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Abstract

To learn approximately optimal acting policies for decision problems, modern
Actor Critic algorithms rely on deep Neural Networks (DNNs) to parameterize
the acting policy and greedification operators to iteratively improve it. The re-
liance on DNNs suggests an improvement that is gradient based, which is per
step much less greedy than the improvement possible by greedier operators such
as the greedy update used by Q-learning algorithms. On the other hand, slow
changes to the policy can also be beneficial for the stability of the learning process,
resulting in a tradeoff between greedification and stability. To better address this
tradeoff, we propose to decouple the acting policy from the policy evaluated by the
critic. This allows the agent to separately improve the critic’s policy (e.g. value
improvement) with greedier updates while maintaining the slow gradient-based
improvement to the parameterized acting policy. We investigate the convergence
of this approach using the popular analysis scheme of generalized Policy Iteration
in the finite-horizon domain. Empirically, incorporating value-improvement into
the popular off-policy actor-critic algorithms TD3 and SAC significantly improves
or matches performance over their respective baselines, across different environ-
ments from the DeepMind continuous control domain, with negligible compute
and implementation cost.

1 Introduction

The objective of Reinforcement Learning (RL) is to learn acting policies π, a probability distribution
over actions, that, when executed, maximize the expected return (i.e., value) in a given task. Modern
RL methods of the Actor-Critic (AC) family (e.g., Schulman et al., 2017; Fujimoto et al., 2018;
Haarnoja et al., 2018b; Abdolmaleki et al., 2018) use deep neural networks to parameterize the acting
policy, which is iteratively improved using variations of policy improvement operators based in
stochastic gradient-descent (SGD), e.g., the policy gradient (Sutton et al., 1999). These methods rely
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on a specific type of policy improvement operators called greedification operators, which produce a
new policy π′ that increases the current evaluation Qπ (see Definition 2 for more detail).
In gradient-based optimization the magnitude of the update to the policy - the amount of greedification
- is governed by the learning rate, which cannot be tuned independently to induce the maximum
greedification possible at every step, the greedy update π(s) = argmaxaQ

π(s, a) (which we define
generally as any policy π that has support only on maximizing actions). Similarly, executing N
repeating gradient steps with respect to the same batch will encourage the parameters to over-fit to
the batch (as well as being computationally intensive) and is thus does not address the problem of
limited greedification of gradient based operators. For these reasons, the greedification of DNN-based
policies is typically slow compared to, for instance, the argmax greedification used in Policy Iteration
(Sutton & Barto, 2018) and Q-learning (Mnih et al., 2015).
While limited greedification can slow down learning, previous work has shown that too much
greedification can cause instability in the learning process through overestimation bias (see van
Hasselt et al., 2016; Böhmer et al., 2016; Fujimoto et al., 2018), which can be addressed through
softer, less-greedy updates (Fox et al., 2016). This leads to a direct tradeoff between greedification
and learning stability.
Previous work partially addresses this tradeoff by decoupling the policy improvement into two steps.
First, an improved policy with controllable greediness is explicitly produced by a greedification
operator as a target. Second, the acting policy is regressed against this target using supervised learning
loss, such as cross-entropy. The target policy is usually not a DNN, and can be for instance a Monte
Carlo Tree Search-based policy, a variational parametric distribution, or a nonparametric model (see
Haarnoja et al., 2018b; Abdolmaleki et al., 2018; Grill et al., 2020; Hessel et al., 2021; Danihelka
et al., 2022). Unfortunately, this approach does not address the tradeoff fully: The parameterized
acting policy is still improved with gradient-based optimization which imposes similar limitations on
the rate of change to the acting policy.
To better address this tradeoff, we propose to explicitly decouple the acting policy from the evaluated
policy (the policy evaluated by the critic), and apply greedification independently to both. This allows
for (i) the evaluation of policies that need not be parameterized and can be arbitrarily greedy, while
(ii) maintaining the slower policy improvement to the acting policy that is suitable for DNNs and
facilitates learning stability. We refer to an update step which evaluates an independently-improved
policy as a value improvement step and to this approach as Value-Improved Actor Critic (VIAC).
Since this framework diverges from the assumption made by the majority of RL methods (evaluated
policy ≡ acting policy) it is unclear whether this approach converges and for which improvement
operators. Our first result is that policy improvement is not a sufficient condition for convergence
to the optimal policy of even exact Policy Iteration algorithms because it allows for infinitesimal
improvement. To classify improvement operators that guarantee convergence, we identify necessary
and sufficient conditions for operators to guarantee convergence to an optimal policy for a family of
generalized Policy Iteration algorithms, a popular setup for underlying-convergence analysis of AC
algorithms (Tsitsiklis, 2002; Smirnova & Dohmatob, 2019).
We prove convergence for this class of operators in both generalized Policy Iteration and Value-
Improved generalized Policy Iteration algorithms in finite-horizon MDPs. Prior work has shown that
the generalized Policy Iteration setup converges for specific operators, as well as for all operators
that induce deterministic policies (see Williams & Baird III, 1993; Tsitsiklis, 2002; Bertsekas, 2011;
Smirnova & Dohmatob, 2019). Our results complement prior work by extending convergence to
stochastic policies and a large class of practical operators, such as the operator developed for the
Gumbel MuZero algorithm (Danihelka et al., 2022), as well as the Value-Improved extension to the
algorithm. We demonstrate that incorporating value-improvement into practical algorithms can be
beneficial with experiments in Deep Mind’s control suite (Tunyasuvunakool et al., 2020) with the
popular off-policy AC algorithms TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018b),
where in all environments tested VI-TD3/SAC significantly outperform or match their respective
baselines.

2 Background

The reinforcement learning problem is formulated as an agent interacting with a Markov Decision
Process (MDP)M(S,A, P,R, ρ,H), where S a state space,A an action space, P : S ×A →P(S)
is a conditional probability measure over the state space that defines the transition probability P (s, a).
The immediate reward R(s, a) is a state-action dependent bounded random variable. Initial states
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are sampled from the start-state distribution ρ. In finite horizon MDPs, H specifies the length of a
trajectory in the environment. Many RL setups and algorithms consider the infinite horizion case,
where H →∞, but for simplicity’s sake our theoretical analysis in Section 3 remains restricted to
finite horizons, discrete state spaces and finite (and thus discrete) action spaces |A| <∞. Note that
in finite horizon MDP the policy is not stationary, as the same state can have different optimal actions
at different timesteps t of an episode. We model this without loss of generality still as a stationary
policy problem by augmenting the state with the decision time t, which casts an underlying state that
is visited twice in an episode as two different states, which preserves stationarity of the policy in the
augmented state space. The resulting state and transitions of the MDP then become a directed acyclic
graph (DAG). Throughout the paper, we will assume all states in the MDP contain the timestep as
part of the representation.
The objective of the agent is to find a policy π : S →P(A), a distribution over actions at each state,
that maximizes the objective J , the expected return from the starting state distribution ρ. We denote
the set of all possible policies with Π. This quantity can also be written as the expected state value
V π with respect to starting states s0:

J(π) = E
[
V π(s0)

∣∣ s0∼ρ ] = E
[H−1∑
t=0

γtrt

∣∣∣ s0∼ρ, st+1∼P (st,at)
at∼π(st), rt∼R(st,at)

]
.

The discount factor 0 < γ ≤ 1 is traditionally set to 1 in finite horizon MDPs. The state value V π

can also be used to define a state-action Q-value and vice versa, i.e., ∀s ∈ S,∀a ∈ A:

Qπ(s, a) = E
[
r + γV π(s′)

∣∣∣ r∼R(s,a)
s′∼P (s,a)

]
, V π(s) = E

[
Qπ(s, a)

∣∣ a∼π(s) ] .
We refer to the optimal policy π∗ = argmaxπ V

π and its value as V ∗ and Q∗ respectively.
Policy Improvement To find π∗, many RL and Dynamic Programming (DP) approaches based in
approximate or exact Policy Iteration (Sutton & Barto, 2018) can be cast as iterative processes that
aim to produce a sequence of policies πn that improve over iterations such that the exact values V πn

or approximate values vπn ≈ V πn satisfy V πn+1 > V πn (or in the approximate case vπn+1 ⪆ vπn)
using policy improvement operators:
Definition 1 (Policy Improvement Operator). If an operator I : Π→ Π satisfies:

∀π ∈ Π,∀s ∈ S : V I(π)(s) ≥ V π(s), ∀π ∈ Π,∃s ∈ S : V I(π)(s) > V π(s) (1)

(i.e., policy improvement), as long as π is not yet an optimal policy V π ̸= V ∗, we call I a policy
improvement operator.

Greedification The policy improvement theorem (Sutton & Barto, 2018) is a fundamental result
in RL and DP theory, which connects the policy improvement optimization process to a specific
maximization problem referred to in literature as greedification (see Chan et al., 2022). Greedification
is the process of finding a policy π′ which increases another policy, π’s, evaluation Qπ (Equation 2):
Theorem 1 (Policy Improvement). Let π and π′ be two policies such that ∀s ∈ S:∑

a∈A
Qπ(s, a)π′(a|s) ≥

∑
a∈A

Qπ(s, a)π(a|s) := V π(s). (2)

Then: V π′
(s) ≥ V π(s). (3)

In addition, if there is strict inequality of Equation 2 at any state, then there must be strict inequality
of Equation 3 at at least one state.

See Sutton & Barto (2018) for proof. Theorem 1 proves that when the evaluation Qπ is exact,
greedification with respect to π,Qπ produces an improved policy π′. If the inequality in Equation
2 is strict > we call π′ greedier than π and any policy π′ such that

∑
a∈A Qπ(s, a)π′(a|s) =

maxa∈A Qπ(s, a) a greedy policy with respect to Qπ .
Greedification Operators The policy improvement theorem and greedification give rise to the
most popular class of policy improvement operators, greedification operators, which produce policy
improvement (Equation 3) specifically by greedification:
Definition 2 (Greedification Operator). If an operator I : Π×Q → Π satisfies:∑

a∈A
I(π, q)(a|s)q(s, a) ≥

∑
a∈A

π(a|s)q(s, a), ∀π ∈ Π, ∀q ∈ Q, ∀s ∈ S, (4)
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as well as ∃s ∈ S such that:∑
a∈A
I(π, q)(a|s)q(s, a) >

∑
a∈A

π(a|s)q(s, a), ∀π ∈ Π, ∀q ∈ Q, (5)

unless π is already greedy with respect to q:
∑
a∈A π(a|s)q(s, a) = maxa q(s, a),∀s ∈ S, we call

I a greedification operator.

