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Abstract

Federated Learning (FL) is a distributed learning paradigm where multiple clients each hav-
ing access to a local dataset collaborate to solve a joint problem. Federated Averaging (Fe-
dAvg) the algorithm of choice has been widely explored in the classical server setting where
the server coordinates the information sharing among clients. However, this approach incurs
high communication costs, and the complete system fails if the central server fails. Hence,
there is a need to study the performance of FedAvg in the decentralized setting, which is not
well understood, especially in the interpolation regime, a common phenomenon observed
in modern overparameterized neural networks. In this work, we address this challenge and
perform a thorough theoretical performance analysis of FedAvg in the interpolation regime
under decentralized setting, where only the neighboring clients communicate with each other
depending on the network topology. We consider a class of non-convex functions satisfying
the Polyak-Łojasiewicz (PL) inequality, a condition satisfied by overparameterized neural
networks. For the first time, we establish that Decentralized FedAvg achieves linear conver-
gence rates of O(T 2 log(1/ϵ)), where ϵ is the solution accuracy, and T is the number of local
updates at each client. We also extend our analysis to the classical Server FedAvg and es-
tablish a convergence rate of O(log(1/ϵ)) which significantly improves upon the best-known
rates for the simpler strongly-convex setting. In contrast to the standard FedAvg analyses,
our work does not require bounded heterogeneity and gradient assumptions. Instead, we
show that sample-wise (and local) smoothness of the local objectives suffice to capture the
effect of heterogeneity. Experiments on multiple real datasets corroborate our theoretical
findings.

1 Introduction

In the age of Bigdata, Federated Learning (FL) provides machine learning (ML) practitioners with an
indispensable tool for solving large-scale learning problems. FL is a distributed machine learning scenario
that allows the edge devices to learn a shared model while maintaining the training data decentralized at
the edge devices (Konečnỳ et al., 2016; McMahan et al., 2017). This avoids the need to share the data
with a central server and hence preserves the privacy of the individual clients (edge devices). Assuming a
supervised learning setting, where each of the N distinct clients having access to some local data (x, y) ∼ Dk

from distribution Dk for k ∈ {1, . . . , N} aim to solve the following:

FL Problem: min
w∈Rd

Φ(w) := 1
N

N∑
k=1

Φk(w),

where Φk(w) := E(x,y)∼Dk lk(fw(x), y) is the expected loss at client k ∈ [N ] for the input feature x ∈ X ,
and the corresponding label y ∈ Y. Here, fw(x) is the model’s output with parameters w ∈ Rd.

The de-facto standard for solving the above FL Problem is the simple Federated Averaging (FedAvg) algo-
rithm (McMahan et al., 2017). In recent years, many works have attempted to characterize the convergence
of FedAvg under different settings (Stich, 2018; Li et al., 2019a; Woodworth et al., 2020a; Ma et al., 2018; Yu
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et al., 2019b). For example, the authors in Stich (2018) show a convergence rate of O (1/Nϵ) for minimizing
strongly convex functions while Haddadpour & Mahdavi (2019) establishes similar rates for minimizing func-
tions satisfying Polyak-Lojasiewicz (PL) condition. For minimizing non-convex smooth functions, FedAvg
achieves a convergence rate of O(1/Nϵ2) (Karimireddy et al., 2020; Woodworth et al., 2020b), where, ϵ refers
to the desired solution accuracy.

Note that the majority of papers have considered FedAvg in the classical server setting (referred to as
Server FedAvg) where FedAvg requires the central server for information aggregation. In Server Fe-
dAvg, the clients compute their model updates and send them to the server which may cause communi-
cation bottlenecks and delays at the server. Also, if the server is attacked then the aggregated model’s
privacy may be affected. In addition, for many practical learning scenarios, access to a server may
not be feasible. For such settings, the de-facto algorithm is Decentralized FedAvg. In the decentral-
ized setting, instead of global aggregation, each client performs local aggregation based on its connec-
tions with the neighboring clients. Though the Decentralized FedAvg algorithm is studied in (Koloskova
et al., 2019; Li et al., 2019b), the linear (fast) convergence is known only in the strongly convex setting.

Figure 1: log-training loss vs communication rounds for overparame-
terized Deep Neural Networks (DNNs) and a simple regression model.

However, in practice, it has been observed that
even for non-convex settings Decentralized Fe-
dAvg converges at a much faster rate compared
to the rates demonstrated in these works. To
illustrate this fact, in Fig. 1 we plot the be-
havior of the training loss (on a log scale) as
a function of communication rounds for De-
centralized FedAvg to solve classification tasks
on MNIST data set (for experimental details
please see Section 5). It is clear from the plot
that the loss decreases linearly as a function
of communication rounds. This implies that
the standard analyses of Decentralized FedAvg lacks a theoretical explanation of this linear convergence as
shown in Fig. 1. In this work, we attempt to fill these gaps and perform a thorough theoretical analysis
of Decentralized FedAvg in the interpolation regime where the local nodes communicate over an undirected
graph. Under this setting, we establish the linear convergence of FedAvg for minimizing a class of non-convex
functions satisfying the PL inequality. We also extend our analysis to the classical Server FedAvg and es-
tablish improved guarantees compared to the state-of-the-art. We note that PL inequality plays a key role
in the training of overparameterized systems. Specifically, many works have shown that the loss function
of an overparameterized neural network satisfies the PL inequality (Bassily et al., 2018; Liu et al., 2020).
Furthermore, our analysis reveals that the standard but restrictive assumptions of bounded gradients (Yu
et al., 2019b; Stich, 2018; Li et al., 2019a; Koloskova et al., 2020), heterogeneity (Yu et al., 2019a; Woodworth
et al., 2020b; Yu et al., 2019a; Wang et al., 2021; Sery et al., 2021), and variance (Woodworth et al., 2020b;
Qu et al., 2020) can be avoided while guaranteeing this linear convergence of Decentralized FedAvg.

Contributions. Here, we list the major contributions of our work:

1. We consider the decentralized setting where N distributed clients communicate over an undirected graph.
We show that to achieve an ϵ-accurate solution Decentralized FedAvg requires R ∼ O

(
T 2 log (1/ϵ)

)
rounds of communication. We also characterize the effect of the network topology on the performance of
Decentralized FedAvg.

