

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTINUOUS CHAIN OF THOUGHT: PARALLEL EXPLORATION AND REASONING THROUGH A THEORETICAL LENS

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern language models generate chain-of-thought traces by autoregressively sampling tokens from a finite vocabulary. While this discrete sampling has achieved remarkable success, conducting *chain-of-thought* with *continuously-valued* tokens (CoT2) offers a richer and more expressive alternative. Our work provides new theoretical guarantees and algorithms for CoT2, motivated by logical reasoning tasks that inherently require search capabilities. Theoretically, we establish how CoT2 facilitates the model to track multiple discrete traces in parallel; and quantify the level of achievable parallelism and its benefits for inference efficiency. We also provide a CoT2-based one-layer transformer construction that solves the combinatorial “subset sum problem” given a sufficient embedding dimension. These insights arise from a novel and effective supervision strategy where we match the language model outputs to the empirical token distributions of a set of target traces. Complementing this, we introduce sampling strategies that unlock policy optimization methods for CoT2. Our primary strategy samples and composes K discrete tokens at each decoding step to control the level of parallelism. Experiments confirm that (i) the optimal level of parallelism is governed by the embedding dimension, (ii) our continuous supervision strategy can outperform alternative methods, and (iii) policy optimization with CoT2 indeed improves the performance of the model beyond its initial discrete or continuous supervision.

1 INTRODUCTION

Chain-of-thought (CoT) strategies (Wei et al., 2022), when paired with strong base models, have achieved immense success and facilitated progress in remarkably challenging tasks, such as solving **American Invitational Mathematics Examination (AIME)** or **International Olympiad in Informatics (IOI)** problems (Guo et al., 2025; Jaech et al., 2024). Despite these advances, modern language model architectures may fail to utilize their full potential for a few reasons. First is their discrete sampling of tokens—selecting a single token at each decoding step from a vocabulary of v tokens. This limits the model to emitting at most $\log_2(v)$ bits per sample, or more specifically, the Shannon entropy of the softmax output. This contrasts with the $O(d)$ bits each token embedding can store, where d is the embedding dimension. Secondly, discrete sampling can cause the model to *commit* to certain solutions and avoid exploring alternatives (Yao et al., 2023). A practical method to address this is sampling multiple CoT traces and aggregating them, either through consistency (Wang et al., 2022) or best-of-N decoding (Ouyang et al., 2022) through more test-time computation.

In this work, we propose and investigate *CoT with Continuous Tokens* (CoT2) to address these challenges, building on COCONUT (Hao et al., 2024). The fundamental idea in our CoT2 proposal is that rather than the model sampling a single token from the vocabulary, it samples or deterministically selects a continuous superposition of tokens according to the softmax output. Intuitively, this capability—effectively selecting multiple tokens simultaneously through a continuous superposition—would allow the model to pack more information within each token embedding and also enable it to track multiple reasoning paths in parallel—potentially emulating self-consistency or best-of-N decoding with a single trace. Toward this vision, we make the following technical contributions:

- **Budget-constrained supervision:** We introduce the continuous supervision strategy (CSFT) for CoT2 models to explicitly track multiple teacher traces in parallel, constrained by a budget. This is done by fitting the model to the empirical distribution of the tokens within the expert traces

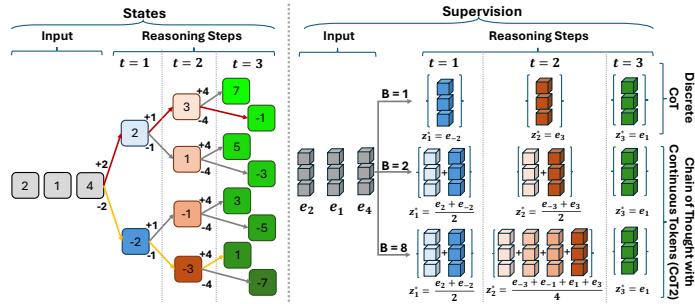


Figure 1: Illustration of CoT2 with varying budgets B for Minimum Non-Negative Sum (MNNS) task with $m = 3$ and input numbers 2, 1, 4. CoT2 supervision with budget B at steps $t \in \{1, \dots, m-1\}$ is the average of embeddings of states visited by B selected trajectories among the 8 possible, and for $t = m$ is the embedding corresponding to the **single correct final answer**, here e_1 for the minimal non-negative sum 1. For $B = 1$ (discrete CoT), the correct trajectory $(-2, -3, 1)$ highlighted with yellow is used; for $B = 2$, the red and yellow trajectories are used; for $B = 8$, all trajectories are included in supervision.

as visualized in Figure 1. Through budget choice, CoT2 can interpolate from discrete CoT to track all reasoning traces. Our method reveals fundamental trade-offs between the budget and embedding dimension in terms of accuracy, validated by an information-packing bound in App. E. Experiments highlight a *sweet spot* for the level of parallelism (see Figure 2) in line with theory.

• **Expressivity and statistical benefits:** We introduce the problem of *Minimum Non-Negative Sum* (MNNS) as a generalization of the classical Subset Sum problem. These problems, as well as related tasks like ProntoQA (Saparov & He, 2022), inherently benefit from parallel search capability. We prove that a single-layer transformer can solve MNNS using CoT2, showcasing the capability of the transformer block to track and expand multiple reasoning traces in latent space.

On the statistical side, we study CoT2 decoding methods: **(i) Base CoT2:** deterministic inference which creates and feeds continuous tokens using raw softmax output at each step (Sec. 2&3); and **CoT2-MTS (multi-token sampling):** budget-constrained method which samples and averages K discrete tokens to form a continuous token (Sec. 5); and standard CoT, which is a special case of MTS with $K = 1$. Under suitable conditions, we first prove that base CoT2 tracks the “*ideal state*” by aggregating all reasoning paths, whereas MTS provides an unbiased but noisy estimate of this “*ideal state*”. Finally, Prop. 3 establishes that the MTS estimate is as powerful as aggregating the outputs of K standard CoT trajectories. In plain language, this formalizes that CoT2 with a budget K can be just as expressive as self-consistency prompting with K traces.

• **Reinforcement learning for CoT2:** We introduce policy optimization methods for CoT2 (Sec. 5). Our primary strategy *MTS* samples and composes K discrete tokens at each forward pass to control the level of parallelism. We also introduce a purely continuous sampling scheme over the probability simplex via Dirichlet sampling. Experiments on the MNNS, ProntoQA, and ProsQA tasks show that GRPO-based RL with CoT2 further improves the accuracy over SFT or CSFT (Sec. 5.2). This demonstrates that the RL phase helps the model better prioritize relevant reasoning traces and offers a promising strategy for training CoT2-based language models.

The paper is organized as follows: Section 2 introduces the technical setup, Section 3 presents our continuous supervision strategy and the MNNS, ProntoQA, and ProsQA tasks. Section 4 provides constructive results and sample-complexity guarantees for CoT2. Section 5 describes our sampling strategies and GRPO-based policy optimization methods, and Section 6 concludes with a discussion.

1.1 RELATED WORK

The efficacy of eliciting reasoning in LLMs through chain-of-thought (CoT) prompting has been well-established (Nye et al., 2021; Wei et al., 2022; Kojima et al., 2022; Suzgun et al., 2023; Guo et al., 2025). CoT prompting conveniently increases inference-time compute and computational depth, both of which are independently useful (Pfau et al., 2024; Goyal et al., 2024; Feng et al., 2023; Merrill & Sabharwal, 2024). However, the discrete nature of CoT tokens forces sequential exploration of reasoning paths, resulting in longer reasoning paths and consequently increased inference-time compute. Furthermore, restricting reasoning to natural language can be inefficient, as groups of tokens can often be more effectively represented by a single continuous token. Thus, CoT2 offers an alternative

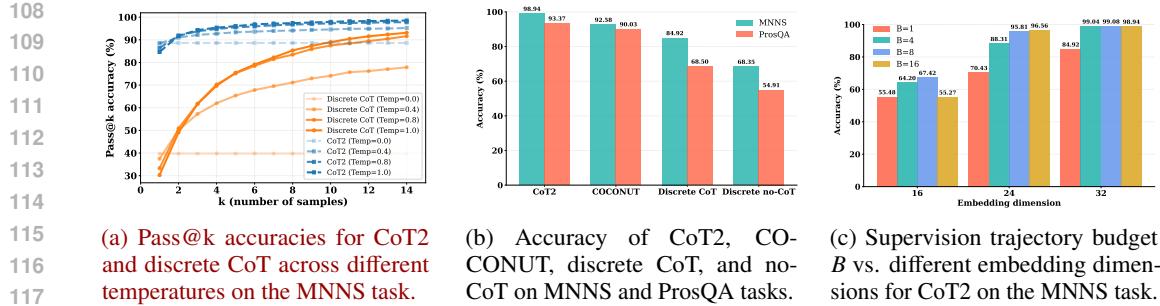


Figure 2: (a): Discrete CoT model requires multiple samplings (Pass@k) to match the single-shot performance of CoT2 model on MNNS (10-run avg). (b): CoT2 model outperforms COCONUT, discrete CoT, and no-CoT in tasks involving search, like MNNS and ProsQA (5-run avg). (c): Tradeoff between the number of trajectories superposed and the embedding dimension (5-run avg). **Setting:** MNNS with 4 input digits in 1–9. In (a-b), B is the full budget for CoT2, and $B = 1$ for discrete CoT. (a): 1-layer, 1-head GPT2 with $d = 24$. (b): MNNS: 2-layer 2-head GPT2, $d = 32$; ProsQA: 4-layer 4-head GPT2, $d = 32$. (c): 2-layer, 2-head GPT2 with $d \in \{16, 24, 32\}$.

strategy for compute-efficient reasoning and complements methods that aim to shorten/control the trace length of CoT (Aggarwal & Welleck, 2025; Zhang et al., 2025a; Sui et al., 2025).

Our work is most related to a recent body of work introducing LLMs capable of reasoning with explicit continuous tokens decoded autoregressively. In particular, recently proposed COCONUT (Hao et al., 2024) autoregressively feeds the last token’s final-layer representation as input to the next step. Given labeled CoT data, COCONUT is trained to progressively replace discrete tokens with continuous tokens (from left to right). While COCONUT and our CoT2 aim to reason in continuous space, we propose distinct algorithmic approaches that also address the exploration challenge. Key differences include: (1) Our continuous tokens are simplex-weighted compositions of vocabulary tokens. (2) Our supervision method is novel and explicitly targets implicit parallelism. (3) CoT2 does not initialize from, nor attempt to mimic, discrete CoT. (4) By introducing sampling strategies and associated GRPO variations, we realize the "Supervised Training → Reinforcement Learning" paradigm in the context of CoT2. A concurrent work Zhu et al. (2025) provides a theoretical construction for a continuous chain of thought on graph reachability problems, which is at a high level similar to our supervision CSFT. We provide further discussion of the literature on multi-token prediction and reinforcement learning in Appendix B.

2 PROBLEM SETUP

Notation. For an integer $n \geq 1$, we use the shorthand $[n] = \{1, \dots, n\}$, and denote vectors by bold lowercase letters (e.g. \mathbf{x}) and matrices by bold uppercase letters (e.g. \mathbf{X}). For a vector $\mathbf{x} \in \mathbb{R}^n$, the component x_i is its i -th entry. The zero vector in \mathbb{R}^n is $\mathbf{0}_n$, and the zero matrix in $\mathbb{R}^{m \times n}$ is $\mathbf{0}_{m \times n}$. Finally, we let Δ^{v-1} denote the standard $v - 1$ simplex in \mathbb{R}^v .

Assume we have an input context $\mathbf{X} \in \mathbb{R}^{n \times d}$, where each row is a d -dimensional embedding vector. Our goal is to output m tokens given the context \mathbf{X} with m th output token being the final answer that is evaluated under a performance metric (e.g. accuracy or reward). For the first $m - 1$ steps, the model outputs *continuous thought tokens* $\{z_t\}_{t \in [m-1]}$ that enable a reasoning process. In the final step $t = m$, the model outputs a *discrete token* z_m from a vocabulary of size v . In the remainder of this paper, we investigate strategies for training this system in a way that improves final performance over standard discrete next-token prediction.

Formally, let $\mathbf{E} = [\mathbf{e}_1, \dots, \mathbf{e}_v]^\top \in \mathbb{R}^{v \times d}$ be the embedding matrix for the vocabulary of v tokens, where $\mathbf{e}_i \in \mathbb{R}^d$ represents the embedding of the i th token. We define the next-token prediction model LM_θ parameterized by θ that assigns, at each step t , a probability distribution over possible next tokens given the prefix $z_{<t}$ and context \mathbf{X} . Concretely, for $1 \leq t \leq m - 1$, the model outputs the following distribution over the v vocabulary entries via a softmax operation:

$$\text{LM}_\theta(\cdot \mid z_{<t}, \mathbf{X}) := \boldsymbol{\alpha}_t \text{ where } \boldsymbol{\alpha}_t = [\alpha_{t,1}, \dots, \alpha_{t,v}] \in \Delta^{v-1},$$

i.e. $\alpha_{t,i} \geq 0$ and $\sum_{i=1}^v \alpha_{t,i} = 1$. We then form the continuous token as a convex combination of all tokens in the vocabulary:

$$\mathbf{z}_t = \mathbf{E}^\top \boldsymbol{\alpha}_t \in \mathbb{R}^d, \quad \forall 1 \leq t \leq m - 1.$$

At the final step $t = m$, the model samples a discrete token $z_m \in \{e_1, \dots, e_v\}$ from policy distribution $\text{LM}_\theta(\cdot | z_{<m}, X) = \alpha_m$. We note that we assume that the answer depends only on the final discrete token z_m merely for simplicity; the same framework naturally extends to decoding multiple final discrete tokens after continuous ones. We refer to this decoding strategy as **base CoT2** and observe that it results in a deterministic reasoning chain because the continuous tokens are precisely determined by the softmax map. In Section 5, we will introduce stochastic alternatives, such as **CoT2-MTS**, to facilitate generative reasoning.

Remark on scalability of base CoT2 decoding. Computing the continuous token $z_t = \mathbf{E}^\top \alpha_t$ adds a single additional $O(vd)$ matrix-vector multiply per step. This matches the $O(vd)$ cost already incurred by the standard output projection that produces the logits $\ell_t = \mathbf{W}_{\text{out}} h_t$ and distribution $\alpha_t = \text{softmax}(\ell_t)$. Moreover, this additional cost is independent of the context length N and is dominated by the transformer stack’s per-token compute, so in practice the overhead is minor even for larger language models.

3 CSFT: A SUPERVISED TRAINING METHOD FOR CoT2

In this section, we present our method of continuous supervised training to learn intermediate thought tokens as “soft” targets rather than “hard” target tokens. Specifically, we provide the model with convex combinations of vocabulary embeddings, which allows the model flexibility in those reasoning steps. Such an approach is particularly suitable when the task accuracy depends only on the final token or token distribution. Formally, at each reasoning step $t = 1, \dots, m-1$, the supervision specifies a target probability distribution

$$\alpha_t^* = [\alpha_{t,1}^*, \dots, \alpha_{t,v}^*] \in \Delta^{v-1},$$

where $\alpha_{t,i}^* \geq 0$ and $\sum_{i=1}^v \alpha_{t,i}^* = 1$. We train the model to align its predicted distribution α_t to the supervision distribution α_t^* rather than one-hot labels by using a divergence-based loss:

$$\mathcal{L}_{\text{cont}}(\theta; X, t) = D(\alpha_t^* \| \alpha_t),$$

where $D(\cdot \| \cdot)$ is the cross-entropy (or equivalently KL divergence) between two distributions. This approach can also be viewed as *token-level knowledge-distillation*, where the teacher distribution α_t^* is obtained through a logic/search algorithm. At the final step $t = m$, we have a discrete target $z_m^* \in \{e_1, \dots, e_v\}$, so that α_m^* is one-hot distribution placing probability 1 on target token and 0 elsewhere. This is equivalent to using a standard cross-entropy loss $-\log \text{LM}_\theta(z_m^* | z_{<m}, X)$ at the final step. Hence, for each training example, the total loss for continuous supervised training is the sum of the continuous-token divergence losses:

$$\mathcal{L}_{\text{CSFT}}(\theta; X) = \sum_{t=1}^m \mathcal{L}_{\text{cont}}(\theta; X, t). \quad (1)$$

By minimizing $\mathcal{L}_{\text{CSFT}}(\theta)$, we teach the model the soft targets α_t^* at each step and to predict the correct final discrete token. Inspired by the discussions in Bachmann & Nagarajan (2024); Bengio et al. (2015), we consider two ways of providing prefixes to the language model:

1. **Teacher forcing:** Each step t is conditioned on the ground-truth prefix $z_{<t}^*$, meaning the model has access to all previous ground-truth tokens during prediction. Formally, for each step $t' < t$, the corresponding input $z_{t'}^* = \mathbf{E}^\top \alpha_{t'}^*$ is a convex combination of all vocabulary tokens.
2. **Self-feeding:** Each step t autoregressively uses the model’s previously generated outputs, $z_{<t}$, during training. In particular the continuous output token $z_t = \mathbf{E}^\top \alpha_t$, is a convex combination of vocabulary embeddings, which is then fed back to the model as part of the prefix.

It is also worth noting that one may apply *temperature scaling* or *thresholding* to α_t before forming z_t in order to filter the model’s predictions. In our experiments, we find that teacher forcing leads to superior performance for CSFT, even though at inference time, the model runs in an autoregressive manner, as discussed below. See Appendix D for further discussion.

Inference. At inference, the model does not rely on the ground-truth distributions α_t^* . Instead, at each continuous step $t < m$, it autoregressively produces the output distribution α_t , converts it to a continuous token $z_t = \mathbf{E}^\top \alpha_t$, and appends z_t to the prefix for the next prediction. In the final step, the model samples a discrete token from $\alpha_m = \text{LM}_\theta(\cdot | z_{<m}, X)$.

216 **Baselines.** Our first baseline is discrete CoT, which uses teacher-forced training where the next token
 217 prediction is performed conditioned on the previous ground-truth tokens with standard cross-entropy
 218 loss. Discrete baseline enforces z_t^* to be a token in vocabulary $\{e_1, \dots, e_v\}$, which means that it is
 219 a special case of CSFT where the α_t^* are one-hot vectors rather than an arbitrary element of Δ^{v-1} .
 220 The model minimizes the following objective, which is obtained by summing over all steps of
 221 teacher-forced next-token prediction:

$$222 \quad \mathcal{L}_{\text{SFT}}(\theta; X) = \sum_{t=1}^m -\log \text{LM}_\theta(z_t^* | z_{<t}^*, X). \quad (2)$$

225 Here, setting $m = 1$ gives the discrete no-CoT baseline, where the model directly predicts the
 226 final answer. Another baseline we compare against is COCONUT, which replaces discrete tokens
 227 sequentially with the last hidden state of the LLM following a left-to-right curriculum learning
 228 strategy. In inference, the COCONUT model directly outputs the answer at the final step ($t = m$),
 229 following $m - 1$ intermediate continuous thought tokens produced by the hidden state output.

