the input X and the last token zt
(see (Ildiz et al., 2024) for related discussion). To keep exposition cleaner, we omit zt and X in the
notation of Mt(zt; X), and use Mt instead. We start by defining the three inference strategies.

• Base CoT2: At each step t = 1, . . . ,m, the model outputs the continuous token zt = E⊤αt and uses
it as the query for the next step.
Interpretation: Base CoT2 simultaneously tracks and aggregates all possible vm traces over m
steps; where the trace (it)m

t=1 has a weight of
∏m

i=1 αt,it .
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• Discrete CoT: At each step 1 ≤ t ≤ m, the model samples exactly one token zt = eit from αt, and
uses it as the query for the next step.
Interpretation: Discrete CoT samples a single trace out of vm traces with a likelihood of

∏m
i=1 αt,it

for trace (it)m
t=1.

• CoT2-MTS (multi-token sampling): At each step 1 ≤ t ≤ m, i.i.d. sample K tokens ei1 , . . . , eiK

from to αt, average these tokens to form zt =
1
K

∑K
r=1 eir , which it uses as query for the next step.

Interpretation: CoT2-MTS tracks K traces in parallel according to their discrete CoT likelihoods.
However, these traces are not statistically independent.

With these methods defined, we now present a result on the statistical consistency of their outputs.
Proposition 2 (Consistency of CoT and CoT2 inference). Under Assumption 1 and given X, the
output of base CoT2 is zm =

∑v
j=1 αm, j e j where αm = α1

∏m−1
t=1 Mt. Discrete CoT and CoT2-MTS

have the same output once we take the expectation over their stochastic sampling.

Remark: The above proposition states that as the number of samples approaches infinity, the
empirical distribution over the vocabulary α̂m obtained from CoT2-MTS or discrete CoT traces
converges in probability to αm. Here, αm is the deterministic output of the base CoT2 model, which
is computed without sampling and is not a random variable.

Proposition 2 establishes the statistical consistency of all three methods as they estimate the same
distribution αm. However, they differ in the samples needed to approximate this distribution. In
particular, the base CoT2 model outputs the entire probability distribution over tokens at every
intermediate step, implicitly tracking all possible trajectories in parallel as continuous embeddings.
Consequently, it computes the exact final token distribution in one forward pass without repeated
sampling. In contrast, due to stochasticity, discrete CoT or CoT2-MTS require multiple i.i.d. samples
to approximate this distribution. This motivates us to study and contrast their sample complexities.
The next proposition provides a distribution approximation guarantee in ℓ2 distance and shows that
CoT2-MTS reduces the sample complexity of estimation compared to discrete CoT by a factor of K.
Proposition 3. (i) Let αm be the expected output distribution after m steps of CoT according to
Proposition 2. Let α̂(MTS)

m be the distribution resulting from averaging the outputs of N i.i.d. CoT2-
MTS traces with parallelism K. Then, to guarantee ∥α̂(MTS)

m −αm∥2 ≤ ϵ with high probability, the total
number of samples (traces) required scales as Θ(K−1 ϵ−2). (ii) Defining α̂(disc)

m to be the distribution
obtained by averaging the outputs of NK i.i.d. discrete CoT traces, we have the following upper
bound on the expected error of MTS:

E
[
∥α̂(MTS)

m − αm∥
2
2

]
≤

(
2 −

1
K

)
E

[
∥α̂(disc)

m − αm∥
2
2

]
.

The above proposition implies that one MTS rollout tracks K traces in parallel, behaving in terms of
estimation error like K independent discrete CoT traces. Recall that CoT2-MTS generalizes discrete
CoT, which corresponds to K = 1. For this case, the proposition reduces to the known Θ(ϵ−2) sample
complexity of approximating a v-category distribution in ℓ2 distance (Kamath et al., 2015). Note
that as K → ∞, CoT2-MTS converges to the base CoT2, and the proposition recovers the one-shot
performance of base CoT2. Thus, although the three models yield the same final distribution, discrete
CoT requires Θ(K) times more rollouts than CoT2-MTS with parallelism K to achieve a similarly
accurate approximation, due to inherent noise from single-token sampling. In contrast, the base CoT2
model carries the entire mixture of partial expansions at each step and computes the distribution in
one shot. This theoretical intuition aligns with empirical findings in the Pass@k experiments, where
CoT2 achieves comparable performance to discrete CoT with substantially fewer samples.

5 Reinforcement LearningMethods for CoT2

In this section, we present two sampling methods (Multi-token and Dirichlet sampling) to apply
reinforcement learning (RL) with continuous output tokens. Specifically, we explore Group Relative
Policy Optimization (GRPO) training on top of (i) discrete models and (ii) continuous models that
are supervised trained following the previous section for the MNNS, ProntoQA, and ProsQA tasks.
Concretely, we demonstrate that RL (a) adapts discrete SFT models to produce continuous outputs
via MTS/Dirichlet rollouts, and (b) sharpens CoT2 models by prioritizing relevant reasoning traces
through reducing entropy of continuous token representations rather than weighting them equally. We
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note that the existing literature in RL operates in the model’s native discrete action space over a finite
vocabulary to maximize a scalar reward on the generated sequence (Ouyang et al., 2022; Shao et al.,
2024). In contrast, we perform RL in a continuous action space, which is the linear combination of
token embeddings, to maximize the same scalar reward.

In our setup, a language model LMθ acts as a policy over tokens. Let {Z(i)}Gi=1 be a group of G
trajectories sampled from old policy LMθold where each trajectory Z(i) =

(
z(i)

1 , . . . , z
(i)
m

)
contains m

output tokens for a fixed input X. We assume a sparse reward setting where the reward is 1 for a
correct final answer and 0 otherwise. Let Âi,t denote the advantage estimate at step t in trajectory i and
under sparse reward setting, Âi,t = Âi is identical across all steps. To quantify how the new policy LMθ

differs from the old one on token z(i)
t in ith trajectory, we define the policy ratio r(i)

t (θ) =
LMθ

(
z(i)

t |z
(i)
<t ,X

)
LMθold

(
z(i)

t |z
(i)
<t ,X

) .
We update the model by minimizing the objective (Shao et al., 2024; Yu et al., 2025):

LGRPO(θ) = −
1∑G

i=1 |Z(i)|

G∑
i=1

|Z(i) |∑
t=1

[
min

(
r(i)

t (θ) Âi,t, clip (rt(θ), 1 − ϵ, 1 + ϵ) Âi,t

)
− βDKL

[
LMθ ∥LMθref

]]
.

As the output length is fixed in our setting, we have |Z(i)| = m for each trajectory. Here, ϵ clips the
ratio rt(θ), and β controls the KL-divergence from a SFT-initialized reference policy LMθref . We set
GRPO iterations µ = 1 and estimate KL divergence with Schulman Approximator (Shao et al., 2024).

5.1 Multi-Token Sampling ProsQA ProntoQA

SFT SFT+GRPO SFT SFT+GRPO

K
=

6 CoT2 93.37 93.83 75.36 76.15
Discrete CoT 68.50 68.24 59.58 62.28

K
=

8 CoT2 93.37 94.09 75.36 76.66
Discrete CoT 68.50 71.58 59.58 71.53

K
=

12 CoT2 93.37 94.21 75.36 77.64
Discrete CoT 68.50 72.76 59.58 74.03

Table 1: Validation accuracies on ProsQA
and ProntoQA for CoT2 and Discrete CoT,
evaluated at K = 6, 8, 12 with CoT2-MTS
sampling GRPO. All models use a 4-layer,
4-head GPT2 with embedding dimension
32. Remarkably, GRPO with MTS sampling
scheme results in consistent improvements.

We emulate the rollout of a continuous token by sam-
pling a fixed number of K discrete tokens and averaging
them at steps t = 1, . . . ,m − 1. We refer to this hybrid
method as CoT2-MTS (multi-token sampling). For the
GRPO objective, we propose calculating the policy ratio
for continuous tokens as follows. Assume that at step t,
we sample discrete tokens ei1 , . . . , eiK with probabilities
αt,i1 , . . . , αt,iK under the current policy and αold

t,i1
, . . . , αold

t,iK

under the old policy. We define the policy ratio for con-
tinuous steps by dividing geometric means:

rt(θ) =
LMθ (zt | z<t, X)

LMθold (zt | z<t, X)
=

 αt,i1 · · ·αt,iK

αold
t,i1
· · ·αold

t,iK

1/K

, (4)

for t = 1, . . . ,m − 1. The geometric mean ensures the ratio for each continuous step remains on the
same scale as the final discrete token’s ratio and, thus, helps avoid overly large or small updates and
stabilizes GRPO training compared to the direct multiplication of probabilities. Once this ratio is
computed, we average the K sampled tokens to form zt, which is fed to the model as the query for the
next prediction step. At the final step t = m, where the token zm = e j is discrete with j ∈ [v] denoting
its index, the policy ratio is simply the probability ratio of selecting that token:

rm(θ) =
LMθ (zm | z<m, X)

LMθold (zm | z<m, X)
=
αm, j

αold
m, j

. (5)

Inference. After GRPO training, we apply the multi-token sampling procedure at each of the first
m − 1 steps to form the continuous token via the average of K sampled embeddings.

MNNS evaluation: Table 2 demonstrates that, for each K ∈ {1, 3, 6}, CoT2-MTS significantly
improves validation accuracy relative to the discrete SFT baseline (39.76%), with moderate K
yielding the best performance. We also observe that smaller K-values correspond to larger reductions
in token-level entropies, suggesting that the model becomes more confident in each intermediate step
by learning to commit to fewer tokens. Interestingly, the third token’s entropy remains relatively
high, which might indicate that the model hedges among partial expansions at this step that preserves
useful diversity. Therefore, CoT2-MTS enables a discrete CoT model to produce continuous outputs
and improves its final performance. In Appendices C.4 and D.2, we illustrate GRPO with Dirichlet
sampling and how it further improves the performance of CoT2 model trained with CSFT.