2. In the classical server setting we establish linear convergence rates of R ∼ O (log (1/ϵ)). Compared to
the best-known result in Koloskova et al. (2020) where a simpler strongly-convex problem is considered,
we get improved rates independent of the number of local updates T (please see Table 1).

3. Our theoretical results do not require assumptions on the boundedness of heterogeneity, gradients, and
stochastic variance. We show that sample-wise smoothness of the stochastic loss functions suffices to
capture the effect of data heterogeneity among different clients while avoiding the need to impose the
restrictive bounded gradient and variance assumptions.
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Table 1: Comparison with existing works. Here, SC, C and NC represent Strongly convex, Convex and
Non-convex settings, respectively.

ALGORITHM CONVERGENCE EXTRA ASSUMPTIONS SETTING

Local SGD (Stich, 2018) (s) O (1/Nϵ) Bounded gradient SC
Local SGD (Yu et al., 2019b) (s) O

(
1/Nϵ2

)
Bounded variance, smoothness NC

Local SGD (Haddadpour et al., 2019) (s) O (1/Nϵ) Bounded variance, smoothness NC
FedAvg (Qu et al., 2020) (s) O (T log(1/ϵ)) Bounded Gradient, Bounded Variance Overparameterized SC

Local SGD (Woodworth et al., 2020b) (s) O
(
1/Nϵ2

)
Bounded Variance C

Local SGD (Woodworth et al., 2020a) (s) O
(
1/Nϵ2

)
Bounded Variance C

PR-SGD (Yu et al., 2019a) (s) O
(
1/Nϵ2

)
Bounded Variance NC

FedAvg (Karimireddy et al., 2020) (s) O
(
1/Nϵ2

) Bounded gradient dissimilarity
Bounded heterogeneity NC

SGD (Koloskova et al., 2020) (s) O (T log (T/ϵ)) Smoothness Overparameterized SC
OUR WORK (s) O (log (1/ϵ)) Smoothness Overparameterized NC

NFSGD (Haddadpour & Mahdavi, 2019) O
(
1/Nϵ2

)
Bounded local variance NC

DECENTRALIZED SGD (Koloskova et al., 2020) O (T log (T/ϵ)) Smoothness Overparameterized SC
DECENTRALIZED GD(Song et al.) O (log (1/ϵ)) Smoothness Overparameterized NC

OUR WORK O(T 2 log(1/ϵ)) Smoothness Overparameterized NC

4. Finally, we present experimental results on various data sets such as CIFAR-10, Shakespeare, MNIST,
and FMNIST, and corroborate our theoretical findings under the decentralized settings. Through our
experiments, we show that an optimal number of local updates Tth exists and increasing T beyond Tth
hurts the performance of FedAvg in both server and decentralized settings.

1.1 Related Work

After the introduction of the FedAvg (McMahan et al., 2017), multiple works have analyzed the convergence
of FedAvg in the server setting and with homogeneous data, i.e., when the data is i.i.d across clients (see
(Stich, 2018; Wang & Joshi, 2018; Khaled et al., 2019; Yu et al., 2019b; Wang et al., 2019; Yang et al.,
2021)). The authors in (Stich, 2018) were the first to obtain a rate of O(1/Nϵ) for strongly convex and
smooth problems. Later (Haddadpour et al., 2019; Haddadpour & Mahdavi, 2019) proved a similar result
but for non-convex functions satisfying PL inequality. The analysis of FedAvg for the general non-convex
settings was first performed in (Yu et al., 2019b) where the authors establish a rate of O(1/Nϵ2).

There are a few works that have analyzed the performance of Fedvg in decentralized settings as well. One
of the initial works, (Lian et al., 2017) considered a decentralized parallel SGD (D-PSGD) and provided a
convergence rate of O(1/Nϵ2) for minimizing smooth non-convex functions. Later, (Haddadpour & Mah-
davi, 2019) analyzed the convergence of FedAvg under both server and decentralized settings with bounded
gradient dissimilarity assumption. The authors showed a convergence rate of O(1/Nϵ2) for minimizing
non-convex functions in both the server and decentralized settings. The authors in (Yu et al., 2019a) also ex-
tended the analysis of Momentum SGD to decentralized networks and established convergence of O(1/Nϵ2)
for minimizing non-convex functions. Recently, the authors in (Song et al.) established a linear convergence
rate of O(log(1/ϵ)) for a decentralized gradient descent algorithm in the overparameterized regime. But, it
is well known that in the deterministic setting distributed algorithms for minimizing PL loss functions are
capable of achieving linear convergence (even in the non-interpolated regime). Moreover, since deterministic
problems involve computations of very large batch gradients during each update, they are not very practical,
especially, for large-scale problems. Further, the local nodes conduct only a single local update. However,
in this work, we consider a stochastic problem where each agent conducts multiple local updates within
each communication round which is significantly more challenging compared to a deterministic setting with
single round, since we have to deal with the stochasticity of the algorithm at each local update. Moreover,
the authors emphasize on the quadratic loss and consider neural networks with mean squared error loss. In
contrast, we consider a general system (including neural networks) with loss satisfying PL-inequality. More-
over, it is an open problem to establish if (stochastic) Decentralized FedAvg can guarantee linear convergence
in the interpolation regime for non-strongly convex losses. All the above works provide a sublinear rate of
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convergence for Decentralized FedAvg, however, as illustrated in Fig. 1, Decentralized FedAvg converges at a
much faster rate in practice. To understand this behavior of Decentralized FedAvg, in this work, we analyze
the performance of Decentralized FedAvg for minimizing a special class of non-convex functions satisfying PL
inequality under the interpolation regime. We note that overparameterized neural networks/systems usually
operate in the interpolation regime while their loss functions have been shown to satisfy the PL inequality.