The set Q denotes all bounded functions q : S ×A → R. Since practical operators are not generally
designed to distinguish between exact Qπ and approximated q ≈ Qπ, we formulate the definition
more generally in terms of q ∈ Q. Greedification operators are policy improvement operators for
q = Qπ (i.e., Theorem 1). Although most of the analysis in this paper will focus on greedification
operators, the problem we point to in our first theoretical result is not unique to greedification and
applies to policy improvement operators in general, which motivates us to explicitly distinguish
between the two. We provide an example of a policy improvement operator that is not a greedification
operator in Appendix A.2, to demonstrate that greedification operators are a strict subset of policy
improvement operators (when q = Qπ).
Perhaps the most famous greedification operator is the greedy operator Iargmax(π, q)(s) =
argmaxa q(s, a), which drives foundational algorithms such as Value Iteration, Policy Iteration
and Q-learning (Sutton & Barto, 2018). Many modern RL methods on the other hand are based
in the actor critic (AC) framework, which we generally refer to as the iteration of (approximate)
policy improvement (improving the actor), (approximate) policy evaluation (evaluating the actor, i.e.,
updating the critic) - rely on variations of the policy gradient operator (Sutton et al., 1999), which is
well suited for the greedification of parameterized policies.
Other popular greedification operators are deterministic greedification operators Idet (Williams
& Baird III, 1993) which produce policies that are greedier (Equation 2) and deterministic. The
regularized-policy improvement operator (see Grill et al., 2020) used by Gumbel MuZero (Dani-
helka et al., 2022) Igmz(π, q)(s) = softmax(σ(q(s, ·)) + log π(s)) (for σ a monotonically in-
creasing transformation). Best-of-N (BoN), a popular operator in large language model align-
ment with RL (Gui et al., 2024; Huang et al., 2025). At a state s BoN samples N actions
AN = {a1, . . . , aN} from π(s) and evaluates them using q(s, ai). BON returns the maximiz-
ing action: IBON (π, q)(s) = argmaxa∈AN

q(s, a). As the sample size N increases, BoN better
approximates the argmaxa∈A q(s, a).
Implicit greedification operators Recently, Kostrikov et al. (2022) proposed that it is also possible
to produce implicit greedification, by training a critic to approximate the value of a greedier policy
directly, without that policy being explicitly defined. The authors demonstrate that by training a critic
vψ with the asymmetric expectile loss Lτ2 on a data set D drawn with policy π,

L(θ) = E
[
Lτ2

(
vψ(s), Q

π(s, a)
)∣∣s, a ∼ D] , Lτ2(x, y) = |τ − 1y−x<0| (y − x)2 , (6)

for τ > 1
2 the critic vψ(s) directly estimates the value of a policy than is greedier than π, with τ → 1

corresponding to the value of an argmax policy. This operator is then used to drive their Implicit
Q-learning (IQL) algorithm for offline-RL, where the Lτ2 enables the critic to approximate the value
of an optimal policy without the bootstrapping of actions that are out of the training distribution.
Generalized policy iteration A popular algorithmic setup for the analysis of convergence to the
optimal policy of RL and DP algorithms is a generalized Policy Iteration algorithm (sometimes
called specifically Optimistic or Modified Policy Iteration, see Bertsekas (2011)), which we include
in Algorithm 1. This setup is generalized both in the greedification operator I (Value and Policy
Iteration algorithms usually rely specifically on Iargmax) as well as the update of the value, which is
a finite-number of Bellman updates k ≥ 1.

Algorithm 1 Generalized Policy Iteration

1: For starting functions q ∈ Q, π ∈ Π greedification operator I, k ≥ 1 and ϵ > 0
2: while |

∑
a∈A

(
π(a|s)q(s, a)

)
−maxb q(s, b)| > 0,∀s ∈ S and |q(s, a)− T ∗q(s, a)| > 0 do

3: q(s, a)← (T π)kq(s, a), ∀(s, a) ∈ S ×A
4: π(s)← I(π, q)(s), ∀s ∈ S

The update q(s, a) ← (T π)kq(s, a), ∀(s, a) ∈ S × A denotes k repeating Bellman updates
qi+1(s, a) = T πqi(s, a) = E[R(s, a)] + γEs′∼P [

∑
a′∈A π(a′|s′)qi(s′, a′)], i = 1, . . . , k. When
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k > H,H <∞ the evaluation is exact and the algorithm reduces to Policy Iteration. T ∗ denotes the
Bellman optimality operator, T ∗qi(s, a) = E[R(s, a)] + γEs′∼P [maxa′∈A q(s′, a′)].

3 Value Improved Generalized Policy Iteration Algorithms

Since the framework of Value-Improved AC/GPI generalizes AC/GPI beyond algorithms that evaluate
their own policy, our first objective is to analyze the the underlying convergence of this family of
algorithms under a very general setup. We begin by extending the DP framework of GPI, which
underlies ACs, to a DP framework which underlies VIACs. The framework is extended by decoupling
the improvement of the acting policy from that of the evaluated policy (line 3 in Algorithm 1). We
refer to this new framework as Value-Improved GPI (Algorithm 2). Modifications to the original
algorithm are marked in blue. Since the acting and evaluated policies are improved with different
operators I1 and I2, it is not apparent whether π of Algorithm 2 converges to the optimal policy, i.e.
whether decoupling the policies is sound. Therefore, our aim is to establish general pairs of operators
for which this process converges.

Algorithm 2 Value-Improved Generalized Policy Iteration

1: For starting vectors q ∈ Q, π ∈ Π, policy improvement operators I1, I2, k ≥ 1
2: while |

∑
a∈A

(
π(a|s)q(s, a)

)
−maxb q(s, b)| > 0,∀s ∈ S and |q(s, a)− T ∗q(s, a)| > 0 do

3: q(s, a)← (T I2(π,q))kq, ∀(s, a) ∈ S ×A
4: π(s)← I1(π, q)(s), ∀s ∈ S

A fundamental result in RL is that policy iteration algorithms converge to the optimal policy for
any policy improvement operator (Definition 1 and by extension, all greedification operators) that
produces deterministic policies. This holds because a finite MDP has only a finite number of
deterministic policies through which the policy iteration process iterates (Sutton & Barto, 2018). This
result however does not generalize to operators that produce stochastic policies, which are used by
many practical RL algorithms such as PPO (Schulman et al., 2017), MPO (Abdolmaleki et al., 2018),
SAC (Haarnoja et al., 2018b), and Gumbel MuZero (Danihelka et al., 2022). Our first theoretical
result is that for stochastic policies, the policy improvement property (whether satisfied through
greedification or not) is not sufficient to guarantee convergence, even in the limiting case of Policy
Iteration with exact evaluation.
Theorem 2 (Improvement is not enough). Policy improvement is not a sufficient condition for the
convergence of Policy Iteration algorithms (Algorithm 1 with exact evaluation) to the optimal policy
for all starting policies π0 ∈ Π in all finite-state MDPs.

Proof sketch. With stochastic policies, an infinitesimal policy improvement is possible, which
can satisfy the policy improvement condition at every step and yet converge in the limit to policies
that are not argmax policies. Since every optimal policy is an argmax policy (note that we define
argmax policies as policies with support only on maximizing actions, not necessarily as deterministic
policies), Policy Iteration with such operators cannot be guaranteed to converge to the optimal policy.
For a complete proof see Appendix A.1.
Why is this a problem? Many algorithms (for example, GumbelMZ Danihelka et al. (2022)) are
motivated by policy improvement through demonstrating greedification. Theorem 2 demonstrates
that this is not sufficient to establish that the resulting policy improvement will lead to an optimal
policy. For that reason, convergence for these algorithms must generally proven individually for
each new operator (e.g., see MPO and GreedyAC Chan et al. (2022)), which is often an arduous and
nontrivial process.
Furthermore, Theorem 2 and its underlying intuition highlight a critical gap: we currently lack
guiding principles for designing novel greedification operators in the form of necessary and sufficient
conditions for convergence to the optimal policy. To illustrate that this can lead to problems in
practice, we show in Appendices A.5 and A.6 that choices of the σ used by the greedification operator
Igmz can render this operator either sufficient or insufficient. To address this problem, we identify a
necessary condition and two independent sufficient conditions for greedification operators, such that
they induce convergence of Algorithm 1.
Definition 3 (Necessary Greedification). In the limit of n applications of a greedification operator I
on a value estimate q ∈ Q and a starting policy π0 ∈ Π, the policy πn converges to a greedy policy
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with respect to q, ∀s ∈ S:

lim
n→∞

∑
a∈A

q(s, a)πn(a|s) = max
a

q(s, a), where πn+1(s) = I(πn, q)(s). (7)

Intuition. Since every optimal policy is an argmax policy (has support only on actions that
maximize Q∗), if a greedification operator cannot converge to an argmax policy even in the limit
and for a fixed q then this operator cannot converge to an optimal policy in general. See Appendix
A.1 for a concrete example where such a condition is necessary for convergence of a Policy Iteration
algorithm. It is possible to formulate the same condition more specifically for the set of all Q
functions {Qπ | ∀π ∈ Π}. However, since we are interested in algorithms that may not have access to
exact values Qπ , it seems more prudent to define it more generally ∀q ∈ Q. Since practical operators
are not generally designed to distinguish between exact Qπ and approximated q ≈ Qπ , we formulate
the definition more generally in terms of q ∈ Q.
Unfortunately, the necessary greedification condition is not sufficient, even in the case of exact
evaluation. This is due to the fact that assuming convergence to a greedy policy in the limit for a fixed
q function does not necessarily imply the same when the q function changes between iterations. There
exist settings where the ordering of actions a, a′, q(s, a) < q(s, a′) can oscillate between iterations,
preventing the convergence to greedy policies (See Appendix A.3 for a concrete example). Below,
we identify two additional conditions which are each sufficient for convergence in finite horizon and
finite action spaces. The first condition resolves the issue by lower-bounding the rate of improvement,
which guarantees that the oscillation does not continue infinitely. The second simply augments the
necessary greedification condition to require convergence for any sequence of Q functions.
Definition 4 (Lower Bounded Greedification). We call an operator I a lower-bounded greedification
operator if I is a greedification operator (Definition 2) and for every q ∈ Q, ∃ϵ > 0, such that
∀s ∈ S and ∀π ∈ Π: ∑

a∈A
I(π, q)(a|s)q(s, a)−

∑
a∈A

π(a|s)q(s, a) > ϵ,

unless
∑
a∈A I(π, q)(a|s)q(s, a) = maxa q(s, a), ∀s ∈ S.

Intuition. Since the lower bound ϵ is constant with respect to a stationary q, it eliminates the
possibility of infinitesimal improvements and guarantees convergence to an argmax policy in finite
iterations with respect to the stationary q (See Lemma 8 and Appendix A.12 for proof). We note
that this definition does not guarantee convergence to an optimal policy nor an argmax policy with
respect to a non-stationary qn.
Definition 5 (Limit-Sufficient Greedification). Let q0, q1, · · · ∈ Q be a sequence of functions
such that limn→∞ qn = q for some q ∈ Q. Let π0, π1, . . . be a sequence of policies where
πn+1 = I(πn, qn+1) for some operator I . We call an operator I a Sufficient greedification operator
if I is a greedification operator (Definition 2) and in the limit n → ∞ the improved policy πn+1

converges to a greedy policy with respect to the limiting value q, ∀s ∈ S:

lim
n→∞

∑
a∈A

πn(a|s)qn(s, a) = max
a

q(s, a). (8)

Intuition. Even in the presence of infinitesimal improvement and non-stationary estimates qn,
a limit sufficient greedification operator is guaranteed to converge to a greedy policy in the limit
n→∞, as long as there exists a limiting value on the sequence of value estimates limn→∞ qn = q.
Practical operators that are sufficient operators Lower bounded greedification is used to establish
convergence for MPO (see Appendix A.2, Proposition 3 of (Abdolmaleki et al., 2018)). Similarly,
deterministic operators Idet are also lower bounded greedification operators (see Appendix A.4
for proof). Lower bounded greedification operators however cannot contain operators that induce
convergence to the greedy policy only in the limit, because the convergence they induce is in finite
steps. Igmz on the other hand induces convergence only in the limit, and in fact is more generally a
limit-sufficient greedification operator (see Appendix A.5 for proof). The deterministic greedification
operator on the other hand does not converge with respect to arbitrary non-stationary sequences
limn→∞ qn (see Appendix A.7), which leads us to conclude that both sets are useful in that they both
contain practical operators and neither set contain the other. The greedy operator on the other hand is
a member of both sets, demonstrating that the sets are also not disjoint (see Appendix A.8 for proof).
Equipped with Definitions 4 and 5 we establish our main theoretical result, convergence for both
Algorithms 1 and 2 for all sufficient greedification operators:
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Theorem 3 (Convergence of Algorithms 1 and 2). Generalized Policy Iteration algorithms and their
Value Improved extension (Algorithms 1 and 2 respectively) converge for sufficient greedification
operators, in finite iterations (for operators defined in Definition 4) or in the limit (for operators
defined in Definition 5), in finite-horizon MDPs.