5.2 Results and Discussion of Policy Optimization for CoT2
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K Val. Acc. (%) Val. Entropy (SFT→ SFT+GRPO)

SFT SFT+GRPO token1 token2 token3 token4

24

1
39.76

49.01 0.32→ 0.03 0.59→ 0.07 0.55→ 0.16 0.48→ 0.17
3 52.60 0.37→ 0.06 0.75→ 0.21 0.80→ 0.33 0.53→ 0.15
6 49.69 0.45→ 0.12 0.77→ 0.34 0.84→ 0.66 0.51→ 0.22

32

1
43.50

51.61 0.36→ 0.01 0.63→ 0.04 0.35→ 0.26 0.20→ 0.12
3 55.66 0.39→ 0.04 0.71→ 0.09 0.54→ 0.58 0.29→ 0.17
6 50.38 0.42→ 0.06 0.79→ 0.22 0.61→ 0.85 0.28→ 0.15

Table 2: Validation accuracy and token-level
entropy of CoT2–MTS GRPO on a discrete
CoT model across rollout sizes K for MNNS.
We use 4 input digits in 1–9; 1-layer, 1-head
GPT2 with embedding 24 and 32; SFT accu-
racies are 39.76% and 43.50%, respectively.

ProsQA and ProntoQA evaluation: Table 1 shows
the benefits of GRPO with CoT2-MTS on models
trained with discrete or continuous SFT. Remarkably,
both CoT2 and discrete CoT models consistently im-
prove across all rollout sizes (K = 6, 8, 12), with
larger K values yielding better final accuracies by pro-
moting more exploration. Notably, the discrete CoT
benefits more from RL training compared to CoT2,
likely because the CoT2 already internalizes explo-
ration through CSFT training. Aligning with this, for
ProntoQA task, the final performance of discrete CoT
approaches that of the CoT2 model. Finally, gains on
MNNS are smaller than on ProsQA/ProntoQA, likely
because MNNS is highly structured and closely aligned with the CSFT targets, leaving limited
headroom for RL.

6 Conclusion
In this paper, we provided a thorough theoretical characterization of CoT2 spanning the achievable
level of parallelism and dimension-budget tradeoffs, CoT2-specific capabilities of transformer, and
the statistical benefits of CoT2. Our theory is developed in tandem with novel continuous supervision
(CSFT) and reinforcement learning strategies. As future work, applying CSFT selectively on segments
of the LLM trajectories represents a promising direction for equipping LLMs with CoT2 capabilities.
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Appendix
We discuss additional related work in Appendix B. We provide further implementation details in
Appendix C, including those for the MNNS task (Appendix C.1), the ProntoQA/ProsQA datasets
(Appendix C.2), and GRPO training (Appendix C.4). We present additional experimental results in
Appendix D, and we offer details on continuous supervised training and GRPO in Appendix D.1 and
Appendix D.2, respectively. Finally, we include the proofs of Propositions 1, 2, and 3 in Appendix E.

A LLM Usage

We used large language models solely as assistive tools. They provided support for text clar-
ity/grammar, coding utilities, LATEX edits, and literature search. The LLM did not design algorithms,
implement core methods, choose hyperparameters, or run experiments. All scientific claims, figures,
math, and code were authored and verified by the authors.

B Further RelatedWork

One way to address the limitation of discrete tokens is by leveraging the implicit reasoning capabilities
of transformers (Yang et al., 2024; Shalev et al., 2024). Works such as (Deng et al., 2023; 2024; Yu
et al., 2024) use various techniques to obtain models that can perform reasoning internally without
emitting CoT tokens. Another line of work has found looped transformers to be effective on reasoning
problems (Giannou et al., 2023; Geiping et al., 2025), notably being able to mimic CoT (Saunshi
et al., 2025) with a sufficient number of iterations. Another way to address these challenges is to
incorporate explicit continuous tokens similar to COCONUT Hao et al. (2024). Specifically, Shen
et al. (2025) proposes CODI, where an LLM with continuous CoT is supervised to produce the
correct answer, while also aligning its hidden representation on the last reasoning token to that of
a discrete CoT model that shares the same backbone. Cheng & Van Durme (2024) propose CCOT,
where an auxiliary module is first trained to decode autoregressively a compressed representation of a
discrete CoT trace, and later the main LLM is fine-tuned to produce correct answers by additionally
conditioning on the generated continuous tokens. Our work is similar to this line of work in that
continuous representations are used to perform reasoning. In parallel with our work, Zhang et al.
(2025b) propose Soft Thinking which is a training-free inference scheme that replaces intermediate
discrete tokens with softmax-weighted concept tokens and uses an entropy-based early stop; unlike
CoT2, we introduce explicit continuous supervision (CSFT) and RL with multi-token sampling
(MTS/GRPO) to track multiple trajectories with controllable parallelism.

The proposed CoT2 approach simultaneously tracks all possible trajectories and superposes them
within continuous tokens. This approach is similar to that of Xiong et al. (2025), who superpose
multiple candidate outputs into a single final token. Our approach also shares similarities with
decoding algorithms like self-consistency (Wang et al., 2022) and Best-of-N-Sampling (Stiennon
et al., 2022), which generate multiple trajectories by running inference multiple times and then
select a final answer based on the aggregate statistics. In contrast, our algorithm performs a single
inference, superposing different trajectories all at once and determining the final answer in one pass.
A concurrent work by Yue et al. (2025) explores hybrid latent RL using a learnable gating mechanism,
where continuous tokens are directly linked to model parameters and thus each trajectory can only be
used for a single gradient update due to on-policy constraints. Whereas, our MTS strategy integrates
stochasticity within continuous tokens and makes exploration possible through continuous tokens.
Furthermore, our Dirichlet sampling approach for generating multiple rollouts in GRPO training
draws connections to previous works such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003),
which introduces Dirichlet priors within a hierarchical Bayesian framework, and AlphaGo (Silver
et al., 2017), which injects Dirichlet noise to encourage exploration.

Our work also tangentially relates to research on multi-token prediction (Bachmann & Nagarajan,
2024; Liu et al., 2024; Gloeckle et al., 2024), which aims to improve the efficiency and quality of
generation by predicting multiple tokens at once. It is hypothesized that effective future prediction
necessitates the exploration of many possible continuations, which is similar to our CoT2 approach.
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C Implementation Details

Computational Resources: All experiments were run on a Slurm-managed cluster using L40S
GPUs with 48GB of memory. Each experiment fits on a single GPU. In the case of 4 input digits, the
SFT or CSFT training takes approximately 3 hours on a single GPU. For 5-digit inputs, the dataset
size increases by roughly a factor of 10, and the training time increases proportionally. The entire
codebase was implemented in PyTorch.

C.1 Implementation Details of Experiments onMNNS Task

Dataset Details: For the MNNS task, the vocabulary consists of a range of numbers from [−S , S ]
for some positive integer S , together with <BOS>,<EOS>, and→ special tokens. The integer S is
chosen so that all possible partial sums of the selected input digits lie within [−S , S ]. For example,
when the input digits lie in the range 1–10, we set S = 36, whereas for digits in 5–14, we set S = 40.
We performed our experiments on the 4 and 5 input digit scenarios. A sample input line with m
numbers is:

<BOS>D1 D2 . . . Dm →

Accordingly, the output will be m sum tokens, where the final token corresponds to the answer,
followed by <EOS> token:

S 1 S 2 . . . S m <EOS>
As a concrete example, consider the input 2, 1, 4 (m = 3), following Figure 1. In this case,
the solution for the MNNS task is −2 − 1 + 4 = 1. Therefore, for the discrete model, the
input is <BOS>D2 D1 D4 → and we supervise it along the trajectory of correct output tokens
S −2 S −3, S 1<EOS>, as illustrated in Figure 1. On the other hand, the continuous supervision at the
first step holds S 2 and S −2 as possibilities. Then, for the next step, we add 1 or -1 to these numbers,
and the resulting possibilities are S 3, S 1, S −1, S −3. Finally, at the last step, the model is supervised to
pick the correct answer S 1 as the token.

We split the datasets by ensuring that each permutation of a set of numbers is exactly in one of the
train and validation datasets, as the answer to the question is permutation-invariant. This way, we
prevent the models from memorizing the answer and make a fair comparison. We also use 0.8-0.2
split for train-val datasets.

Model and Hyperparameters: We use the GPT2 model, with 1 layer 1 head, 2 layer 2 head, and 4
layer 4 head as the configurations. For each configuration, we experiment with embedding dimensions
of 16, 24, or 32. We train with a learning rate of lr = 10−4 and use AdamW (no weight decay). The
batch size is 16 for 4-digit inputs and 64 for 5-digit inputs.

Evaluation of the models: To make a proper comparison, we only check the final answer of the
models, as checking the correctness of the full path of the discrete model would be unfair.

Pass@k Experiment: We perform our experiments for temperatures 0, 0.4, 0.8, and 1 by repeating
the evaluation 10 times for each k value where k changes from 1 to 14.

C.2 Implementation Details of Experiments on ProntoQA/ProsQA Datasets

Dataset Details: Different from the original ProntoQA/ProsQA datasets which described the struc-
tured ontology in natural language as a set of known conditions, we use a more structured format
through a token-level representation. An example prompt is shown below.

Description of the structured ontology: Each component of the ontology and associated questions
is represented through discrete tokens with their own learned embeddings, rather than as raw textual
input. Specifically, we use the GPT-2 architecture and encode the ontology’s structural components.
Below are two examples demonstrating how natural-language assertions are mapped to our tokenized
format:

Brimpuses are not luminous → ’A’ ’not in’ ’B’ ’.’.

Shumpuses are amenable; Each yumpus is a lorpu; Every lorpus is floral →
’C’ ’in’ ’D’ ’.’.