Similarly, the authors in (Koloskova et al., 2020) have also established the linear convergence of FedAvg in
the decentralized setting for minimizing strongly-convex losses in an overparameterized setting. The above
works only focus on the analysis of FedAvg for the strongly-convex objectives in the overparameterized
regime while we focus on the more general class of non-convex functions satisfying the PL inequality. Note
that for strongly-convex objectives the local clients will all share a unique minimum, this implies that even
if there is no communication, FedAvg will converge with the same rate to the local optimal. Importantly,
our analysis improves the analyses of (Qu et al., 2020) and (Koloskova et al., 2020), and establishes better
dependence on the local updates on the performance of FedAvg (Please see Table 1). Moreover, compared
to other works that assume restrictive bounded gradient, heterogeneity, and variance assumptions, we show
that such assumptions can be avoided by using a sample-wise smoothness assumption. The authors in (Qu
et al., 2020) show linear speedup for strongly convex and convex functions. Table 1 presents a summary of
the above discussion.

The Decentralized SGD algorithm is extensively studied under various conditions which consists of time-
varying network graphs (Koloskova et al., 2020), momentum updates (Lin et al., 2021), asynchronous model
updating (Nadiradze et al., 2021). To handle the heterogeneity in data across the clients, various tracking
algorithms such as gradient tracking, model tracking (Yue Liu & Stich, 2024; Aketi et al., 2024) and mo-
mentum tracking (Takezawa et al., 2023) have also been proposed. In separate line of works, the authors
in (Zhu et al., 2023b;a) prove generalization guarantees for Decentralized SGD algorithm. The authors in
(Nadiradze et al., 2021) along with asynchronous updates consider quantization and multiple local steps.
Some recent works such as (Beznosikov et al., 2022) have looked at the stochastic extragradient method with
time varying networks for the decentralized methods.

Notations: We use bold small letters to denote vectors and capital bold letters for matrices. We denote
the expected value of a random variable X by E [X]. We denote l2-norm by ∥·∥2, Frobenius norm by ∥·∥F
and operator norm by ∥·∥op. ⟨·, ·⟩ denotes the inner product. The cardinality of any set B is represented by
|B|. We use the standard notation O(n) to denote the order of n. For a vector-valued function Φ(w), the
gradient is denoted by ∇Φ(w) ∈ Rd, and the Hessian is denoted by ∇2Φ(w) ∈ Rd×d. We use 1 to represent
a column vector with all ones. We use [N ] to denote the set {1, . . . , N}.

2 The Decentralized FedAvg Algorithm

In many practical settings, the central server is absent, and the clients are required to communicate and
update the model weights in a decentralized manner while communicating with only the neighboring nodes.
In this work, we consider such a setting and study Decentralized FedAvg, an extension of FedAvg to the
decentralized setting. The decentralized setting consists of N distributed edge devices which are represented
using a connectivity graph G ∈ (V, E). Here, V ∈ [N ] is the vertex set or clients, and E ⊆ {V × V} represents
the edges of the graph. Any edge (i, j) ∈ E represents a connection between node i and j. Further, the
connections are represented using mixing matrix P = [pi,k] ∈ RN×N , where pi,k = 0 if there is no edge
between node i and k i.e., (i, k) /∈ E , else pk,i > 0. Unlike many existing works on decentralized settings
(Lian et al., 2017), here we consider a general framework where each client performs T rounds of local
updates. Decentralized FedAvg is presented in Algorithm 1 while in the following, we provide an outline:

1. Initialization: Each client k ∈ [N ] initializes the model parameters denoted by w0
k. See Step 1 of

Algorithm 1.

2. Local updates: Each client performs T steps of SGD starting from the model parameters obtained by
the aggregation of the updates from neighbouring clients. Towards computing the stochastic gradient,
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each client k ∈ [N ] uniformly randomly samples a batch of data of size b denoted by Br,tk , and then
computes the gradient. The resulting model parameters after T local rounds in the r-th global round
are denoted by wr,T

k which is sent to all the neighbouring clients of k. See Steps 6 and 7 of Algorithm 1.
Note that this procedure is similar to the local update step in the FedAvg case.

3. Aggregation: In the r-th global communication round, each client k ∈ [N ] computes a local average of
the model parameters received by its neighbors. The aggregate model is denoted by wr

k. The steps (2)
and (3) above are repeated for R rounds. See Steps 11, 12 of Algorithm 1.

2.1 Assumptions

In this subsection, we present the assumptions and definitions used in the analysis of the Decentralized
FedAvg algorithm.
Definition 1. (L-Smoothness): The function Φ (u) is said to be L smooth if there exists a constant L > 0
such that ∥∇Φ (u1) − ∇Φ (u2)∥2 ≤ L ∥u1 − u2∥2 for any u1,u2 ∈ Rd. Note that this further implies that
Φ (u1) ≤ Φ (u2) + ⟨∇Φ(u2),u1 − u2⟩ + L

2 ∥u1 − u2∥2 for any u1,u2 ∈ Rd.

Definition 2. (ϵ-accurate solution): A stochastic algorithm is said to achieve an ϵ-accurate solution in r
rounds if E[Φ(wr) − Φ(w∗)] ≤ ϵ, where the expectation is taken over the stochasticity of the algorithm and
w∗ ∈ arg minw∈Rd Φ(w).
Assumption 1. (Interpolation): We say that the model parameters is operating in the interpolation regime
if there exists a w ∈ Rd such that the per sample loss Φk,j (w) = 0 for all samples j ∈ [b].

Assumption 2. (PL inequality): The joint objective Φ (v) satisfies the PL inequality, i.e., ∥∇Φ (v)∥2 ≥
µΦ (v) for some µ > 0 and for all v ∈ Rd. Further, the local loss functions Φk (v) for all k = 1, 2, . . . , N are
also assumed to satisfy the PL inequality, henceforth referred to as local PL inequality, i.e., ∥∇Φk (v)∥2 ≥
µkΦk (v) for some µk > 0 and for all v ∈ Rd.
Assumption 3. (Sample-wise, Local and Global smoothness): The functions Φk,j(·) for all j ∈ [b], k ∈ [N ]
are assumed to be lk,j-smooth. The local functions Φk(·) for all k ∈ [N ] are assumed to be Lk-smooth. The
above assumptions imply ∥∇Φk,j (v)∥2 ≤ 2lk,jΦk,j (v) and ∥∇Φk (v)∥2 ≤ 2LkΦk (v) for all k ∈ [N ] and
j ∈ [b]. We also assume the global loss Φ(·) to be L-smooth.
Assumption 4. (Unbiasedness): We assume that the stochastic samples of the gradient and the loss function
at each client k ∈ [N ] are unbiased, i.e., E [∇Φk,j (w)] = ∇Φk (w) and E [Φk,j (w)] = Φk (w) for any j ∈ [b]
and w ∈ Rd.