Proof sketch: Using induction from terminal states, the proof builds on the immediate convergence
of values of terminal states sH , convergence of policies at states sH−1 and finally on showing that
given that q, π converge for all states st+1, they also converge for all states st (in finite iterations or in
the limit, respectively). The evaluation of a greedier policy (value improvement, line 3 in Algorithm
2) is accepted by the induction that underlies the convergence of Algorithm 1 which allows us to
use the same method to establish convergence for Algorithm 2. The full proof is provided in the
Appendix. In A.9 for Algorithm 1 with limit sufficient operators and k = 1, extended to k ≥ 1
in A.10, to Value-Improved algorithms in A.11, and to lower-bounded operators in A.12.
A corollary of Igmz being a limit-sufficient greedification operator along with Theorem 3 is the
convergence of a process underlying the Gumbel MuZero algorithm.
Corollary 1. The Generalized Policy Iteration process underlying the Gumbel MuZero algorithm
family converges to the optimal policy for finite horizon MDPs, for all π0 ∈ Π such that log π(a|s) is
defined ∀s ∈ S, a ∈ A.

Interestingly, I2 does not need to be a sufficient or even a necessary greedification operator for
convergence to the optimal policy, as is established by the following corollary:
Corollary 2. Algorithm 2 converges to the optimal policy for any non-detriment operator I2 (e.g.,
operators that satisfy the non-strict inequality of Equation 4), as long as I1 is itself sufficient.
For proof see Appendix A.11. As another consequence, Corollary 2 also establishes that the algorithm
converges when implicit greedification operators such as the expectile loss are used for value
improvement. Motivated that the Generalized Policy Iteration process underlying VIAC algorithms
converges, we proceed to empirically evaluate practical RL VIAC algorithms.

4 Value Improved Actor Critic Algorithms

Value-improvement can be incorporated into existing AC algorithms in one of two ways: (i) Incor-
porating an additional explicit greedification operator to produce a greedier evaluation policy, and
use the greedier policy to bootstrap actions from which to generate value targets. (ii) Incorporating
an implicit greedification operator, for example by replacing the value loss with an asymmetric loss
(Algorithms 3 and 4 respectively in Appendix C and implementation details in Appendix D). We
begin by testing the hypothesis that additional greedification of the evaluation policy (e.g., value
improvement) can directly lead to accelerated learning by extending TD3 (Fujimoto et al., 2018) with
value improvement (VI-TD3, Algorithm 3).
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deterministic policy gradient and increasing number of gradient steps (pg=n), with baseline (pg=0)
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We choose the same improvement operator already used by TD3 I2 = I1, the deterministic policy
gradient, as a value improvement operator, in order to decouple possible effects stemming from the
combination of different operators. In order to compare different degrees of greedification, a different
number pg = n of repeating gradient steps with respect to the same batch are applied to the evaluated
policy, which is then discarded after each use. We evaluate the performance of the agents in classic
control environments from the DeepMind continuous control benchmark (Tunyasuvunakool et al.,
2020). Results are presented in Figure 1, where performance increases with greedification (left).
As expected, greedier targets are larger targets (center), that is the difference between the value
bootstrap that uses the greedier policy π′ and the baseline bootstrap increases with greedification.
An interaction with over-estimation bias (which we compute in the same manner as Chen et al.
(2021)) exists in some environments like hopper-stand, but cannot explain the improved performance
exclusively, as shown in the hopper-hop environment (Figure 1, right).
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Figure 2: Mean and one standard error across 10 seeds for VI-TD3 with expectile loss with different
values of the expectile parameter τ . Performance increases up to τ = 0.8 and then decays.

Repeating gradient steps are very computationally expensive however. Implicit policy improvement
on the other hand provides value improvement for negligible compute and implementation cost. In
addition, the greedification amount can be chosen with the greedification parameter τ directly. In
Figure 2 we evaluate VI-TD3 with implicit value improvement (Algorithm 4) based in the expectile
loss operator and increasing values of the greedification-parameter τ . The increased greedification
monotonically improves performance up to a point, from which performance monotonically degrades,
suggesting that the greedification of the evaluated policy can be tuned as a hyperparameter. This sup-
ports the conclusions of previous literature that there is a tradeoff between stability and greedification,
and suggests that this tradeoff can be at least partially addressed with value improvement.
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Figure 3: Baseline TD3 (dashed) and SAC (solid) in red vs. VI-TD3/SAC (blue) with expectile loss
and BoN (dot-dashed). Mean and two standard errors (≈ 95% Gaussian CI) in the shaded area of
evaluation curves across 10 seeds for BoN and 20 for the other agents.

8



In Figure 3 we compare baseline TD3 and SAC (Haarnoja et al., 2018b) to VI-TD3 and VI-SAC
with implicit value improvement (τ = 0.75, blue) across a larger number of control environments.
Across all environments, the VI (blue) variations significantly outperform or matches their respective
baseline (red) while introducing negligible additional compute and implementation cost.
The significant performance increase provided by the expectile operator in Figure 3 raises the
possibility that the performance gains are not due to the greedification of the evaluated policy,
however. Rather, the implicit expectile operator itself may be responsible for the performance gain.
To investigate whether this is the case, we include an additional VI-TD3 variation with an explicit
improvement operator operator: Best-of-N (BoN, dot-dashed, see Section 2). BoN-based VI-TD3
(N = 64) provides similar performance gains to expectile-based VI-TD3 in most environments,
demonstrating that significant performance gains in these domains are not unique to the expectile
operator.
Along similar lines, although Figure 1 demonstrates that it is possible to see performance gains that
are decoupled from overestimation increase, that may not be the case for the expectile operator. It is
possible that the (overall more significant) performance gains of the expectile operator are instead
resulting from strongly-increased over-estimation bias. In Figure 4 in Appendix B we investigate
in more detail the interaction between greedification, performance and over estimation bias per
environment for the expectile operator. We find that in the majority of the environments significant
performance gains are observed without any over estimation increase. We summarize these results in
Table 1 in Appendix B.
We include additional results in Appendix B: (i) In Figure 5 we include results for the recent algorithm
TD7 (Fujimoto et al., 2023), which shows similar performance gains with value improvement. (ii) In
Figure 6 we investigate increasing the greediness of the update to the parameterized acting policy.
Repeating gradient steps on the same batch do not effectively increase sample efficiency, as discussed
in Section 1. (iii) In Figure 7 we investigate the tradeoff between spending the compute of additional
gradient steps for value improvement vs. for increased replay ratio. In line with similar findings
in literature (Chen et al., 2021), replay ratio provides a strong performance gain for small ratios.
However, as the ratio increases, performance degrades, a result which the literature generally attributes
to instability. The VI agent on the other hand does not degrade with the same increase to compute.
(iv) In Figure 8 we investigate more generally how the greedification of the acting policy compares
to the greedification of the evaluated policy - is one more important than the other? Can value
improvement replace policy improvement? Our results suggest that as long as the Value-Improvement
operator is rooted in a policy πi maintained during the learning process, the rate at which this policy
is improved is the more impactful factor. On the other hand, slow policy improvement does not
prevent value-improvement from significantly accelerating the learning process.

5 Related Work

VIAC generalizes the underlying learning scheme of several recent methods. XQL (Garg et al.,
2023), SQL, and EQL (Xu et al., 2023) build on the implicit policy improvement setup of IQL to
design algorithms that iterate a value improvement→ policy extraction loop, rather than the policy
improvement→ policy evaluation loop of standard AC methods. When the policy extraction step
(learning a policy given a value function) can be interpreted as a policy improvement operator, these
algorithms become members of the VIAC family with specific instantiations of operators. BEE (Ji
et al., 2024) is another recent method that explicitly considers a value target that includes its own
maximization operator, albeit from the perspective of mixing targets that take into account exploration
/ exploitation tradeoffs in the environment. Similarly, OBAC Luo et al. (2024) learns a pair of value
functions, one for the acting policy and one using implicit policy improvement over data from the
replay buffer and uses both pairs of value functions to train the acting policy.
In model-based RL, it is popular to employ improvement operators for action selection and policy
improvement, and sometimes even to generate value targets (e.g., value improvement, for example see
Moerland et al., 2023). The more common setup employs the same operator for action selection and
policy improvement (for example, AlphaZero (Silver et al., 2018)). MuZero Reanalyze (Schrittwieser
et al., 2021) is an example of an algorithm that considers using the same operator (tree search in this
case) to produce value targets as well, and thus can be thought of as belonging to the setup of VIAC.
These algorithms however are traditionally motivated from the perspective that the acting policy,
target policy and evaluated policy all coincide as they are all produced by the same operator.
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TD3 can be thought of as an example of an agent which acts, improves, and evaluates three different
policies: The acting policy is improved using the deterministic policy gradient, during action selection
the acting policy is modified with noise in order to induce exploration, and finally the evaluated
policy is regularized with a differently-parameterized noise in order to improve learning stability.
Although only one policy improvement operator is used, TD3 can be thought of as an algorithm
which decouples the acting policy from the evaluated policy. GreedyAC (Neumann et al., 2023)
inspired a family of algorithms (see Lingwei Zhu, 2025) which share similarities with the VIAC
framework in that they explicitly maintain two different policies, although both policies are used for
policy improvement, as opposed to value improvement.

6 Conclusions

In order to better control the tradeoff between greedification and stability in Actor Critic (AC)
algorithms in this work we have proposed to decouple the evaluated policy from the acting policy and
apply policy improvement additionally to the evaluated policy. Since this improvement is retained
only in the value function we refer to this approach as Value-Improved AC (VIAC). VIAC provides a
unified perspective on recent online and offline RL algorithms which combine different improvement
operators (Garg et al., 2023; Xu et al., 2023; Ji et al., 2024). Theoretically, we’ve began by proving
that policy improvement is not a sufficient condition for convergence of Dynamic Programming
(DP) / RL algorithms with stochastic policies. We’ve identified necessary and sufficient conditions
for convergence of such algorithms and demonstrated that Generalized Policy Iteration algorithms
converge to the optimal policy for such sufficient greedification operators in the finite horizon domain.
With this groundwork laid, we’ve then demonstrated that Value-Improved Generalized Policy Iteration,
which respectively underlies VIACs, converges to the optimal policy in the finite horizon domain.
Empirically, VI-TD3 and VI-SAC significantly improve upon or match the performance of their
respective baselines in all DeepMind control environments tested with negligible increase in compute
and implementation costs. We hope that our work will act as motivation to design future AC
algorithms with multiple improvement operators in mind, as well as extend existing algorithms with
value-improvement.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Section 4 Figure 3 we demonstrate that TD3 and SAC with value improve-
ment significantly improve or match performance over baseline in mujoco. In Section
4 Figure 1 and 2 we demonstrate that it is possible to directly increase sample efficiency
through greedification of the evaluation policy (value improvement) up to a point from which
performance degrades, suggesting that greedification can be tuned as a hyperparameter. In
Section 3 Theorem 2 and its proof in Appendix A.1 prove that improvement is not enough
for convergence to the optimal policy for policy iteration algorithms. The necessary and
sufficient conditions identified (Definitions 3, 4 and 5) and the operators belonging to them
are supported proofs in Appendix A. Specifically, the necessary condition is supported by
the example in Appendix A.1. That it is not sufficient is proven in Appendix A.3. That the
sufficient conditions are sufficient as well as convergence of Algorithms 1 and 2 (Theorem
3) is proven in Appendices: A.9 for Algorithm 1 with limit sufficient operators and k = 1,
extended to k ≥ 1 in A.10, to Value-Improved algorithms in A.11, and to lower-bounded
operators in A.12.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our theoretical analysis is limited to finite horizon MDPs with finite action
spaces and discrete state spaces, which is described in the background and in the theorems.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All lemmas and theorems are supported by complete proofs that are to the best
of our knowledge correct. The main assumptions are finite horizon, finite action spaces and
discrete state spaces MDPs, and they are described in the background. To the best of our
knowledge all assumptions are specified.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide pseudocode to the algorithms used in our experiments in Algo-
rithms 3 and 4. The full set of hyperparameters and implementation details are specified in
Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a supplementary materials with code and instructions to faithfully
reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are specified in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use the standard statistical evaluation approach for performance comparison
of standard errors of the mean. We use two standard errors for the main results (Figure 3)
and one standard error for the ablations (all other figures).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify compute resources in Appendix D.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our contributions are to foundational research in RL, and for that reason, do
not have direct societal impacts of which we are aware.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe that our work does not pose high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: We reference the resources we’ve used (namely, other papers and the CleanRL
(Huang et al., 2022) repository), and do not use any assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Theorem 2: policy improvement is not enough

Theorem 2 states: Policy improvement is not a sufficient condition for the convergence of Policy
Iteration algorithms (Algorithm 1 with exact evaluation) to the optimal policy for all starting policies
π0 ∈ Π in all finite-state MDPs.
Proof sketch: We will construct a simple MDP where the Qπ values remain the same for all policies π,
and show that even in this simple example, it is possible for a Policy Iteration algorithm to converge
to non-optimal policies, with policy improvement operators that allow for stochastic policies. In
addition, while adjacent to the narrative of this paper, we demonstrate that the same problem persists
with deterministic policies in continuous action spaces in Appendix A.1.1.