Below, we have the ProntoQA and ProsQA datasets’ input-output format.
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The structure of ProntoQA:

Input:’Description’ ’{’ ’A’ ’not in’ ’B’ ’.’ ... ’C’ ’in’ ’D’ ’.’ ’}’
’Question’ ’{’ ’C’ ’not in’ ’F’ ’.’ ’}’

Output:’Steps’ { ’C’ ’in’ ’D’ ’.’ ... ’D’ ’in’ ’E’ ’.’ ’}’ ’Answer’ ’{’
’False’ ’}’

The structure of ProsQA:

Input:’Description’ ’{’ ’A’ ’in’ ’B’ ’.’ ... ’C’ ’in’ ’D’ ’.’ ’}’
’Question’ ’{’ ’C’ ’in’ ’F’ ’or’ ’E’ ’}’

Output:’Steps’ { ’C’ ’in’ ’D’ ’.’ ... ’D’ in ’E’ ’.’ ’}’ ’Answer’ ’{’ ’F’
’}’

Each distinct component or relation (e.g., ’A’, ’in’, ’not in’) is treated as a unique token, and
singular/plural variants (such as ’lempus’ and ’lempuses’) are collapsed into a single token to
simplify the vocabulary. Alongside these concept tokens, special structural tokens (’Description’,
’’, ’’, ’.’, ’or’, etc.) are also included, which results in a vocabulary size of 31 tokens. To avoid
biases, we balance the dataset. In ProntoQA, “yes” and “no” each appear with 50% probability, and
in ProsQA, the correct answer is randomly permuted at the first or second position. For all the other
experimental and training settings, we follow Hao et al. (2024).

Model and Hyperparameters: We use the GPT2 model, with 2 layer 2 head, and 4 layer 4 head as
the configurations. We tested embedding dimensions 24, 32, 40 with these configurations. We set
batch size 64. We train with a learning rate of 10−4 and use AdamW (no weight decay).

Maj@k Experiment: We use majority voting for evaluation instead of Pass@k, because both
ProntoQA and ProsQA are binary questions. We perform our experiments for temperatures 0, 0.4,
0.8, and 1 by repeating the evaluation 10 times for each k value where k changes from 1 to 21. If two
or more answers end up with the same top vote, we pick one randomly.

C.3 Implementation Details of Baselines

In Figure 2, we evaluate the following baselines under matched total number of epochs:

Discrete no-CoT. The model is trained to predict the final answer directly, without intermediate
thought tokens.

Discrete CoT. The model is supervised on the full, correct path during SFT training.

COCONUT. Using a left-to-right curriculum training, the thought token at step t is replaced by the
model’s last hidden state sequentially. During inference, the model outputs the answer at the final
step (t = m) after m − 1 continuous thought tokens. To keep the evaluation fair, we use the same total
number of epochs across all baselines. For COCONUT’s m curriculum stages, we divide the total
epochs evenly across curriculum stages; e.g., with 1000 epochs and m = 5 output tokens, we train
200 epochs for each stage.

C.4 Implementation Details of GRPO Training

In Hao et al. (2024), the reference model is updated by LMθref ← LMθ in each iteration (epoch). This
approach is reasonable for their setting with a large dataset and a small number of epochs over it.
For our setting, however, we set the reference model to the initial model and never update it through
iterations as we have a smaller dataset. Meanwhile, we update the old model before every batch
LMθold ← LMθ.

In our experiments, we use G = 8 trajectories per input data point, use clipping parameter ϵ = 0.1, and
set the KL-divergence coefficient β = 0 in most cases (with β = 0.1 in a few). For the CoT2 model
with MTS sampling, we change the number of tokens to sample K from 1 to 12. In the MNNS task,
the 5-digit case has about ten times more data than the 4-digit case, so we typically focus on 4-digit
MNNS because of computational considerations and use a batch size of 16 in those experiments.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 Multi-Token Sampling GRPO for Continuous Token Generation
Input: Initial policy LMθinit ; hyperparameters K,G,m, ϵ, β.
1: LMθ,LMθref ← LMθinit
2: for iteration = 1, 2, . . . , I and for step = 1, 2, . . . , S do
3: Sample a batch of inputs {X(b)}Bb=1
4: Update LMθold ← LMθ
5: for each input X in the batch and for each trajectory i = 1, . . . ,G from that X do
6: for each token step t = 1, . . . ,m do
7: if t < m then ▷ Continuous token
8: Sample K tokens {ei1 , . . . , eiK } from α(i), old

t to create continuous token zt ←
1
K

∑K
r=1 eir .

9: Policy ratio for continuous token rt(θ)←
(∏K

r=1 α
(i)
t,ir
/
∏K

r=1 α
(i), old
t,ir

) 1
K .

10: else ▷ Final discrete token
11: Sample zm = e j from α(i), old

m .
12: Policy ratio for discrete token rm(θ)← α(i)

m, j/α
(i), old
m, j .

13: Obtain advantage estimates Âi,t for each token t in each trajectory Z(i) and calculate objective.
14: Update θ to minimize LGRPO(θ).

Output LMθ

Learning rates differ by model and setting. We use lr = 5× 10−5 for CoT2-MTS sampling (figures in
the main text), lr = 1 × 10−5 for discrete CoT with Dirichlet sampling, and lr = 1 × 10−6 for CoT2
with Dirichlet sampling. For ProntoQA and ProsQA experiments, we perform a grid search over
learning rates ranging from 1×10−4 to 1×10−8 and select and report results using the best-performing
configuration. For most settings, we find lr = 1 × 10−5 optimal; however, for CoT2 and discrete CoT
models with K = 6, we set lr = 1 × 10−6.We also use AdamW with a weight-decay of 0.01. For
Dirichlet experiments on the MNNS task, we try various scale parameters γ, but we find γ = 20 to
work best in most settings. Unless stated otherwise, we report the best validation accuracy found
during training for each setting.

C.4.1 Further Details onMulti-Token Sampling

The full algorithm describing MTS sampling is provided in Algorithm 1.

Remark. An alternative to the normalization in (4) is scaling the logits by 1/K before applying
softmax. However, this leads to a distribution shift from the SFT-trained model at inference, and
ultimately degrades performance.

C.4.2 Dirichlet Sampling

In this section, we present another method for generating continuous tokens at each step by interpreting
the model’s output distribution αt ∈ ∆

v−1 as concentration parameters of a Dirichlet distribution.
We introduce a scaling hyperparameter γ > 0 and define the Dirichlet distribution with parameters
γαt =

(
γαt,1, . . . , γαt,v

)
.Without this scaling, directly using αt as parameters often causes training

instability, particularly when many αt,i values are small. We then sample a point α̂t ∈ ∆
v−1 from

the resulting distribution Dir (αt). After sampling, we form the continuous token by mapping
zt = E⊤α̂t ∈ R

d, which becomes the query for the next step. We denote the Dirichlet densities
induced by current and old policies as fθ(αt; γ) and fθold (αt; γ), respectively. Accordingly, we define
the policy ratio at a continuous step t < m as:

rt(θ) =
LMθ(zt | z<t, X)

LMθold (zt | z<t, X)
=

fθ(αt; γ)
fθold (αt; γ)

,

The above definition parallels the probability ratio for discrete actions, but replaces the categorical pmf
with a continuous Dirichlet pdf. At the final step t = m, we sample a discrete token zm ∈ {e1, . . . , ev}

from αm, and use the standard policy ratio in (5). At inference, we follow the aforementioned
autoregressive procedure by forming zt = E⊤αt.
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D Experimental Results

D.1 Continuous Supervised Training Results

Teacher Forcing and Self-feeding Comparison: As described in CSFT section, we tested two
approaches of providing prefixes during training the CoT2 model with CSFT. Although the model
autoregressively generates at inference time, teacher forcing yields better performance than self-
feeding during CSFT training. Our results demonstrate that, We also tested curriculum settings,
where we switch to self-feeding after a pre-determined number of epochs in the training. Still, the
accuracies didn’t improve beyond pure teacher-forcing training. The results are illustrated in Figure 6,
where we refer to teacher-forcing as "hard-teacher" and refer to self-feeding as "soft-teacher".

Sparse Supervision for Discrete Baseline: We also tested providing a subset of the correct path
to the discrete model. We observed that a sparsely supervised discrete model can achieve better
performance than the fully supervised discrete model when the distribution is "easier" to handle by
the model. As an example, we tested the case when we have 5 input digits from the range of 11 to
19. In this case, in nearly all of the cases, the answer to our MNNS game is (sum of minimum 3
numbers) - (sum of maximum 2 numbers) out of the 5 input numbers. In this case, when only 1 token
from the correct path is provided to the discrete model, it’s better than 3 and 5 token cases. However,
when we change the distribution to a range of numbers from 5 to 13, which makes the question
reasonably harder, the discrete model with 1 token supervision performs worse than the other two,
and the discrete model with full supervision performs best. The results are demonstrated in Figure 4.

Further Results on CoT2 vs Discrete CoT: The results in Figure 7 also indicate that above an
embedding dimension threshold, the CoT2 model has superior performance and trains significantly
faster than the discrete CoT model. Moreover, combining the results of Figure 7 with Figure 3, we
see that the CoT2 model with one layer and one head GPT2 model performs better than discrete
CoT model with two layers and two heads at embeddings 24 and 32. While the continuous approach
requires greater embedding capacity to support its distributional representations at each step, it can
outperform the discrete model using fewer layers and attention heads. Supporting the findings in
Figure 2, Figure 8 illustrates that on the ProntoQA task, CoT2 consistently outperforms the discrete
CoT baseline when the embedding dimension is above a threshold. Likewise, as depicted in Figure 9
and Figure 10, the discrete CoT model requires multiple samplings (Maj@k) to match the single-shot
performance of CoT2 on both ProntoQA and ProsQA, which indicates that CoT2 model is more
sample-efficient.