Most of the above assumptions, including interpolation, PL inequality and smoothness are standard as-
sumptions made in various works in the past (Bassily et al., 2018; Karimi et al., 2016; Ma et al., 2018;
Nguyen & Mondelli, 2020). For example, the authors in (Bassily et al., 2018; Liu et al., 2022; Karimi et al.,
2016; Haddadpour et al., 2019) assume PL inequality along with sample-wise smoothness to prove linear
convergence of FedAvg in the interpolation regime. It is also important to note that the overparameterized
systems satisfy PL inequality (Liu et al., 2020; Nguyen & Mondelli, 2020; Nguyen et al., 2021; Allen-Zhu
et al., 2019; Liu et al., 2022), and hence plays a crucial role in the analysis of overparameterized systems
(Liu et al., 2022). Moreover, we note that the assumption on sample-wise smoothness is not very stringent
since any neural network with smooth activation function satisfies this assumption. Next, we present two
Lemmas that will be used in proving the convergence result of Decentralized FedAvg algorithm.

Lemma 1. For any matrices A ∈ CN×N and B ∈ CN×d, we have ∥AB∥2
F ≤ ∥A∥2

op ∥B∥2
F , where

∥A∥op denotes the operator norm of A.

Lemma 2. (See Lemma 1 in (Sun et al., 2021)) For any m ∈ N, the mixing matrix P satisfies
∥Pm −Q∥op ≤ λm2 , where λ2 is the second largest eigenvalue of the mixing matrix P , and Q := 1

N 11T .
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Algorithm 1 Decentralized FedAvg

Initialize {w0,0
k = w0

k}, wk ∈ Rd for k ∈ [N ]
for r = 0, 1, . . . , R− 1 do

Initialize wr
k at device k ∈ [N ]

for t = 0, 1, . . . , T − 1 do
for devices k ∈ [N ] do

Sample a batch Br,tk and |Br,tk | = b

SGD step on wr,t
k for k ∈ [N ]: wr,t+1

k = wr,t
k − η

b

∑
j∈Br,t

k
∇Φk,j

(
wr,t
k

)
end for

end for
Receive wr,T

k from clients k ∈ [N ]
Aggregation step : wr+1

k =
∑
i∈Nk

pk,iw
r,T
i , for k ∈ [N ]

end for

3 Convergence of Decentralized FedAvg

In this section, we prove that the Decentralized FedAvg algorithm converges linearly to the global optimum
for any smooth non-convex function satisfying PL inequality in the interpolation regime. Compared to the
classical Server FedAvg analyses this problem poses several challenges. In particular, unlike Server FedAvg
in the decentralized setting each client has access to only parameters from its neighbours. This implies that
for Decentralized FedAvg we need to handle two drift terms, namely local drift and the global drift. Local
drift refers to the update at each client drifting away from the average obtained from the neighboring clients
while the global drift refers to the average obtained from the neighboring clients drifting away from the
global average. These two equations are coupled, and hence we use the Lyapunov based approach to show
that both drift as well as the loss go down linearly. In addition to the Assumptions 1-4, our analysis also
relies on the following assumption on the mixing matrix (Koloskova et al., 2020).
Assumption 5. P is symmetric, i.e., P = PT , and doubly stochastic, i.e., P1 = 1, 1TP = 1T .

The above assumption covers all networks that are symmetric, for example, fully connected graph, ring
graph, (Hua et al., 2022), etc. In the following, we provide the main result for the Decentralized FedAvg.
The details of the proof are presented in Sec. B of the Appendix.

Theorem 1 (Convergence of Algorithm 2). Under Assumptions 1-5, after T local iterations,
choosing η = O(1/T 2), we get

E[Φ
(
wr+1)+ θDr+1,0] ≤

(
1 − ηµ

16

)
E[Φ (wr) + θDr,0].

Proof: See Sec. C.1 in Appendix.

Theorem 1 establishes linear convergence of FedAvg in the decentralized setting. The authors in Koloskova
et al. (2020) consider a class of µ-strongly convex functions. As a consequence, the global objective (sum
of strongly convex functions) is also strongly convex. The interpolation assumption ensures the existence
of a unique global optimal point x∗. In order to prove linear convergence, the authors in Koloskova et al.
(2020) consider bounding a part of the consensus term. More specifically, they consider

∥∥x̄t+1 − x∗
∥∥ (Lemma

8), where x̄t+1 is the average of the local updates and x∗ is the global optimal. In our setting, we cannot
consider x∗ as there is no unique local or global optimal points. Furthermore, they use the property of strong
convexity to bound

∥∥x̄t+1 − x∗
∥∥; this cannot be done in our setting. Hence, our analysis is quite different

from the existing works. Next, we characterize the sample complexity of Decentralized FedAvg.

Corollary 1. Under Assumptions 1-5, to achieve an ϵ-accurate solution, Algorithm 1 requires R =
O
(
T 2/µ

[
log
(
E[Φ

(
w0)]/ϵ)]) number of communication rounds.
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Proof: It is clear from equation 48 of Theorem 1 that η scales as µ
ζ8T 2 . Thus, from a scaling point-of-view,

using η = µ
ζ8T 2 in Theorem 1 and the fact that (1 − x) ≤ e−x, we get

E[Φ
(
wr+1)+ θDr+1,0] ≤ exp

(
− Rµ

ζ8T 2

)
E
(
Φ
(
w0)) .

From above we see that to obtain ϵ accuracy, we want exp
(

− Rµ
ζ8T 2

)
E
(
Φ
(
w0)) ≤ ϵ. Now rearranging the

above, and using the fact that E[Φ
(
wr+1)+ θDr+1,0] ≥ E[Φ

(
wr+1)] gives us the result in the corollary.