Proof. Consider a very simple deterministic MDP with starting state s0 and two actions a1, a2
that lead respectively to two terminal states s1, s2. The reward function R(s0, a1) = 1 and
R(s0, a2) = 2 and transition function P (s1|s0, a1) = 1, P (s2|s0, a2) = 1 and zero otherwise.
We have Qπ(s0, a1) = 1 and Qπ(s0, a2) = 2 for all policies π ∈ Π. The optimal policy is therefor
π∗(s0) = a2, that is π∗(a1|s0) = 0 and π∗(a2|s0) = 1.
Consider the very simple policy improvement operator Iinadequate. When

∑
a∈A π(a|s)Qπ(s, a) <∑

a∈A softmax(Qπ(s, ·))(a|s)Qπ(s, a), the operator is defined as follows: Iinadequate(π)(s) =
απ(s) + (1 − α)softmax(Qπ(s, ·))(s). Otherwise, when the policy is already greedier than the
softmax policy, the operator is defined as follows: Iinadequate(π)(s) = argmaxaQ

π(s, a).
In natural language: when the policy is less greedy than the softmax policy, the operator produces
a mix between the current policy and the softmax policy. This is always greedier than the current
policy, and thus will act as a greedification operator for policies such policies. When the policy is as
greedy or greedier than the softmax, the operator produces directly a greedy policy.
The policy improvement theorem proves that this operator is a Policy Improvement operator, because
for every policy π it greedifies the policy with respect to Qπ (that is, the policy’s evaluation is strictly
larger unless the policy is already greedy).
We now apply this operator in the Policy Iteration scheme to the simple example MDP speci-
fied above, with a starting uniform policy π(a1|s0) = π(a2|s0). Since this operator produces
a mixture of the current and softmax policy, in the limit it will converge to the softmax policy
limn→∞ πn = softmax(Q(s, ·)) ̸= argmaxaQ(s, a), i.e. to a sub-optimal policy, despite being
a policy improvement operator. This proves that policy improvement operators cannot in general
guarantee convergence to the optimal policy even in the limiting setting of Policy Iteration, and thus
also not in more general setting such as Approximate Policy Iteration.

In this example, since Qπ does not change across different iterations n of a Policy Iteration algo-
rithm, we can identify the following: For convergence to the optimal policy, it is necessary that a
greedification operator πn+1 = I(πn, q) will converge to a greedy policy, with respect to the same
stationary q = Qπ:

lim
n→∞

∑
a∈A

πn(a|s)q(s, a) = max
a

q(s, a), ∀s ∈ S.

More generally, this example shows that we can construct general operators I that produce arbitrary se-
quences of policies πn+1 = I(πn), n ≥ 0 with values V πn+1 such that V πn+1(s) ≥ V πn(s),∀s ∈ S ,
with a strict > in at least one state. Since this is the only condition required by policy improve-
ment, operators I are policy improvement operators. However, since the improvement need not
be bounded it is possible to construct sequences that converge to arbitrary values in the interval
(V π0(s), V ∗(s)],∀s ∈ S. I.e., because the improvement property allows for infinitesimal improve-
ments, it does not guarantee convergence to the optimal policy.

A.1.1 Policy improvement in continuous action spaces

A similar problem applies to continuous action spaces. Imagine a similar MDP as above with a
continuous action spaces A = (0, 1), reward function R(s0, a) = a,∀a ∈ A and zero otherwise and
every transition is terminal. Now imagine an operator that produces a deterministic action I(π, q)(s),
such that

∫
Qπ(s, a)I(π,Qπ)(a|s)ds >

∫
Qπ(s, a)π(a|s)ds unless the policy is already optimal. I

is an improvement operator and satisfies the greedification property.
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Let us again choose π0 the uniform policy across actions. At the first step, I can produce just-above
the middle action a1 > 0.5. At each step, I can produce a new action I(π1, Q

∗)(s0) = π2(s0) =
a2 > a1. However, since the space (0, 1) is the continuum and non-countable, there are more actions
to select that any iterative process will ever have to go through. Therefor, even in the limit n→ inf ,
the operator will never have to choose I(πn, Q∗) = 1.

A.2 Policy Improvement operators that are not Greedification operators

Lemma 1. There exist operators I : Π × Q → Π that are Policy Improvement operators, and
therefore fulfill Equation 3, but are not Greedification operators according to Definition 2.

Proof sketch: We will prove that a random-search operator that mutates the policy π randomly into a
new policy π′, evaluates π′ and keeps it if V π > V π′

, is not a greedification operator, even though it
is a policy improvement operator by definition. We do this by constructing an MDP and choosing
a specific initial policy π0. Greedification with respect to the initial policy, at state s0, results in
π1(s0) = a1. However, the optimal policy in this state actually chooses action a0, because the
optimal policy can take better actions in the future than policy π1. Such an example proves that it
is possible to construct policy improvement while violating greedification, demonstrating that the
condition only goes one way: every greedification operator is policy improvement operator, not vice
versa.

Proof. Consider the following finite-horizon MDP: State space S = {s1, . . . , s10}. Action space
A = a1, a2, a3. States {s5, . . . , s10} are terminal states. Transition function: f(s1, a1) = s2,
f(s1, a2) = s3, f(s1, a3) = s4, f(s2, a1) = s5, f(s2, a2) = s6, f(s3, a1) = s7, f(s3, a2) = s8,
f(s4, a1) = s9, f(s4, a2) = s10.
Rewards: R(s2, s5) = 2, R(s2, s6) = −1, R(s3, s7) = 1, R(s3, s8) = 0, R(s4, s9) = 3,
R(s4, s10) = −2.
Actions that are not specified lead directly to a terminal state with zero reward.
Let us begin by identifying the optimal policy in this MDP, in states s1 and s4: π∗(s1) = a3 and
π∗(s4) = a1, with a value of 3 without a discount factor.
Let us construct a starting policy π0:
π0(s1) = a1, π0(s2) = a2, π0(s3) = a2, π0(s4) = a2. The other states are terminal and there are
no actions to take, and therefor no policy.
Consider the following Policy Improvement operator IE : Π × Q → Π, which this example will
demonstrate is not a greedification operator. IE takes a policy π, and mutates it with a random
process to π′. IE proceeds to conduct exact evaluation of π′, to find V π′

. If V π′
(s) ≥ V π(s) on all

states, and V π′
(s) > V π(s) in at least one state, IE outputs π′. Otherwise, the process repeats. This

process guarentees policy improvement. However, this process may directly produce the optimal
policy in this MDP, which in states s1, s3 is π∗(s1) = a3 and π∗(s4) = a1.
Note however, that the optimal policy is not a greedier policy with respect to the value of π0. For π0,
we have: Qπ0(s1, a1) = −1, Qπ0(s1, a2) = 0, Qπ0(s1, a3) = −2. A greedier policy with respect to
these values cannot deterministically choose action a3, which is the action chosen by the optimal
policy in this state.
Therefor, this example demonstrates that it is possible for a policy to be improved (higher value in
at least one state, and greater or equal on all states), without being greedier with respect to some
original policy’s value. In turn, this demonstrates that there exist Policy Improvement operators that
are not Greedification operators.

A.3 Necessary greedification operators may not be sufficient

Lemma 2. Greedification operators (Definition 2) which have the necessary greedification property
(Definition 3) may not be sufficient for Policy Iteration algorithms to converge to the optimal policy.

Proof sketch: First, we demonstrate the problem: certain operators with the necessary property, such
as the deterministic greedification operators, may not converge to a greedy policy with respect to
non-stationary Qπn . Second, we will show that in Policy Iteration it is possible to experience non
stationary evaluations Qπn that will prevent a necessary-greedification algorithm from converging
to a greedy policy. We will show this by constructing an operator that performs deterministic
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greedification in some states, and greedification that converges only in the limit in other states (both
necessary-greedification operators), and show that the problem can persist in practical MDPs. This
operator is a necessary-greedification operator in all states. That is, with respect a stationary q, it
will converge to greedy policies. However, since in Policy Iteration algorithm the evaluation q is not
necessarily stationary, it is possible that a Policy Iteration algorithm based in this operator will not
converge to the optimal policy.

Proof. LetA = {a1, a2, a3} and a sequence qn(a1) = (−1)n/2n+q(a1), qn(a2) = (−1)n+1/2n+
q(a2), and qn(a3) = q(a3), with a limiting value q = [1, 1, 2]. We omit the dependency of q on a
state as it is unnecessary in this example. In this case, the optimal policy with respect to any qn is
π = a3.
Take the least-greedifynig deterministic greedification operator Imin_det(q, π) =
minq(a)>q(π),a ̸=π q(a). This operator produces the worst action, with respect to q, that is
better than the current action selected by the policy, and as such, is a greedification operator by
definition, with respect to deterministic policies. Since there are finitely many deterministic policies
on a finite action space |A| <∞, this operator will converge to limn→∞ πn = argmaxa q(a) with
respect to a stationary q.
Take π0 = a2. Using the operator Imin_det we have πn = Imin_det(qn, πn−1). When n is odd,
πn = a1, and when n is even, πn = a2, without ever converging to the optimal policy π = a3.
Next we will construct an example MDP and improvement operators in which this situation can
happen in practice. Consider a finite-state, finite horizon MDP with states s1, . . . , sn. We are
interested in the behavior at state s0 specifically, which similarly has actions a1, a2, a3, with re-
wards R(s1, a3) = 3, R(s1, a1) = R(s1, a2) = 0. The transition f(s1, a3) = s0 is terminal and
f(s1, a1) = s2, f(s1, a2) = s3.
Consider the following improvement operator: On state s1, this operator is Imindet. However, on
all other states, this is a necessary greedification operator, which converges only in the limit, and
in a non-constant rate. It is possible to construct the rest of the MDP and starting policies π0 such
that the sequence alternates 1 > Qπn(s1, a1) > Qπn(s1, a2) when n is odd, and 1 > Qπn(s1, a2) >
Qπn(s1, a1) when n is even, while both are smaller than Qπn(s1, a3) = Q∗(s1, a3) = 3. This is
possible because the policies πn(s2), πn(s3) can be soft, and it is possible to construct an MDP
which produces arbitrary values bounded between 0, 1 by setting R(s2, a1) = 1, R(s2, a2) =
0, R(s2, a3) = 0 and R(s3, a1) = 1, R(s3, a2) = 0, R(s3, a3) = 0. In such MDP, limn→∞ πn(s1)
will never converge to a3, the optimal policy in this state.