Empirical Evidence of CoT2 Alignment with Supervision During Inference: We provide direct
empirical evidence supporting that well-trained CoT2 models indeed follow the intended search
patterns prescribed by continuous supervision (CSFT). Specifically, we analyze token-level entropy
as a probe for model behavior during inference on the MNNS validation set. At each intermediate
reasoning step t, CSFT ideally prescribes a uniform distribution over 2t partial sums, yielding an
entropy Ht = t ln 2. On the MNNS validation set with four digits we measure. Specifically, we
examine token-level entropies obtained from inference with 4 input digits (1–9) using a 1-layer, 1-head
GPT2 architecture at embedding dimension d = 32. The measured entropies at each intermediate
step are:

H1 = 0.6896, H2 = 1.3682, H3 = 1.9588, H4 = 0.2461.

Observe that the token-level entropies closely match expected theoretical values: H1 = 0.6896 ≈ ln 2,
H2 = 1.3682 ≈ ln 4, H3 = 1.9588 ≈ ln 8, and a sharp drop at H4 = 0.2461. The alignment for
steps t ≤ 3 indicates that the model maintains an approximately uniform superposition over roughly
2, 4, 8 trajectories, rather than collapsing into a single path or averaging them. The steep entropy
reduction at the final step (t = 4) clearly reflects the one-hot supervision on the final answer. This
entropy pattern provides direct empirical evidence that CoT2 inference aligns precisely with the
CSFT training objective: the model explores multiple reasoning branches in parallel until committing
decisively to the correct outcome at the final step.
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Method MNNS ProsQA ProntoQA

CoT2 98.94 93.37 98.01
COCONUT 92.58 90.03 96.94
Discrete CoT 84.92 68.50 82.47
Discrete no-CoT 68.35 54.91 73.65

Table 3: Validation accuracies on MNNS, ProsQA, and ProntoQA for CoT2, COCONUT, Discrete CoT, and
Discrete no-CoT. Setting: MNNS with 4 input digits in 1–9; CoT2 uses full budget B and Discrete CoT uses
B=1. MNNS: 2-layer, 2-head GPT2 (d=32); ProsQA & ProntoQA: 4-layer, 4-head GPT2 (d=32).
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Figure 4: The figure illustrates that when the range of digits makes the question non-trivial on
an MNNS task, the discrete CoT model trained with full token supervision outperforms sparse
supervisions; in particular, single token supervision yields the worst performance. Setting: 5 input
digits in 5 − 13; 2-layer, 2-head GPT2 with d = 32.

0 200 400 600 800 1000 1200 1400
Epoch

0

20

40

60

80

100

Va
lid

at
io

n 
A

cc
ur

ac
y 

(%
)

Continuous SFT, Emb 24
Discrete SFT, Emb 24
Continuous SFT, Emb 32
Discrete SFT, Emb 32
Continuous SFT, Emb 40
Discrete SFT, Emb 40

Figure 5: The figure reveals that CoT2 model is superior to discrete CoT in ProsQA, while also
exhibiting faster convergence. Setting: 4-layer, 4-head GPT2 with d ∈ {24, 32, 40}.
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Figure 6: The comparison between the hard and soft teachers for different embedding dimensions
on MNNS task. The figure illustrates that the hard teacher is superior to the soft teacher. Setting: 4
input digits in 1 − 9; 4-layer, 4-head GPT2 with d ∈ {16, 24, 32}.
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Figure 7: Comparison between CoT2 and discrete CoT model for different embedding dimensions.
The figure demonstrates that above a certain embedding dimension threshold, the CoT2 model
outperforms the discrete CoT model in the MNNS task. Setting: 4 input digits in 1 − 9; 1-layer,
1-head GPT2 with d ∈ {16, 24, 32}.
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Figure 8: Comparison between CoT2 and discrete CoT model for different embedding dimensions in
ProntoQA task. The figure shows that above an embedding dimension threshold, the CoT2 model
outperforms the discrete CoT model. Setting: 4-layer, 4-head GPT2 with d ∈ {24, 32, 40}.
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Figure 9: The figure illustrates that the discrete CoT model requires multiple samplings (Maj@k)
to match the single-shot performance of the CoT2 model on ProntoQA (10-run average). Setting:
4-layer, 4-head GPT2 with d = 32.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k (number of samples)

65

70

75

80

85

90

95

M
aj

@
k 

ac
cu

ra
cy

 (
%

)
Temp=0.0
Temp=0.4
Temp=0.8
Temp=1.0
Continuous SFT

Figure 10: The figure illustrates that the discrete CoT model requires multiple samplings (Maj@k) to
match the single-shot performance of the CoT2 model on ProsQA (10-run average). Setting: 4-layer,
4-head GPT2 with d = 32.
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Figure 11: Performance of single-shot CoT2 vs. discrete CoT with Pass@K across different temperatures on
the MNNS task. Setting: 4 input digits in 1–9; 1-layer, 1-head GPT-2 with d = 24; CoT2 uses full trajectory
budget B=|T | and discrete CoT uses B=1.
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D.2 GRPO Results

Discussion on ProntoQA/ProsQA Datasets: Table 1 illustrates that GRPO training using CoT2-
MTS sampling consistently improves discrete CoT and CoT2 models over their initial SFT accuracy.
Moreover, we observe that the improvement in the discrete CoT model is greater, which might
indicate that the CoT2 model already gains an RL-like exploration mechanism through CSFT training.
We observe that while increasing K initially increases the accuracy by sampling more tokens at each
step, beyond some K, the improvements diminish. This observation is consistent with Table 2, where
we see that a moderate K value offers the best final performance. One possible explanation is that
while higher K promotes better exploration, it also raises the chance of sampling unhelpful tokens
that disrupt the averaged token representation. Indeed, for larger K, we observe that the RL objective
saturates to near zero which suggests that most rollouts fail once the averaged token contains too
many distracting tokens.

Discussion on Dirichlet Sampling: We also investigate the effects of Dirichlet sampling in GRPO
training discrete CoT and CoT2 models. The results in Table 4 indicates that applying Dirichlet
sampling (γ = 20) in GRPO training of discrete CoT model consistently improves over the initial
SFT training accuracies. Similar to the CoT2 +MTS sampling results in Table 2, we observe that the
entropy at the third token remains relatively high, which suggests a beneficial diversity in model’s
predictions for that token. Moreover, the Table 5 demonstrates that Dirichlet sampling also improves
the CoT2 model’s SFT accuracy, even though it has a high initial SFT accuracy. As illustrated in
Table 5, we find there is an optimal value for the scale parameter γ, since larger γ typically yields
more uniform sampling distributions, whereas smaller γ concentrates the distribution more sharply.
Thus, adjusting γ provides a balance between exploration and stability in GRPO training.

Layers Heads Val. Accuracy (%) Val. Entropy (SFT→ SFT+GRPO)

SFT SFT+GRPO token1 token2 token3 token4

1 1 39.76 46.25 0.4851→ 0.1701 0.5165→ 0.6380 0.3243→ 0.6590 0.1597→ 0.4878
2 2 70.26 75.84 0.4851→ 0.4027 0.5165→ 0.4413 0.3243→ 0.2907 0.1597→ 0.1386

Table 4: Discrete CoT models trained with GRPO after SFT using Dirichlet sampling (γ = 20)
and a learning rate of 1 × 10−5. We show validation accuracy (%) and token-level entropy (SFT→
SFT+GRPO) for each (Layers, Heads) setting, with an embedding dimension of 24 for GPT2 model.

Dirichlet Scale (γ) SFT Val. Acc (%) SFT + GRPO Val. Acc (%)

10
87.84

89.76
20 90.75
40 90.37

Table 5: Validation accuracies GRPO training with CoT2 models using different Dirichlet sampling
scales (γ) with learning rate of 1 × 10−6. We show the baseline SFT accuracy (87.84%) and final
performance after GRPO.

CoT2-MTS GRPO experiments on GSM8K. According to raised points to evaluate our CoT2-
MTS method on reasoning benchmarks beyond logical multi-hop reasoning, we ran Qwen3-0.6B
on GSM8K using our CoT2-MTS continuous-token sampling procedure. We implemented the
continuous rollout/training code from scratch, and because we could not leverage frameworks such as
vLLM to speed up generation, we conducted our experiments on modest model sizes and decoding
budgets. For CoT2-MTS, we used a curriculum learning approach where continuous tokens are
introduced from 50% of training, ramped to full by 80%, and used thereafter. The table below
reports single-run results for different maximum response lengths (160, 128, 96, 80 tokens). We use
16 continuous tokens for the 96/80 settings and 32 continuous tokens for the 128/160 settings; for
example, in the 160-token configuration the effective budget grows from 128 discrete tokens at the
start of training to 128 discrete + 32 continuous tokens (i.e., 128→160) as the curriculum completes.

For these experiments we adopt a sparse-reward setting by using only the final answer in the 0/1
reward, and train with GRPO for 2000 steps using learning rate 3 × 10−6, batch size 6, and gradient
accumulation of 4. The GRPO group size is set to G = 4, the clipping parameter to ϵ = 0.1, the KL
coefficient to 0, and the number of sampled tokens in MTS to K = 4.
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Max Resp. Len Initial Acc (%) Disc. CoT Acc (%) CoT2-MTS Acc (%) Avg. Len (Disc CoT) Avg. Len (CoT2-MTS)

160 34.6 37.0 41.3 97.3 114.8
128 27.6 34.3 36.2 104.8 96.6
96 17.2 27.2 27.1 84.0 83.7
80 9.5 21.5 27.0 73.9 67.0

Table 6: Validation accuracies and response lengths for GRPO training with CoT2-MTS (K = 4) on
GSM8K using Qwen3-0.6B under different maximum response lengths.

Across GSM8K with Qwen3-0.6B, CoT2-MTS improves over discrete CoT in three out of four
maximum response-length settings and essentially matches it in the remaining one, while often
shortening the average response length. Overall, these preliminary results indicate that performing
exploration in the continuous action space via CoT2-MTS is a promising direction.