Corollary 1 shows that even in the decentralized setting, FedAvg can achieve linear convergence. More
importantly, the sum of the drift and the loss goes to zero linearly with R, as opposed to most of the existing
work (Sun et al., 2021). Observe from Theorem 1 and the corollary above that an ϵ-accurate solution can be
achieved if the number of global communications rounds R scales as O(T 2). For the strongly convex setting
since the clients share a unique minima the impact of the local rounds T on the convergence performance
is less severe as shown in (Koloskova et al., 2020). Since the local clients share a unique minimum, which
allows the algorithm to converge at the same rate to the local optimal irrespective of the local updates
and communication protocol used. We believe that the slightly worse convergence of our analysis is due
to the non-convex functions satisfying the PL inequality. Importantly, as a special case of our analysis,
for the classical FedAvg algorithm (with a server), we establish a convergence rate of O(log(1/ϵ)) which is
significantly better than that existing results (see Section 4). Note that one can optimize the number of
local rounds that lead to faster convergence. However, this optimization is cumbersome in the decentralized
setting, and hence the convergence depends on T .

Effect of Network Topology : The effect of decentralized clients is captured through the term involving
λ2. In order to explain the dependency of λ2 on convergence, consider the case of T = 1, i.e., FedSGD. In
this case, if λ2 ̸= 0 but closer to 1, then the learning rate is dominated by the term (1 −λ2)/constant. Thus,
the learning rate is small in the decentralized setting (as opposed to λ2 = 0). As a consequence, (1 − ηµ/8)
is closer to 1 leading to a slower convergence. In the extreme case of λ2 = 1, i.e., fully disconnected graph,
η = 0, which leads to divergence, as expected. Later, we perform experiments to show the effect of network
topology on the convergence for different network settings. Although the above result holds good only for
networks with symmetric and doubly stochastic mixing matrices, we believe that similar results hold good
even in the general setting as well.

3.1 Proof Sketch of Theorem 1

Unlike strongly convex setting of (Koloskova et al., 2020), as a consequence of the execution of local
updates within each communication round, the nodes do not have consensus. This implies that we need to
control the consensus error in addition to the client drift. We handle this challenge by bounding the loss in
terms of the drift term that captures both local and global drifts as mentioned in the Lemma below. We
start by proving an upper bound on the average loss E

[
Φ
(
wr+1)] in terms of the loss Φ (wr) in the r-th

communication round, and the drift Dr,0, as shown in the following Lemma.

Lemma 3. The average loss is bounded in terms of the drift as follows

E
[
Φ
(
wr+1)] ≤

(
1 − ηµ

8

)
Φ (wr) + 6ηL2T

N
Dr,0, (1)

where the drift Dr,0 :=
∑N
k=1 E

∥∥∥wr,0
k − wr,0

∥∥∥2
, and η is chosen according to equation 48.

Proof: See Sec. C.1.

It is easy to see from Lemma 3 that we can obtain the convergence result shown in theorem 1 provided the
drift term on the right hand side of equation 1 is bounded in terms of loss. Towards this, first we bound
the drift term which depends on the average loss, leading to two coupled equations (see equation 1 and
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equation 2). We construct a single equation that is a linear combination of the two coupled equations, and
show that the linear combination goes to zero exponentially, leading to linear convergence of both drift as
well as the loss function. In the following lemma, we provide a recursion of the drift in terms of the average
loss and the past drift.

Lemma 4. The drift is bounded in terms of Φ
(
wr−1,0) as follows

Dr,0 ≤
((

1 + 1
ψ

)
λ2

2 + η2λ4
2βT

2L2
max

)
Dr−1,0 + 2η2λ4

2βT
2LmaxNE

[
Φ
(
wr−1,0)] , (2)

where β := 4lmax(1+ψ)
µmin

.

Proof: See Sec. B.1.

Next, our task is to show that the recursion in equation 1 and equation 2 satisfy a bound of the form
Φ (wr) + θDr,0 ≤ υr × (Φ

(
w0) + θΦ

(
w0)), for some θ > 0 and υ ∈ (0, 1), which is the desired result. In

summary, we prove the bounds on the loss (in terms of drift) in Lemma 3 and the drift (in terms of the
loss) in Lemma 4. Note that proving the above bound involves carefully handling the drift due to multiple
local rounds. Using the above results, we constructed a Lypunov function in terms of drift and loss for some
θ > 0, and prove the following bound by appropriately choosing the learning rate η and constants:

Lemma 5. By choosing η as in Theorem 1 for some θ > 0, we obtain the following

Φ
(
wr+1)+ θDr+1,0 ≤

(
1 − ηµ

16

)
(Φ (wr) + θDr,0) . (3)

Proof: See Sec. C.2.

The above Lemma shows that the drift and the loss go down to zero exponentially fast (linear convergence).
The above approach is quite different the existing works (Koloskova et al., 2020).

4 Server Setting: FedAvg with Improved Rates

In this section, we show that our analysis specialized to the server setting, i.e., λ2 = 0 enables us to show
that an optimal number of local rounds T exists. In particular, we mathematically characterize this optimal,
and show that an improved rate of O(log(1/ϵ) can be achieved as opposed to the existing work (Koloskova
et al., 2020). Further, the same observation is made empirically in both server and the decentralized settings
(see Sec. 5).
Optimal local rounds: Consider the equation for drift from Lemma 4

Dr,0 ≤
((

1 + 1
ψ

)
λ2

2 + η2λ4
2βT

2L2
max

)
Dr−1,0 + 2η2λ4

2βT
2LmaxNE

[
Φ
(
wr−1,0)] , (4)

and a bound on the loss function from equation 41 of Sec. C.1

E
[
Φ
(
wr+1)] ≤ E

[((
1 − ηµ

4

)T
+ 64η4T 3lmaxLLmax

µmin

)
Φ (wr) + 4ηTL2

N

∥∥(Q− P )W r,0∥∥2
F

+ 2ηTL2

N

[(
16lmaxη2T 2L2

max

µmin
+ 4λ2

2η
2γL2

maxT
2
)

Dr,0 + 4η2γT 2λ2
2
∥∥∂Φ

(
W r,0)∥∥2

F

]]
.(5)

It is evident from the above equations that the drift increases with T , as expected. However, a part of
the expression in the average loss decreases with T (more specifically, the term

(
1 − ηµ

4
)T ) while the other

terms increase with T . In principle, one should be able to characterize the optimal T . However, the above
is a complicated expression to optimize with respect to T . To get more insights into the effect of T , in the

8
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following, we look at the server setting, which is a special case of our framework. The server setting consists
of the central server which coordinates the information sharing among participating clients. We obtain the
server setting by making the second largest eigenvalue of the mixing matrix, i.e., λ2 = 0 in the decentralized
case. Now using the fact that λ2 = 0 in equation 4 and equation 5 lead to Dr,0 = 0 and

E
[
Φ
(
wr+1)] ≤

((
1 − ηµ

4

)T
+ 64η3T 3lmaxL

2Lmax
µmin

)
E [Φ (wr)] , (6)

respectively. Choosing η ≤ 64lmaxL2Lmax
µminT

, and utilizing the upper bound e−x ≤ 1 − x + x2

2 , for all x ≥ 0 in
equation 6, result in

E
[
Φ
(
wr+1)] ≤

(
1 − ηµT

4 + η2T 2
(
µ2

8 + 1
))

E [Φ (wr)] .