230 3.1 TASKS REQUIRING EXPLORATION OVER STATES

232 In this subsection, we illustrate CSFT training described in (1) on tasks that require *exploration* over
 233 multiple states but have a single final correct state. We consider a directed graph exploration problem
 234 where the aim is to follow a m -step trajectory through reachable states starting from g_0 and arriving
 235 at a desired state g_m^* . Suppose that the vocabulary is sufficiently large that each state g of the task
 236 can be assigned a unique embedding. Let Γ_t denote the set of states reachable at step t building upon
 237 step $(t - 1)$ with $\Gamma_0 = \{g_0\}$, and let \mathcal{T} be the set of complete trajectories π of length m , each inducing
 238 a state sequence $(g_1(\pi), \dots, g_m(\pi))$ with $g_t(\pi) \in \Gamma_t$. Next, we describe how to obtain CSFT targets
 239 $\{\alpha_t^*\}_{t=1}^m$ by curating a set of complete trajectories and projecting them back to intermediate steps.

240 **CSFT Targets Through Hindsight Top- B Superposition.** Let $F : \mathcal{T} \rightarrow \mathbb{R}_{\geq 0}$ be a task-specific final
 241 score function with lower is better, and fix a budget $B \geq 1$ for the number of trajectories. We form the
 242 set Π_B by filtering trajectories using F and taking the top B :

$$243 \quad \Pi_B = \arg \min_{\Pi \subseteq \mathcal{T}, |\Pi|=B} \sum_{\pi \in \Pi} F(\pi).$$

246 At step $t < m$, we form the supervision α_t^* by superposing the states visited by Π_B and at step $t = m$,
 247 we select one correct final state from Γ_m , so that α_m^* is a one-hot vector:

$$248 \quad \alpha_{t,g}^* = \frac{1}{B} \sum_{\pi \in \Pi_B} \mathbf{1}\{g_t(\pi) = g\}, \quad g \in \Gamma_t, \quad t < m; \quad \alpha_{m,g}^* = \begin{cases} 1, & \text{if } g \text{ is the correct final state } g_m^*, \\ 0, & \text{otherwise.} \end{cases} \quad (3)$$

251 This rule is retrospective in the sense that it ranks trajectories and then supervises the previous steps
 252 accordingly. If $B = 1$, the supervision reduces to **discrete CoT** using ground-truth trajectory in (2)
 253 by simply choosing F to penalize any trajectory with incorrect final answer. If $B = |\mathcal{T}|$ is the full
 254 trajectory budget, then $\Pi_B = \mathcal{T}$, and the supervision $(\alpha_{t,g}^*)$ becomes the superposition of **all reachable**
 255 **states**. As a result, the described methodology provides flexibility to select the number of superposed
 256 states based on model capacity and the task structure.

257 3.1.1 MINIMUM NON-NEGATIVE SUM TASK

259 We now introduce the *Minimum Non-Negative Sum* (MNNS) task, where the goal is to assign signs
 260 to a list of numbers so that their sum is as small as possible while being nonnegative. The MNNS
 261 task can also be viewed as partitioning a set of numbers into two subsets with a minimal difference,
 262 which makes it closely related to the subset-sum problems explored in Dziri et al. (2023); Thomm
 263 et al. (2024). Formally, given m integers d_1, \dots, d_m , the task is to assign signs $\sigma_i \in \{+1, -1\}$ such
 264 that $s = \sigma_1 d_1 + \dots + \sigma_m d_m \geq 0$ and s is minimized. Let $\sigma^{\text{opt}} = (\sigma_1^{\text{opt}}, \dots, \sigma_m^{\text{opt}})$ denote the optimal
 265 assignment that achieves the minimal nonnegative sum s^{opt} out of 2^m possible sign assignments.
 266 Here, every possible *partial sum* $\sigma_1 d_1 + \dots + \sigma_t d_t \in \Gamma_t$ is treated as a state and assigned a unique
 267 embedding $e_{\phi(\sigma_1 d_1 + \dots + \sigma_t d_t)}$, where $\phi(\cdot)$ maps each sum to a distinct id in $[v]$. At step t , the state
 268 $\sigma_1 d_1 + \dots + \sigma_{t-1} d_{t-1} + \sigma_t d_t$ is reachable from the state $\sigma_1 d_1 + \dots + \sigma_{t-1} d_{t-1}$ at step $t - 1$.

269 We supervise the model with CSFT targets $\alpha_{t,g}^*$ defined in (3) with different budgets B between 1
 270 and $|\mathcal{T}| = 2^m$. For MNNS, we rank trajectories by the absolute value of the final sum for budgets

1 $< B \leq 2^m$, while for $B = 1$ we select the ground-truth trajectory. We split the training and validation datasets by ensuring that any permutation of numbers appears in exactly one split in order to prevent memorization and make a fair evaluation. We encode input and output numbers with separate tokens in our vocabulary. As an example, an input appears as $\langle \text{BOS} \rangle d_1 d_2 \dots \rightarrow$, and the corresponding output as $s_1 s_2 \dots s^{\text{opt}} \langle \text{EOS} \rangle$, where s^{opt} is the minimal nonnegative sum for $\{d_1, \dots, d_m\}$. For the model, we use the GPT2 architecture (Radford et al., 2019) with different head, layer, and embedding dimension configurations, and train it from scratch. During evaluations, we only assess the final answers of both approaches. For more details on the experiments, see Appendix C.

3.1.2 PRONTOQA AND PROSQA DATASETS

Other datasets we explore in our investigation of the CSFT approach are the ProntoQA (Saparov & He, 2022) and ProsQA (Hao et al., 2024), which are logical reasoning tasks that require exploration over multiple paths. Each question in ProntoQA asks whether a certain target word (node) T is reachable from a root word (node) R within a fixed number of hops, while for ProsQA it asks which of the target words T_1 or T_2 is reachable. We use 5-hop questions and present the graph in a structured format by representing nodes and edges using embeddings inside the context for each question, and use these as model input rather than raw text input.

The graph structure of the ProntoQA and ProsQA tasks naturally obeys the supervision in (3). For CoT2 model, we use the full trajectory budget $B = |\mathcal{T}|$, so at step t the target α_t^* is the weighted distribution over all nodes reachable from R in t hops, thus tracking all possible trajectories without filtering. In final step m , the supervision assigns probability 1 to the correct label: yes or no for ProntoQA, and T_1 or T_2 for ProsQA. For discrete CoT model ($B = 1$), we provide the ground-truth path from A to the target node (T_1 or T_2) as the supervision. Please refer to Appendix C.2 for additional details on supervision and data format.

Remark. While we focus on search-based tasks MNNS, ProntoQA, and ProsQA, one can also extend to training with continuous tokens in the language-model context. The distributions $\{\alpha_t^*\}$ at each step can be collected by (1) running a beam or best-first search to generate multiple partial trajectories; (2) scoring these trajectories with a reward function; and (3) curating them into a distribution that assigns higher mass to states that lead to higher rewards.

3.2 RESULTS AND DISCUSSION OF CoT2 SUPERVISION

CoT2 with full trajectory budget $B = |\mathcal{T}|$. As demonstrated in Figure 1, training with full budget $B = |\mathcal{T}|$ corresponds to forming supervision by superposing all reachable states at each step. In experiments on MNNS, ProsQA, and ProntoQA tasks, we observe that the CoT2 model trained with CSFT using full trajectory budget B significantly outperforms other baselines, as shown in Figures 2b and 3. Moreover, this enables faster convergence as illustrated in Figure 3. In particular, when trained with full trajectory budget B , the model does not make intermediate decisions but instead conducts search over states through continuous tokens and defers the decision to the last step. This mitigates error accumulation by avoiding early commitments. Supporting this, Figure 2a applies Pass@k to both methods and shows that CoT2 consistently outperforms discrete CoT at every k ; importantly, the discrete CoT requires multiple attempts to approach the single-attempt ($k = 1$) performance of CoT2 model, aligning with the “snowballing errors” phenomenon observed in discrete autoregressive generation Bachmann & Nagarajan (2024). Our results also indicate that when supervision from a search algorithm is available, leveraging this denser signal via CSFT is preferable to approaches that internalize discrete CoT with continuous tokens, such as COCONUT. Furthermore, once the CoT2 model is given a moderate threshold embedding capacity (i.e., $d = 24$ in Figure 3) to represent all possible states at each step, it solves the search-based tasks with near-perfect accuracy and achieves superior performance with fewer layers/heads compared to the discrete CoT model (Appendix D.1). We also provide additional experiments on ProntoQA and ProsQA in Appendix D.1 that confirm similar findings to the MNNS task in Figures 2a and 3.

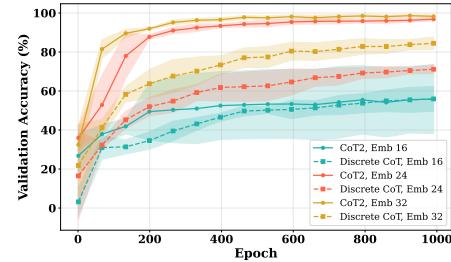


Figure 3: Training performance vs. embedding dimension for CoT2 ($B = 16$) and discrete CoT ($B = 1$) on MNNS with 4 input digits from 1-9 and 2-layer, 2-head GPT2 with $d \in \{16, 24, 32\}$.

Budget-embedding dimension tradeoff. Fig. 2c varies supervision trajectory budget $B \in \{1, 4, 8, 16\}$ (with $|\mathcal{T}| = 16$) across embeddings $d \in \{16, 24, 32\}$. With a small embedding ($d = 16$), the model capacity is not enough to learn large budget $B = 16$ superposing all reachable states, whereas a moderate budget $B = 8$ performs best by reducing representational load relative to $B = 16$ and avoiding the per-step harder commitments of $B = 1, 4$. Note that $B = 16$ imitates search by representing all possible states with decision taken only in the last step, whereas $B = 4, 8$ forces earlier decisions but reduces the representational load. Accordingly, as d grows (e.g., 24 or 32), the performance improves monotonically with budget B and reaches near-ceiling performance when $B = 16$. This indicates a capacity-parallelism tradeoff in which larger B helps only when d is sufficiently large to represent the superposed traces.

Theoretical Perspective on Embedding Capacity. The embedding-capacity threshold behavior in Fig. 2c aligns with the information-packing bound we discuss in Appendix E, showing that robust decoding of a budget- B superposition over v candidate states requires embedding $d = \Omega(B \log(v/B))$ in the worst case. This implies, once $d > \log_2 v$, discrete CoT ($B = 1$) becomes information-inefficient as each discrete token carries at most $\log_2 v$ bits, whereas CoT2 can pack $B \approx \Theta(d/\log(v/B))$ states per step, which is intuitively consistent with the entropy being $\approx \log_2 \binom{v}{B} \approx B \log_2(v/B) \leq d$.

4 THEORETICAL ANALYSIS OF CoT2

In this section, we construct one-layer transformer solving the MNNS task using an attention layer followed by an MLP layer, inspired by the capability of one-layer, one-head transformer under CSFT supervision to solve this task with sufficient embedding dimension. We then provide a theoretical comparison on the sample complexities of base CoT2, CoT2-MTS, and discrete CoT models.

Proposition 1 (Solving MNNS). *There exists a 1-layer transformer architecture with embedding dimension $d = d_e + d_p$, where $d_e = 2^{n+1}$ is the state-encoding dimension and $d_p = n + 2$ is the positional-encoding dimension that solves the MNNS task using CoT2 by storing (sine, cosine) embeddings of all 2^k states at the k -th iteration in a non-overlapping manner.*

The above construction utilizes trigonometric embeddings, inspired by the mechanistic insights given by Nanda et al. (2023). Our approach leverages these trigonometric embeddings to provide a theoretical guarantee that **the transformer can track and add/subtract multiple numbers in parallel** by benefiting from the embedding capacity and reading off the minimum non-negative number at the final step. An important observation regarding our construction is that the trajectories at each intermediate reasoning step are truly decoupled as it stores each state using non-overlapping (sine, cosine) representations. This closely parallels the left side of Figure 1, but we also utilize rotations/shifts to ensure distinct states are orthogonal and are easy to read out.

In the rest of this section, we argue that CoT2 equips the model with the ability to track multiple paths in parallel, which is formalized through Assumption 1 below. To improve expressivity, we allow a step-indexed (t) policy $\text{LM}_\theta^{(t)}$ throughout, while remaining consistent with the problem setup.

Assumption 1. *Recall the model LM_θ in Section 2. For any step t and prefix tokens $\mathbf{z}_{\leq t}$, we assume (i) the next token probabilities depend only on the last token \mathbf{z}_t and the query \mathbf{X} and (ii) if the last token is $\mathbf{z}_t = \sum_{j=1}^v \alpha_{t,j} \mathbf{e}_j$ so that $\sum_{j=1}^v \alpha_{t,j} = 1$, the output distribution α_{t+1} decouples as follows:*

$$\text{LM}_\theta^{(t)}(\cdot | \mathbf{z}_{\leq t}, \mathbf{X}) \stackrel{(i)}{=} \text{LM}_\theta^{(t)}(\cdot | \mathbf{z}_t, \mathbf{X}) \stackrel{(ii)}{=} \sum_{j=1}^v \alpha_{t,j} \text{LM}_\theta^{(t)}(\cdot | \mathbf{e}_j, \mathbf{X}).$$

This assumption holds for inherently serial tasks, such as MNNS construction in Proposition 1, where previous reasoning history is summarized in the final token and different trajectories are decoupled at intermediate reasoning steps. Under Assumption 1, the token distribution $\alpha_{t+1} = \text{LM}_\theta^{(t)}(\cdot | \mathbf{z}_t, \mathbf{X})$ evolves with the equation $\alpha_{t+1} = \alpha_t \mathbf{M}_t(\mathbf{z}_t; \mathbf{X})$, starting from $\alpha_1 = \text{LM}_\theta^{(0)}(\cdot | \mathbf{X})$ until α_m . Here, $\mathbf{M}_t(\mathbf{z}_t; \mathbf{X}) \in \mathbb{R}^{v \times v}$ is a Markov transition matrix that depends on the input \mathbf{X} and the last token \mathbf{z}_t (see (Ildiz et al., 2024) for related discussion). To keep exposition cleaner, we omit \mathbf{z}_t and \mathbf{X} in the notation of $\mathbf{M}_t(\mathbf{z}_t; \mathbf{X})$, and use \mathbf{M}_t instead. We start by defining the three inference strategies.

- **Base CoT2:** At each step $t = 1, \dots, m$, the model outputs the continuous token $\mathbf{z}_t = \mathbf{E}^\top \alpha_t$ and uses it as the query for the next step.

Interpretation: Base CoT2 simultaneously tracks and aggregates all possible v^m traces over m steps; where the trace $(i_t)_{t=1}^m$ has a weight of $\prod_{i=1}^m \alpha_{t,i}$.

- 378 • **Discrete CoT**: At each step $1 \leq t \leq m$, the model samples exactly one token $\mathbf{z}_t = \mathbf{e}_{i_t}$ from α_t , and
 379 uses it as the query for the next step.
 380 **Interpretation**: Discrete CoT samples a single trace out of v^m traces with a likelihood of $\prod_{i=1}^m \alpha_{t,i}$
 381 for trace $(i_t)_{t=1}^m$.
 382 • **CoT2-MTS (multi-token sampling)**: At each step $1 \leq t \leq m$, i.i.d. sample K tokens $\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_K}$
 383 from to α_t , average these tokens to form $\mathbf{z}_t = \frac{1}{K} \sum_{r=1}^K \mathbf{e}_{i_r}$, which it uses as query for the next step.
 384 **Interpretation**: CoT2-MTS tracks K traces in parallel according to their discrete CoT likelihoods.
 385 However, these traces are not statistically independent.

386 With these methods defined, we now present a result on the statistical consistency of their outputs.
 387

388 **Proposition 2** (Consistency of CoT and CoT2 inference). *Under Assumption 1 and given X , the
 389 output of base CoT2 is $\mathbf{z}_m = \sum_{j=1}^v \alpha_{m,j} \mathbf{e}_j$ where $\alpha_m = \alpha_1 \prod_{t=1}^{m-1} \mathbf{M}_t$. Discrete CoT and CoT2-MTS
 390 have the same output once we take the expectation over their stochastic sampling.*

391 **Remark:** The above proposition states that as the number of samples approaches infinity, the
 392 empirical distribution over the vocabulary $\hat{\alpha}_m$ obtained from CoT2-MTS or discrete CoT traces
 393 converges in probability to α_m . Here, α_m is the deterministic output of the base CoT2 model, which
 394 is computed without sampling and is not a random variable.

395 Proposition 2 establishes the statistical consistency of all three methods as they estimate the same
 396 distribution α_m . However, they differ in the samples needed to approximate this distribution. In
 397 particular, the base CoT2 model outputs the entire probability distribution over tokens at every
 398 intermediate step, implicitly tracking all possible trajectories in parallel as continuous embeddings.
 399 Consequently, it computes the exact final token distribution in one forward pass without repeated
 400 sampling. In contrast, due to stochasticity, discrete CoT or CoT2-MTS require multiple i.i.d. samples
 401 to approximate this distribution. This motivates us to study and contrast their sample complexities.
 402 The next proposition provides a distribution approximation guarantee in ℓ^2 distance and shows that
 403 CoT2-MTS reduces the sample complexity of estimation compared to discrete CoT by a factor of K .