E Theoretical Details

Discussion on Budget-Embedding Dimension Tradeoff. Without loss of generality, assume that
the token embeddings lie inside unit-circle ∥ei∥2 ≤ 1. Let S ⊆ [v] be a set of superposed states at a
step with size |S | = B. By triangle-inequality, we know that the convex superposition zS =

∑
i∈S αi ei

with αi ≥ 0 and
∑

i∈S αi = 1 satisfies ∥zS ∥2 ≤ 1.

Suppose there exists a downstream module to recover the superposed states S robustly from the single
d-dimensional vector zS . Formally, assume a fixed margin δ > 0 such that even if zS is perturbed by
any η with ∥η∥2 ≤ δ, the decoding does not change: there is a decoder Dec : Rd → {S ⊆ [v] : |S | = B}
with Dec(zS + η) = S for all S and all such η.

For each zS , consider the closed ball B(zS , δ) = {x : ∥x− zS ∥ ≤ δ}. The robustness assumption trivially
implies these balls are pairwise disjoint; moreover, by the triangle inequality, for any x ∈ B(zS , δ),

∥x∥ ≤ ∥x − zS ∥ + ∥zS ∥ ≤ δ + 1,
so, each δ-ball sits inside a larger 1 + δ ball B(zS , δ) ⊆ B(0, 1 + δ). Therefore, the union of all disjoint
δ-balls lies inside B(0, 1 + δ): ⋃

S⊆[v]
|S |=B

B(zS , δ) ⊆ B(0, 1 + δ).

The number of different sets of superposed states of size B is
(

v
B

)
. The packing constraint says the

union of the
(

v
B

)
disjoint δ-balls must fit inside B(0, 1 + δ). In Rd, the volume of a radius-r Euclidean

ball is cdrd where cd =
πd/2

Γ(1+d/2) . Comparing volumes gives(
v
B

)
≤

vol(B(0, 1 + δ))
vol(B(0, δ))

=
(

1+δ
δ

)d
.

In the regime v ≫ B, taking logs and using the Stirling approximation for B! gives the inequality
log

(
v
B

)
≥ B log(v/B). Using this yields:

B log
v
B
≤ d log

(
1+δ
δ

)
≤ d log

(
2
δ

)
for δ ≤ 1. Equivalently, d ≥

B log(v/B)
log(2/δ)

= Ω(B log(v/B)) when δ is a fixed constant.

Justification for Assumption 1: The Assumption 1 holds for tasks where the next-token distribution
depends solely on the current token and the input tokens rather than the full history of output tokens.
This is satisfied by many reasoning tasks, where the aim is to keep track of an intermediate state (e.g.,
the current sum) and update this state based only on the current state and the input, independently of
the earlier trajectory.

For example, in the MNNS task, the model generates a token representing the current partial sum
at each step. To compute the distribution over the next possible sums, the model adds or subtracts
the selected number from the input context X to the current sum, without needing to remember the
sequence of previous sums explicitly. Thus, the next-state distribution at each step is only determined
by the current state and it naturally satisfies the Assumption 1.
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Proposition 2 (Consistency of CoT and CoT2 inference). Under Assumption 1 and given X, the
output of base CoT2 is zm =

∑v
j=1 αm, j e j where αm = α1

∏m−1
t=1 Mt. Discrete CoT and CoT2-MTS

have the same output once we take the expectation over their stochastic sampling.

Proof. Let α̂(disc)
t , α̂(MTS)

t denote the empirical output token distributions at step t under one trajectory
obtained by the discrete CoT, and CoT2 with MTS models, respectively. We define α(disc)

t = E
[
α̂(disc)

t

]
and α(MTS)

t = E
[
α̂(MTS)

t

]
to be corresponding expected distributions. The discrete CoT model at each

step picks exactly 1 token from αt. On the other hand, CoT2-MTS samples K i.i.d. tokens at every
step independently according to their probabilities from α̂t. We denote them i1, . . . , iK , and average
their embeddings to produce a single query.

We will use induction in our argument. For the base case, all models start with the same initial
distribution, so we trivially have α(disc)

1 = α(MTS)
1 = α(CoT2)

1 . For the inductive step, assume that we
have α(disc)

t−1 = α
(MTS)
t−1 = α(CoT2)

t−1 . We will show that α(disc)
t = α(MTS)

t = α(CoT2)
t . On the other, for the

discrete CoT model, the model samples one token eit+1 from the row of Mt for a token it+1. Therefore,
we need to condition on the token at step t. We have:

E
[
α̂(disc)

t+1

]
=

v∑
j=1

P(zt = e j)E
[
α̂(disc)

t+1 | zt = e j

]
(6)

=

v∑
j=1

P(zt = e j) LM(t)
θ (· | e j, X)

v∑
j=1

α(disc)
t, j LM(t)

θ (· | e j, X)

(a)
=

v∑
j=1

α(CoT2)
t, j LM(t)

θ (· | e j, X)

(b)
= α(CoT2)

t+1 (7)

where (a) follows from the induction argument and (b) follows from Assumption 1. Therefore, we
obtain α(disc)

t+1 = E
[
α̂(disc)

t+1

]
= α(CoT2)

t+1 . For the CoT2-MTS model, the argument will be similar. Using
the decoupling of trajectories by Assumption 1, the next distribution is:

LM(t)
θ

· | 1
K

K∑
r=1

eir , X
 = 1

K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
.

Therefore, we write:

E
[
α̂(MTS)

t+1

]
=

∑
(i1,...,iK ) ∈ [v]K

P(ei1 , . . . , eiK )E
[
α̂(MTS)

t+1 | ei1 , . . . , eiK

]
=

∑
(i1,...,iK ) ∈ [v]K

P(ei1 , . . . , eiK ) LM(t)
θ

· | 1
K

K∑
r=1

eir , X


=
∑

(i1,...,iK ) ∈ [v]K

P(ei1 , . . . , eiK )
1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
=

∑
(i1,...,iK ) ∈ [v]K

 K∏
r=1

P(eir )

 1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
=

∑
(i1,...,iK ) ∈ [v]K

 K∏
r=1

α(MTS)
t,ir

 1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

=
1
K

K∑
r=1

v∑
j=1

LM(t)
θ (· | e j, X)

∑
(i1,...,ir−1,ir+1,...,iK )∈[v]K−1

α(MTS)
t, j

K∏
s=1
s,r

α(MTS)
t,is

=
1
K

K∑
r=1

v∑
j=1

α(MTS)
t, j LM(t)

θ (· | e j, X)
∑

(i1,...,ir−1,ir+1,...,iK )∈[v]K−1

K∏
s=1
s,r

α(MTS)
t,is

=

K∑
r=1

1
K

v∑
j=1

α(MTS)
t, j LM(t)

θ

(
· | e j, X

)
=

v∑
j=1

α(MTS)
t, j LM(t)

θ

(
· | e j, X

)
=

v∑
j=1

α(CoT2)
t, j LM(t)

θ

(
· | e j, X

)
= α(CoT2)

t+1 . (8)

Thus, combining (7), and (8) completes the induction and our argument:

α(disc)
t+1 = E

[
α̂(disc)

t+1

]
= α(CoT2)

t+1 = E
[
α̂(MTS)

t+1

]
= α(MTS)

t+1 .

□

Proposition 3. (i) Let αm be the expected output distribution after m steps of CoT according to
Proposition 2. Let α̂(MTS)

m be the distribution resulting from averaging the outputs of N i.i.d. CoT2-
MTS traces with parallelism K. Then, to guarantee ∥α̂(MTS)

m −αm∥2 ≤ ϵ with high probability, the total
number of samples (traces) required scales as Θ(K−1 ϵ−2). (ii) Defining α̂(disc)

m to be the distribution
obtained by averaging the outputs of NK i.i.d. discrete CoT traces, we have the following upper
bound on the expected error of MTS:

E
[
∥α̂(MTS)

m − αm∥
2
2

]
≤

(
2 −

1
K

)
E

[
∥α̂(disc)

m − αm∥
2
2

]
.

Proof. Our notation in the proof will deviate from that in the proposition statement. As in the proof
of the previous proposition, we denote by α̂(MTS)

t a single realization of the distribution obtained
from the last K tokens of CoT2-MTS. On the other hand, the random variable α̂(disc)

t represents the
distribution obtained by averaging K i.i.d. discrete CoT traces. We will compare the variances of
these two approaches. The resulting inequality will similarly hold for the MTS and discrete CoT
estimators given in the proposition statement, which use N and NK samples, respectively. Initially,
we’ll compare the variances of the two approaches at step t = 2 (empirical distributions formed at the
end of the second sampling step), and a parallel argument will hold for any t.

CoT2-MTS: In the beginning, we have deterministic distribution α1 = LM(0)
θ ( · | X) =

(α1,1, . . . , α1,v) ∈ ∆v−1. At step t = 1, we draw K tokens i1, . . . , iK
i.i.d.
∼ Categorical(α1). The

empirical frequencies over the vocabulary are:

α̂(MTS)
1, j =

1
K

K∑
r=1

1{ir = j}, j ∈ [v].

This means, the query fed into the model is z1 =
∑v

j=1 α̂1, j e j. By Assumption 1, the output distribution
is:

α̂(MTS)
2 = LM(1)

θ ( · | z1, X) =
v∑

j=1

α̂(MTS)
1, j LM(1)

θ ( · | e j, X).

Thus α̂2 is a convex combination of the v fixed distributions LM(1)
θ ( · | e j, X) for j ∈ [v]. At step 2, we

will draw K tokens from this common distribution α̂2. Let

Y (MTS)
r ∈ [v], r = 1, . . . ,K,

Y (MTS)
r | α̂(MTS)

2 ∼ Categorical(α̂(MTS)
2 ).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

be the tokens drawn. Now, we’ll calculate the variance along any fixed vocabulary coordinate k ∈ [v]
and define

Y (MTS)
r,k := 1{Y (MTS)

r = k}, Ȳ (MTS)
k :=

1
K

K∑
r=1

Y (MTS)
r,k .