Now we choose T such that the right hand side above is minimized, i.e.,

inf
T

[
1 − ηµT

4 + η2T 2
(
µ2

8 + 1
)]

.

Note that the above is a convex function. Hence, differentiating the above w.r.t T and equating it to 0, we
get

T = Tth = µ

η (µ2 + 8) .

The above analysis leads to the following “faster" convergence rate for the decentralized setting:

Corollary 2. By choosing the number of local updates such that T = Tth = µ
η(µ2+8) , the iterates gen-

erated by Algorithm 1 achieve an ϵ accurate point after R = O
(

8(µ2+8)
µ2 log

(
Φ(w0)
ϵ

))
communication

rounds.

In the above analysis, we capture the effect of local updates on the performance of the decentralized FedAvg.
Specifically, we show that there exists an optimal number of local updates T beyond which the convergence of
the algorithm slows down and one needs to choose T carefully to achieve the optimal convergence guarantees.
Again, this is the first result establishing linear convergence of FedAvg in the decentralized setting when
minimizing non-convex functions satisfying PL-inequality in the interpolation regime. In the next section,
we present the experimental results.

Figure 2: Training loss on different datasets versus the communication rounds for FedAvg in the decentralized
setting.

5 Experimental Evaluation

In this section, we experimentally validate our theoretical findings for the decentralized versions of FedAvg.
First, we present the experimental setup for various settings.

9
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Figure 3: Testing accuracy on different datasets versus the communication rounds for FedAvg in the decen-
tralized setting.

Figure 4: Effect of T on the convergence of Decentralized FedAvg for simple regression and CNN model.

5.1 Setup: Decentralized FedAvg

We use 60 edge devices to run the Decentralized FedAvg algorithm with multiple local SGD steps and
then broadcast the updated model with the nodes connected to it. We consider the image classification
tasks on CIFAR-10, MNIST, and FMNIST datasets using an overparameterized simple regression and Deep
Neural Network (DNN) models. We have implemented all our experiments on NVIDIA DGX A100. The
experimental setup consists of the following model and data set:

Overparameterized regression: Here we consider a simple regression model with 3 linear layers. There
are 231490 trainable parameters with no activation function. We evaluate the performance of Decentralized
FedAvg algorithm on MNIST dataset for an image classification task.

Deep neural network: We consider an image classification task under two different settings: underparam-
eterized and overparameterized settings. In this case, each device implements a convolutional neural network
(CNN) model. We consider the CIFAR-10, MNIST and FMNIST datasets. In the overparameterized setting,
each edge device implements a three hidden layer convolutional neural network (CNN) with 256, 128 and 64
filters followed by three linear layers having 1642849 trainable parameters for CIFAR-10 and two linear lay-
ers for MNIST and FMNIST with 1046426 trainable parameters. On the contrary, the underparameterized
setting considers a relatively smaller neural network. In this setting, each device implements two hidden
layer CNN network having 25 and 52 filters followed by two linear layers for CIFAR-10 and one linear layer
for MNIST and FMNIST datasets. We set the number of local updates T = 10 and pick the tunable learning
rate in the range η ∈ [0.001 : 0.01] for CIFAR-10, MNIST, FMNIST datasets. We consider that each device
has 490 training samples and 90 test samples for CIFAR-10 dataset. On the other hand, for MNIST and
FMNIST datasets, 540 samples are used for training and 80 samples are used for testing.

10
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Figure 5: Training loss versus the communication rounds for FedAvg in the decentralized setting. Here,
random doubly stochastic case has 5 clients while for others we have used 60 clients.

In this setting, we run Algorithm 1 for the following networks (i) ring, (ii) random doubly stochastic, and (iii)
torus topologies. For the Decentralized FedAvg, we compare (a) the performance of Decentralized FedAvg
with both underparametrized and overparameterized neural network models, (b) effect of topology on the
convergence, and (c) effect of local updates on the convergence. In the following, we provide a detailed
experimental results.

Figure 6: Training loss and Testing accuracy for centralized (λ2 = 0) and Decentralized FedAvg algorithm
with ring topology (λ2 = 0.33) on CIFAR-10 dataset versus communication rounds.
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Figure 7: Optimality gap for Decentralized FedAvg algorithm with ring topology on MNIST dataset versus
communication rounds.
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Figure 8: Comparison of the DSGDm and Decentralized FedAvg.

5.2 Experimental Results for Different Settings

Using the settings described above, here we present experimental results for Decentralized FedAvg’s, and
corroborate various theoretical findings made in this paper:

1. Underparameterized versus overparametrized: Fig. 2 shows the plots of training loss of Fe-
dAvg in the decentralized setting for underparameterized and overparameterized models on MNIST,
FMNIST, CIFAR-10 datasets. As established in Theorem 1, the loss of FedAvg in the decentralized
setting diminishes rapidly for the overparameterized models compared to the underparameterized
models. This is due to the fact that the PL inequality is satisfied for overparameterized systems
which helps to reach the global optimum at a linear rate as demonstrated by Theorem 1. Fig. 3
show plots for testing accuracy for FedAvg in the decentralized setting. As expected the convergence
speed of underparameterized case is slower than the overparameterized case.