A.4 Deterministic greedification operators are lower-bounded greedification operators

Lemma 3. Deterministic greedification operators Idet, i.e. greedification operators (Definition 2)
that produce deterministic policies are lower-bounded greedification operators 4 in MDPs with finite
action spaces.

Proof. Take ϵ = mins∈S,a,a′∈A,q(s,a)̸=q(s,a′) |q(s, a) − q(s, a′)|, that is, the minimum difference
across two actions that do not have the same value (i.e. the minimum greater than zero difference).
If there is no greater than zero difference, then all actions are optimal and every policy is already
optimal. Otherwise, the greedification imposed by choosing at least one better action in at least one
state has to be greater than the minimum difference between two actions.

A.5 The operator Igmz is a Limit-Sufficient Greedification operator

The operator proposed by Danihelka et al. (2022) is defined as follows:

Igmz(π, q)(a|s) = softmax(σ(q(s, a)) + log π(a|s)) = exp(log π(a|s)+σ(q(s,a)))∑
a′∈A exp(log π(a′|s)+σ(q(s,a′))) (9)

Lemma 4 (Igmz with a stationary σ is a Limit-Sufficient Greedification Operator). For any starting
policy π0 ∈ Π such that log π0(a|s) is defined and sequences q1, . . . , qn such that limn→∞ qn =
q ∈ Q, iterative applications πn+1 = Igmz(πn, qn) converge to a greedy policy with respect to the
limiting value q.
That is,

lim
n→∞

∑
a∈A

πn(a|s)qn(s, a) = max
b

q(s, b), ∀s ∈ S.
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Proof sketch: We will prove that n repeated applications of the Igmz operator converge to a softmax
policy of the form

πn(a|s) ∝ exp(log π0(a|s) + nσ(qn(s, a))),

which itself converges to an argmax policy as limn→∞. For simplicity, we will first prove for a
stationary q, and then repeat the same steps for a non-stationary qn, limn→∞ = q for some limiting
value q.

Proof. We will show that the Gumbel MuZero operator Igmz with σ a monotonically increasing
transformation, is a Limit-Sufficient Greedification operator.
Danihelka et al. (2022) have shown that this operator is a Greedification operator (Section 4 and
Appendix C of (Danihelka et al., 2022)). It remains for us to demonstrate that the sequence πn
converges for Igmz , such that

lim
n→∞

∑
a∈A

πn(a|s)q(s, a) = max
b

q(s, a),

for any π0 and ∀s ∈ S.
Step 1: Convergence with stationary q For a stationary q, at any iteration n, the policy πn can be
formulated as:

πn(a) =
1

zn
exp(σ(q(s, a)) + log πn−1(a|s)), zn =

∑
a′∈A

exp(σ(q(s, a′)) + log πn−1(a
′|s))

(10)

Where zn is the normalizer of the softmax operator. We can expand πn backwards as follows:

πn(a) =
1

zn
exp(σ(q(s, a)) + log πn−1(a|s)) (11)

=
1

zn
exp

(
σ(q(s, a)) + log

σ(q(s, a)) + πn−1(a|s)
zn−1

)
(12)

=
1

zn
exp

(
σ(q(s, a)) + σ(q(s, a)) + log πn−2(a|s)− log zn−1

)
(13)

=
1

znzn−1
exp

(
2σ(q(s, a)) + log πn−2(a|s)

)
(14)

= . . . (15)

= (Πni=1

1

zi
) exp

(
nσ(q(s, a)) + log π0(a|s)

)
(16)

As πn is a softmax policy, i.e.
∑
a∈A πn(a|s) = 1, the product Πni=1

1
zi

must act as a normalizer:

Πni=1

1

zi
=

∑
a∈A

exp
(
nσ(q(s, a)) + log π0(a|s)

)
(17)

We can now directly take the limit limn→∞ πn:

lim
n→∞

πn(a) = lim
n→∞

(Πni=1

1

zi
) exp

(
nσ(q(s, a)) + log π0(a|s)

)
(18)

It is well established that as the temperature 1/n goes to zero, the softmax converges to an argmax
(Collier et al., 2020). With non-stationary qn we get a slightly more involved sequence, and the
formulated proof that the softmax converges to an argmax will serve us to demonstrate convergence
with qn. We include the proof that the softmax converges to an argmax below in step 1.5.
Step 1.5: Convergence of the softmax to an argmax Define σmax = maxa σ(q(s, a)). Let us
now multiply by exp(−nσmax)

exp(−nσmax)
. We have:

πn(a|s) = (Πni=1

1

zi
) exp

(
nσ(q(s, a) + log π0(a|s))

)exp(−nσmax)
exp(−nσmax)

(19)

=
π0(a|s)

exp(−nσmax)
(Πni=1

1

zi
) exp

(
n
(
σ(q(s, a))− σmax

))
(20)
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We now note that σ(q(s, a)) − σmax < 0 if σ(q(s, a)) ̸= maxa σ(q(s, a)) = σmax and otherwise
σ(q(s, a))− σmax = 0 if σ(q(s, a)) = maxa σ(q(s, a)) = σmax. In that case, exp

(
n(σ(q(s, a))−

σmax)
)
= exp

(
0
)
= 1. We substitute that into the limit:

lim
n→∞

πn(a|s) =

{
limn→∞

π0(a|s)
exp(−nσmax)

(Πni=1
1
zi
) exp

(
n
(
σ(q(s, a))− σmax

))
= 0, if σ(q(s, a)) ̸= σmax

limn→∞
π0(a|s)

exp(−nσmax)
(Πni=1

1
zi
)1, if σ(q(s, a)) = σmax

(21)

Note that:

1. The numerator where σ(q(s, a)) = σmax converges to e0 = 1

2. The numerator where σ(q(s, a)) ̸= σmax converges to limn→∞ e−δn = 0, δ > 0.

3. The denominator always normalizes the policy such that
∑
a∈A πn(a|s) = 1,∀s ∈ S, due

to the definition of the softmax.

As a result, we have:

lim
n→∞

πn(a|s) =
{

0
z , if σ(q(s, a)) ̸= σmax
1
z , if σ(q(s, a)) = σmax

(22)

For some normalization constant z. I.e. the policy limn→∞ πn is an argmax policy with respect to
q, that is, the policy has probability mass only over actions that maximize σ(q).
Step 2: Convergence with non-stationary qn We will now extend the proof to a non-stationary
qn that is assumed to have a limiting value, limn→∞ qn = q, in line with definition of Sufficient
Greedification.
First, we have:

πn(a) =
1

zn
exp(σ(qn(s, a)) + log πn−1(a|s)) (23)

=
1

zn
exp

(
σ(qn(s, a)) + log

σ(qn−1(s, a)) + πn−1(a|s)
zn−1

)
(24)

=
1

znzn−1
exp

(
σ(qn(s, a)) + σ(qn−1(s, a)) + log πn−2(a|s)

)
(25)

= (Πni=1

1

zi
) exp

(( n∑
i=1

σ(qi(s, a))
)
+ log π0(a|s)

)
(26)

Based on the same expansion of the sequence as above. Multiplying by −nσmax

−nσmax
and formulating the

limit in a similar manner to above, we then have:

lim
n→∞

πn(a|s) = lim
n→∞

π0(a|s)
−nσmax

exp(Πni=1

1

zi
)
( n∑
i=1

(σ(qi(s, a))− σmax)
)

(27)

Let us look at the term
∑n
i=1(σ(qi(s, a))− σmax). First, where σ(q(s, a)) ̸= σmax, we have

lim
n→∞

n∑
i=1

(σ(qi(s, a))− σmax) = lim
n→∞

n∑
i=1

(σ(qi(s, a))− σ(q(s, a))− (σmax − σ(q(s, a))) (28)

= lim
n→∞

−n(σmax − σ(q(s, a))) +

n∑
i=1

(σ(qi(s, a))− σ(q(s, a)) (29)

As the term σ(qn(s, a)) − σ(q(s, a) goes to zero due to the definition of qn, the term∑n
i=1(σ(qi(s, a)) − σ(q(s, a)) goes to a constant, and the term −n(σmax − σ(q(s, a))) goes to

−∞ due to the definition of σmax. Therefor, the limit:

lim
n→∞

n∑
i=1

(σ(qi(s, a))− σmax) = −∞ ⇒ lim
n→∞

exp
( n∑
i=1

(σ(qi(s, a))− σmax)
)
= 0 (30)
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Let us look at the second case, where σ(q(s, a)) = σmax, the sequence converges:

lim
n→∞

n∑
i=1

(σ(qi(s, a))− σmax) = α(s, a) (31)

For some constant α(s, a), as limn→∞ σ(qn(s, a)) = σmax. Thus, we have again:

lim
n→∞

πn(a|s) =

{
0
z , if σ(q(s, a)) ̸= σmax
α(s,a)
z , if σ(q(s, a)) = σmax

(32)

Demonstrating that πn converges to an argmax policy with respect to σ(q). Since σ is monotonically
increasing, q(s, a) and σ(q(s, a)) are maximized for the same action a, thus πn is also an argmax
policy with respect to q. Therefor, Igmz is a Limit-Sufficient Greedification operator.

A.6 Igmz can be formulated as an insufficient-greedification operator

Lemma 5. The Igmz greedification operator with a non-stationary σ transformation can be formu-
lated as an insufficient greedification operator.

Proof sketch: We construct a variation of the Igmz operator with an increasing transformation σn,
which is different at each iteration. Because the transformation is not constant, it converges to some
softmax policy rather than an argmax policy.

Proof. The function σ used by Igmz is only required to be an increasing transformation (see
Danihelka et al. (2022), Section 3.3). That is if q(s, a) > q(s, a′) then we must have that
σ(q(s, a)) > σ(q(s, a′)). In practice, the function proposed by Danihelka et al. (2022) is of the form
σ(q(s, a)) = β(N)q(s, a), where β is a function of the planning budget N of the MCTS algorithm.
A practitioner might be interested in running the algorithm with a decreasing planning budget over
iterations (perhaps the value estimates become increasingly more accurate, and therefor there is
less reason to dedicate much compute into planning with MCTS). In that case, we can formulate
σn(qn(s, a)) = α

βn qn(s, a). This transformation is always increasing in q(s, a), adhering to the
requirements from σ. Nonetheless, the sequence πn will not converge to an argmax policy for this
choice of σ:

lim
n→∞

πn = lim
n→∞

(Πni=1

1

zi
) exp

(∑
i≤n

[
σn(qn(s, a))

]
+ log π0(a|s)

)
(33)

= lim
n→∞

(Πni=1

1

zi
) exp

( α

βn

∑
i≤n

[
qn(s, a)

]
+ log π0(a|s)

)
(34)

Which will converge to some softmax policy as the following limit converges to a constant:
limn→∞

α
βn

∑
i≤n

[
qn(s, a)

]
= c(s, a), and thus the policy remains a softmax policy πn(a|s) =

softmax(c(s, a) + log π0(a|s)).

A.7 Lower Bounded Greedification operators ̸⊂ Limit-Sufficient Greedification operators

Lemma 6. The set of all lower-bounded greedification operators (Definition 4) is not a subset of the
set of all limit-sufficient greedification operators (Definition 5). That is, there exists a lower-bounded
greedification operator which is not a limit-sufficient greedification operator.

Proof sketch: Convergence with respect to arbitrary sequences limn→∞ qn = q is a strong property,
and it is possible to come up with sequences for which specific lower-bounded greedification operator
do not result in convergence. By constructing such a sequence and choosing such an operator,
we will show that there are lower-bounded greedification operators which are not Limit-Sufficient
Greedification operators, demonstrating that lower-bounded greedification operators ̸⊂ limit-sufficient
greedification operators.