Denote the distributions of the drawn tokens:

U(MTS)
r := LM(1)

θ ( · | eir , X) ∈ ∆v−1,

U(MTS)
r,k := (U(MTS)

r )k, Ū(MTS)
k :=

1
K

K∑
r=1

U(MTS)
r,k .

Then U(MTS)
r,k depends only on the first-step choice ir and is therefore i.i.d. across r. Ū(MTS)

k = α̂2,k is
the random success parameter for the Bernoulli variables Y (MTS)

r,k . By using the unbiasedness given by
Proposition 2, we know that E[Ū(MTS)

k ] = α(CoT2)
2,k . Define the shorthand notations:

µk := E[U(MTS)
r,k ] = E[Ū(MTS)

k ] = α(CoT2)
2,k

σ2
k := Var[U(MTS)

r,k ].

We calculate the variance of the MTS estimator Var[Ȳ (MTS)
k ] by using the law of total variance:

Var[Ȳ (MTS)
k ] = E

[
Var[Ȳ (MTS)

k | Ū(MTS)
k ]

]
+ Var

(
E[Ȳ (MTS)

k | Ū(MTS)
k ]

)
.

Given Ū(MTS)
k , the Y (MTS)

r,k are i.i.d. Bernoulli(Ū(MTS)
k ). Thus:

Var
[
Ȳ (MTS)

k | Ū(MTS)
k

]
=

Ū(MTS)
k (1 − Ū(MTS)

k )
K

.

Taking expectation and using Var[Ū(MTS)
k ] = σ2

k/K:

E

 Ū(MTS)
k (1 − Ū(MTS)

k )
K

 = 1
K

(
E[Ū(MTS)

k ] − E[Ū2,(MTS)
k ]

)
=

1
K

(
µk −

(
σ2

k/K + µ
2
k

))
=
µk(1 − µk)

K
−
σ2

k

K2 .

(A)

Also, the other term is:

Var
(
E[Ȳ (MTS)

k | Ū(MTS)
k ]

)
= Var[Ū(MTS)

k ] =
σ2

k

K
. (B)

Combining (A) and (B) yields:

Var[Ȳ (MTS)
k ] =

µk(1 − µk)
K

+
K − 1

K2 σ
2
k . (9)

Discrete-CoT: For K independent traces, each trace r draws at step 2 from its own distribution U(disc)
r

(instead of a common mixture). Let Y (disc)
r,k ∼ Bernoulli(U(disc)

r,k ) and Ȳ (disc)
k := 1

K
∑

r Y (disc)
r,k . Apply the

law of total variance:

Var[Y (disc)
r,k ] = E

[
Var[Y (disc)

r,k | U(disc)
r,k ]

]︸                       ︷︷                       ︸
(A)

+Var
(
E[Y (disc)

r,k | U(disc)
r,k ]

)︸                       ︷︷                       ︸
(B)

.

Given U(MTS)
r,k , the variance of Y (disc) is:

Var[Y (disc)
r,k | U(disc)

r,k ] = U(disc)
r,k

(
1 − U(disc)

r,k

)
.
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Taking expectation over U(disc)
r,k ,

E
[
U(disc)

r,k (1 − U(disc)
r,k )

]
= E[U(disc)

r,k ] − E[U2,(disc)
r,k ]

= µk −
(
Var[U(disc)

r,k ] + µ2
k

)
= µk(1 − µk) − σ2

k ,

where σ2
k := Var[U(disc)

r,k ]. Note that the variances are the same Var[U(disc)
r,k ] = Var[U(MTS)

r,k ] = σ2
k

since the initial distribution α1 are shared between MTS and discrete CoT approaches. For the
conditional-expectation variance term

Var
(
E[Y (disc)

r,k | U(disc)
r,k ]

)
= Var[U(disc)

r,k ] = σ2
k .

Combining (A) and (B) yields:

Var[Y (disc)
r,k ] =

(
µk(1 − µk) − σ2

k

)
+ σ2

k = µk(1 − µk).

=⇒ Var[Ȳ (disc)
k ] =

µk(1 − µk)
K

. (10)

Using (9) and (10), we have:

Var[Ȳ (MTS)
k ] = Var[Ȳ (disc)

k ] +
K − 1

K2 σ2
k .

=⇒
Var[Ȳ (MTS)

k ]

Var[Ȳ (disc)
k ]

= 1 +
K − 1

K
·

σ2
k

µk(1 − µk)
.

Because every U(MTS)
r,k ∈ [0, 1], the known inequality Var[Z] ≤ E[Z] (1 − E[Z]) for any random

variable Z ∈ [0, 1] implies σ2
k ≤ µk(1 − µk). As a result:

Var[Ȳ (MTS)
k ]

Var[Ȳ (disc)
k ]

≤ 1 +
K − 1

K
= 2 −

1
K
. (4)

Thus, summing this over all k ∈ [v] gives:

E
[∥∥∥α̂(MTS)

m − αm

∥∥∥2
2

]
≤

(
2 − 1

K

)
E

[∥∥∥α̂(disc)
m − αm

∥∥∥2
2

]
.

Proof for any t. We will now show this at any step t. Consider the discrete CoT case with K i.i.d.
traces. Different from the 2-step case, where the tokens for MTS and discrete CoT at step t = 1 are
drawn from the same distribution α1, they will be drawn from the empirical distributions α̂(MTS)

t and
α̂(disc)

t . Similarly define U(disc)
r to be the distribution LM(t)

θ ( · | eir , X) ∈ ∆v−1 obtained by sampling the
token ir. For each vocabulary index k ∈ [v]

σ2,(disc)
t,k := Var

[
U(disc)

r,k

]
, Var

[
µ̂(disc)

t,k

]
=
σ2,(disc)

t,k

K
.

The equality follows because the U(disc)
r,k are i.i.d. across r. Now, we calculate the variance at step

t + 1. Each trace r now draws a Bernoulli variable Y (disc)
r,k ∼ Bernoulli(U(disc)

r,k ). Parallel to the previous
case, using the law of total variance cancels out the variance terms σ2,(disc)

t,k and yields:

Var
[
Ȳ (disc)

t+1,k

]
=
µt+1,k(1 − µt+1,k)

K
. (11)

CoT2-MTS: This time, all tokens at step t + 1 are drawn from a shared µ̂(MTS)
t , which is resulted

after drawing K tokens from α̂MTS
t . Using Y (MTS)

r,k | µ̂(MTS)
t ∼ Bernoulli(µ̂(MTS)

t,k ) and applying the law
of total variance gives:

Var
[
Ȳ (MTS)

t+1,k

]
= E

 µ̂(MTS)
t,k (1 − µ̂(MTS)

t,k )

K

 + Var
[
µ̂(MTS)

t,k

]
=
µt+1,k(1 − µt+1,k)

K
−
σ2,(MTS)

t,k

K2 +
σ2,(MTS)

t,k

K

=
µt+1,k(1 − µt+1,k)

K
+

K − 1
K2 σ

2,(MTS)
t,k . (12)
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Take the ratio of (12) to (11):

Var[Ȳ (MTS)
t+1,k ]

Var[Ȳ (disc)
t+1,k ]

= 1 +
K − 1

K

σ2,(MTS)
t,k

µt+1,k(1 − µt+1,k)
.

Again, every U(MTS)
r,k is 0 ≤ U(MTS)

r,k ≤ 1. For any random variable Z bounded in [0, 1], we know
that Var[Z] ≤ E[Z] (1 − E[Z]). Therefore we always have σ2,(MTS)

t,k ≤ µt+1,k
(
1 − µt+1,k

)
and thus,

Var
[
µ̂(MTS)

t,k

]
≤
µt+1,k(1 − µt+1,k)

K
. Using this in the previous equality yields:

Var[Ȳ (MTS)
t+1,k ]

Var[Ȳ (disc)
t+1,k ]

≤ 1 +
K − 1

K
= 2 −

1
K
.

Thus, defining σ2
disc := E

[
∥α̂(disc)

m − αm∥
2
2

]
, we have shown that:

σ2
disc ≤ E

[∥∥∥α̂(MTS)
m − αm

∥∥∥2
2

]
≤

(
2 − 1

K

)
σ2

disc. (13)

We also know that α̂(disc)
m is the average of K i.i.d. discrete rollouts, and thus:

σ2
disc = E

[∥∥∥α̂(disc)
m − αm

∥∥∥2
2

]
=

1
K

v∑
j=1

µm, j

(
1 − µm, j

)
≤

1
K
.

Define the average of N independent MTS roll-outs as ᾱm := 1
N

∑N
r=1 α̂

(MTS),r
m , and because variances

add for independent runs, we have Var[ᾱm] = Var[α̂(MTS)
m ]/N. Applying Chebyshev’s inequality

yields:

P [∥ᾱm − αm∥2 > ϵ] ≤
(2 − 1

K )σ2
disc

N ϵ2
≤

(2 − 1
K )

K N ϵ2
.

In order to make this probability ≤ δ, it is enough to take

N ≥
2 − 1

K

K ϵ2 δ
=⇒ N = O

(
1

Kϵ2

)
.

To finish our argument by finding a lower bound on N, we leverage the standard result in multinomial
estimation that Θ

(
1
ϵ2

)
i.i.d. samples are necessary and sufficient to learn a v-category distribution

in ∥ · ∥2-distance ≤ ϵ (Kamath et al., 2015). We know by Proposition 2 that the distribution αMTS
m

to be recovered is shared between MTS and discrete CoT estimators. Additionally, from (13), we
know the variance of the estimator α̂(MTS)

m is at least as large as that of α̂(disc)
m . Note that the estimator

α̂(disc)
m is the average of K i.i.d. discrete CoT draws, which guarantees an estimation error of at most ϵ

with Θ
(

1
K ϵ2

)
aggregated samples. Hence, the same lower bound applies to MTS samplings, yielding

a sample complexity of N = Ω
(

1
K ϵ2

)
. Combining with the upper bound, we have N = Θ

(
1

K ϵ2

)
as

claimed. This completes the argument.