2. Effect of local updates T : Fig. 4 shows plots of the training losses on MNIST dataset for the
FedAvg under the decentralized setting on the overparameterized regression model and the CNN.
From equation 6, we see that as T increases, the convergence speed either decreases or increases
depending on the coefficient of T 3 in the second term. We capture this phenomenon in Fig. 4. In
particular, as T increases, the rate of convergence increases for simple regression model while it
decreases/saturates for the CNN based DNN model. One plausible explanation is that the smooth-
ness constants of simple regression is small, and hence results in smaller second term in equation 6.
However, for CNN based DNN, the second term dominates, and hence results in slower convergence
with T .

3. Effect of optimality gap: Fig. 7 shows the plot of the optimality gap, i.e., Φ (wr)−Φ (w∗) versus
R. Here w∗ is an approximate optimal solution obtained by running a centralized algorithm for a
sufficient number of rounds. As expected the optimality gap decreases exponentially with R.

4. Comparison with the existing work: Fig. 8 shows the comparison of Decentralized Stochastic
Gradient Descent with momentum (DSGDm) (Lin et al., 2021) with the Decentralized FedAvg algo-
rithm. We show the training loss versus R for overparameterized CNN model using MNIST dataset
in both the cases. We see DSGDm outperforms the Decentralized FedAvg algorithm as expected.

5. Comparison with different topologies in the decentralized case: Fig. 5 shows the training loss
versus the communication rounds R for overparameterized CNN model using MNIST dataset with
T = 10 for four different topologies. Since server topology has λ2 = 0, it outperforms the network
with ring topology and a random (doubly) stochastic matrix. However, the torus topology does not
satisfy the conditions required, i.e., symmetric and doubly stochastic matrix, and hence cannot be
used for corroborating our theoretical findings. Nevertheless, we have conducted experiments with
torus topology, and Fig. 5 shows that the torus has the worst convergence performance. One reason

12
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for this could be that the ring topology has more structure, i.e., it has a symmetric and doubly
stochastic mixing matrix P as opposed to the torus topology. The theoretical analysis of networks
with general topology is relegated to our future work.

6 Conclusion

In this work, we performed a theoretical analysis of the well known FedAvg algorithm for the class of smooth
non-convex overparameterized systems in the interpolation regime. We considered the decentralized setting
where nodes communicate over an undirected graph. In this regime, it is well know that neural networks with
non-convex loss functions typically satisfy an inequality called Polyak-Lojasiewicz (PL) condition. Assuming
PL condition, we showed that the FedAvg algorithm achieves linear convergence rate O(T 2 log(1/ϵ)), where
ϵ is the desired solution accuracy, and T is the number of local SGD updates at each node. As opposed
to the standard analysis of the FedAvg algorithm, we showed that our approach does not require bounded
heterogeneity, variance, and gradient assumptions. We captured the heterogeneity in FL training through
sample-wise and local smoothness of loss functions. Finally, we carried out experiments on multiple real-
world datasets to confirm our theoretical observations.
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A Appendix

A.1 Compact Notations

We simplify the presentation of the proof by using the following matrix notations. Let the local average of
the parameters be denoted by W r

l := [wr
1,w

r
2, . . . ,w

r
N ]T ∈ RN×d, where wr

k ∈ Rd is the parameter vector
at node k. The Aggregation step of Algorithm 1 can be compactly written in matrix form as

wr+1
k =

∑
i∈Nk

pk,iw
r,T
k ≡ W r+1

l = PW r,T , (7)

where Nk := {i : pk,i > 0}, and the symbol ≡ means “equivalent to". Further, we define the global average
as

wr := 1
N

N∑
k=1

wr
k ≡ W r = QW r

l , (8)

where Q := 1
N 11T . Now, let us represent the gradients compactly in the matrix form as

∂Φ̂
(
W r,t

)
:=

1
b

∑
j∈Br,t1

G
(r,t)
1,j ,

1
b

∑
j∈Br,t2

G
(r,t)
2,j , . . . ,

1
b

∑
j∈Br,t

N

G
(r,t)
N,j

 , (9)

where G(r,t)
l,j := ∇Φl,j

(
wr,t
l

)
. The mixing matrix P also preserves the average, and hence QP = P . In the

following subsection, we provide a Lemma that relates the local average with the drift.

B Proof of Theorem 1

In this section, we first present the sketch of the proof, and for ease of presentation, we provide compact
notations. Then, we will state and prove Lemmas required to prove the main Theorem. The proof mainly
consists of two intermediate steps, namely bounding i) the local loss (see Lemma 1) using Lk smoothness
(see Definition 1) and local PL inequality to show that the loss at local parameter is bounded in terms of
the loss at the global average parameter and the drift and ii) the global drift (see Lemma 2).

B.1 Useful Lemmas to Prove Theorem 1

Lemma 1. The expected local loss function Φk (wr,τ
k ) satisfies the following bound

E [Φk (wr,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k − wr∥2
2 + 2

µmin
E ∥∇Φk (wr)∥2

, (10)

where µmin := mink∈[N ]{µk}.

Proof: Using Assumption 1, we have

Φk (wr,τ
k ) ≤ Φk

(
wr,τ−1
k

)
+
〈

∇Φk
(

wr,τ−1
k

)
,wr,τ

k − wr,τ−1
k

〉
+ Lk

2

∥∥∥wr,τ
k − wr,τ−1

k

∥∥∥2

2
. (11)
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We know from Step 7 of the Algorithm 1 that wr,τ
k − wr,τ−1

k = −η
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)
. Using this

in equation 11, we get

Φk (wr,τ
k ) ≤ Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,

1
b

∑
j∈Br,τ−1

k

∇Φk,j
(

wr,τ−1
k

)〉
+ η2Lk

2 Gk(r, τ).

= Φk
(

wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,

1
b

∑
j∈Br,τ−1

k

∇Φk,j
(

w
r,τ−1)
k

)〉

+ η2Lk
2b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j
(

wr,τ−1
k

)∥∥∥2

2
+ η2Lk

2b2

∑
j ̸=j′

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j

(
wr,τ−1
k

)〉
.