404 **Proposition 3.** (i) *Let α_m be the expected output distribution after m steps of CoT according to
 405 Proposition 2. Let $\hat{\alpha}_m^{(\text{MTS})}$ be the distribution resulting from averaging the outputs of N i.i.d. CoT2-
 406 MTS traces with parallelism K . Then, to guarantee $\|\hat{\alpha}_m^{(\text{MTS})} - \alpha_m\|_2 \leq \epsilon$ with high probability, the total
 407 number of samples (traces) required scales as $\Theta(K^{-1} \epsilon^{-2})$. (ii) Defining $\hat{\alpha}_m^{(\text{disc})}$ to be the distribution
 408 obtained by averaging the outputs of NK i.i.d. discrete CoT traces, we have the following upper
 409 bound on the expected error of MTS:*

$$410 \quad \mathbb{E} \left[\|\hat{\alpha}_m^{(\text{MTS})} - \alpha_m\|_2^2 \right] \leq \left(2 - \frac{1}{K} \right) \mathbb{E} \left[\|\hat{\alpha}_m^{(\text{disc})} - \alpha_m\|_2^2 \right].$$

411 The above proposition implies that one MTS rollout tracks K traces in parallel, behaving in terms of
 412 estimation error like K independent discrete CoT traces. Recall that CoT2-MTS generalizes discrete
 413 CoT, which corresponds to $K = 1$. For this case, the proposition reduces to the known $\Theta(\epsilon^{-2})$ sample
 414 complexity of approximating a v -category distribution in ℓ^2 distance (Kamath et al., 2015). Note
 415 that as $K \rightarrow \infty$, CoT2-MTS converges to the base CoT2, and the proposition recovers the one-shot
 416 performance of base CoT2. Thus, although the three models yield the same final distribution, discrete
 417 CoT requires $\Theta(K)$ times more rollouts than CoT2-MTS with parallelism K to achieve a similarly
 418 accurate approximation, due to inherent noise from single-token sampling. In contrast, the base CoT2
 419 model carries the entire mixture of partial expansions at each step and computes the distribution in
 420 one shot. This theoretical intuition aligns with empirical findings in the Pass@k experiments, where
 421 CoT2 achieves comparable performance to discrete CoT with substantially fewer samples.
 422

424 5 REINFORCEMENT LEARNING METHODS FOR CoT2

426 In this section, we present two sampling methods (Multi-token and Dirichlet sampling) to apply
 427 reinforcement learning (RL) with continuous output tokens. Specifically, we explore Group Relative
 428 Policy Optimization (GRPO) training on top of (i) discrete models and (ii) continuous models that
 429 are supervised trained following the previous section for the MNNS, ProntoQA, and ProsQA tasks.
 430 Concretely, we demonstrate that RL (a) adapts discrete SFT models to produce continuous outputs
 431 via MTS/Dirichlet rollouts, and (b) sharpens CoT2 models by prioritizing relevant reasoning traces
 through reducing entropy of continuous token representations rather than weighting them equally. We

note that the existing literature in RL operates in the model’s native discrete action space over a finite vocabulary to maximize a scalar reward on the generated sequence (Ouyang et al., 2022; Shao et al., 2024). In contrast, we perform RL in a continuous action space, which is the linear combination of token embeddings, to maximize the same scalar reward.

In our setup, a language model LM_θ acts as a *policy* over tokens. Let $\{\mathbf{Z}^{(i)}\}_{i=1}^G$ be a group of G trajectories sampled from old policy $\text{LM}_{\theta_{\text{old}}}$ where each trajectory $\mathbf{Z}^{(i)} = (\mathbf{z}_1^{(i)}, \dots, \mathbf{z}_m^{(i)})$ contains m output tokens for a fixed input \mathbf{X} . We assume a sparse reward setting where the reward is 1 for a correct final answer and 0 otherwise. Let $\hat{A}_{i,t}$ denote the advantage estimate at step t in trajectory i and under sparse reward setting, $\hat{A}_{i,t} = \hat{A}_i$ is identical across all steps. To quantify how the new policy LM_θ differs from the old one on token $\mathbf{z}_t^{(i)}$ in i th trajectory, we define the policy ratio $r_t^{(i)}(\theta) = \frac{\text{LM}_\theta(\mathbf{z}_t^{(i)} | \mathbf{z}_{<t}^{(i)}, \mathbf{X})}{\text{LM}_{\theta_{\text{old}}}(\mathbf{z}_t^{(i)} | \mathbf{z}_{<t}^{(i)}, \mathbf{X})}$.

We update the model by minimizing the objective (Shao et al., 2024; Yu et al., 2025):

$$\mathcal{L}_{\text{GRPO}}(\theta) = -\frac{1}{\sum_{i=1}^G |\mathbf{Z}^{(i)}|} \sum_{i=1}^G \sum_{t=1}^{|\mathbf{Z}^{(i)}|} \left[\min \left(r_t^{(i)}(\theta) \hat{A}_{i,t}, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t} \right) - \beta \mathbb{D}_{\text{KL}} [\text{LM}_\theta \parallel \text{LM}_{\theta_{\text{ref}}}] \right].$$

As the output length is fixed in our setting, we have $|\mathbf{Z}^{(i)}| = m$ for each trajectory. Here, ϵ clips the ratio $r_t(\theta)$, and β controls the KL-divergence from a SFT-initialized reference policy $\text{LM}_{\theta_{\text{ref}}}$. We set GRPO iterations $\mu = 1$ and estimate KL divergence with Schulman Approximator (Shao et al., 2024).

5.1 MULTI-TOKEN SAMPLING

We emulate the rollout of a continuous token by sampling a fixed number of K discrete tokens and averaging them at steps $t = 1, \dots, m-1$. We refer to this hybrid method as *CoT2-MTS* (multi-token sampling). For the GRPO objective, we propose calculating the policy ratio for continuous tokens as follows. Assume that at step t , we sample discrete tokens $\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_K}$ with probabilities $\alpha_{t,i_1}, \dots, \alpha_{t,i_K}$ under the current policy and $\alpha_{t,i_1}^{\text{old}}, \dots, \alpha_{t,i_K}^{\text{old}}$ under the old policy. We define the policy ratio for continuous steps by dividing geometric means:

$$r_t(\theta) = \frac{\text{LM}_\theta(\mathbf{z}_t | \mathbf{z}_{<t}, \mathbf{X})}{\text{LM}_{\theta_{\text{old}}}(\mathbf{z}_t | \mathbf{z}_{<t}, \mathbf{X})} = \left(\frac{\alpha_{t,i_1} \cdots \alpha_{t,i_K}}{\alpha_{t,i_1}^{\text{old}} \cdots \alpha_{t,i_K}^{\text{old}}} \right)^{1/K}, \quad (4)$$

for $t = 1, \dots, m-1$. The geometric mean ensures the ratio for each continuous step remains on the same scale as the final discrete token’s ratio and, thus, helps avoid overly large or small updates and stabilizes GRPO training compared to the direct multiplication of probabilities. Once this ratio is computed, we average the K sampled tokens to form \mathbf{z}_t , which is fed to the model as the query for the next prediction step. At the final step $t = m$, where the token $\mathbf{z}_m = \mathbf{e}_j$ is discrete with $j \in [v]$ denoting its index, the policy ratio is simply the probability ratio of selecting that token:

$$r_m(\theta) = \frac{\text{LM}_\theta(\mathbf{z}_m | \mathbf{z}_{<m}, \mathbf{X})}{\text{LM}_{\theta_{\text{old}}}(\mathbf{z}_m | \mathbf{z}_{<m}, \mathbf{X})} = \frac{\alpha_{m,j}}{\alpha_{m,j}^{\text{old}}}. \quad (5)$$

Inference. After GRPO training, we apply the multi-token sampling procedure at each of the first $m-1$ steps to form the continuous token via the average of K sampled embeddings.

MNNS evaluation: Table 2 demonstrates that, for each $K \in \{1, 3, 6\}$, CoT2-MTS significantly improves validation accuracy relative to the discrete SFT baseline (39.76%), with moderate K yielding the best performance. We also observe that smaller K -values correspond to larger reductions in token-level entropies, suggesting that the model becomes more confident in each intermediate step by learning to commit to fewer tokens. Interestingly, the third token’s entropy remains relatively high, which might indicate that the model hedges among partial expansions at this step that preserves useful diversity. Therefore, CoT2-MTS enables a discrete CoT model to produce continuous outputs and improves its final performance. In Appendices C.4 and D.2, we illustrate GRPO with Dirichlet sampling and how it further improves the performance of CoT2 model trained with CSFT.

5.2 RESULTS AND DISCUSSION OF POLICY OPTIMIZATION FOR CoT2

	ProsQA		ProntoQA		
	SFT	SFT+GRPO	SFT	SFT+GRPO	
$K=6$	CoT2	93.37	93.83	75.36	76.15
$K=6$	Discrete CoT	68.50	68.24	59.58	62.28
$K=8$	CoT2	93.37	94.09	75.36	76.66
$K=8$	Discrete CoT	68.50	71.58	59.58	71.53
$K=12$	CoT2	93.37	94.21	75.36	77.64
$K=12$	Discrete CoT	68.50	72.76	59.58	74.03

Table 1: Validation accuracies on ProsQA and ProntoQA for CoT2 and Discrete CoT, evaluated at $K = 6, 8, 12$ with CoT2-MTS sampling GRPO. All models use a 4-layer, 4-head GPT2 with embedding dimension 32. Remarkably, GRPO with MTS sampling scheme results in consistent improvements.

ProsQA and ProntoQA evaluation: Table 1 shows the benefits of GRPO with CoT2-MTS on models trained with discrete or continuous SFT. Remarkably, both CoT2 and discrete CoT models consistently improve across all rollout sizes ($K = 6, 8, 12$), with larger K values yielding better final accuracies by promoting more exploration. Notably, the discrete CoT benefits more from RL training compared to CoT2, likely because the CoT2 already internalizes exploration through CSFT training. Aligning with this, for ProntoQA task, the final performance of discrete CoT approaches that of the CoT2 model. Finally, gains on MNNS are smaller than on ProsQA/ProntoQA, likely because MNNS is highly structured and closely aligned with the CSFT targets, leaving limited headroom for RL.

6 CONCLUSION

In this paper, we provided a thorough theoretical characterization of CoT2 spanning the achievable level of parallelism and dimension-budget tradeoffs, CoT2-specific capabilities of transformer, and the statistical benefits of CoT2. Our theory is developed in tandem with novel continuous supervision (CSFT) and reinforcement learning strategies. As future work, applying CSFT selectively on segments of the LLM trajectories represents a promising direction for equipping LLMs with CoT2 capabilities.

REFERENCES

- Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.
- Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=76zq8Wk16Z>.
- Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks, 2015. URL <https://arxiv.org/abs/1506.03099>.
- David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. *J. Mach. Learn. Res.*, 3(null):993–1022, March 2003. ISSN 1532-4435.
- Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through dense representations. *arXiv preprint arXiv:2412.13171*, 2024.
- Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart Shieber. Implicit chain of thought reasoning via knowledge distillation. *arXiv preprint arXiv:2311.01460*, 2023.
- Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize cot step by step. *arXiv preprint arXiv:2405.14838*, 2024.
- Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on compositionality, 2023. URL <https://arxiv.org/abs/2305.18654>.
- Guobao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing the mystery behind chain of thought: A theoretical perspective. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=qHrADgAdYu>.
- Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.

K	Val. Acc. (%)		Val. Entropy (SFT \rightarrow SFT+GRPO)			
	SFT	SFT+GRPO	token ₁	token ₂	token ₃	token ₄
1	49.01	0.32 \rightarrow 0.03	0.59 \rightarrow 0.07	0.55 \rightarrow 0.16	0.48 \rightarrow 0.17	
3	39.76	52.60	0.37 \rightarrow 0.06	0.75 \rightarrow 0.21	0.80 \rightarrow 0.33	0.53 \rightarrow 0.15
6	49.69	50.38	0.45 \rightarrow 0.12	0.77 \rightarrow 0.34	0.84 \rightarrow 0.66	0.51 \rightarrow 0.22
1	51.61	0.36 \rightarrow 0.01	0.63 \rightarrow 0.04	0.35 \rightarrow 0.26	0.20 \rightarrow 0.12	
3	43.50	55.66	0.39 \rightarrow 0.04	0.71 \rightarrow 0.09	0.54 \rightarrow 0.58	0.29 \rightarrow 0.17
6	50.38	50.38	0.42 \rightarrow 0.06	0.79 \rightarrow 0.22	0.61 \rightarrow 0.85	0.28 \rightarrow 0.15

Table 2: Validation accuracy and token-level entropy of CoT2-MTS GRPO on a discrete CoT model across rollout sizes K for MNNS. We use 4 input digits in 1–9; 1-layer, 1-head GPT2 with embedding 24 and 32; SFT accuracies are 39.76% and 43.50%, respectively.

- 540 Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dim-
 541 itris Papailiopoulos. Looped transformers as programmable computers. In Andreas Krause,
 542 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
 543 (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of
 544 *Proceedings of Machine Learning Research*, pp. 11398–11442. PMLR, 23–29 Jul 2023. URL
 545 <https://proceedings.mlr.press/v202/giannou23a.html>.
- 546 Fabian Gloclekle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
 547 Better & faster large language models via multi-token prediction. In *Proceedings of the 41st*
 548 *International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.
- 549
- 550 Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
 551 Nagarajan. Think before you speak: Training language models with pause tokens. In *The Twelfth*
 552 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=ph04CRkPdC>.
- 553
- 554 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 555 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 556 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 557
- 558 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 559 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint*
 560 *arXiv:2412.06769*, 2024.
- 561
- 562 M Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, and Samet Oymak. From
 563 self-attention to markov models: Unveiling the dynamics of generative transformers. *International*
 564 *Conference on Machine Learning*, 2024.
- 565
- 566 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 567 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 568 *arXiv:2412.16720*, 2024.
- 569
- 570 Sudeep Kamath, Alon Orlitsky, Dheeraj Pichapati, and Ananda Theertha Suresh. On learning
 571 distributions from their samples. In Peter Grünwald, Elad Hazan, and Satyen Kale (eds.),
 572 *Proceedings of The 28th Conference on Learning Theory*, volume 40 of *Proceedings of Ma-*
 573 *chine Learning Research*, pp. 1066–1100, Paris, France, 03–06 Jul 2015. PMLR. URL
 574 <https://proceedings.mlr.press/v40/Kamath15.html>.
- 575
- 576 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 577 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 578 22199–22213, 2022.
- 579
- 580 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 581 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 582 *arXiv:2412.19437*, 2024.
- 583
- 584 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
 585 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=NjNG1Ph8Wh>.
- 586
- 587 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
 588 grokking via mechanistic interpretability, 2023. URL <https://arxiv.org/abs/2301.05217>.
- 589
- 590 Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
 591 Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
 592 Scratchpads for intermediate computation with language models. *arXiv:2112.00114*, 2021.
- 593
- 594 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 595 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 596 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 597 27744, 2022.

- 594 Jacob Pfau, William Merrill, and Samuel R. Bowman. Let's think dot by dot: Hidden computation in
 595 transformer language models. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=NikbrdtYvG>.
- 597
- 598 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 599 Language models are unsupervised multitask learners. *OpenAI Technical Report*,
 600 2019. URL https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf.
- 601
- 602 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 603 of chain-of-thought. *arXiv preprint arXiv:2210.01240*, 2022.
- 604
- 605 Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J. Reddi. Reasoning with
 606 latent thoughts: On the power of looped transformers. In *The Thirteenth International Conference*
 607 *on Learning Representations*, 2025. URL <https://openreview.net/forum?id=din01GfZFd>.
- 608
- 609 Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel reasoning
 610 processes in multi-hop reasoning. *arXiv preprint arXiv:2406.13858*, 2024.
- 611
- 612 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Huawei Zhang,
 613 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical
 614 reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.
- 615
- 616 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.
- 617
- 618 Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
 619 chain-of-thought into continuous space via self-distillation. *arXiv preprint arXiv:2502.21074*,
 2025.
- 620
- 621 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 622 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, and et al. Mastering the game of go
 623 without human knowledge. *Nature*, 550(7676):354–359, Oct 2017. doi: 10.1038/nature24270.
- 624
- 625 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 626 Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022. URL
 627 <https://arxiv.org/abs/2009.01325>.
- 628
- 629 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 630 Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
 631 reasoning for large language models. *arXiv preprint arXiv:2503.16419*, 2025.
- 632
- 633 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 634 Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
 635 tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber, and
 636 Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*,
 637 pp. 13003–13051, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
 10.18653/v1/2023.findings-acl.824. URL <https://aclanthology.org/2023.findings-acl.824/>.
- 638
- 639 Jonathan Thomm, Giacomo Camposampiero, Aleksandar Terzic, Michael Hersche, Bernhard
 640 Schölkopf, and Abbas Rahimi. Limits of transformer language models on learning to compose
 641 algorithms, 2024. URL <https://arxiv.org/abs/2402.05785>.
- 642
- 643 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 644 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 645 *arXiv preprint arXiv:2203.11171*, 2022.
- 646
- 647 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 648 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 649 *neural information processing systems*, 35:24824–24837, 2022.

- 648 Zheyang Xiong, Ziyang Cai, John Cooper, Albert Ge, Vasilis Papageorgiou, Zack Sifakis, Angeliki
 649 Giannou, Ziqian Lin, Liu Yang, Saurabh Agarwal, et al. Everything everywhere all at once:
 650 Llms can in-context learn multiple tasks in superposition. *International Conference on Machine
 651 Learning*, 2025.
- 652 Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
 653 models latently perform multi-hop reasoning? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 654 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
 655 (Volume 1: Long Papers)*, pp. 10210–10229, Bangkok, Thailand, August 2024. Association for
 656 Computational Linguistics. doi: 10.18653/v1/2024.acl-long.550. URL <https://aclanthology.org/2024.acl-long.550/>.
- 657 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 658 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural
 659 information processing systems*, 36:11809–11822, 2023.
- 660 Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. *arXiv preprint
 661 arXiv:2407.06023*, 2024.
- 662 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 663 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 664 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 665 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 666 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
 667 llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.
- 668 Zhenrui Yue, Bowen Jin, Huimin Zeng, Honglei Zhuang, Zhen Qin, Jinsung Yoon, Lanyu Shang,
 669 Jiawei Han, and Dong Wang. Hybrid latent reasoning via reinforcement learning, 2025. URL
 670 <https://arxiv.org/abs/2505.18454>.
- 671 Xuechen Zhang, Zijian Huang, Chenchun Ni, Ziyang Xiong, Jiasi Chen, and Samet Oymak. Making
 672 small language models efficient reasoners: Intervention, supervision, reinforcement. *arXiv preprint
 673 arXiv:2505.07961*, 2025a.
- 674 Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
 675 and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous concept
 676 space, 2025b. URL <https://arxiv.org/abs/2505.15778>.
- 677 Hanlin Zhu, Shibo Hao, Zhitong Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning
 678 by superposition: A theoretical perspective on chain of continuous thought, 2025. URL <https://arxiv.org/abs/2505.12514>.
- 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702

703

704

APPENDIX

705

706

707

708

709

710

711

712

713

We discuss additional related work in Appendix B. We provide further implementation details in Appendix C, including those for the MNNS task (Appendix C.1), the ProntoQA/ProsQA datasets (Appendix C.2), and GRPO training (Appendix C.4). We present additional experimental results in Appendix D, and we offer details on continuous supervised training and GRPO in Appendix D.1 and Appendix D.2, respectively. Finally, we include the proofs of Propositions 1, 2, and 3 in Appendix E.