□

E.1 Construction forMinimum Non-Negative Sum (MNNS) Task

We describe a single-layer transformer with an attention block followed by a mixture-of-experts
(MoE) feed-forward block. Let n be the length of the input sequence of integer tokens. Denote the
tokenized input numbers as z1, z2, . . . , zn; and let the arrow (→) token be denoted as zn+1. We also
have a dummy input token zn+2, which is the embedding corresponding to the number 0, so that we
have n + 2 tokens initially. We will construct the transformer with n + 1 MLPs in the mixture of
experts layer, where the first n are partial-sum MLPs and the last one is the MLP that reads off the
answer from among all the stored partial sums after m steps. We start with the following assumption
on the structure of the tokens.
Remark 1. As an empirical validation of Proposition 1, we observe that training according to this
construction with trigonometric embeddings yields perfect accuracy.
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Assumption 2. Let d = de + dp be the embedding size where de = 2n+1 and dp = n + 2. The
token embeddings are on the first de coordinates, while the positional encodings are on the last

dp coordinates and are one-hot encoded. where each zi =

(
ei
pi

)
∈ Rde+dp is formed by vertically

concatenating a content embedding ei ∈ R
de and a positional encoding pi ∈ R

dp . We assume each pi
is a one-hot vector in Rdp , so that p⊤i pj = 0 for i , j, and ∥pi∥ = 1.

We now state the following proposition, which helps us to attend and select the input tokens
z1, . . . , zn+1 one by one by the attention block.

Proposition 4. Suppose we have n + 2 tokens {z1, z2, . . . , zn+2} in Rd, each of the form zi =

(
ei
pi

)
,

where ei ∈ R
de , pi ∈ R

dp , d = de + dp. Let p1, p2, . . . , pn+2 ∈ R
dp be orthonormal set of positional

vectors according to Assumption 2. Then, there exists a rotation matrix R ∈ Rdp×dp satisfying
Rp j = p j−1 mod (n+2) for all j ∈ [n + 2], and the block matrices

W =
(
0 de×de 0 de×dp

0 dp×de c · R

)
∈ Rd×d and Wv =

(
Ide 0 de×dp

0 dp×de Idp

)
∈ Rd×d

with c→ ∞, ensure that the attention block

Attn(z, Z) = S
(
z⊤WZ⊤

)
ZWv,

performs a cyclic next-index selection: if the query is zi, it selects column j∗ ≡ (i + 1) (mod n + 2)
from Z and returns z j∗ .

Proof. Definition of Matrix W. We will first construct a rotation matrix. We have n + 2 orthonormal
position vectors p1, . . . , pn+2 ∈ R

dp . Then, R is the following (n + 2) × (n + 2) permutation matrix

R =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0


,

which cyclically shifts the basis vectors pj backward by one index, i.e., Rpj = pj−1 mod (n+2). Then,
we specify

W =
(
0 de×de 0 de×dp

0 dp×de c · R

)
∈ Rd×d.

Hence for zi = (ei; pi), we have
(
e⊤i , p

⊤
i

)
W =

(
0, p⊤i R

)
. Thus the dot-product with z j is

(
0 p⊤i R

) (e j

pj

)
= p⊤i Rpj.

Since positional encodings are orthogonal, we know that:

p⊤i Rpj =

{
1, j ≡ i + 1(mod(n + 2)),
0, else.

So row-wise softmax S
(
x⊤WX⊤

)
places all probability mass at column j∗ ≡ i + 1(mod(n + 2)) by

saturating softmax at position j as c→ ∞.

Definition of Matrix Wv. In this case, we simply set Wv = Id, and thus, once the row-wise softmax
selects column j∗ with probability 1, we have

z⊤j∗Wv = z j∗ ,

so the final output is precisely the chosen z j∗ . This completes the construction. □
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Having defined the attention block, we state the following proposition that helps selecting different
MLPs for the tokens z1, . . . , zn+1 outputted by the attention block.

Having defined the attention block, we now show how a mixture-of-experts layer can exclusively
select MLPi for each token zi, i = 1, . . . , n + 1 outputted by the attention block.
Proposition 5. Let MLP1, . . . ,MLPn+1 be n + 1 experts in a mixture-of-experts (MoE) module.
Suppose we have n + 1 fixed token embeddings {z1, z2, . . . , zn+1} ⊂ R

d, where each token is formed
according to Assumption 2. Given routing parameters W = [w1 . . . wn+1]⊤, define the MoE feed-
forward block as

MoEBlock(z) =
n+1∑
j=1

[
Softmax(Wz) j ·MLP j(z)

]
,

where

Softmax(W z) j =
exp

(
w⊤j z

)
∑n+1

k=1 exp
(
w⊤k z

) , j = 1, . . . , n + 1.

There exist routing matrix W ∈ R(n+1)×d such that the distribution Softmax(c ·W zi) as c→ ∞ assigns
a weight of 1 on MLPi when zi is given as input.

Proof. We partition w j to ignore the content embedding ei and match the positional block pj.

Concretely, write w j =

(
0de

pj

)
. Then, for each token zi = (ei; pi),

w⊤j zi =
(
0⊤de

p⊤j
) (ei

pi

)
= p⊤j pi.

Since p⊤j pi = δi j, we have w⊤j zi = δi j. Therefore, the softmax evaluates to

lim
c→∞

Softmax(c ·W zi) j →
exp(δi j)∑n+1

k=1 exp(δik)
= δi j.

In other words, Softmax(c·W zi) places all mass on expert j = i. Thus each token zi (for i = 1, . . . , n+1)
deterministically selects the i-th expert MLPi. □

In the next proposition, we show how to iteratively expand the partial sums by adding and subtracting
the digit obtained from the attention block and write each resulting sum to a distinct spot in the output
vector.
Proposition 6 (Partial-Sum MLPs). Suppose that the embedding dimension d satisfies d ≥ 2 j+1 + dp.
Let zprev contain the 2 j−1 partial sums sk each encoded by a pair (cos(ωsk), sin(ωsk)) of coordinates
such that:

zprev =
[
cos(ωs1) sin(ωs1) . . . cos(ωs2 j−1 ) sin(ωs2 j−1 ) 0 . . . 0

]⊤
∈ Rd,

and let zcurr contain the input digit d j encoded in the first two coordinates:

zcurr =
[
cos(ωd j) sin(ωd j) 0 . . . 0

]⊤
∈ Rd.

Then, for any 1 ≤ j ≤ n, there exist MLP j : Rd × Rd → Rd such that when (zprev, zcurr) is given
as input, it outputs the vector zout ∈ R

d so that its first 2 j coordinate-pairs store the trigonometric
encodings of (sk + d j), and the next 2 j coordinate-pairs store those of (sk − d j). Formally, first 2 j

coordinates are [cos(ω(sk + d j)), sin(ω(sk + d j))] for all partial sums sk, and the next 2 j coordinates
are [cos(ω(sk − d j)), sin(ω(sk − d j))] for all partial sums sk, with any remaining coordinates set to
zero.

Proof. Each expert MLP j (for 1 ≤ j ≤ n) adds j-th integer d j in both its positive and negative form
to all previously computed partial sums. For simplicity, let’s say that j-th integer to add is d j. By
trigonometric identities, we know that

cos(ω(sk + d j)) = cos(ωsk) cos(ωd j) − sin(ωsk) sin(ωd j),
sin(ω(sk + d j)) = sin(ωsk) cos(ωd j) + cos(ωsk) sin(ωd j),
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and similarly,

cos(ω(sk − d j)) = cos(ωsk) cos(ωd j) + sin(ωsk) sin(ωd j),
sin(ω(sk − d j)) = sin(ωsk) cos(ωd j) − cos(ωsk) sin(ωd j).

Using the above identities, we will obtain the sum by introducing matrices that do shift/swap

operations. Concretely, for k = 1, . . . , 2m, the k-th 2 × 2 block acts on
(
cos(ωsk)
sin(ωsk)

)
in zprev. We define:

W+
sin = diag


(
0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)
︸                       ︷︷                       ︸

2 j−1 blocks

, 0, . . . , 0

 ,

W−
sin = diag


(

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)
︸                       ︷︷                       ︸

2 j−1 blocks

, 0, . . . , 0

 .
The above constructions of W+

sin and W−
sin satisfy,

W+
sin zprev =

[
− sin(ωs1) cos(ωs1) · · · − sin(ωs2 j−1 ) cos(ωs2 j−1 ) 0 . . . 0

]⊤
∈ Rd

and

W−
sin zprev =

[
sin(ωs1) − cos(ωs1) . . . sin(ωs2 j−1 ) − cos(ωs2 j−1 ) 0 . . . 0

]⊤
∈ Rd.

Each of these acts blockwise on the first 2 j coordinates of zprev and zeroes out everything else in
dimension d. We also have zcurr ∈ R

d with two designated coordinates zcurr,1 = cos(ωd j), and
zcurr,2 = sin(ωd j), with all other coordinates being zero. We multiply zprev by cos(ωd j) and sin(ωd j)
elementwise. Formally, the sum

zcurr,1 · zprev + zcurr,2 · (M+sin zprev)

gives the 2 j−1 partial sums {sk + d j}
2 j−1

k=1 stored in the coordinates from 1 to 2 j. We define Wshift ∈ R
d×d

in a block form with three row blocks and two column blocks:

Wshift =

 02 j×2 j 02 j×(d−2 j)
I2 j 02 j×(d−2 j)

0 (d−2 j+1)×2 j 0 (d−2 j+1)×(d−2 j)

 .
When applied, the above matrix shifts the first 2 j entries of zprev by 2 j coordinates. Now, also define

zcurr,2 ·
(
WshiftW−

sin zprev

)
+ zcurr,1 ·

(
Wshift zprev

)
.