Proof. LetA = {a1, a2, a3} and a sequence qn(a1) = (−1)n/2n+q(a1), qn(a2) = (−1)n+1/2n+
q(a2), and qn(a3) = q(a3), with a limiting value q = [1, 1, 2].
Let π0 = a1. The minimal deterministic Greedification operator Idet(π, q)(s) = argmina q(s, a) >∑
a′∈A π(a′|s)q(s, a′), that is, the deterministic Greedification operator which chooses the least-

greedifying action at each step will not converge to the optimal policy on this sequence. At each
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iteration, Idet(q, πn) = a1,2 (as in, a1 or a2), because qn alternates qn(a1) > qn(a2) for even n,
and qn(a1) < qn(a2) for odd n. Since this operator is a lower-bounded greedification operator (see
Appendix A.4), this demonstrates that lower-bounded greedification operators ̸⊂ limit-sufficient
greedification operators.

A.8 The greedy operator is both a limit-sufficient as well as a lower-bounded greedification
operator

Lemma 7. The greedy operator Iargmax is both a lower-bounded greedification operator (Definition
4) as well as a limit-sufficient greedification operator (Definition 5).

Proof. The greedy operator is a greedification operator by definition. We will show that it can have
both the lower-bounded greedification property as well as the limit sufficient greedification property.
Step 1): We will show that the greedy operator is a lower-bounded greedification operator (Definition
4).
The greedy operator produces the maximum greedification in any state by definition. Therefor:∑

a∈A
Iargmax(π, q)(a|s)q(s, a) ≥ Idet(π, q)(a|s)q(s, a),

where Idet is the deterministic greedification operator, ∀s ∈ S, a ∈ A. Since the de-
terministic greedification operator is itself bounded by an ϵ (see Appendix A.4), we have
|
∑
a∈A Iargmax(π, q)(a|s)q(s, a)−

∑
a∈A π(a|s)q(s, a)| > ϵ.

Step 2): We will show that the greedy operator is a limit-sufficient greedification operator (Definition
5).
We will prove that the sequence (πn, qn) defined for Iargmax as above converges, such that
limn→∞ |

∑
a∈A πn(a|s)qn(s, a)−maxb q(s, b)| = 0, for any π0. That is, the policy converges to

an argmax policy with respect to the limiting value q.
For any qn in the sequence, we have by definition of the operator∑
a∈A Iargmax(qn, πn−1)(a|s)qn(s, a) = maxa qnk(s, a). We can substitute that into the

limit:

lim
n→∞

|
∑
a∈A

πn(a|s)qn(s, a)−max
b

q(s, b)| (35)

= lim
n→∞

|max
a

qn(s, a)−max
b

q(s, b)| (36)

≤ lim
n→∞

max
a
|qn(s, a)− q(s, a)| (37)

= max
a

lim
n→∞

|qn(s, a)− q(s, a)| (38)

= max
a
| lim
n→∞

qn(s, a)− q(s, a)| = 0 (39)

The first step holds by substitutions. The inequality is a well known property used to prove that the
greedy operator is a contraction, see (Blackwell, 1965). In Equation 38 the limit and max operators
can be exchanged because the action space is finite, and finally the limit and absolute value can be
exchanged because the absolute value is a continuous function.

A.9 Proof for Theorem 3 for k = 1 and I2 the identity operator

We will prove Theorem 3, first for k = 1 for improved readability, and in the following Appendix
A.10 we will extend the proof for k ≥ 1. In Appendix A.11 we will further extend the proof for
value-improvement.

A.9.1 Notation
We use R to denote the mean-reward vector R ∈ R|S||A|, where Rs,a = E[R|s, a]. We use
Pπ ∈ R|S||A|×|S||A| to denote the matrix of transition probabilities multiplied by a policy, indexed
as follows: Pπs,a,s′,a′ = P (s′|s, a)π(a′|s′). We denote the state-action value q and the policy π as
vectors in the state-action space s.t. q, π ∈ R|S||A|. The set Π ⊂ R|S||A| contains all admissible
policies that define a probability distribution over the action space for every state. For convenience,
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we denote q(s, a) as a specific entry in the vector indexed by s, a and q(s), π(s) as the appropriate
|A| dimensional vectors for index s. In this notation, we can write expectations as the dot product
q(s) · π(s) = Ea∼π(s)[q(s, a)] = v(s). With slight abuse of notation, we use q · π = v, v ∈ R|S|

to denote the vector with entries v(s). We use maxa q ∈ R|S| to denote the vector with entries
maxa q(s) = maxa q(s, a).
We let st denote a state (·, t) ∈ S , that is, a state in the environment arrived at after t transitions. The
states sH are terminal states, and the indexing begins from s0. We let qm, πm denote the vectors at
iteration m of Algorithm 1. We let qmt , πmt denote the sub-vectors of all entries in qm, πm associated
with states st. In this notation q1H−1 is the q vector for all terminal transitions (sH−1, ·) after the one
iteration of the algorithm.

Proof sketch Our proof follows induction from terminal states. For all terminal states sH , the value
V π(sH) = 0 for all policies π. Similarly, q(sH−1, a) = Qπ(sH−1, a) = r(s, a) for all policies π.
That is, the Q values converge after one update, and from then on remain stationary. Given that
the q(sH−1, a) remains stationary for all states sH−1, limit sufficient greedification guarantees that
policy π(sH−1) at state sH−1 converges to an argmax policy, which guarantees that the state-value
estimates v(sH−1) :=

∑
a∈A π(a|sH−1)q(sH−1, a) converge. Finally, as the state-value estimates

converge, this process repeats backwards from states sH−1 all the way to states s0, at which point the
value q and policy π converge to the value of the optimal policy and an optimal policy respectively,
for all states in the MDP.

A.9.2 Complete proof

Proof. Convergence for Generalized Policy Iteration with k = 1

We will prove by backwards induction from the terminal states that the sequence limm→∞(πm, qm)
induced by Algorithm 1 converges for any q0, π0, sufficient greedification operator I and k ≥ 1.
That is, for every ϵ > 0 there exists a Mϵ such that ∥qm − q∗∥ ≤ ϵ and ∥πm · qm −maxa q

∗∥ < ϵ
for all m ≥Mϵ, q0 ∈ R|S||A| and π0 ∈ Π.
Induction Hypothesis: For every ϵ > 0 there exist M ϵ

t+1 such that for all m ≥ M ϵ
t+1 we have

∥qmt+1 − q∗t+1∥ ≤ ϵ, and ∥πmt+1 · qmt+1 −maxa q
∗
t+1∥ ≤ ϵ.

Base Case t = H − 1: Let ϵ > 0. Since states sH are terminal, and have therefore value 0, we have
qmH−1 = RH−1 = q∗H−1 and therefore ∥qmH−1 − q∗H−1∥ ≤ ϵ trivially holds for all m ≥ 1.
By the Sufficiency condition of the sufficient greedification operator which induces convergence of
πm to an argmax policy with respect to q there exists M ϵ

H−1 such that:

∥πmH−1 · qmH−1 −max
a

q∗H−1∥ = ∥πmH−1 · q∗H−1 −max
a

q∗H−1∥ ≤ ϵ

for all m ≥M ϵ
H−1. Thus the Induction Hypothesis holds at the base case.

Case t < H − 1: We will show that if the Induction Hypothesis holds for all states t+1, it also holds
for states t.
Step 1: Let ϵ > 0. Assume the Induction Hypothesis holds for states t+ 1. Then there exists M ϵ

t+1
such that ∥qmt+1 − q∗t+1∥ ≤ ϵ and ∥πmt+1 · qmt+1 −maxa q

∗
t+1∥ ≤ ϵ for all m ≥M ϵ

t+1.

Let us define the transition matrix P ∈ R|S||A|×|S| with Ps,a,s′ = P (s′|s, a).
First, for all m ≥M ϵ

t+1 we have:

∥qm+1
t − q∗t ∥ = ∥R+ γP(πm+1

t+1 · qmt+1)−R− γPmax
a

q∗t+1∥ (40)

= γ∥P(πm+1
t+1 · qmt+1)− Pmax

a
q∗t+1∥ (41)

≤ ∥P∥∥πm+1
t+1 · qmt+1 −max

a
q∗t+1∥ (42)

≤ ∥πm+1
t+1 · qmt+1 −max

a
q∗t+1∥ (43)

≤ ϵ (44)

(40) is by substitution based on step 4 in Algorithm 1 for k = 1. (42) is by the definition of the
operator norm ∥P∥. (43) is by the fact that the operator norm in sup-norm of all transition matrices is
1 (Bertsekas, 2007). (44) is slightly more involved, and follows from the Induction Hypothesis and
the limit-sufficient greedification.
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Let us show that (44), i.e. ∥πm+1
t+1 · qmt+1 − maxa q

∗
t+1∥ ≤ ϵ holds. Under the infinity norm holds

point-wise for each state s ∈ S:
−ϵ ≤ [πmt+1 · qmt+1](s)−max

a
q∗t+1(s, a) (45)

≤ [πm+1
t+1 · qm

t+1](s)−max
a

q∗
t+1(s, a) (46)

≤ max
a′

qmt+1(s, a
′)−max

a
q∗t+1(s, a) (47)

≤ max
a′

(
qmt+1(s, a

′)− q∗t+1(s, a
′)
)

(48)

≤ ϵ . (49)
(45) is the induction hypothesis ∥πmt+1 · qmt+1 −maxa q

∗
t+1∥ ≤ ϵ, which holds under the infinity norm

point wise, (46) uses the sufficient greedification operatorproperty [πmt+1 ·qmt+1](s) ≤ [πm+1
t+1 ·qmt+1](s),

(47) the inequality [πm+1
t+1 · qmt+1](s) ≤ maxa′ q

m
t+1(s, a

′), (48) the inequality −maxa q
∗
t+1(s, a) ≤

−q∗t+1(s, a
′),∀a′ ∈ A, and (49) the induction hypothesis ∥q∗t+1 − qmt+1∥ ≤ ϵ.

Step 2: Pick M ϵ
t ≥M ϵ

t+1 such that for all m ≥M ϵ
t we have ∥πmt · qmt −maxa q

∗
t ∥ ≤ ϵ. Such an M ϵ

t
must exist because of the following: In Step 1, we proved that the first part of the inductive step holds.
That is, that qmt has ϵ-converged to the value of the optimal policy. Such qmt satisfies the conditions
of the q sequence of the limit-sufficient greedification operator. For that reason, the policy πmt must
converge (that is ∥πmt · qmt −maxa q

∗
t ∥ ≤ ϵ), and M ϵ

t must exist.
Thus, the Induction Hypothesis holds for all states t if it holds for states t+ 1.
Finally, let ϵ > 0. By backwards induction, for each t = 0, . . . ,H − 1 there exists M t

ϵ such that
for all m ≥ M t

ϵ we have ∥qmt − q∗t ∥ ≤ ϵ, and ∥πmt · qmt −maxa q
∗
t ∥ ≤ ϵ. Therefore, we can pick

Nϵ = maxt=0,...,H−1 M
t
ϵ such that ∥qmt − q∗t ∥ ≤ ϵ, and ∥πmt · qmt −maxa q

∗
t ∥ ≤ ϵ for all m ≥ Nϵ

and t = 0, . . . ,H − 1, proving that Algorithm 1 converges to an optimal policy and optimal q-values
for any π0 ∈ Π, q0 ∈ R|S||A|, k = 1 and sufficient greedification operatorI.

We proceed to extend the proof for k ≥ 1 below.

A.10 Extension of the Proof for Theorem 3 to k ≥ 1 and I2 the identity operator

In this section we will extend the proof of Theorem 3 from Appendix A.9 to k ≥ 1. Much of the proof
need not be modified. In order to extend the proof to k ≥ 1, we only need to show the following:
For all k ≥ 1 and every ϵ > 0 such that the Induction Hypothesis holds, there exists an M t

ϵ such that
∥qm+1
t − q∗t ∥ ≤ ϵ.