714

715

716

717

718

719

720

721

A LLM USAGE

We used large language models solely as assistive tools. They provided support for text clarity/grammar, coding utilities, \LaTeX edits, and literature search. The LLM did not design algorithms, implement core methods, choose hyperparameters, or run experiments. All scientific claims, figures, math, and code were authored and verified by the authors.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

B FURTHER RELATED WORK

One way to address the limitation of discrete tokens is by leveraging the implicit reasoning capabilities of transformers (Yang et al., 2024; Shalev et al., 2024). Works such as (Deng et al., 2023; 2024; Yu et al., 2024) use various techniques to obtain models that can perform reasoning internally without emitting CoT tokens. Another line of work has found looped transformers to be effective on reasoning problems (Giannou et al., 2023; Geiping et al., 2025), notably being able to mimic CoT (Saunshi et al., 2025) with a sufficient number of iterations. Another way to address these challenges is to incorporate explicit continuous tokens similar to COCONUT Hao et al. (2024). Specifically, Shen et al. (2025) proposes CODI, where an LLM with continuous CoT is supervised to produce the correct answer, while also aligning its hidden representation on the last reasoning token to that of a discrete CoT model that shares the same backbone. Cheng & Van Durme (2024) propose CCOT, where an auxiliary module is first trained to decode autoregressively a compressed representation of a discrete CoT trace, and later the main LLM is fine-tuned to produce correct answers by additionally conditioning on the generated continuous tokens. Our work is similar to this line of work in that continuous representations are used to perform reasoning. In parallel with our work, Zhang et al. (2025b) propose Soft Thinking which is a training-free inference scheme that replaces intermediate discrete tokens with softmax-weighted concept tokens and uses an entropy-based early stop; unlike CoT2, we introduce explicit continuous supervision (CSFT) and RL with multi-token sampling (MTS/GRPO) to track multiple trajectories with controllable parallelism.

The proposed CoT2 approach simultaneously tracks all possible trajectories and superposes them within continuous tokens. This approach is similar to that of Xiong et al. (2025), who superpose multiple candidate outputs into a single final token. Our approach also shares similarities with decoding algorithms like self-consistency (Wang et al., 2022) and Best-of-N-Sampling (Stiennon et al., 2022), which generate multiple trajectories by running inference multiple times and then select a final answer based on the aggregate statistics. In contrast, our algorithm performs a single inference, superposing different trajectories all at once and determining the final answer in one pass. A concurrent work by Yue et al. (2025) explores hybrid latent RL using a learnable gating mechanism, where continuous tokens are directly linked to model parameters and thus each trajectory can only be used for a single gradient update due to on-policy constraints. Whereas, our MTS strategy integrates stochasticity within continuous tokens and makes exploration possible through continuous tokens. Furthermore, our Dirichlet sampling approach for generating multiple rollouts in GRPO training draws connections to previous works such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003), which introduces Dirichlet priors within a hierarchical Bayesian framework, and AlphaGo (Silver et al., 2017), which injects Dirichlet noise to encourage exploration.

Our work also tangentially relates to research on multi-token prediction (Bachmann & Nagarajan, 2024; Liu et al., 2024; Gloeckle et al., 2024), which aims to improve the efficiency and quality of generation by predicting multiple tokens at once. It is hypothesized that effective future prediction necessitates the exploration of many possible continuations, which is similar to our CoT2 approach.

756 **C IMPLEMENTATION DETAILS**
 757

758 **Computational Resources:** All experiments were run on a Slurm-managed cluster using L40S
 759 GPUs with 48GB of memory. Each experiment fits on a single GPU. In the case of 4 input digits, the
 760 SFT or CSFT training takes approximately 3 hours on a single GPU. For 5-digit inputs, the dataset
 761 size increases by roughly a factor of 10, and the training time increases proportionally. The entire
 762 codebase was implemented in PyTorch.

763 **C.1 IMPLEMENTATION DETAILS OF EXPERIMENTS ON MNNS TASK**
 764

765 **Dataset Details:** For the MNNS task, the vocabulary consists of a range of numbers from $[-S, S]$
 766 for some positive integer S , together with $\langle BOS \rangle$, $\langle EOS \rangle$, and \rightarrow special tokens. The integer S is
 767 chosen so that all possible partial sums of the selected input digits lie within $[-S, S]$. For example,
 768 when the input digits lie in the range 1–10, we set $S = 36$, whereas for digits in 5–14, we set $S = 40$.
 769 We performed our experiments on the 4 and 5 input digit scenarios. A sample input line with m
 770 numbers is:

$$\langle BOS \rangle D_1 D_2 \dots D_m \rightarrow$$

771 Accordingly, the output will be m sum tokens, where the final token corresponds to the answer,
 772 followed by $\langle EOS \rangle$ token:

$$S_1 S_2 \dots S_m \langle EOS \rangle$$

773 As a concrete example, consider the input 2, 1, 4 ($m = 3$), following Figure 1. In this case,
 774 the solution for the MNNS task is $-2 - 1 + 4 = 1$. Therefore, for the discrete model, the
 775 input is $\langle BOS \rangle D_2 D_1 D_4 \rightarrow$ and we supervise it along the trajectory of correct output tokens
 776 $S_{-2} S_{-3}, S_1 \langle EOS \rangle$, as illustrated in Figure 1. On the other hand, the continuous supervision at the
 777 first step holds S_2 and S_{-2} as possibilities. Then, for the next step, we add 1 or -1 to these numbers,
 778 and the resulting possibilities are S_3, S_1, S_{-1}, S_{-3} . Finally, at the last step, the model is supervised to
 779 pick the correct answer S_1 as the token.

780 We split the datasets by ensuring that each permutation of a set of numbers is exactly in one of the
 781 train and validation datasets, as the answer to the question is permutation-invariant. This way, we
 782 prevent the models from memorizing the answer and make a fair comparison. We also use 0.8–0.2
 783 split for train-val datasets.

784 **Model and Hyperparameters:** We use the GPT2 model, with 1 layer 1 head, 2 layer 2 head, and 4
 785 layer 4 head as the configurations. For each configuration, we experiment with embedding dimensions
 786 of 16, 24, or 32. We train with a learning rate of $1r = 10^{-4}$ and use AdamW (no weight decay). The
 787 batch size is 16 for 4-digit inputs and 64 for 5-digit inputs.

788 **Evaluation of the models:** To make a proper comparison, we only check the final answer of the
 789 models, as checking the correctness of the full path of the discrete model would be unfair.

790 **Pass@k Experiment:** We perform our experiments for temperatures 0, 0.4, 0.8, and 1 by repeating
 791 the evaluation 10 times for each k value where k changes from 1 to 14.

792 **C.2 IMPLEMENTATION DETAILS OF EXPERIMENTS ON PRONTOQA/PROSQA DATASETS**
 793

794 **Dataset Details:** Different from the original ProntoQA/ProsQA datasets which described the struc-
 795 tured ontology in natural language as a set of known conditions, we use a more structured format
 796 through a token-level representation. An example prompt is shown below.

797 **Description of the structured ontology:** Each component of the ontology and associated questions
 798 is represented through discrete tokens with their own learned embeddings, rather than as raw textual
 799 input. Specifically, we use the GPT-2 architecture and encode the ontology’s structural components.
 800 Below are two examples demonstrating how natural-language assertions are mapped to our tokenized
 801 format:

802 **Brimpuses are not luminous** \rightarrow 'A' 'not in' 'B' '..'.

803 **Shumpuses are amenable; Each yumpus is a lorpus; Every lorpus is floral** \rightarrow
 804 'C' 'in' 'D' '..'.

805 Below, we have the ProntoQA and ProsQA datasets’ input-output format.

810 **The structure of ProntoQA:**811
812 **Input:** 'Description' '{' 'A' 'not in' 'B' '...' ... 'C' 'in' 'D' '...' '}'
813 'Question' '{' 'C' 'not in' 'F' '...' '}'814 **Output:** 'Steps' { 'C' 'in' 'D' '...' ... 'D' 'in' 'E' '...' '}' 'Answer' '{'
815 'False' '}'816 **The structure of ProsQA:**817
818 **Input:** 'Description' '{' 'A' 'in' 'B' '...' ... 'C' 'in' 'D' '...' '}'
819 'Question' '{' 'C' 'in' 'F' 'or' 'E' '}'820 **Output:** 'Steps' { 'C' 'in' 'D' '...' ... 'D' 'in' 'E' '...' '}' 'Answer' '{' 'F'
821 '}'822 Each distinct component or relation (e.g., 'A', 'in', 'not in') is treated as a unique token, and
823 singular/plural variants (such as '1tempus' and 'Lempuses') are collapsed into a single token to
824 simplify the vocabulary. Alongside these concept tokens, special structural tokens ('Description',
825 ' ', ' ', ' ', 'or', etc.) are also included, which results in a vocabulary size of 31 tokens. To avoid
826 biases, we balance the dataset. In ProntoQA, "yes" and "no" each appear with 50% probability, and
827 in ProsQA, the correct answer is randomly permuted at the first or second position. For all the other
828 experimental and training settings, we follow Hao et al. (2024).829 **Model and Hyperparameters:** We use the GPT2 model, with 2 layer 2 head, and 4 layer 4 head as
830 the configurations. We tested embedding dimensions 24, 32, 40 with these configurations. We set
831 batch size 64. We train with a learning rate of 10^{-4} and use AdamW (no weight decay).832 **Maj@k Experiment:** We use majority voting for evaluation instead of Pass@k, because both
833 ProntoQA and ProsQA are binary questions. We perform our experiments for temperatures 0, 0.4,
834 0.8, and 1 by repeating the evaluation 10 times for each k value where k changes from 1 to 21. If two
835 or more answers end up with the same top vote, we pick one randomly.837
838 **C.3 IMPLEMENTATION DETAILS OF BASELINES**

840 In Figure 2, we evaluate the following baselines under matched total number of epochs:

841 **Discrete no-CoT.** The model is trained to predict the final answer directly, without intermediate
842 thought tokens.843 **Discrete CoT.** The model is supervised on the full, correct path during SFT training.844 **COCONUT.** Using a left-to-right curriculum training, the thought token at step t is replaced by the
845 model's last hidden state sequentially. During inference, the model outputs the answer at the final
846 step ($t = m$) after $m - 1$ continuous thought tokens. To keep the evaluation fair, we use the same total
847 number of epochs across all baselines. For COCONUT's m curriculum stages, we divide the total
848 epochs evenly across curriculum stages; e.g., with 1000 epochs and $m = 5$ output tokens, we train
849 200 epochs for each stage.852
853 **C.4 IMPLEMENTATION DETAILS OF GRPO TRAINING**854 In Hao et al. (2024), the reference model is updated by $LM_{\theta_{ref}} \leftarrow LM_{\theta}$ in each iteration (epoch). This
855 approach is reasonable for their setting with a large dataset and a small number of epochs over it.
856 For our setting, however, we set the reference model to the initial model and never update it through
857 iterations as we have a smaller dataset. Meanwhile, we update the old model before every batch
858 $LM_{\theta_{old}} \leftarrow LM_{\theta}$.859 In our experiments, we use $G = 8$ trajectories per input data point, use clipping parameter $\epsilon = 0.1$, and
860 set the KL-divergence coefficient $\beta = 0$ in most cases (with $\beta = 0.1$ in a few). For the CoT2 model
861 with MTS sampling, we change the number of tokens to sample K from 1 to 12. In the MNNS task,
862 the 5-digit case has about ten times more data than the 4-digit case, so we typically focus on 4-digit
863 MNNS because of computational considerations and use a batch size of 16 in those experiments.

864 **Algorithm 1** Multi-Token Sampling GRPO for Continuous Token Generation

865 **Input:** Initial policy $\text{LM}_{\theta_{\text{init}}}$; hyperparameters K, G, m, ϵ, β .

866 1: $\text{LM}_{\theta}, \text{LM}_{\theta_{\text{ref}}} \leftarrow \text{LM}_{\theta_{\text{init}}}$

867 2: **for** iteration = 1, 2, ..., I and **for** step = 1, 2, ..., S **do**

868 3: Sample a batch of inputs $\{\mathbf{X}^{(b)}\}_{b=1}^B$

869 4: Update $\text{LM}_{\theta_{\text{old}}} \leftarrow \text{LM}_{\theta}$

870 5: **for** each input X in the batch and **for** each trajectory $i = 1, \dots, G$ from that X **do**

871 6: **for** each token step $t = 1, \dots, m$ **do**

872 7: **if** $t < m$ **then** ▷ Continuous token

873 8: Sample K tokens $\{\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_K}\}$ from $\alpha_t^{(i), \text{old}}$ to create continuous token $\mathbf{z}_t \leftarrow \frac{1}{K} \sum_{r=1}^K \mathbf{e}_{i_r}$.

874 9: Policy ratio for continuous token $r_t(\theta) \leftarrow \left(\prod_{r=1}^K \alpha_{t,i_r}^{(i)} / \prod_{r=1}^K \alpha_{t,i_r}^{(i), \text{old}} \right)^{\frac{1}{K}}$.

875 10: **else** ▷ Final discrete token

876 11: Sample $\mathbf{z}_m = \mathbf{e}_j$ from $\alpha_m^{(i), \text{old}}$.

877 12: Policy ratio for discrete token $r_m(\theta) \leftarrow \alpha_{m,j}^{(i)} / \alpha_{m,j}^{(i), \text{old}}$.

878 13: Obtain advantage estimates $\hat{A}_{i,t}$ for each token t in each trajectory $\mathbf{Z}^{(i)}$ and calculate objective.

879 14: Update θ to minimize $\mathcal{L}_{\text{GRPO}}(\theta)$.

880 **Output** LM_{θ}

881 Learning rates differ by model and setting. We use $1\text{r} = 5 \times 10^{-5}$ for CoT2-MTS sampling (figures in
882 the main text), $1\text{r} = 1 \times 10^{-5}$ for discrete CoT with Dirichlet sampling, and $1\text{r} = 1 \times 10^{-6}$ for CoT2
883 with Dirichlet sampling. For ProntoQA and ProsQA experiments, we perform a grid search over
884 learning rates ranging from 1×10^{-4} to 1×10^{-8} and select and report results using the best-performing
885 configuration. For most settings, we find $1\text{r} = 1 \times 10^{-5}$ optimal; however, for CoT2 and discrete CoT
886 models with $K = 6$, we set $1\text{r} = 1 \times 10^{-6}$. We also use AdamW with a weight-decay of 0.01. For
887 Dirichlet experiments on the MNNS task, we try various scale parameters γ , but we find $\gamma = 20$ to
888 work best in most settings. Unless stated otherwise, we report the best validation accuracy found
889 during training for each setting.

892 C.4.1 FURTHER DETAILS ON MULTI-TOKEN SAMPLING

893 The full algorithm describing MTS sampling is provided in Algorithm 1.

894 **Remark.** An alternative to the normalization in (4) is scaling the logits by $1/K$ before applying
895 softmax. However, this leads to a distribution shift from the SFT-trained model at inference, and
896 ultimately degrades performance.

900 C.4.2 DIRICHLET SAMPLING

901 In this section, we present another method for generating continuous tokens at each step by interpreting
902 the model’s output distribution $\alpha_t \in \Delta^{v-1}$ as concentration parameters of a Dirichlet distribution.
903 We introduce a scaling hyperparameter $\gamma > 0$ and define the Dirichlet distribution with parameters
904 $\gamma \alpha_t = (\gamma \alpha_{t,1}, \dots, \gamma \alpha_{t,v})$. Without this scaling, directly using α_t as parameters often causes training
905 instability, particularly when many $\alpha_{t,i}$ values are small. We then sample a point $\hat{\alpha}_t \in \Delta^{v-1}$ from
906 the resulting distribution $\text{Dir}(\alpha_t)$. After sampling, we form the continuous token by mapping
907 $\mathbf{z}_t = \mathbf{E}^\top \hat{\alpha}_t \in \mathbb{R}^d$, which becomes the query for the next step. We denote the Dirichlet densities
908 induced by current and old policies as $f_\theta(\alpha_t; \gamma)$ and $f_{\theta_{\text{old}}}(\alpha_t; \gamma)$, respectively. Accordingly, we define
909 the policy ratio at a continuous step $t < m$ as:

$$911 \quad r_t(\theta) = \frac{\text{LM}_{\theta}(\mathbf{z}_t \mid \mathbf{z}_{<t}, \mathbf{X})}{\text{LM}_{\theta_{\text{old}}}(\mathbf{z}_t \mid \mathbf{z}_{<t}, \mathbf{X})} = \frac{f_\theta(\alpha_t; \gamma)}{f_{\theta_{\text{old}}}(\alpha_t; \gamma)},$$

915 The above definition parallels the probability ratio for discrete actions, but replaces the categorical pmf
916 with a continuous Dirichlet pdf. At the final step $t = m$, we sample a discrete token $\mathbf{z}_m \in \{\mathbf{e}_1, \dots, \mathbf{e}_v\}$
917 from α_m , and use the standard policy ratio in (5). At inference, we follow the aforementioned
918 autoregressive procedure by forming $\mathbf{z}_t = \mathbf{E}^\top \alpha_t$.