This way, the above sum gives us the 2 j−1 partial sums {sk − d j}
2 j−1

k=1 stored in the coordinates from
2 j + 1 to 2 j+1 encoded in trigonometric format. Then, we normalize this output of the model by 1/2
and obtain the following output:(

zcurr,1 · zold + zcurr,2 ·
(
M+sin zold

)
+ zcurr,2 ·

(
WshiftW−

sin zprev

)
+ zcurr,1 ·

(
Wshift zprev

))
=

[
cos

(
ω (s1 + d j)

)
, sin

(
ω (s1 + d j)

)
, . . . , cos

(
ω (s2 j−1 + d j)

)
, sin

(
ω (s2 j−1 + d j)

)
,

cos
(
ω (s1 − d j)

)
, sin

(
ω (s1 − d j)

)
, . . . , cos

(
ω (s2 j−1 − d j)

)
, sin

(
ω (s2 j−1 − d j)

)
,

0, . . . , 0]⊤ ∈ Rd.

Thus, this is exactly the representation of 2 j partial sums. This completes the argument. We should
remark that, the above argument utilizes a gated MLP which explicitly multiplies the elements of
the input features, namely, zcurr with the partial sums zprev. On the other hand, we don’t require any
nonlinear activation function, so our MLP constructions have the form MLP(z) =W3(W1 z ⊙W2 z)
for suitable choices of W1,W2,W3 where ⊙ denotes the Hadamard product. The use of gated MLPs
is a standard practice in transformer architectures (Shazeer, 2020). □
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Proposition 7 (Read-OffMLP). Suppose that every partial sum sk is in the range [−S , S ] and let
ω < π/2S . Assume that the vector

z = [cos(ωs1), sin(ωs1), . . . , cos(ωs2n ), sin(ωs2n ), 0, . . . , 0]⊤ ∈ Rd,

contains 2n partial sums {s1, . . . , s2n } encoded in trigonometric form, where d = 2n+1 + n + 2. Then
there exists a single feed-forward network MLPn+1 : Rd → Rd such that, given input z, it selects
the smallest nonnegative sℓ from {s1, . . . , s2n } and outputs the embedding esℓ ∈ R

d, where sℓ is that
minimal nonnegative partial sum.

Remark: Our construction relies on gated MLP, rather than standard MLP, as in Proposition 6.

Proof. We know that the input embedding z represents 2n pairs, each pair (cos(ωsi), sin(ωsi)) stored
consecutively. That is,

z = [cos(ωs1), sin(ωs1), . . . , cos(ωs2n ), sin(ωs2n ), 0, . . . , 0]⊤ ∈ Rd,

We will identify the smallest sℓ ≥ 0 and output an embedding e sℓ denoting that integer. We are given
that ω is small enough such that when sℓ ∈ [0, S ], we ensure Sω < π/2. This guarantees sin(ωsℓ) ≥ 0
if and only if sℓ ≥ 0. First, we wish to collapse z into a single vector of size 2n, keeping cos(ωsℓ)
only when sin(ωsℓ) ≥ 0 and zeroing it out otherwise. We define two matrices Wcos,Wsin ∈ R

d×d by

(Wcos)i, (2i−1) = 1, (Wcos)i, j = 0 for j , 2i − 1,
(Wsin)i, (2i) = 1, (Wsin)i, j = 0 for j , 2i.

for 1 ≤ i ≤ 2n and all other rows/columns of Wsin,Wcos are zero. Hence each matrix picks out
alternate coordinates:

zcos =Wcos z =



cos(ωs1)
cos(ωs2)
...

cos(ωs2n )
0
...
0


∈ Rd, zsin =Wsin z =



sin(ωs1)
sin(ωs2)
...

sin(ωs2n )
0
...
0


∈ Rd.

In order to find the minimum non-negative number, we need to find the number s such that it
maximizes cos(ωs) and satisfies sin(ωs) ≥ 0. For this, we utilize a sigmoid activation function in the
following way:

zfilter = zcos ⊙ σ (c zsin) ,

where σ(x) = 1
1+exp(−x) is element-wise sigmoid function, and c→ ∞ is a large constant. With this

choice of c, the sigmoid output will be 1 when sℓ ≥ 0 and 0 otherwise. Therefore, the resulting vector
zfilter contains cos(ωs) values at indices where sin(ωs) is positive. Now, for 0 ≤ sℓ ≤ S with Sω ≤ π2 ,
the ordering of sℓ from smallest to largest is the same as the ordering of cos(ωsℓ) from largest to
smallest. Thus, to find the minimum nonnegative sum, we find the partial sum ℓ∗ that maximizes
cos(ωsℓ). Utilizing another gating, we calculate

Softmax (c zfilter)⊤ zfilter

as c → ∞. The softmax vector will be one-hot with 1 at index ℓ∗ that has the largest cos(ωsℓ).
A second multiplication with zfilter will return this cos(ωsℓ∗). Therefore, Softmax (c zfilter)⊤ zfilter =
cos(ωsℓ∗). Next, we retrieve the corresponding sine entry of sℓ∗ by applying the same one-hot
selection to zsin. Formally,

Softmax (c zfilter)⊤ zsin = sin (ωsℓ∗ ) ,

as c→ ∞. Hence, from these two selected coordinates, [cos(ωsℓ∗ ), sin(ωsℓ∗ )], we produce the final
embedding in Rd by placing them in the first two coordinates and zeros elsewhere:

esℓ∗ = [cos(ωsℓ∗ ), sin(ωsℓ∗ ), 0, . . . , 0]⊤ ,

where sℓ∗ is the minimal nonnegative sum. This completes the argument. □
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Proposition 1 (Solving MNNS). There exists a 1-layer transformer architecture with embedding
dimension d = de + dp, where de = 2n+1 is the state-encoding dimension and dp = n + 2 is the
positional-encoding dimension that solves the MNNS task using CoT2 by storing (sine, cosine)
embeddings of all 2k states at the k-th iteration in a non-overlapping manner.

Proof. We will argue that by combining Propositions 5 to 7, we obtain a single-layer transformer that
is formed by an attention block followed by an MoE feed-forward block, which solves the Minimum
Non-Negative Sum (MNNS) task.

Suppose that we have n input integers d1, . . . , dn, encoded as z1, . . . , zn, plus an arrow (→) token
zn+1 and a dummy token zn+2 corresponding to the integer 0. In this case, we will output the tokens
representing the ground-truth sums s1, . . . , sn, therefore, the number of output tokens is m = n in the
MNNS setting. We assume that the inputs are encoded according to Assumption 2. By Proposition 6,
there exist MLP1, . . . ,MLPn that perform the following: whenever MLP j is selected with input
(zprev, zcurr) such that zprev stores 2 j−1 partial sums and zcurr stores the digit d j, it adds and subtracts d j

to all previously stored partial sums and stores the resulting 2 j partial sums in zout. The dummy token
zn+2 that corresponds to the integer 0 allows us to initialize the partial sums from zero. If the query
token is zn+2, we produce the first partial sums by combining this dummy 0 with d1, which are (+d1)
and (−d1) encoded in an output token.

We assign positional encodings cyclically to output tokens. That means, the first n + 2 input tokens
have positional encodings from p1 to pn+2, and the output tokens have p1, p2, . . . , as their positional
encodings, in this exact order. This way, by Proposition 4, Attn(z, Z) attends and selects the input
digit tokens z1, z2, . . . , zn and finally arrow zn+1 one by one and feeds to MoEBlock(·).

By Proposition 5, there’s a MoEBlock(z) such that if the input is z j (for j ≤ n), MLP j is selected
with probability 1, and if the input is arrow token zn+1, MLPn+1 is selected with probability 1, which
is the MLP to read-off the final answer. In the input tokens z1, . . . , zn, the first two coordinates store
the trigonometric representation of d1, . . . , dn. To allow outputting the final answer by MLPn+1, the
partial sums obtained in the intermediate steps need to be written to separate coordinates. Therefore,
MLP j takes a vector filled in the first 2 j coordinates, adds d j and writes to the first 2 j coordinates,
subtracts d j and writes to the next 2 j coordinates, and finally divides the entire representation by 2 to
maintain consistent scaling since the number of partial sums is doubled. In other words, the first n
MLPs have some repeated behavior. Finally, by Proposition 7, MLPn+1 receives a vector that encodes
all 2n possible partial sums in cos/sin form in 2n+1 coordinates and extracts the embedding of the
smallest nonnegative number among them.

Altogether, this single-layer transformer with an attention module to pass the tokens to the mixture-
of-experts MLP solves the Minimum Non-Negative Sum task by following CSFT described in
3. □

33


	Introduction
	Related Work

	Problem Setup
	CSFT: A Supervised Training Method for CoT2
	Tasks Requiring Exploration over States
	Minimum Non-Negative Sum Task
	ProntoQA and ProsQA Datasets

	Results and Discussion of CoT2 Supervision

	Theoretical Analysis of CoT2
	Reinforcement Learning Methods for CoT2
	Multi-Token Sampling
	Results and Discussion of Policy Optimization for CoT2

	Conclusion
	LLM Usage
	Further Related Work
	Implementation Details
	Implementation Details of Experiments on MNNS Task
	Implementation Details of Experiments on ProntoQA/ProsQA Datasets
	Implementation Details of Baselines
	Implementation Details of GRPO Training
	Further Details on Multi-Token Sampling
	Dirichlet Sampling


	Experimental Results
	Continuous Supervised Training Results
	GRPO Results

	Theoretical Details
	Construction for Minimum Non-Negative Sum (MNNS) Task 