Proof. We will first extend the notation: let qm,it denote the vector q at states t after m algorithm
iterations and i ≥ 1 Bellman updates, such that qm,it = (T π1qm,i−1)t, q

m,0
t = qmt and finally

qm+1
t = qm,kt .

Second, we will extend the Induction Hypothesis:
Extended Induction Hypothesis: For every ϵ > 0 there exist M ϵ

t+1 such that for all m ≥M ϵ
t+1 and

i ≥ 0 we have ∥qm,it+1 − q∗t+1∥ ≤ ϵ, and ∥πmt+1 · q
m,i
t+1 −maxa q

∗
t+1∥ ≤ ϵ.

The Base Case does not change, so we will proceed to Step 1 in the Inductive Step. We need to show
that there exists an M ϵ

t such that ∥qm,it − q∗t ∥ ≤ ϵ for all i ≥ 0 and m ≥M ϵ
t .

Let ϵ > 0 and m ≥M ϵ
t ≥M ϵ

t+1.
First, for any i ≥ 1:

∥qm,it − q∗t ∥ = ∥R+ γP(πm+1
t+1 · q

m,i−1
t+1 )− q∗t ∥

≤ ∥P∥∥πm+1
t+1 · q

m,i−1
t+1 −max

a
q∗t+1∥

≤ ϵ

The first equality is the application of the Bellman Operator in line 4 in Algorithm 1 the ith time. The
rest follows from Proof A.9 and the extended Induction Hypothesis.
Second, we need to show that this holds for i = 0 as well:

∥qm,0t − q∗t ∥ = ∥q
m−1,k
t − q∗t ∥ ≤ ∥πmt+1 · q

m−1,k−1
t+1 −max

a
q∗t+1∥ ≤ ϵ
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The first equality is by definition, and the the first and second inequalities are by the same argumenta-
tion as above.
The rest of the proof need not be modified.

A.11 Extension for I2 a general improvement operator

We extend the proof from the above section for all non-detriment operators (that is, non-strict
greedification operators) I2 used for value improvement.

Proof. Similarly to the proof of Theorem 3 from Appendix A.9 (and A.10) we will prove by
backwards induction from the terminal states sH that the sequence limm→∞(πm, qm) induced by
Algorithm 2 converges for any q0, π0, sufficient greedification operator I1, greedification operator
I2 and k ≥ 1. That is, for every ϵ > 0 there exists a Mϵ such that ∥qm − q∗∥ ≤ ϵ and ∥πm ·
qm −maxa q

∗∥ < ϵ for all m ≥ Mϵ, q0 ∈ R|S||A| and π0 ∈ Π. The proof follows directly from
the proof in Appendix A.9. The base case is not modified - the qs converge immediately and the
policy convergence is not influenced by the introduction of I2. The Induction Hypothesis need not be
modified. In the inductive step, Step 1 follows directly from the Induction Hypothesis, and Step 2
need not be modified for the same reason the base case need not be modified.

A.12 Convergence of Algorithm 2 with lower bounded greedification operators

We extend the proof from Appendices A.9 and A.10 to bounded greedification operators.

Proof sketch The proof is almost identical to that of limit-sufficient greedification, with one major
difference. Lower-bounded greedification allows for convergence to a greedy policy in finite iterations
(see Lemma 8 below) with respect to any stationary q. For that reason, the values at states sH−1

become exact in finite iterations (unlike limit-sufficient, where they converge only in the limit). As
they become exact, they also become fully stationary, and as they become stationary, lower-bounded
greedification guarantees that the values (and policy) at states sH−2 become exact and stationary in
finite iterations, and the process repeats by induction all the way back to states s0.
Below we first prove Lemma 8 and then use Lemma 8 to complete the induction proof.

A.12.1 Lower bounded greedification converges to an argmax policy in finite steps

We will begin by proving that operators with the Bounded Greedification property:∣∣∣ ∑
a∈A
I(π, q)(a|s)q(s, a)−

∑
a∈A

π(a|s)q(s, a)
∣∣∣ > ϵ,

unless
∑
a∈A I(π, q)(a|s)q(s, a) = maxa q(s, a) are guaranteed to convergence to an argmax

policy with respect to any q ∈ Q, in a finite number of steps.

Lemma 8. Let I be a bounded greedification operator and let a sequence πn+1 = I(q, πn). For
any starting π0 ∈ Π, q ∈ Q, there exists an M for which:∑

a∈A
πn(a|s)q(s, a) = max

a
q(s, a), ∀n > M.

That is, the policy πn converges to a greedy policy with respect to q in a finite number of steps
n > M .

Proof. Let I be a Bounded Greedification operator. At each iteration, the sequence∑
a∈A πn(a|s)q(s, a) must increase, i.e.

∑
a∈A πn(a|s)q(s, a) >

∑
a∈A πn−1(a|s)q(s, a), n > 0,

for at least one state s ∈ S. The same sequence is monotonically non-decreasing, by definition of
greedification, for all other states. Therefore, the sequence

∑
s∈S

∑
a∈A πn(a|s)q(s, a) is monotoni-

cally increasing (for each state
∑
a∈A πn(a|s)q(s, a) is at least as large as in the past step, and in at

least one state it is distinctly higher), unless
∑
a∈A πn(a|s)q(s, a) = maxa q(s, a).

Due to the Bounded Greedification property, the minimum increase is bounded by ϵ, that is:

min
πn

∣∣∣∑
s∈S

∑
a∈A

πn(a|s)q(s, a)−
∑
s∈S

∑
a∈A

πn−1(a|s)q(s, a)
∣∣∣ > ϵ, n > 0.
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The sequence
∑
s∈S

∑
a∈A πn(a|s)q(s, a) is bounded by

∑
s∈S maxa q(s, a) from above, and by∑

s∈S mina q(s, a) from below. The increases between any two iterations is bounded from below by
ϵ by definition unless the policy is already greedy, as I is a lower-bounded greedification operator.
Since the sequence is bounded from below and above and the increase is bounded a constant amount
ϵ > 0, it must converge in a finite n <∞ to the maximum of the sequence

∑
a∈A πn(a|s)q(s, a) =

maxa q(s, a). That is, πn converges to a greedy policy with respect to q in a finite number of iterations
n.

A.12.2 Modified Induction for Bounded Greedification
We modify the induction of the proof of Theorem 3 with finite-sufficient greedification operators,
that converge to an argmax policy in a finite number of iterations.

Proof. Modified Induction Hypothesis: There exist Mt+1 such that for all m ≥ Mt+1 we have
qmt+1 = q∗t+1, and πmt+1 · qmt+1 = maxa q

∗
t+1.

Modified Base Case: Because the convergence to the argmax is in finite time (Lemma 8) there
exists MH−1 such that:

πmH−1 · qmH−1 = max
a

q∗H−1

for all m ≥MH−1. Thus the Modified Induction Hypothesis holds at the base case.
Modified Case t < H − 1 Step (1): Similarly, for all m ≥Mt+1 we have:

∥qm+1
t − q∗t ∥ = ∥R+ γP(πm+1

t+1 · qmt+1)−R− γPmax
a

q∗t+1∥ (50)

= γ∥P(πm+1
t+1 · qmt+1)− Pmax

a
q∗t+1∥ (51)

≤ ∥P∥∥πm+1
t+1 · qmt+1 −max

a
q∗t+1∥ (52)

= 0 (53)

Since also ∥qm+1
t − q∗t ∥ ≥ 0, we have ∥qm+1

t − q∗t ∥ = 0 and qm+1
t = q∗t .

Step (2): Pick Mt ≥ Mt+1 such that for all m ≥ Mt we have ∥πmt · qmt − maxa q
∗
t ∥ = 0 which

must exist due to convergence to the argmax in finite time of this operator class. Thus, the Modified
Induction Hypothesis holds for all states t if it holds for states t+ 1.

B Additional Results

B.1 Value improvement and over estimation

Explicit value-improvement results in greedier evaluation policies. As such, it should directly increase
the value targets compared to no value improvement (demonstrated empirically in Figure 1 center).
The same can be expected to happen when the value improvement relies on implicit improvement
operators such as the expectile operator. Respectively, any increase to the value targets can be
expected to interact with (and more specifically, increase) over-estimation bias.
It is well known that overestimation bias can induce pseudo optimistic exploration. This is because
increased overestimation bias is more likely to increase overestimation of unvisited state-actions, thus
driving exploration into these unvisited state-actions. For that reason, while it can be detrimental in
certain environments (as demonstrated by Fujimoto et al., 2018), it can be beneficial in others.
In Figure 4 we investigate the interaction between implicit improvement and over estimation with
the expectile operator, with VI-TD3. Each row presents results for a pair of environments. We
plot (i) final averaged evaluation return after 3 million environment interactions vs. τ (the first and
third columns from the left). And (ii) we plot final over estimation bias after 3 million environment
interactions vs. τ (the second and last columns from the left).
Generally as τ increases over estimation bias increases. On the other hand, in many environments
the majority of the performance gain is observed for values of τ ≤ 0.6 (for example hopper-hop,
humanoid-stand/walk/run), for which none to negligible over estimation bias is observed. This is
summarized in Table 1
We conclude that while in this domain overestimation can be beneficial (e.g. fish-swim), benefits
of VIAC are not limited to the benefits of overestimation (τ ≤ 0.6 in hopper-hop, humanoid-
stand/walk/run, for example).
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Figure 4: Mean and one standard error across 10 seeds. Left: Final evaluation vs. greedification
parameter τ for VI-TD3 with implicit improvement after 3m environment interactions. τ = 0.5 is
baseline TD3. Right: Final overestimation bias vs. τ after 3m environment interactions. The majority
of the performance increases are independent from an increase in over estimation bias.
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Table 1: Performance and overest. statistics across environments.

Environment
Performance
gain without

overest. increase
τ

Max
performance

gain
τ

Overest.
as % of

max overest.

Overest. as
% of

performance
hopper-stand – – 353.80± 60.77 0.75 5% 2%
hopper-hop 88.01± 24.31 0.59 217.25± 26.38 0.8 12% 2%
humanoid-stand 206.79± 64.93 0.55 503.93± 14.72 0.75 31% 5%
humanoid-walk 320.64± 43.42 0.6 415.28± 29.29 0.7 14% 3%
humanoid-run 107.50± 5.38 0.6 125.25± 3.78 0.75 22% 5%
quadruped-run – – 166.18± 47.69 0.6 3% 1%
quadruped-walk – – 276.55± 59.85 0.59 1% 1%
fish-swim – – 308.07± 19.02 0.9 87% 4%
walker-walk – – 27.04± 9.63 0.7 28% 1%
walker-run 17.65± 29.07 0.53 98.23± 25.79 0.75 27% 1%
cheetah-run 10.37± 11.18 0.53 10.37± 11.18 0.53 4% 1%
acrobot-swingup 22.74± 3.94 0.6 257.24± 6.13 0.8 11% 6%

B.2 Value Improved TD7
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Figure 5: Mean and two standard errors across 10 seeds of VI-TD7 with expectile loss vs. TD7 on
the same tasks as Figure 3. Similar performance gains are observed for VI-TD7 in this domain.