918 **D EXPERIMENTAL RESULTS**
919920 **D.1 CONTINUOUS SUPERVISED TRAINING RESULTS**
921922 **Teacher Forcing and Self-feeding Comparison:** As described in CSFT section, we tested two
923 approaches of providing prefixes during training the CoT2 model with CSFT. Although the model
924 autoregressively generates at inference time, teacher forcing yields better performance than self-
925 feeding during CSFT training. Our results demonstrate that, We also tested curriculum settings,
926 where we switch to self-feeding after a pre-determined number of epochs in the training. Still, the
927 accuracies didn't improve beyond pure teacher-forcing training. The results are illustrated in Figure 6,
928 where we refer to teacher-forcing as "hard-teacher" and refer to self-feeding as "soft-teacher".
929930 **Sparse Supervision for Discrete Baseline:** We also tested providing a subset of the correct path
931 to the discrete model. We observed that a sparsely supervised discrete model can achieve better
932 performance than the fully supervised discrete model when the distribution is "easier" to handle by
933 the model. As an example, we tested the case when we have 5 input digits from the range of 11 to
934 19. In this case, in nearly all of the cases, the answer to our MNNS game is (sum of minimum 3
935 numbers) - (sum of maximum 2 numbers) out of the 5 input numbers. In this case, when only 1 token
936 from the correct path is provided to the discrete model, it's better than 3 and 5 token cases. However,
937 when we change the distribution to a range of numbers from 5 to 13, which makes the question
938 reasonably harder, the discrete model with 1 token supervision performs worse than the other two,
939 and the discrete model with full supervision performs best. The results are demonstrated in Figure 4.
940941 **Further Results on CoT2 vs Discrete CoT:** The results in Figure 7 also indicate that above an
942 embedding dimension threshold, the CoT2 model has superior performance and trains significantly
943 faster than the discrete CoT model. Moreover, combining the results of Figure 7 with Figure 3, we
944 see that the CoT2 model with one layer and one head GPT2 model performs better than discrete
945 CoT model with two layers and two heads at embeddings 24 and 32. While the continuous approach
946 requires greater embedding capacity to support its distributional representations at each step, it can
947 outperform the discrete model using fewer layers and attention heads. Supporting the findings in
948 Figure 2, Figure 8 illustrates that on the ProntoQA task, CoT2 consistently outperforms the discrete
949 CoT baseline when the embedding dimension is above a threshold. Likewise, as depicted in Figure 9
950 and Figure 10, the discrete CoT model requires multiple samplings (Maj@k) to match the single-shot
951 performance of CoT2 on both ProntoQA and ProsQA, which indicates that CoT2 model is more
952 sample-efficient.
953954 **Empirical Evidence of CoT2 Alignment with Supervision During Inference:** We provide direct
955 empirical evidence supporting that well-trained CoT2 models indeed follow the intended search
956 patterns prescribed by continuous supervision (CSFT). Specifically, we analyze token-level entropy
957 as a probe for model behavior during inference on the MNNS validation set. At each intermediate
958 reasoning step t , CSFT ideally prescribes a uniform distribution over 2^t partial sums, yielding an
959 entropy $H_t = t \ln 2$. On the MNNS validation set with four digits we measure. Specifically, we
960 examine token-level entropies obtained from inference with 4 input digits (1–9) using a 1-layer, 1-head
961 GPT2 architecture at embedding dimension $d = 32$. The measured entropies at each intermediate
962 step are:
963

964
$$H_1 = 0.6896, H_2 = 1.3682, H_3 = 1.9588, H_4 = 0.2461.$$

965 Observe that the token-level entropies closely match expected theoretical values: $H_1 = 0.6896 \approx \ln 2$,
966 $H_2 = 1.3682 \approx \ln 4$, $H_3 = 1.9588 \approx \ln 8$, and a sharp drop at $H_4 = 0.2461$. The alignment for
967 steps $t \leq 3$ indicates that the model maintains an approximately uniform superposition over roughly
968 2, 4, 8 trajectories, rather than collapsing into a single path or averaging them. The steep entropy
969 reduction at the final step ($t = 4$) clearly reflects the one-hot supervision on the final answer. This
970 entropy pattern provides direct empirical evidence that CoT2 inference aligns precisely with the
971 CSFT training objective: the model explores multiple reasoning branches in parallel until committing
decisively to the correct outcome at the final step.
972

Method	MNNS	ProsQA	ProntoQA
CoT2	98.94	93.37	98.01
COCONUT	92.58	90.03	96.94
Discrete CoT	84.92	68.50	82.47
Discrete no-CoT	68.35	54.91	73.65

Table 3: Validation accuracies on MNNS, ProsQA, and ProntoQA for CoT2, COCONUT, Discrete CoT, and Discrete no-CoT. **Setting:** MNNS with 4 input digits in 1–9; CoT2 uses full budget B and Discrete CoT uses $B=1$. MNNS: 2-layer, 2-head GPT2 ($d=32$); ProsQA & ProntoQA: 4-layer, 4-head GPT2 ($d=32$).

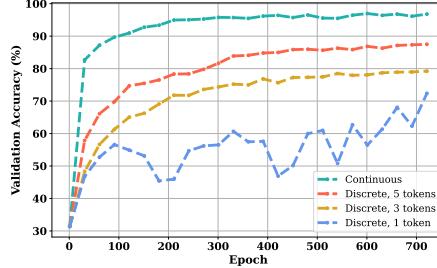


Figure 4: The figure illustrates that when the range of digits makes the question non-trivial on an MNNS task, the discrete CoT model trained with full token supervision outperforms sparse supervisions; in particular, single token supervision yields the worst performance. **Setting:** 5 input digits in 5 – 13; 2-layer, 2-head GPT2 with $d = 32$.



Figure 5: The figure reveals that CoT2 model is superior to discrete CoT in ProsQA, while also exhibiting faster convergence. **Setting:** 4-layer, 4-head GPT2 with $d \in \{24, 32, 40\}$.

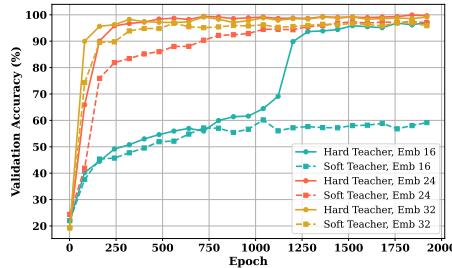


Figure 6: The comparison between the hard and soft teachers for different embedding dimensions on MNNS task. The figure illustrates that the hard teacher is superior to the soft teacher. **Setting:** 4 input digits in 1 – 9; 4-layer, 4-head GPT2 with $d \in \{16, 24, 32\}$.

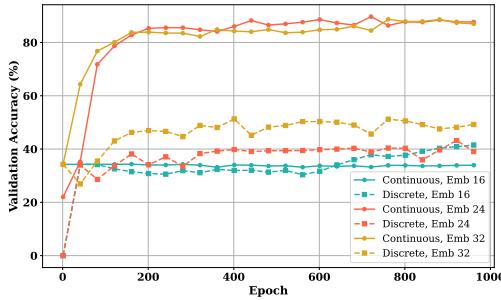


Figure 7: Comparison between CoT2 and discrete CoT model for different embedding dimensions. The figure demonstrates that above a certain embedding dimension threshold, the CoT2 model outperforms the discrete CoT model in the MNNS task. **Setting:** 4 input digits in 1 – 9; 1-layer, 1-head GPT2 with $d \in \{16, 24, 32\}$.

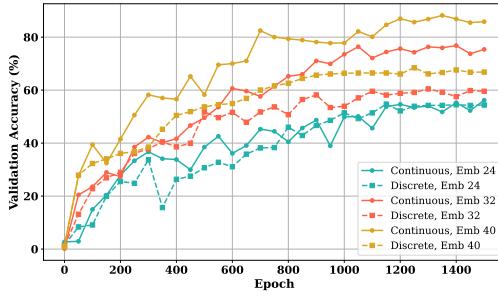


Figure 8: Comparison between CoT2 and discrete CoT model for different embedding dimensions in ProntoQA task. The figure shows that above an embedding dimension threshold, the CoT2 model outperforms the discrete CoT model. **Setting:** 4-layer, 4-head GPT2 with $d \in \{24, 32, 40\}$.

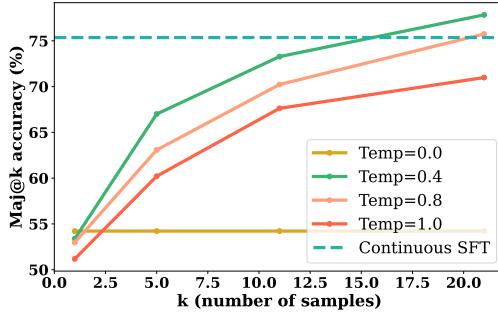


Figure 9: The figure illustrates that the discrete CoT model requires multiple samplings (Maj@k) to match the single-shot performance of the CoT2 model on ProntoQA (10-run average). **Setting:** 4-layer, 4-head GPT2 with $d = 32$.

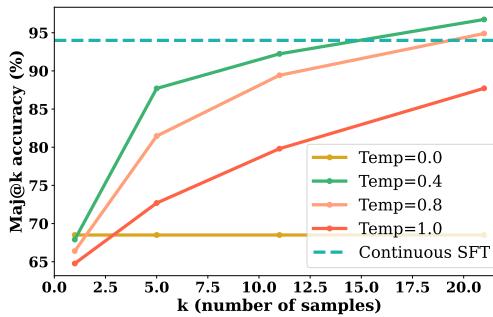


Figure 10: The figure illustrates that the discrete CoT model requires multiple samplings (Maj@k) to match the single-shot performance of the CoT2 model on ProsQA (10-run average). **Setting:** 4-layer, 4-head GPT2 with $d = 32$.

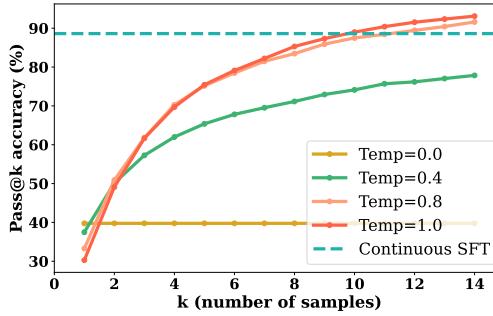


Figure 11: Performance of single-shot CoT2 vs. discrete CoT with Pass@K across different temperatures on the MNNS task. **Setting:** 4 input digits in 1–9; 1-layer, 1-head GPT-2 with $d = 24$; CoT2 uses full trajectory budget $B=|\mathcal{T}|$ and discrete CoT uses $B=1$.

1134 D.2 GRPO RESULTS
1135

1136 **Discussion on ProntoQA/ProsQA Datasets:** Table 1 illustrates that GRPO training using CoT2-
1137 MTS sampling consistently improves discrete CoT and CoT2 models over their initial SFT accuracy.
1138 Moreover, we observe that the improvement in the discrete CoT model is greater, which might
1139 indicate that the CoT2 model already gains an RL-like exploration mechanism through CSFT training.
1140 We observe that while increasing K initially increases the accuracy by sampling more tokens at each
1141 step, beyond some K , the improvements diminish. This observation is consistent with Table 2, where
1142 we see that a moderate K value offers the best final performance. One possible explanation is that
1143 while higher K promotes better exploration, it also raises the chance of sampling unhelpful tokens
1144 that disrupt the averaged token representation. Indeed, for larger K , we observe that the RL objective
1145 saturates to near zero which suggests that most rollouts fail once the averaged token contains too
1146 many distracting tokens.

1147 **Discussion on Dirichlet Sampling:** We also investigate the effects of Dirichlet sampling in GRPO
1148 training discrete CoT and CoT2 models. The results in Table 4 indicates that applying Dirichlet
1149 sampling ($\gamma = 20$) in GRPO training of discrete CoT model consistently improves over the initial
1150 SFT training accuracies. Similar to the CoT2 + MTS sampling results in Table 2, we observe that the
1151 entropy at the third token remains relatively high, which suggests a beneficial diversity in model’s
1152 predictions for that token. Moreover, the Table 5 demonstrates that Dirichlet sampling also improves
1153 the CoT2 model’s SFT accuracy, even though it has a high initial SFT accuracy. As illustrated in
1154 Table 5, we find there is an optimal value for the scale parameter γ , since larger γ typically yields
1155 more uniform sampling distributions, whereas smaller γ concentrates the distribution more sharply.
1156 Thus, adjusting γ provides a balance between exploration and stability in GRPO training.

Layers	Heads	Val. Accuracy (%)		Val. Entropy (SFT \rightarrow SFT+GRPO)			
		SFT	SFT+GRPO	token ₁	token ₂	token ₃	token ₄
1	1	39.76	46.25	0.4851 \rightarrow 0.1701	0.5165 \rightarrow 0.6380	0.3243 \rightarrow 0.6590	0.1597 \rightarrow 0.4878
2	2	70.26	75.84	0.4851 \rightarrow 0.4027	0.5165 \rightarrow 0.4413	0.3243 \rightarrow 0.2907	0.1597 \rightarrow 0.1386

1162 Table 4: Discrete CoT models trained with GRPO after SFT using Dirichlet sampling ($\gamma = 20$)
1163 and a learning rate of 1×10^{-5} . We show validation accuracy (%) and token-level entropy (SFT \rightarrow
1164 SFT+GRPO) for each (Layers, Heads) setting, with an embedding dimension of 24 for GPT2 model.

Dirichlet Scale (γ)	SFT Val. Acc (%)	SFT + GRPO Val. Acc (%)
10		89.76
20	87.84	90.75
40		90.37

1171 Table 5: Validation accuracies GRPO training with CoT2 models using different Dirichlet sampling
1172 scales (γ) with learning rate of 1×10^{-6} . We show the baseline SFT accuracy (87.84%) and final
1173 performance after GRPO.

1174 **CoT2-MTS GRPO experiments on GSM8K.** According to raised points to evaluate our CoT2-
1175 MTS method on reasoning benchmarks beyond logical multi-hop reasoning, we ran Qwen3-0.6B
1176 on GSM8K using our CoT2-MTS continuous-token sampling procedure. We implemented the
1177 continuous rollout/training code from scratch, and because we could not leverage frameworks such as
1178 vLLM to speed up generation, we conducted our experiments on modest model sizes and decoding
1179 budgets. For CoT2-MTS, we used a curriculum learning approach where continuous tokens are
1180 introduced from 50% of training, ramped to full by 80%, and used thereafter. The table below
1181 reports single-run results for different maximum response lengths (160, 128, 96, 80 tokens). We use
1182 16 continuous tokens for the 96/80 settings and 32 continuous tokens for the 128/160 settings; for
1183 example, in the 160-token configuration the effective budget grows from 128 discrete tokens at the
1184 start of training to 128 discrete + 32 continuous tokens (i.e., 128 \rightarrow 160) as the curriculum completes.

1185 For these experiments we adopt a sparse-reward setting by using only the final answer in the 0/1
1186 reward, and train with GRPO for 2000 steps using learning rate 3×10^{-6} , batch size 6, and gradient
1187 accumulation of 4. The GRPO group size is set to $G = 4$, the clipping parameter to $\epsilon = 0.1$, the KL
coefficient to 0, and the number of sampled tokens in MTS to $K = 4$.

1188	Max Resp. Len	Initial Acc (%)	Disc. CoT Acc (%)	CoT2-MTS Acc (%)	Avg. Len (Disc CoT)	Avg. Len (CoT2-MTS)
1189	160	34.6	37.0	41.3	97.3	114.8
1190	128	27.6	34.3	36.2	104.8	96.6
1191	96	17.2	27.2	27.1	84.0	83.7
1192	80	9.5	21.5	27.0	73.9	67.0

1193 Table 6: Validation accuracies and response lengths for GRPO training with CoT2-MTS ($K = 4$) on
1194 **GSM8K** using Qwen3-0.6B under different maximum response lengths.

1195 Across **GSM8K** with Qwen3-0.6B, CoT2-MTS improves over discrete CoT in three out of four
1196 maximum response-length settings and essentially matches it in the remaining one, while often
1197 shortening the average response length. Overall, these preliminary results indicate that performing
1198 exploration in the continuous action space via CoT2-MTS is a promising direction.

1200

1201 E THEORETICAL DETAILS

1202 **Discussion on Budget-Embedding Dimension Tradeoff.** Without loss of generality, assume that
1203 the token embeddings lie inside unit-circle $\|\mathbf{e}_i\|_2 \leq 1$. Let $S \subseteq [v]$ be a set of superposed states at a
1204 step with size $|S| = B$. By triangle-inequality, we know that the convex superposition $\mathbf{z}_S = \sum_{i \in S} \alpha_i \mathbf{e}_i$
1205 with $\alpha_i \geq 0$ and $\sum_{i \in S} \alpha_i = 1$ satisfies $\|\mathbf{z}_S\|_2 \leq 1$.

1206 Suppose there exists a downstream module to recover the superposed states S robustly from the single
1207 d -dimensional vector \mathbf{z}_S . Formally, assume a fixed margin $\delta > 0$ such that even if \mathbf{z}_S is perturbed by
1208 any η with $\|\eta\|_2 \leq \delta$, the decoding does not change: there is a decoder $\text{Dec} : \mathbb{R}^d \rightarrow \{S \subseteq [v] : |S| = B\}$
1209 with $\text{Dec}(\mathbf{z}_S + \eta) = S$ for all S and all such η .

1210 For each \mathbf{z}_S , consider the closed ball $B(\mathbf{z}_S, \delta) = \{\mathbf{x} : \|\mathbf{x} - \mathbf{z}_S\| \leq \delta\}$. The robustness assumption trivially
1211 implies these balls are pairwise disjoint; moreover, by the triangle inequality, for any $\mathbf{x} \in B(\mathbf{z}_S, \delta)$,

$$1212 \|\mathbf{x}\| \leq \|\mathbf{x} - \mathbf{z}_S\| + \|\mathbf{z}_S\| \leq \delta + 1,$$

1213 so, each δ -ball sits inside a larger $1 + \delta$ ball $B(\mathbf{z}_S, \delta) \subseteq B(0, 1 + \delta)$. Therefore, the union of all disjoint
1214 δ -balls lies inside $B(0, 1 + \delta)$:

$$1215 \bigcup_{\substack{S \subseteq [v] \\ |S|=B}} B(\mathbf{z}_S, \delta) \subseteq B(0, 1 + \delta).$$

1216 The number of different sets of superposed states of size B is $\binom{v}{B}$. The packing constraint says the
1217 union of the $\binom{v}{B}$ disjoint δ -balls must fit inside $B(0, 1 + \delta)$. In \mathbb{R}^d , the volume of a radius- r Euclidean
1218 ball is $c_d r^d$ where $c_d = \frac{\pi^{d/2}}{\Gamma(1+d/2)}$. Comparing volumes gives

$$1219 \binom{v}{B} \leq \frac{\text{vol}(B(0, 1 + \delta))}{\text{vol}(B(0, \delta))} = \left(\frac{1+\delta}{\delta}\right)^d.$$

1220 In the regime $v \gg B$, taking logs and using the Stirling approximation for $B!$ gives the inequality
1221 $\log \binom{v}{B} \geq B \log(v/B)$. Using this yields:

$$1222 B \log \frac{v}{B} \leq d \log \left(\frac{1+\delta}{\delta}\right) \leq d \log \left(\frac{2}{\delta}\right)$$

1223 for $\delta \leq 1$. Equivalently, $d \geq \frac{B \log(v/B)}{\log(2/\delta)} = \Omega(B \log(v/B))$ when δ is a fixed constant.

1224 **Justification for Assumption 1:** The Assumption 1 holds for tasks where the next-token distribution
1225 depends solely on the current token and the input tokens rather than the full history of output tokens.
1226 This is satisfied by many reasoning tasks, where the aim is to keep track of an intermediate state (e.g.,
1227 the current sum) and update this state based only on the current state and the input, independently of
1228 the earlier trajectory.

1229 For example, in the MNNS task, the model generates a token representing the current partial sum
1230 at each step. To compute the distribution over the next possible sums, the model adds or subtracts
1231 the selected number from the input context X to the current sum, without needing to remember the
1232 sequence of previous sums explicitly. Thus, the next-state distribution at each step is only determined
1233 by the current state and it naturally satisfies the Assumption 1.

1242 **Proposition 2** (Consistency of CoT and CoT2 inference). *Under Assumption 1 and given X , the*
 1243 *output of base CoT2 is $\mathbf{z}_m = \sum_{j=1}^v \alpha_{m,j} \mathbf{e}_j$ where $\alpha_m = \alpha_1 \prod_{t=1}^{m-1} \mathbf{M}_t$. Discrete CoT and CoT2-MTS*
 1244 *have the same output once we take the expectation over their stochastic sampling.*

1246 *Proof.* Let $\hat{\alpha}_t^{(\text{disc})}, \hat{\alpha}_t^{(\text{MTS})}$ denote the empirical output token distributions at step t under one trajectory
 1247 obtained by the discrete CoT, and CoT2 with MTS models, respectively. We define $\alpha_t^{(\text{disc})} = \mathbb{E}[\hat{\alpha}_t^{(\text{disc})}]$
 1248 and $\alpha_t^{(\text{MTS})} = \mathbb{E}[\hat{\alpha}_t^{(\text{MTS})}]$ to be corresponding expected distributions. The discrete CoT model at each
 1249 step picks exactly 1 token from α_t . On the other hand, CoT2-MTS samples K i.i.d. tokens at every
 1250 step independently according to their probabilities from $\hat{\alpha}_t$. We denote them i_1, \dots, i_K , and average
 1251 their embeddings to produce a single query.
 1252

1253 We will use induction in our argument. For the base case, all models start with the same initial
 1254 distribution, so we trivially have $\alpha_1^{(\text{disc})} = \alpha_1^{(\text{MTS})} = \alpha_1^{(\text{CoT2})}$. For the inductive step, assume that we
 1255 have $\alpha_{t-1}^{(\text{disc})} = \alpha_{t-1}^{(\text{MTS})} = \alpha_{t-1}^{(\text{CoT2})}$. We will show that $\alpha_t^{(\text{disc})} = \alpha_t^{(\text{MTS})} = \alpha_t^{(\text{CoT2})}$. On the other, for the
 1256 discrete CoT model, the model samples one token $\mathbf{e}_{i_{t+1}}$ from the row of \mathbf{M}_t for a token i_{t+1} . Therefore,
 1257 we need to condition on the token at step t . We have:
 1258

$$\begin{aligned} \mathbb{E}[\hat{\alpha}_{t+1}^{(\text{disc})}] &= \sum_{j=1}^v \mathbb{P}(\mathbf{z}_t = \mathbf{e}_j) \mathbb{E}[\hat{\alpha}_{t+1}^{(\text{disc})} \mid \mathbf{z}_t = \mathbf{e}_j] & (6) \\ &= \sum_{j=1}^v \mathbb{P}(\mathbf{z}_t = \mathbf{e}_j) \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_j, \mathbf{X}) \\ &= \sum_{j=1}^v \alpha_{t,j}^{(\text{disc})} \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_j, \mathbf{X}) \\ &\stackrel{(a)}{=} \sum_{j=1}^v \alpha_{t,j}^{(\text{CoT2})} \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_j, \mathbf{X}) \\ &\stackrel{(b)}{=} \alpha_{t+1}^{(\text{CoT2})} & (7) \end{aligned}$$

1259 where (a) follows from the induction argument and (b) follows from Assumption 1. Therefore, we
 1260 obtain $\alpha_{t+1}^{(\text{disc})} = \mathbb{E}[\hat{\alpha}_{t+1}^{(\text{disc})}] = \alpha_{t+1}^{(\text{CoT2})}$. For the CoT2-MTS model, the argument will be similar. Using
 1261 the decoupling of trajectories by Assumption 1, the next distribution is:
 1262

$$\text{LM}_{\theta}^{(t)}\left(\cdot \mid \frac{1}{K} \sum_{r=1}^K \mathbf{e}_{i_r}, \mathbf{X}\right) = \frac{1}{K} \sum_{r=1}^K \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_{i_r}, \mathbf{X}).$$

1263 Therefore, we write:
 1264

$$\begin{aligned} \mathbb{E}[\hat{\alpha}_{t+1}^{(\text{MTS})}] &= \sum_{(i_1, \dots, i_K) \in [v]^K} \mathbb{P}(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_K}) \mathbb{E}[\hat{\alpha}_{t+1}^{(\text{MTS})} \mid \mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_K}] \\ &= \sum_{(i_1, \dots, i_K) \in [v]^K} \mathbb{P}(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_K}) \text{LM}_{\theta}^{(t)}\left(\cdot \mid \frac{1}{K} \sum_{r=1}^K \mathbf{e}_{i_r}, \mathbf{X}\right) \\ &= \sum_{(i_1, \dots, i_K) \in [v]^K} \mathbb{P}(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_K}) \frac{1}{K} \sum_{r=1}^K \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_{i_r}, \mathbf{X}) \\ &= \sum_{(i_1, \dots, i_K) \in [v]^K} \left(\prod_{r=1}^K \mathbb{P}(\mathbf{e}_{i_r}) \right) \frac{1}{K} \sum_{r=1}^K \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_{i_r}, \mathbf{X}) \\ &= \sum_{(i_1, \dots, i_K) \in [v]^K} \left(\prod_{r=1}^K \alpha_{t,i_r}^{(\text{MTS})} \right) \frac{1}{K} \sum_{r=1}^K \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_{i_r}, \mathbf{X}) \end{aligned}$$

$$\begin{aligned}
&= \frac{1}{K} \sum_{r=1}^K \sum_{j=1}^v \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_j, \mathbf{X}) \sum_{(i_1, \dots, i_{r-1}, i_{r+1}, \dots, i_K) \in [v]^{K-1}} \alpha_{t,j}^{(\text{MTS})} \prod_{\substack{s=1 \\ s \neq r}}^K \alpha_{t,i_s}^{(\text{MTS})} \\
&= \frac{1}{K} \sum_{r=1}^K \sum_{j=1}^v \alpha_{t,j}^{(\text{MTS})} \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_j, \mathbf{X}) \sum_{(i_1, \dots, i_{r-1}, i_{r+1}, \dots, i_K) \in [v]^{K-1}} \prod_{\substack{s=1 \\ s \neq r}}^K \alpha_{t,i_s}^{(\text{MTS})} \\
&= \sum_{r=1}^K \frac{1}{K} \sum_{j=1}^v \alpha_{t,j}^{(\text{MTS})} \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_j, \mathbf{X}) = \sum_{j=1}^v \alpha_{t,j}^{(\text{MTS})} \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_j, \mathbf{X}) \\
&= \sum_{j=1}^v \alpha_{t,j}^{(\text{CoT2})} \text{LM}_{\theta}^{(t)}(\cdot \mid \mathbf{e}_j, \mathbf{X}) = \alpha_{t+1}^{(\text{CoT2})}.
\end{aligned} \tag{8}$$

Thus, combining (7), and (8) completes the induction and our argument:

$$\alpha_{t+1}^{(\text{disc})} = \mathbb{E}[\hat{\alpha}_{t+1}^{(\text{disc})}] = \alpha_{t+1}^{(\text{CoT2})} = \mathbb{E}[\hat{\alpha}_{t+1}^{(\text{MTS})}] = \alpha_{t+1}^{(\text{MTS})}.$$

□

Proposition 3. (i) Let α_m be the expected output distribution after m steps of CoT according to Proposition 2. Let $\hat{\alpha}_m^{(\text{MTS})}$ be the distribution resulting from averaging the outputs of N i.i.d. CoT2-MTS traces with parallelism K . Then, to guarantee $\|\hat{\alpha}_m^{(\text{MTS})} - \alpha_m\|_2 \leq \epsilon$ with high probability, the total number of samples (traces) required scales as $\Theta(K^{-1} \epsilon^{-2})$. (ii) Defining $\hat{\alpha}_m^{(\text{disc})}$ to be the distribution obtained by averaging the outputs of NK i.i.d. discrete CoT traces, we have the following upper bound on the expected error of MTS:

$$\mathbb{E}[\|\hat{\alpha}_m^{(\text{MTS})} - \alpha_m\|_2^2] \leq \left(2 - \frac{1}{K}\right) \mathbb{E}[\|\hat{\alpha}_m^{(\text{disc})} - \alpha_m\|_2^2].$$

Proof. Our notation in the proof will deviate from that in the proposition statement. As in the proof of the previous proposition, we denote by $\hat{\alpha}_t^{(\text{MTS})}$ a single realization of the distribution obtained from the last K tokens of CoT2-MTS. On the other hand, the random variable $\hat{\alpha}_t^{(\text{disc})}$ represents the distribution obtained by averaging K i.i.d. discrete CoT traces. We will compare the variances of these two approaches. The resulting inequality will similarly hold for the MTS and discrete CoT estimators given in the proposition statement, which use N and NK samples, respectively. Initially, we'll compare the variances of the two approaches at step $t = 2$ (empirical distributions formed at the end of the second sampling step), and a parallel argument will hold for any t .

CoT2-MTS: In the beginning, we have deterministic distribution $\alpha_1 = \text{LM}_{\theta}^{(0)}(\cdot \mid \mathbf{X}) = (\alpha_{1,1}, \dots, \alpha_{1,v}) \in \Delta^{v-1}$. At step $t = 1$, we draw K tokens $i_1, \dots, i_K \stackrel{\text{i.i.d.}}{\sim} \text{Categorical}(\alpha_1)$. The empirical frequencies over the vocabulary are:

$$\hat{\alpha}_{1,j}^{(\text{MTS})} = \frac{1}{K} \sum_{r=1}^K \mathbf{1}\{i_r = j\}, \quad j \in [v].$$

This means, the query fed into the model is $\mathbf{z}_1 = \sum_{j=1}^v \hat{\alpha}_{1,j} \mathbf{e}_j$. By Assumption 1, the output distribution is:

$$\hat{\alpha}_2^{(\text{MTS})} = \text{LM}_{\theta}^{(1)}(\cdot \mid \mathbf{z}_1, \mathbf{X}) = \sum_{j=1}^v \hat{\alpha}_{1,j}^{(\text{MTS})} \text{LM}_{\theta}^{(1)}(\cdot \mid \mathbf{e}_j, \mathbf{X}).$$

Thus $\hat{\alpha}_2$ is a convex combination of the v fixed distributions $\text{LM}_{\theta}^{(1)}(\cdot \mid \mathbf{e}_j, \mathbf{X})$ for $j \in [v]$. At step 2, we will draw K tokens from this common distribution $\hat{\alpha}_2$. Let

$$\begin{aligned}
Y_r^{(\text{MTS})} &\in [v], \quad r = 1, \dots, K, \\
Y_r^{(\text{MTS})} \mid \hat{\alpha}_2^{(\text{MTS})} &\sim \text{Categorical}(\hat{\alpha}_2^{(\text{MTS})}).
\end{aligned}$$

1350 be the tokens drawn. Now, we'll calculate the variance along any fixed vocabulary coordinate $k \in [v]$
1351 and define

$$1353 \quad Y_{r,k}^{(\text{MTS})} := \mathbf{1}\{Y_r^{(\text{MTS})} = k\}, \quad \bar{Y}_k^{(\text{MTS})} := \frac{1}{K} \sum_{r=1}^K Y_{r,k}^{(\text{MTS})}.$$

1355 Denote the distributions of the drawn tokens:

$$1357 \quad U_r^{(\text{MTS})} := \text{LM}_{\theta}^{(1)}(\cdot | \mathbf{e}_{i_r}, \mathbf{X}) \in \Delta^{v-1},$$

$$1359 \quad U_{r,k}^{(\text{MTS})} := (\mathbf{U}_r^{(\text{MTS})})_k, \quad \bar{U}_k^{(\text{MTS})} := \frac{1}{K} \sum_{r=1}^K U_{r,k}^{(\text{MTS})}.$$

1361 Then $U_{r,k}^{(\text{MTS})}$ depends only on the first-step choice i_r and is therefore i.i.d. across r . $\bar{U}_k^{(\text{MTS})} = \hat{\alpha}_{2,k}$ is
1362 the random success parameter for the Bernoulli variables $Y_{r,k}^{(\text{MTS})}$. By using the unbiasedness given by
1363 Proposition 2, we know that $\mathbb{E}[\bar{U}_k^{(\text{MTS})}] = \alpha_{2,k}^{(\text{CoT2})}$. Define the shorthand notations:

$$1366 \quad \mu_k := \mathbb{E}[U_{r,k}^{(\text{MTS})}] = \mathbb{E}[\bar{U}_k^{(\text{MTS})}] = \alpha_{2,k}^{(\text{CoT2})}$$

$$1367 \quad \sigma_k^2 := \text{Var}[U_{r,k}^{(\text{MTS})}].$$

1369 We calculate the variance of the MTS estimator $\text{Var}[\bar{Y}_k^{(\text{MTS})}]$ by using the law of total variance:

$$1371 \quad \text{Var}[\bar{Y}_k^{(\text{MTS})}] = \mathbb{E}[\text{Var}[\bar{Y}_k^{(\text{MTS})} | \bar{U}_k^{(\text{MTS})}]] + \text{Var}(\mathbb{E}[\bar{Y}_k^{(\text{MTS})} | \bar{U}_k^{(\text{MTS})}]).$$

1373 Given $\bar{U}_k^{(\text{MTS})}$, the $Y_{r,k}^{(\text{MTS})}$ are i.i.d. Bernoulli($\bar{U}_k^{(\text{MTS})}$). Thus:

$$1375 \quad \text{Var}[\bar{Y}_k^{(\text{MTS})} | \bar{U}_k^{(\text{MTS})}] = \frac{\bar{U}_k^{(\text{MTS})}(1 - \bar{U}_k^{(\text{MTS})})}{K}.$$

1377 Taking expectation and using $\text{Var}[\bar{U}_k^{(\text{MTS})}] = \sigma_k^2/K$:

$$1379 \quad \mathbb{E}\left[\frac{\bar{U}_k^{(\text{MTS})}(1 - \bar{U}_k^{(\text{MTS})})}{K}\right] = \frac{1}{K} (\mathbb{E}[\bar{U}_k^{(\text{MTS})}] - \mathbb{E}[\bar{U}_k^{2,(\text{MTS})}])$$

$$1382 \quad = \frac{1}{K} (\mu_k - (\sigma_k^2/K + \mu_k^2)) \tag{A}$$

$$1384 \quad = \frac{\mu_k(1 - \mu_k)}{K} - \frac{\sigma_k^2}{K^2}.$$

1386 Also, the other term is:

$$1388 \quad \text{Var}(\mathbb{E}[\bar{Y}_k^{(\text{MTS})} | \bar{U}_k^{(\text{MTS})}]) = \text{Var}[\bar{U}_k^{(\text{MTS})}] = \frac{\sigma_k^2}{K}. \tag{B}$$

1390 Combining (A) and (B) yields:

$$1392 \quad \text{Var}[\bar{Y}_k^{(\text{MTS})}] = \frac{\mu_k(1 - \mu_k)}{K} + \frac{K-1}{K^2} \sigma_k^2. \tag{9}$$

1394 **Discrete-CoT:** For K independent traces, each trace r draws at step 2 from its own distribution $\mathbf{U}_r^{(\text{disc})}$
1395 (instead of a common mixture). Let $Y_{r,k}^{(\text{disc})} \sim \text{Bernoulli}(U_{r,k}^{(\text{disc})})$ and $\bar{Y}_k^{(\text{disc})} := \frac{1}{K} \sum_r Y_{r,k}^{(\text{disc})}$. Apply the
1396 law of total variance:

$$1398 \quad \text{Var}[Y_{r,k}^{(\text{disc})}] = \underbrace{\mathbb{E}[\text{Var}[Y_{r,k}^{(\text{disc})} | U_{r,k}^{(\text{disc})}]]}_{(A)} + \underbrace{\text{Var}(\mathbb{E}[Y_{r,k}^{(\text{disc})} | U_{r,k}^{(\text{disc})}])}_{(B)}.$$

1401 Given $U_{r,k}^{(\text{MTS})}$, the variance of $Y^{(\text{disc})}$ is:

$$1403 \quad \text{Var}[Y_{r,k}^{(\text{disc})} | U_{r,k}^{(\text{disc})}] = U_{r,k}^{(\text{disc})} (1 - U_{r,k}^{(\text{disc})}).$$

1404 Taking expectation over $U_{r,k}^{(\text{disc})}$,

$$\begin{aligned} \mathbb{E}[U_{r,k}^{(\text{disc})}(1 - U_{r,k}^{(\text{disc})})] &= \mathbb{E}[U_{r,k}^{(\text{disc})}] - \mathbb{E}[U_{r,k}^{2,(\text{disc})}] \\ &= \mu_k - (\text{Var}[U_{r,k}^{(\text{disc})}] + \mu_k^2) \\ &= \mu_k(1 - \mu_k) - \sigma_k^2, \end{aligned}$$

1410 where $\sigma_k^2 := \text{Var}[U_{r,k}^{(\text{disc})}]$. Note that the variances are the same $\text{Var}[U_{r,k}^{(\text{disc})}] = \text{Var}[U_{r,k}^{(\text{MTS})}] = \sigma_k^2$
1411 since the initial distribution α_1 are shared between MTS and discrete CoT approaches. For the
1412 conditional-expectation variance term

$$\text{Var}(\mathbb{E}[Y_{r,k}^{(\text{disc})} \mid U_{r,k}^{(\text{disc})}]) = \text{Var}[U_{r,k}^{(\text{disc})}] = \sigma_k^2.$$

1413 Combining (A) and (B) yields:

$$\begin{aligned} \text{Var}[Y_{r,k}^{(\text{disc})}] &= (\mu_k(1 - \mu_k) - \sigma_k^2) + \sigma_k^2 = \mu_k(1 - \mu_k). \\ \implies \text{Var}[\bar{Y}_k^{(\text{disc})}] &= \frac{\mu_k(1 - \mu_k)}{K}. \end{aligned} \tag{10}$$