B.3 Increased greedification of the acting policy
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Figure 6: Mean and one standard error across 10 seeds in evaluation of VI-TD3 with Policy Gradient
as the value improvement operator, vs. TD3 with 20 repeating policy gradient steps in each update, vs.
baseline TD3. Increasing the number of acting-policy updates on the same batch does not contribute
to performance.
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B.4 Increased value improvement vs. increased replay ratio

If one is able to spend additional compute on gradient updates, an increased replay ratio is an attractive
alternative to value improvement. In Figure 7 we compare VI-TD3 with increasing number of gradient
steps to TD3 with increasing replay ratio. In line with similar findings in literature (Chen et al.,
2021), replay ratio provides a very strong performance gain for small ratios. As the ratio increases,
performance degrades, a result which the literature generally attributes to instability. The VI agent on
the other hand does not degrade with increased compute. This suggests a reduced interaction between
greedification of the evaluated policy and instability compared to that of the acting policy.
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Figure 7: Mean and one standard errors across 10 seeds in evaluation of VI-TD3 with policy-gradient
based value improvement vs. td3 with increased replay ratio. Number of gradient steps are equated
across rr / VI agent pairs as a pseudo metric for compute. The performance of TD3 generally degrades
with increased replay ratio, in line with the results of Chen et al. (2021). In contrast, the performance
of VI-TD3 increases with compute, without access to additional mechanisms to address instability.

B.5 Value Improvement vs. Policy Improvement

A few questions that VIAC naturally raises are how does the greedification of the acting policy
compare to the greedification of the evaluated policy? Is one more important than the other? Does
one render the other unnecessary?
To answer these questions stripped off as many additional influences as possible, we construct a
simple experiment in a toy grid environment with Value Improved Generalized Policy Iteration
(VIGPI). The VIGPI algorithm uses the operator IGMZ for both policy improvement (PI) as well as
value improvement (VI) with increasing β. The value table is initialized with 0s. Evaluation uses the
Bellman update until |Vj(s)− Vj−1(s)| < 0.0005 for all states. We plot the value at iteration i of the
starting state s0 as a function of i.
In the left plot we compare agents with increasing β for the acting policy improvement (PI). In the
right plot we compare agents with increasing β for the evaluated policy improvement (VI). For both
agents we include a final variation which uses the greedy operator for either PI or VI, as well as
versions that use β = 0 (i.e. no greedification).
Since any value improvement that is less greedy than the greedy update depends on the acting policy,
slow greedification of the acting policy slows down the convergence of the VI variants. On the other
hand, VI + PI is able to significantly increase the rate of convergence compared to the same PI without
VI. Similarly, when the rate of greedification β = 0, with PI there is no learning at all (because the
policy never changes) and with VI there is no issue, because it remains a non-detriment operator, and
thus does not prevent the improvement of the acting policy (Corollary 2).
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Figure 8: Starting-state value vs. iteration.

C Explicit and implicit Value Improved Actor Critic algorithms

In Algorithms 3 and 4 modifications to baseline off-policy Actor Critic are marked in blue.

Algorithm 3 Explicit Off-policy Value-Improved Actor Critic

1: Initialize policy network πθ, Q network qϕ, Greedification Operators I1 and I2, replay buffer B
2: for each episode do
3: for each environment interaction t do
4: Act at ∼ πθ(st)
5: Observe st+1, rt
6: Add the transition (st, at, rt, st+1) to the buffer B
7: Sample a batch b from B of transitions of the form (st, at, rt, st+1)
8: Update the policy πθ(st)← I1(πθ, qϕ)(st),∀st ∈ b
9: Further improve the policy π′(st+1)← I2(πθ, qϕ)(st+1),∀st+1 ∈ b

10: Sample an action from the improved policy a ∼ π′(st+1),∀st+1 ∈ b
11: Compute the value targets y(st, at)← rt + γqϕ(st+1, a),∀(st, at, rt, st+1) ∈ b
12: Update qϕ with gradient descent and MSE loss using targets y

Algorithm 4 Implicit Off-policy Value-Improved Actor Critic

1: Initialize policy network πθ, Q network qϕ, Greedification Operator I1, implicit greedification
parameter τ and replay buffer B

2: for each episode do
3: for each environment interaction t do
4: Act at ∼ πθ(st)
5: Observe st+1, rt
6: Add the transition (st, at, rt, st+1) to the buffer B
7: Sample a batch b from B of transitions of the form (st, at, rt, st+1)
8: Update the policy πθ(st)← I1(πθ, qϕ)(st),∀st ∈ b
9: Sample an action from the policy a ∼ π(st+1),∀st+1 ∈ b

10: Compute the value targets y(st, at)← rt + γqϕ(st+1, a),∀(st, at, rt, st+1) ∈ b
11: Update qϕ with gradient descent and Lτ2 loss using targets y, see Supplement D.2

D Experimental Details

D.1 Gradient-Based VI-TD3

Gradient-based VI-TD3 copies the existing policy used to compute value targets (the target policy, in
TD3) πθ′ into a new policy π′

θ′ . The algorithm executes N repeating gradient steps on π′
θ′ with respect

to states st+1 ∈ b with the same operator TD3 uses to improve the policy (the deterministic policy
gradient) and with respect to the same batch b. The value-improved target y(st, at) is computed in the
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same manner to the original target of TD3 but with the fresh greedified target network π′
θ′ . In TD3,

that summarizes to sampling an action from a clipped Gaussian distribution with mean π′
θ′(st+1),

variance parameter σ and clipped between (−β, β):

a′ ∼ N (π′
θ′(st+1), σ).clip(−β, β) (54)

And using the action a′ to compute the value target in the Sarsa manner:

y(st, at) = rt + γ min
i∈{1,2}

qϕi
(st+1, a

′),∀(st, at, rt, st+1) ∈ b (55)

The policy used to compute the value targets πθ′ is then discarded.

D.2 Implicit Policy Improvement with Expectile Loss

The expectile-loss Lτ2 proposed by Kostrikov et al. (2022) as an implicit policy improvement operator
for continuous-domain Q-learning can be formulated as follows: when y(st, at) > q(st, at) (the
target is greater than the prediction), the loss equals τ(y(st, at) − q(st, at))

2. When y(st, at) ≤
q(st, at) (the target is smaller than the prediction) the loss equals (1− τ)(y(st, at)− q(st, at))

2. If
τ = 0.5, this loss is equivalent to the baseline L2 loss. Intuitively, when τ > 0.5 the agent favors
errors where the prediction should increase, over predictions where it should reduce. I.e. the agent
favors targets where π′(st+1) (the implicit policy evaluated on the next state) chooses "better" actions
than the current policy, directly approximating the value of an improved policy.
By imposing this loss on the value network, in stochastic environments the network may learn
to be risk-seeking, by implicitly favoring interactions st, at, rt, st+1 where the observed rt was
large or the state st+1 was favorable. This is addressed by Kostrikov et al. (2022) by learning an
additional vψ network that is trained with the expectile loss, while the q network is trained with
SARSA targets rt + γvψ(st+1) and the regular L2 loss, while the vψ network is trained with targets
y(st, at) = qϕ(st, at) and the expectile loss. In deterministic environments this is not necessary
however, and in our experiments we have directly replaced the L2 loss on the value qϕ with the
expectile loss.
The value target y(st, at) remained the unmodified target used by TD3 / SAC respectively.
Another aspect where our use of the expectile loss diverges from that of Kostrikov et al. (2022), is that
we use it with respect to the online acting policy πθ, rather than with respect to the policy captured
by the replay buffer. That is, the original targets of IQL are:

y(st, at) = rt + γvψ(st+1), (st, at, rt, st+1) ∈ D. (56)

On the other hand, our usage is with respect to πθ:

y(st, at) = rt + γqϕ(st+1, πθ(st+1)), (st, rt, st+1) ∈ D. (57)

This results in targets that are much more on policy (more "fresh", if you will), compared to the
information in the replay buffer, unless the replay buffer contains trajectories exclusively from πθ.
This also enables compute more accurate targets by averaging across any number of fresh samples
{ai}Ni=1 ∼ πθ(st+1) with: y(st, at) = rt + γ 1

N

∑N
i=1 qϕ(st+1, ai), although this was not used in

our experiments.

D.3 Evaluation Method

We plot the mean and standard error for evaluation curves across multiple seeds. Evaluation curves
are computed as follows: after every n = 5000 interactions with the environment, m = 3 evaluation
episodes are ran with the latest network of the agent (actor and critic). The score of the agent is the
return averaged across the m episodes. The actions in evaluation are chosen deterministically for
TD3, SAC and TD7 with the mean of the policy (the agents use Gaussian policies). The evaluation
episodes are not included in the agent’s replay buffer or used for training, nor do they count towards
the number of interactions.

D.4 Compute

The experiments were run on the internal compute cluster Delft AI Cluster (DAIC) (2024) using any
of the following GPU architectures: NVIDIA Quadro K2200, Tesla P100, GeForce GTX 1080 Ti,
GeForce RTX 2080 Ti, Tesla V100S and Nvidia A-40. Each seed was ran on one GPU, and was
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given access to 6GB of RAM and 2 CPU cores. Total training wall-clock time averages were in
the range of 0.5 to 2 hours per 106 environment steps, depending on GPU architecture, the baseline
algorithm and VI variations. For example, baseline TD3 wall-clock time averages were roughly 1.25
hours per 106 environment steps on average. The total wall clock time over all experiments presented
in this paper (main results, baselines and ablations) is estimated at ≈ 12000 wall-clock hours of the
compute resources detailed above: ≈ 7320 for the results in the paper and ≈ 4300 for the ablations
in the appendix. Additional experiments that are not included in the paper were run in the process of
implementation and testing.

D.5 Implementation & Hyperparemeter Tuning

Our implementation of TD3 and SAC relies on the popular code base CleanRL (Huang et al., 2022).
CleanRL consists of implementations of many popular RL algorithms which are carefully tuned to
match or improve upon the performance reported in the original paper. The implementations of TD3
and SAC use the same hyperparameters as used by the authors (Fujimoto et al. (2018) and Haarnoja
et al. (2018a) respectively), with the exception of the different learning rates for the actor and the
critic in SAC, which were tuned by CleanRL.
For the TD7 agent, we use the original implementation by the authors (Fujimoto et al., 2023), adapting
the action space to the DeepMind control’s in the same manner as CleanRL’s implementation of TD3.
Additionally, a non-prioritized replay buffer has been used for TD7 which was used by the TD3 and
SAC agents as well. The hyperparameters are the same as used by the author.
The VI-variations of all algorithms use the same hyperparameters as the baseline algorithms without
any additional tuning, with the exception of grid search for the greedification parameters τ presented
in Figure 2.

D.6 Network Architectures

The experiments presented in this paper rely on standard architectures for every baseline. TD3 and
SAC used the same architecture, with the exception that SAC’s policy network predicts a mean of a
Gaussian distribution as well as standard deviation, while TD3 predicts only the mean. TD7 used the
same architecture proposed and used by Fujimoto et al. (2023).
TD3 and SAC:
Actor: 3 layer MLP of width 256 per layer, with ReLU activations on the hidden layers. The final
action prediction is passed through a tanh function.
Critic: 3 layer MLP of width 256 per layer, with ReLU activations on the hidden layers and no
activation on the output layer.
TD7: Has a more complex architecture, which is specified in (Fujimoto et al., 2023).

D.7 Hyperparemeters

TD3 SAC TD7
exploration noise 0.1 exploration noise 0.1

Target policy noise 0.2 Target policy noise 0.2
Target smoothing 0.005 Target smoothing 0.005

noise clip 0.5 auto tuning of entropy True noise clip 0.5
Critic learning rate 1e-3 Critic learning rate 3e-4

Learning rate 3e-4 Policy learning rate 3e-4 Policy learning rate 3e-4
Policy update frequency 2 Policy update frequency 2 Policy update frequency 2

γ 0.99 γ 0.99 γ 0.99
Buffer size 106 Buffer size 106 Buffer size 106

Batch size 256 Batch size 256 Batch size 256
learning start 104 learning start 104 learning start 104

evaluation frequency 5000 evaluation frequency 5000 evaluation frequency 5000
Num. eval. episodes 3 Num. eval. episodes 3 Num. eval. episodes 3
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