1414 Using (9) and (10), we have:

$$\begin{aligned} \text{Var}[\bar{Y}_k^{(\text{MTS})}] &= \text{Var}[\bar{Y}_k^{(\text{disc})}] + \frac{K-1}{K^2} \sigma_k^2. \\ \implies \frac{\text{Var}[\bar{Y}_k^{(\text{MTS})}]}{\text{Var}[\bar{Y}_k^{(\text{disc})}]} &= 1 + \frac{K-1}{K} \cdot \frac{\sigma_k^2}{\mu_k(1 - \mu_k)}. \end{aligned}$$

1415 Because every $U_{r,k}^{(\text{MTS})} \in [0, 1]$, the known inequality $\text{Var}[Z] \leq \mathbb{E}[Z](1 - \mathbb{E}[Z])$ for any random
1416 variable $Z \in [0, 1]$ implies $\sigma_k^2 \leq \mu_k(1 - \mu_k)$. As a result:

$$\frac{\text{Var}[\bar{Y}_k^{(\text{MTS})}]}{\text{Var}[\bar{Y}_k^{(\text{disc})}]} \leq 1 + \frac{K-1}{K} = 2 - \frac{1}{K}. \tag{4}$$

1417 Thus, summing this over all $k \in [v]$ gives:

$$\mathbb{E}\left[\|\hat{\alpha}_m^{(\text{MTS})} - \alpha_m\|_2^2\right] \leq \left(2 - \frac{1}{K}\right) \mathbb{E}\left[\|\hat{\alpha}_m^{(\text{disc})} - \alpha_m\|_2^2\right].$$

1418 **Proof for any t .** We will now show this at any step t . Consider the discrete CoT case with K i.i.d.
1419 traces. Different from the 2-step case, where the tokens for MTS and discrete CoT at step $t = 1$ are
1420 drawn from the same distribution α_1 , they will be drawn from the empirical distributions $\hat{\alpha}_t^{(\text{MTS})}$ and
1421 $\hat{\alpha}_t^{(\text{disc})}$. Similarly define $U_r^{(\text{disc})}$ to be the distribution $\text{LM}_\theta^{(t)}(\cdot \mid \mathbf{e}_{i_r}, \mathbf{X}) \in \Delta^{v-1}$ obtained by sampling the
1422 token i_r . For each vocabulary index $k \in [v]$

$$\sigma_{t,k}^{2,(\text{disc})} := \text{Var}[U_{r,k}^{(\text{disc})}], \quad \text{Var}[\hat{\mu}_{t,k}^{(\text{disc})}] = \frac{\sigma_{t,k}^{2,(\text{disc})}}{K}.$$

1423 The equality follows because the $U_{r,k}^{(\text{disc})}$ are i.i.d. across r . Now, we calculate the variance at step
1424 $t + 1$. Each trace r now draws a Bernoulli variable $Y_{r,k}^{(\text{disc})} \sim \text{Bernoulli}(U_{r,k}^{(\text{disc})})$. Parallel to the previous
1425 case, using the law of total variance cancels out the variance terms $\sigma_{t,k}^{2,(\text{disc})}$ and yields:

$$\text{Var}[\bar{Y}_{t+1,k}^{(\text{disc})}] = \frac{\mu_{t+1,k}(1 - \mu_{t+1,k})}{K}. \tag{11}$$

1426 **CoT2-MTS:** This time, all tokens at step $t + 1$ are drawn from a shared $\hat{\mu}_t^{(\text{MTS})}$, which is resulted
1427 after drawing K tokens from $\hat{\alpha}_t^{(\text{MTS})}$. Using $Y_{r,k}^{(\text{MTS})} \mid \hat{\mu}_t^{(\text{MTS})} \sim \text{Bernoulli}(\hat{\mu}_{t,k}^{(\text{MTS})})$ and applying the law
1428 of total variance gives:

$$\begin{aligned} \text{Var}[\bar{Y}_{t+1,k}^{(\text{MTS})}] &= \mathbb{E}\left[\frac{\hat{\mu}_{t,k}^{(\text{MTS})}(1 - \hat{\mu}_{t,k}^{(\text{MTS})})}{K}\right] + \text{Var}[\hat{\mu}_{t,k}^{(\text{MTS})}] \\ &= \frac{\mu_{t+1,k}(1 - \mu_{t+1,k})}{K} - \frac{\sigma_{t,k}^{2,(\text{MTS})}}{K^2} + \frac{\sigma_{t,k}^{2,(\text{MTS})}}{K} \\ &= \frac{\mu_{t+1,k}(1 - \mu_{t+1,k})}{K} + \frac{K-1}{K^2} \sigma_{t,k}^{2,(\text{MTS})}. \end{aligned} \tag{12}$$

1458 Take the ratio of (12) to (11):
 1459

$$\frac{\text{Var}[\bar{Y}_{t+1,k}^{(\text{MTS})}]}{\text{Var}[\bar{Y}_{t+1,k}^{(\text{disc})}]} = 1 + \frac{K-1}{K} \frac{\sigma_{t,k}^{2,(\text{MTS})}}{\mu_{t+1,k}(1-\mu_{t+1,k})}.$$

1460 Again, every $U_{r,k}^{(\text{MTS})}$ is $0 \leq U_{r,k}^{(\text{MTS})} \leq 1$. For any random variable Z bounded in $[0, 1]$, we know
 1461 that $\text{Var}[Z] \leq \mathbb{E}[Z](1 - \mathbb{E}[Z])$. Therefore we always have $\sigma_{t,k}^{2,(\text{MTS})} \leq \mu_{t+1,k}(1 - \mu_{t+1,k})$ and thus,
 1462 $\text{Var}[\hat{\mu}_{t,k}^{(\text{MTS})}] \leq \frac{\mu_{t+1,k}(1 - \mu_{t+1,k})}{K}$. Using this in the previous equality yields:

$$\frac{\text{Var}[\bar{Y}_{t+1,k}^{(\text{MTS})}]}{\text{Var}[\bar{Y}_{t+1,k}^{(\text{disc})}]} \leq 1 + \frac{K-1}{K} = 2 - \frac{1}{K}.$$

1463 Thus, defining $\sigma_{\text{disc}}^2 := \mathbb{E}[\|\hat{\alpha}_m^{(\text{disc})} - \alpha_m\|_2^2]$, we have shown that:
 1464

$$\sigma_{\text{disc}}^2 \leq \mathbb{E}[\|\hat{\alpha}_m^{(\text{MTS})} - \alpha_m\|_2^2] \leq \left(2 - \frac{1}{K}\right) \sigma_{\text{disc}}^2. \quad (13)$$

1465 We also know that $\hat{\alpha}_m^{(\text{disc})}$ is the average of K i.i.d. discrete rollouts, and thus:
 1466

$$\sigma_{\text{disc}}^2 = \mathbb{E}[\|\hat{\alpha}_m^{(\text{disc})} - \alpha_m\|_2^2] = \frac{1}{K} \sum_{j=1}^v \mu_{m,j} (1 - \mu_{m,j}) \leq \frac{1}{K}.$$

1467 Define the average of N independent MTS roll-outs as $\bar{\alpha}_m := \frac{1}{N} \sum_{r=1}^N \hat{\alpha}_m^{(\text{MTS}),r}$, and because variances
 1468 add for independent runs, we have $\text{Var}[\bar{\alpha}_m] = \text{Var}[\hat{\alpha}_m^{(\text{MTS})}]/N$. Applying Chebyshev's inequality
 1469 yields:
 1470

$$\mathbb{P}[\|\bar{\alpha}_m - \alpha_m\|_2 > \epsilon] \leq \frac{(2 - \frac{1}{K}) \sigma_{\text{disc}}^2}{N \epsilon^2} \leq \frac{(2 - \frac{1}{K})}{K N \epsilon^2}.$$

1471 In order to make this probability $\leq \delta$, it is enough to take
 1472

$$N \geq \frac{2 - \frac{1}{K}}{K \epsilon^2 \delta} \implies N = O\left(\frac{1}{K \epsilon^2}\right).$$

1473 To finish our argument by finding a lower bound on N , we leverage the standard result in multinomial
 1474 estimation that $\Theta\left(\frac{1}{\epsilon^2}\right)$ i.i.d. samples are necessary and sufficient to learn a v -category distribution
 1475 in $\|\cdot\|_2$ -distance $\leq \epsilon$ (Kamath et al., 2015). We know by Proposition 2 that the distribution $\alpha_m^{(\text{MTS})}$
 1476 to be recovered is shared between MTS and discrete CoT estimators. Additionally, from (13), we
 1477 know the variance of the estimator $\hat{\alpha}_m^{(\text{MTS})}$ is at least as large as that of $\hat{\alpha}_m^{(\text{disc})}$. Note that the estimator
 1478 $\hat{\alpha}_m^{(\text{disc})}$ is the average of K i.i.d. discrete CoT draws, which guarantees an estimation error of at most ϵ
 1479 with $\Theta\left(\frac{1}{K \epsilon^2}\right)$ aggregated samples. Hence, the same lower bound applies to MTS samplings, yielding
 1480 a sample complexity of $N = \Omega\left(\frac{1}{K \epsilon^2}\right)$. Combining with the upper bound, we have $N = \Theta\left(\frac{1}{K \epsilon^2}\right)$ as
 1481 claimed. This completes the argument.
 1482

□

1501 E.1 CONSTRUCTION FOR MINIMUM NON-NEGATIVE SUM (MNNS) TASK

1502 We describe a single-layer transformer with an attention block followed by a mixture-of-experts
 1503 (MoE) feed-forward block. Let n be the length of the input sequence of integer tokens. Denote the
 1504 tokenized input numbers as z_1, z_2, \dots, z_n ; and let the arrow (\rightarrow) token be denoted as z_{n+1} . We also
 1505 have a dummy input token z_{n+2} , which is the embedding corresponding to the number 0, so that we
 1506 have $n+2$ tokens initially. We will construct the transformer with $n+1$ MLPs in the mixture of
 1507 experts layer, where the first n are partial-sum MLPs and the last one is the MLP that reads off the
 1508 answer from among all the stored partial sums after m steps. We start with the following assumption
 1509 on the structure of the tokens.
 1510

1511 **Remark 1.** *As an empirical validation of Proposition 1, we observe that training according to this
 1512 construction with trigonometric embeddings yields perfect accuracy.*

1512 **Assumption 2.** Let $d = d_e + d_p$ be the embedding size where $d_e = 2^{n+1}$ and $d_p = n + 2$. The
 1513 token embeddings are on the first d_e coordinates, while the positional encodings are on the last
 1514 d_p coordinates and are one-hot encoded. where each $\mathbf{z}_i = \begin{pmatrix} \mathbf{e}_i \\ \mathbf{p}_i \end{pmatrix} \in \mathbb{R}^{d_e+d_p}$ is formed by vertically
 1515 concatenating a content embedding $\mathbf{e}_i \in \mathbb{R}^{d_e}$ and a positional encoding $\mathbf{p}_i \in \mathbb{R}^{d_p}$. We assume each \mathbf{p}_i
 1516 is a one-hot vector in \mathbb{R}^{d_p} , so that $\mathbf{p}_i^\top \mathbf{p}_j = 0$ for $i \neq j$, and $\|\mathbf{p}_i\| = 1$.
 1517

1518 We now state the following proposition, which helps us to attend and select the input tokens
 1519 $\mathbf{z}_1, \dots, \mathbf{z}_{n+1}$ one by one by the attention block.
 1520

1521 **Proposition 4.** Suppose we have $n + 2$ tokens $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{n+2}\}$ in \mathbb{R}^d , each of the form $\mathbf{z}_i = \begin{pmatrix} \mathbf{e}_i \\ \mathbf{p}_i \end{pmatrix}$,
 1522 where $\mathbf{e}_i \in \mathbb{R}^{d_e}, \mathbf{p}_i \in \mathbb{R}^{d_p}, d = d_e + d_p$. Let $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_{n+2} \in \mathbb{R}^{d_p}$ be orthonormal set of positional
 1523 vectors according to Assumption 2. Then, there exists a rotation matrix $\mathbf{R} \in \mathbb{R}^{d_p \times d_p}$ satisfying
 1524 $\mathbf{R}\mathbf{p}_j = \mathbf{p}_{j-1 \bmod (n+2)}$ for all $j \in [n + 2]$, and the block matrices
 1525

$$1527 \mathbf{W} = \begin{pmatrix} \mathbf{0}_{d_e \times d_e} & \mathbf{0}_{d_e \times d_p} \\ \mathbf{0}_{d_p \times d_e} & c \cdot \mathbf{R} \end{pmatrix} \in \mathbb{R}^{d \times d} \quad \text{and} \quad \mathbf{W}_v = \begin{pmatrix} \mathbf{I}_{d_e} & \mathbf{0}_{d_e \times d_p} \\ \mathbf{0}_{d_p \times d_e} & \mathbf{I}_{d_p} \end{pmatrix} \in \mathbb{R}^{d \times d}$$

1529 with $c \rightarrow \infty$, ensure that the attention block

$$1531 \text{Attn}(\mathbf{z}, \mathbf{Z}) = \mathbb{S}(\mathbf{z}^\top \mathbf{W} \mathbf{Z}^\top) \mathbf{Z} \mathbf{W}_v,$$

1533 performs a cyclic next-index selection: if the query is \mathbf{z}_i , it selects column $j^* \equiv (i + 1) \pmod{n + 2}$
 1534 from \mathbf{Z} and returns \mathbf{z}_{j^*} .
 1535

1536 *Proof. Definition of Matrix \mathbf{W} .* We will first construct a rotation matrix. We have $n + 2$ orthonormal
 1537 position vectors $\mathbf{p}_1, \dots, \mathbf{p}_{n+2} \in \mathbb{R}^{d_p}$. Then, \mathbf{R} is the following $(n + 2) \times (n + 2)$ permutation matrix
 1538

$$1539 \mathbf{R} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix},$$

1545 which cyclically shifts the basis vectors \mathbf{p}_j backward by one index, i.e., $\mathbf{R}\mathbf{p}_j = \mathbf{p}_{j-1 \bmod (n+2)}$. Then,
 1546 we specify
 1547

$$1548 \mathbf{W} = \begin{pmatrix} \mathbf{0}_{d_e \times d_e} & \mathbf{0}_{d_e \times d_p} \\ \mathbf{0}_{d_p \times d_e} & c \cdot \mathbf{R} \end{pmatrix} \in \mathbb{R}^{d \times d}.$$

1550 Hence for $\mathbf{z}_i = (\mathbf{e}_i; \mathbf{p}_i)$, we have $(\mathbf{e}_i^\top, \mathbf{p}_i^\top) \mathbf{W} = (\mathbf{0}, \mathbf{p}_i^\top \mathbf{R})$. Thus the dot-product with \mathbf{z}_j is
 1551

$$1552 (\mathbf{0} \ \mathbf{p}_i^\top \mathbf{R}) \begin{pmatrix} \mathbf{e}_j \\ \mathbf{p}_j \end{pmatrix} = \mathbf{p}_i^\top \mathbf{R} \mathbf{p}_j.$$

1555 Since positional encodings are orthogonal, we know that:

$$1556 \mathbf{p}_i^\top \mathbf{R} \mathbf{p}_j = \begin{cases} 1, & j \equiv i + 1 \pmod{(n + 2)}, \\ 0, & \text{else.} \end{cases}$$

1559 So row-wise softmax $\mathbb{S}(\mathbf{x}^\top \mathbf{W} \mathbf{X}^\top)$ places all probability mass at column $j^* \equiv i + 1 \pmod{(n + 2)}$ by
 1560 saturating softmax at position j as $c \rightarrow \infty$.
 1561

1562 *Definition of Matrix \mathbf{W}_v .* In this case, we simply set $\mathbf{W}_v = \mathbf{I}_d$, and thus, once the row-wise softmax
 1563 selects column j^* with probability 1, we have

$$1564 \mathbf{z}_{j^*}^\top \mathbf{W}_v = \mathbf{z}_{j^*},$$

1565 so the final output is precisely the chosen \mathbf{z}_{j^*} . This completes the construction. \square

Having defined the attention block, we state the following proposition that helps selecting different MLPs for the tokens z_1, \dots, z_{n+1} outputted by the attention block.

Having defined the attention block, we now show how a mixture-of-experts layer can exclusively select MLP_i for each token $z_i, i = 1, \dots, n+1$ outputted by the attention block.

Proposition 5. *Let MLP_1, \dots, MLP_{n+1} be $n+1$ experts in a mixture-of-experts (MoE) module. Suppose we have $n+1$ fixed token embeddings $\{z_1, z_2, \dots, z_{n+1}\} \subset \mathbb{R}^d$, where each token is formed according to Assumption 2. Given routing parameters $W = [w_1 \dots w_{n+1}]^\top$, define the MoE feed-forward block as*

$$\text{MoEBlock}(z) = \sum_{j=1}^{n+1} [\text{Softmax}(Wz)_j \cdot MLP_j(z)],$$

where

$$\text{Softmax}(Wz)_j = \frac{\exp(w_j^\top z)}{\sum_{k=1}^{n+1} \exp(w_k^\top z)}, \quad j = 1, \dots, n+1.$$

There exist routing matrix $W \in \mathbb{R}^{(n+1) \times d}$ such that the distribution $\text{Softmax}(c \cdot Wz_i)$ as $c \rightarrow \infty$ assigns a weight of 1 on MLP_i when z_i is given as input.

Proof. We partition w_j to ignore the content embedding e_i and match the positional block p_j .

Concretely, write $w_j = (\mathbf{0}_{d_e}^\top \ p_j^\top)^\top$. Then, for each token $z_i = (e_i; p_i)$,

$$w_j^\top z_i = (\mathbf{0}_{d_e}^\top \ p_j^\top) \begin{pmatrix} e_i \\ p_i \end{pmatrix} = p_j^\top p_i.$$

Since $p_j^\top p_i = \delta_{ij}$, we have $w_j^\top z_i = \delta_{ij}$. Therefore, the softmax evaluates to

$$\lim_{c \rightarrow \infty} \text{Softmax}(c \cdot Wz_i)_j \rightarrow \frac{\exp(\delta_{ij})}{\sum_{k=1}^{n+1} \exp(\delta_{ik})} = \delta_{ij}.$$

In other words, $\text{Softmax}(c \cdot Wz_i)$ places all mass on expert $j = i$. Thus each token z_i (for $i = 1, \dots, n+1$) deterministically selects the i -th expert MLP_i . \square

In the next proposition, we show how to iteratively expand the partial sums by adding and subtracting the digit obtained from the attention block and write each resulting sum to a distinct spot in the output vector.

Proposition 6 (Partial-Sum MLPs). *Suppose that the embedding dimension d satisfies $d \geq 2^{j+1} + d_p$. Let z_{prev} contain the 2^{j-1} partial sums s_k each encoded by a pair $(\cos(\omega s_k), \sin(\omega s_k))$ of coordinates such that:*

$$z_{\text{prev}} = [\cos(\omega s_1) \ \sin(\omega s_1) \ \dots \ \cos(\omega s_{2^{j-1}}) \ \sin(\omega s_{2^{j-1}}) \ 0 \dots 0]^\top \in \mathbb{R}^d,$$

and let z_{curr} contain the input digit d_j encoded in the first two coordinates:

$$z_{\text{curr}} = [\cos(\omega d_j) \ \sin(\omega d_j) \ 0 \ \dots \ 0]^\top \in \mathbb{R}^d.$$

Then, for any $1 \leq j \leq n$, there exist $MLP_j : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that when $(z_{\text{prev}}, z_{\text{curr}})$ is given as input, it outputs the vector $z_{\text{out}} \in \mathbb{R}^d$ so that its first 2^j coordinate-pairs store the trigonometric encodings of $(s_k + d_j)$, and the next 2^j coordinate-pairs store those of $(s_k - d_j)$. Formally, first 2^j coordinates are $[\cos(\omega(s_k + d_j)), \sin(\omega(s_k + d_j))]$ for all partial sums s_k , and the next 2^j coordinates are $[\cos(\omega(s_k - d_j)), \sin(\omega(s_k - d_j))]$ for all partial sums s_k , with any remaining coordinates set to zero.

Proof. Each expert MLP_j (for $1 \leq j \leq n$) adds j -th integer d_j in both its positive and negative form to all previously computed partial sums. For simplicity, let's say that j -th integer to add is d_j . By trigonometric identities, we know that

$$\cos(\omega(s_k + d_j)) = \cos(\omega s_k) \cos(\omega d_j) - \sin(\omega s_k) \sin(\omega d_j),$$

$$\sin(\omega(s_k + d_j)) = \sin(\omega s_k) \cos(\omega d_j) + \cos(\omega s_k) \sin(\omega d_j),$$

1620 and similarly,
 1621

$$\begin{aligned} \cos(\omega(s_k - d_j)) &= \cos(\omega s_k) \cos(\omega d_j) + \sin(\omega s_k) \sin(\omega d_j), \\ \sin(\omega(s_k - d_j)) &= \sin(\omega s_k) \cos(\omega d_j) - \cos(\omega s_k) \sin(\omega d_j). \end{aligned}$$

1624 Using the above identities, we will obtain the sum by introducing matrices that do shift/swap
 1625 operations. Concretely, for $k = 1, \dots, 2^m$, the k -th 2×2 block acts on $\begin{pmatrix} \cos(\omega s_k) \\ \sin(\omega s_k) \end{pmatrix}$ in \mathbf{z}_{prev} . We define:
 1626

$$\begin{aligned} \mathbf{W}_{\sin}^+ &= \text{diag} \left(\underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{2^{j-1} \text{ blocks}}, 0, \dots, 0 \right), \\ \mathbf{W}_{\sin}^- &= \text{diag} \left(\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{2^{j-1} \text{ blocks}}, 0, \dots, 0 \right). \end{aligned}$$

1638 The above constructions of \mathbf{W}_{\sin}^+ and \mathbf{W}_{\sin}^- satisfy,

$$\mathbf{W}_{\sin}^+ \mathbf{z}_{\text{prev}} = \left[-\sin(\omega s_1) \cos(\omega s_1) \dots -\sin(\omega s_{2^{j-1}}) \cos(\omega s_{2^{j-1}}) 0 \dots 0 \right]^T \in \mathbb{R}^d$$

1641 and

$$\mathbf{W}_{\sin}^- \mathbf{z}_{\text{prev}} = \left[\sin(\omega s_1) -\cos(\omega s_1) \dots \sin(\omega s_{2^{j-1}}) -\cos(\omega s_{2^{j-1}}) 0 \dots 0 \right]^T \in \mathbb{R}^d.$$

1644 Each of these acts blockwise on the first 2^j coordinates of \mathbf{z}_{prev} and zeroes out everything else in
 1645 dimension d . We also have $\mathbf{z}_{\text{curr}} \in \mathbb{R}^d$ with two designated coordinates $\mathbf{z}_{\text{curr},1} = \cos(\omega d_j)$, and
 1646 $\mathbf{z}_{\text{curr},2} = \sin(\omega d_j)$, with all other coordinates being zero. We multiply \mathbf{z}_{prev} by $\cos(\omega d_j)$ and $\sin(\omega d_j)$
 1647 elementwise. Formally, the sum

$$\mathbf{z}_{\text{curr},1} \cdot \mathbf{z}_{\text{prev}} + \mathbf{z}_{\text{curr},2} \cdot (M_{\sin}^+ \mathbf{z}_{\text{prev}})$$

1650 gives the 2^{j-1} partial sums $\{s_k + d_j\}_{k=1}^{2^{j-1}}$ stored in the coordinates from 1 to 2^j . We define $\mathbf{W}_{\text{shift}} \in \mathbb{R}^{d \times d}$
 1651 in a block form with three row blocks and two column blocks:

$$\mathbf{W}_{\text{shift}} = \begin{pmatrix} \mathbf{0}_{2^j \times 2^j} & \mathbf{0}_{2^j \times (d-2^j)} \\ \mathbf{I}_{2^j} & \mathbf{0}_{2^j \times (d-2^j)} \\ \mathbf{0}_{(d-2^{j+1}) \times 2^j} & \mathbf{0}_{(d-2^{j+1}) \times (d-2^j)} \end{pmatrix}.$$

1656 When applied, the above matrix shifts the first 2^j entries of \mathbf{z}_{prev} by 2^j coordinates. Now, also define

$$\mathbf{z}_{\text{curr},2} \cdot (\mathbf{W}_{\text{shift}} \mathbf{W}_{\sin}^- \mathbf{z}_{\text{prev}}) + \mathbf{z}_{\text{curr},1} \cdot (\mathbf{W}_{\text{shift}} \mathbf{z}_{\text{prev}}).$$

1659 This way, the above sum gives us the 2^{j-1} partial sums $\{s_k - d_j\}_{k=1}^{2^{j-1}}$ stored in the coordinates from
 1660 $2^j + 1$ to 2^{j+1} encoded in trigonometric format. Then, we normalize this output of the model by $1/2$
 1661 and obtain the following output:
 1662

$$\begin{aligned} & (\mathbf{z}_{\text{curr},1} \cdot \mathbf{z}_{\text{old}} + \mathbf{z}_{\text{curr},2} \cdot (M_{\sin}^+ \mathbf{z}_{\text{old}}) + \mathbf{z}_{\text{curr},2} \cdot (\mathbf{W}_{\text{shift}} \mathbf{W}_{\sin}^- \mathbf{z}_{\text{prev}}) + \mathbf{z}_{\text{curr},1} \cdot (\mathbf{W}_{\text{shift}} \mathbf{z}_{\text{prev}})) \\ &= [\cos(\omega(s_1 + d_j)), \sin(\omega(s_1 + d_j)), \dots, \cos(\omega(s_{2^{j-1}} + d_j)), \sin(\omega(s_{2^{j-1}} + d_j)), \\ & \quad \cos(\omega(s_1 - d_j)), \sin(\omega(s_1 - d_j)), \dots, \cos(\omega(s_{2^{j-1}} - d_j)), \sin(\omega(s_{2^{j-1}} - d_j)), \\ & \quad 0, \dots, 0]^T \in \mathbb{R}^d. \end{aligned}$$

1669 Thus, this is exactly the representation of 2^j partial sums. This completes the argument. We should
 1670 remark that, the above argument utilizes a *gated MLP* which explicitly multiplies the elements of
 1671 the input features, namely, \mathbf{z}_{curr} with the partial sums \mathbf{z}_{prev} . On the other hand, we don't require any
 1672 nonlinear activation function, so our MLP constructions have the form $\text{MLP}(\mathbf{z}) = \mathbf{W}_3(\mathbf{W}_1 \mathbf{z} \odot \mathbf{W}_2 \mathbf{z})$
 1673 for suitable choices of $\mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3$ where \odot denotes the Hadamard product. The use of gated MLPs
 is a standard practice in transformer architectures (Shazeer, 2020). \square

1674
 1675 **Proposition 7** (Read-Off MLP). Suppose that every partial sum s_k is in the range $[-S, S]$ and let
 1676 $\omega < \pi/2S$. Assume that the vector

$$1677 \quad \mathbf{z} = [\cos(\omega s_1), \sin(\omega s_1), \dots, \cos(\omega s_{2^n}), \sin(\omega s_{2^n}), 0, \dots, 0]^\top \in \mathbb{R}^d,$$

1678 contains 2^n partial sums $\{s_1, \dots, s_{2^n}\}$ encoded in trigonometric form, where $d = 2^{n+1} + n + 2$. Then
 1679 there exists a single feed-forward network $MLP_{n+1} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that, given input \mathbf{z} , it selects
 1680 the smallest nonnegative s_ℓ from $\{s_1, \dots, s_{2^n}\}$ and outputs the embedding $\mathbf{e}_{s_\ell} \in \mathbb{R}^d$, where s_ℓ is that
 1681 minimal nonnegative partial sum.

1682 **Remark:** Our construction relies on gated MLP, rather than standard MLP, as in Proposition 6.

1683 *Proof.* We know that the input embedding \mathbf{z} represents 2^n pairs, each pair $(\cos(\omega s_i), \sin(\omega s_i))$ stored
 1684 consecutively. That is,

$$1685 \quad \mathbf{z} = [\cos(\omega s_1), \sin(\omega s_1), \dots, \cos(\omega s_{2^n}), \sin(\omega s_{2^n}), 0, \dots, 0]^\top \in \mathbb{R}^d,$$

1686 We will identify the smallest $s_\ell \geq 0$ and output an embedding \mathbf{e}_{s_ℓ} denoting that integer. We are given
 1687 that ω is small enough such that when $s_\ell \in [0, S]$, we ensure $S\omega < \pi/2$. This guarantees $\sin(\omega s_\ell) \geq 0$
 1688 if and only if $s_\ell \geq 0$. First, we wish to collapse \mathbf{z} into a single vector of size 2^n , keeping $\cos(\omega s_\ell)$
 1689 only when $\sin(\omega s_\ell) \geq 0$ and zeroing it out otherwise. We define two matrices $\mathbf{W}_{\cos}, \mathbf{W}_{\sin} \in \mathbb{R}^{d \times d}$ by
 1690

$$1691 \quad (\mathbf{W}_{\cos})_{i, (2i-1)} = 1, \quad (\mathbf{W}_{\cos})_{i, j} = 0 \quad \text{for } j \neq 2i-1, \\ 1692 \quad (\mathbf{W}_{\sin})_{i, (2i)} = 1, \quad (\mathbf{W}_{\sin})_{i, j} = 0 \quad \text{for } j \neq 2i.$$

1693 for $1 \leq i \leq 2^n$ and all other rows/columns of $\mathbf{W}_{\sin}, \mathbf{W}_{\cos}$ are zero. Hence each matrix picks out
 1694 alternate coordinates:

$$1695 \quad \mathbf{z}_{\cos} = \mathbf{W}_{\cos} \mathbf{z} = \begin{bmatrix} \cos(\omega s_1) \\ \cos(\omega s_2) \\ \vdots \\ \cos(\omega s_{2^n}) \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^d, \quad \mathbf{z}_{\sin} = \mathbf{W}_{\sin} \mathbf{z} = \begin{bmatrix} \sin(\omega s_1) \\ \sin(\omega s_2) \\ \vdots \\ \sin(\omega s_{2^n}) \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^d.$$

1696 In order to find the minimum non-negative number, we need to find the number s such that it
 1697 maximizes $\cos(\omega s)$ and satisfies $\sin(\omega s) \geq 0$. For this, we utilize a sigmoid activation function in the
 1698 following way:

$$1699 \quad \mathbf{z}_{\text{filter}} = \mathbf{z}_{\cos} \odot \sigma(c \mathbf{z}_{\sin}),$$

1700 where $\sigma(x) = \frac{1}{1+\exp(-x)}$ is element-wise sigmoid function, and $c \rightarrow \infty$ is a large constant. With this
 1701 choice of c , the sigmoid output will be 1 when $s_\ell \geq 0$ and 0 otherwise. Therefore, the resulting vector
 1702 $\mathbf{z}_{\text{filter}}$ contains $\cos(\omega s)$ values at indices where $\sin(\omega s)$ is positive. Now, for $0 \leq s_\ell \leq S$ with $S\omega \leq \frac{\pi}{2}$,
 1703 the ordering of s_ℓ from smallest to largest is the same as the ordering of $\cos(\omega s_\ell)$ from largest to
 1704 smallest. Thus, to find the minimum nonnegative sum, we find the partial sum ℓ^* that maximizes
 1705 $\cos(\omega s_\ell)$. Utilizing another gating, we calculate

$$1706 \quad \text{Softmax}(c \mathbf{z}_{\text{filter}})^\top \mathbf{z}_{\text{filter}}$$

1707 as $c \rightarrow \infty$. The softmax vector will be one-hot with 1 at index ℓ^* that has the largest $\cos(\omega s_\ell)$.
 1708 A second multiplication with $\mathbf{z}_{\text{filter}}$ will return this $\cos(\omega s_{\ell^*})$. Therefore, $\text{Softmax}(c \mathbf{z}_{\text{filter}})^\top \mathbf{z}_{\text{filter}} =$
 1709 $\cos(\omega s_{\ell^*})$. Next, we retrieve the corresponding sine entry of s_{ℓ^*} by applying the same one-hot
 1710 selection to \mathbf{z}_{\sin} . Formally,

$$1711 \quad \text{Softmax}(c \mathbf{z}_{\text{filter}})^\top \mathbf{z}_{\sin} = \sin(\omega s_{\ell^*}),$$

1712 as $c \rightarrow \infty$. Hence, from these two selected coordinates, $[\cos(\omega s_{\ell^*}), \sin(\omega s_{\ell^*})]$, we produce the final
 1713 embedding in \mathbb{R}^d by placing them in the first two coordinates and zeros elsewhere:

$$1714 \quad \mathbf{e}_{s_{\ell^*}} = [\cos(\omega s_{\ell^*}), \sin(\omega s_{\ell^*}), 0, \dots, 0]^\top,$$

1715 where s_{ℓ^*} is the minimal nonnegative sum. This completes the argument. \square

1728
 1729 **Proposition 1** (Solving MNNS). *There exists a 1-layer transformer architecture with embedding*
 1730 *dimension $d = d_e + d_p$, where $d_e = 2^{n+1}$ is the state-encoding dimension and $d_p = n + 2$ is the*
 1731 *positional-encoding dimension that solves the MNNS task using CoT2 by storing (sine, cosine)*
 1732 *embeddings of all 2^k states at the k -th iteration in a non-overlapping manner.*

1733 *Proof.* We will argue that by combining Propositions 5 to 7, we obtain a single-layer transformer that
 1734 is formed by an attention block followed by an MoE feed-forward block, which solves the Minimum
 1735 Non-Negative Sum (MNNS) task.

1736 Suppose that we have n input integers d_1, \dots, d_n , encoded as z_1, \dots, z_n , plus an arrow (\rightarrow) token
 1737 z_{n+1} and a dummy token z_{n+2} corresponding to the integer 0. In this case, we will output the tokens
 1738 representing the ground-truth sums s_1, \dots, s_n , therefore, the number of output tokens is $m = n$ in the
 1739 MNNS setting. We assume that the inputs are encoded according to Assumption 2. By Proposition 6,
 1740 there exist $\text{MLP}_1, \dots, \text{MLP}_n$ that perform the following: whenever MLP_j is selected with input
 1741 $(z_{\text{prev}}, z_{\text{curr}})$ such that z_{prev} stores 2^{j-1} partial sums and z_{curr} stores the digit d_j , it adds and subtracts d_j
 1742 to all previously stored partial sums and stores the resulting 2^j partial sums in z_{out} . The dummy token
 1743 z_{n+2} that corresponds to the integer 0 allows us to initialize the partial sums from zero. If the query
 1744 token is z_{n+2} , we produce the first partial sums by combining this dummy 0 with d_1 , which are $(+d_1)$
 1745 and $(-d_1)$ encoded in an output token.

1746 We assign positional encodings cyclically to output tokens. That means, the first $n + 2$ input tokens
 1747 have positional encodings from p_1 to p_{n+2} , and the output tokens have p_1, p_2, \dots as their positional
 1748 encodings, in this exact order. This way, by Proposition 4, $\text{Attn}(z, Z)$ attends and selects the input
 1749 digit tokens z_1, z_2, \dots, z_n and finally arrow z_{n+1} one by one and feeds to $\text{MoEBlock}(\cdot)$.

1750 By Proposition 5, there's a $\text{MoEBlock}(z)$ such that if the input is z_j (for $j \leq n$), MLP_j is selected
 1751 with probability 1, and if the input is arrow token z_{n+1} , MLP_{n+1} is selected with probability 1, which
 1752 is the MLP to read-off the final answer. In the input tokens z_1, \dots, z_n , the first two coordinates store
 1753 the trigonometric representation of d_1, \dots, d_n . To allow outputting the final answer by MLP_{n+1} , the
 1754 partial sums obtained in the intermediate steps need to be written to separate coordinates. Therefore,
 1755 MLP_j takes a vector filled in the first 2^j coordinates, adds d_j and writes to the first 2^j coordinates,
 1756 subtracts d_j and writes to the next 2^j coordinates, and finally divides the entire representation by 2 to
 1757 maintain consistent scaling since the number of partial sums is doubled. In other words, the first n
 1758 MLPs have some repeated behavior. Finally, by Proposition 7, MLP_{n+1} receives a vector that encodes
 1759 all 2^n possible partial sums in cos/sin form in 2^{n+1} coordinates and extracts the embedding of the
 1760 smallest nonnegative number among them.

1761 Altogether, this single-layer transformer with an attention module to pass the tokens to the mixture-
 1762 of-experts MLP solves the Minimum Non-Negative Sum task by following CSFT described in
 1763 3. \square

1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781