≤ Φk
(

wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,

1
b

∑
j∈Br,τ−1

k

∇Φk,j
(

w
r,τ−1)
k

)〉

+ η2Lmax
2b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j
(

wr,τ−1
k

)∥∥∥2

2
+ η2Lmax

2b2

∑
j ̸=j′

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j′

(
wr,τ−1
k

)〉
,(12)

where Gk(r, τ) :=
∥∥∥ 1
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)∥∥∥2

2
, and Lmax := maxk Lk. Taking expectation of the above

leads to

E [Φk (wr,τ
k )] ≤ E

[
Φk
(

wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,∇Φk

(
wr,τ−1
k

)〉
+ η2Lmax

2b

∥∥∥∇Φk,j
(

wr,τ−1
k

)∥∥∥2

2

+ η2Lmaxb(b− 1)
2b2

∥∥∥∇Φk
(

wr,τ−1
k

)∥∥∥2

2

]
.

Applying smoothness assumption of each sample, i.e.,
∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2

2
≤ 2lk,jΦk,j

(
wr,τ−1
k

)
, we have

E [Φk (wr,τ
k )] ≤ E

[
Φk
(

wr,τ−1
k

)
− η

∥∥∥∇Φk
(

wr,τ−1
k

)∥∥∥2

2
+ η2Lmaxlk,j

b
Φk,j

(
wr,τ−1
k

)
+ η2Lmaxb(b− 1)Lk

b2

[
Φk
(

wr,τ−1
k

)]]
.

≤ Φk
(

wr,τ−1
k

)
− η

∥∥∥∇Φk
(

wr,τ−1
k

)∥∥∥2

2
+ η2Lmaxlmax

b
E
[
Φk,j

(
wr,τ−1
k

)]
+ η2L2

maxb(b− 1)
b2

[
Φk
(

wr,τ−1
k

)]
, (13)

where lmax := maxk Lk. From the local PL inequality (see definition 2), it follows that
∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2

2
≥

µminΦk
(

wr,τ−1
k

)
for k = {1, 2, . . . , N}, where µmin := mink∈[N ]{µk}. Using this in equation 13 results in

E [Φk (wr,τ
k )] ≤

[
1 − ηµmin + η2

(
lmaxLmax

b
+ L2

maxb(b− 1)
b2

)]
E
[
Φk
(

wr,τ−1
k

)]
.

By setting η ≤ µmin

2
[
lmaxLmax

b +L2
maxb(b−1)

b2

] , the above can be further bounded as

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)
E
[
Φk
(

wr,τ−1
k

)]
.

Since wr,0
k = wr

k, the above can be written as

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)τ
E [Φk (wr

k)] . (14)

17
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Using the local PL inequality, i.e., Φk (wr
k) ≤ 1

µmin
∥∇Φk (wr

k)∥2
2 in equation 14, we have

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)τ 1
µmin

E ∥∇Φk (wr
k)∥2 . (15)

Now, adding and subtracting the term ∇Φk (wr) in the above, and using the fact that ∥a+ b∥2 ≤ 2 ∥a∥2 +
2 ∥b∥2, we get

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)τ 2
µmin

E
(

∥∇Φk (wr
k) − ∇Φk (wr)∥2

2 + ∥∇Φk (wr)∥2
2

)
.

Using Lk smoothness assumption (see Assumption 3), we have

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)τ
E
(

2L2
k

µmin
∥wr

k − wr∥2
2 + 2

µmin
∥∇Φk (wr)∥2

2

)
.

Choosing η < 2
µmin

and using the fact that Lmax = maxk Lk, we get

E [Φk (wr,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k − wr∥2
2 + 2

µmin
E ∥∇Φk (wr)∥2

.

Using smoothness condition, the above leads to the following corollary. The below result comes in handy
while proving the main result.

Corollary 1. The function Φk (wr,τ
k ) satisfies local PL inequality and can be bounded in terms of global

average parameter i.e., Φk (wr) as follows

E [Φk (wr,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k − wr∥2
2 + 4Lmax

µmin
E [Φk (wr)] , (16)

where µmin := mink∈[N ]{µk} and Lmax := maxk Lk.

Now, it suffices to bound the drift term in terms of the loss to obtain the linear convergence

C Proof of Lemma

Lemma 2. The average consensus term, i.e., Dr,0 := E
∥∥∥W r,0

l −W r,0
∥∥∥2

F
satisfies the following bound

Dr,0 ≤
((

1 + 1
ψ

)
λ2

2 + η2λ4
2βT

2L2
max

)
Dr−1,0 + 2η2λ4

2βT
2LmaxNE

[
Φ
(
wr−1,0)] , (17)

where β := 4lmax(1+ψ)
µmin

. Here, λ2 is the second largest eigenvalue of the mixing matrix P .

Proof: Let Dr,0 = E
∥∥∥W r,0

l −W r,0
∥∥∥2

F
=
∑N
k=1 E

∥∥∥wr,0
k − wr,0

∥∥∥2
. Using compact notations for the updates

in equation 7 and equation 8, the consensus term can be written as

Dr,0 = E
∥∥QPW r,0 − PW r,0∥∥2

F

= E
∥∥(Q− P )W r,0∥∥2

F
. (18)

Recall that Q = 1
N 11T is the average matrix, P is the mixing matrix and QP = Q. Using W r,0

l = PW r−1,T

(see equation 7), substituting for the update in W r−1,T and taking the telescopic sum, we get

W r,0 = W r,0
l = P

(
W r−1,0 − η

T−1∑
τ=0

∂Φ̂
(
W r−1,τ)) .

18
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Plugging the above in equation 18, and using the generalized Cauchy’s inequality, i.e., ∥a+ b∥2 ≤(
1 + 1

ψ

)
∥a∥2 + (1 + ψ) ∥b∥2 for any ψ ≥ 0, the consensus term can be upper bounded as

E
∥∥(Q− P )W r,0∥∥2

F
≤

(
1 + 1

ψ

)
Ξ + (1 + ψ)η2E

∥∥∥∥∥(Q− P 2) T−1∑
τ=0

∂Φ̂
(
W r−1,τ)∥∥∥∥∥

2

F

(a)
≤

(
1 + 1

ψ

)
Ξ + (1 + ψ)η2 ∥∥(Q− P 2)∥∥2

op
E

∥∥∥∥∥
T−1∑
τ=0

∂Φ̂
(
W r−1,τ)∥∥∥∥∥

2

F

(b)
≤

(
1 + 1

ψ

)
Ξ + (1 + ψ)η2λ4

2T

T−1∑
τ=0

E
∥∥∥∂Φ̂

(
W r−1,τ)∥∥∥2

F
, (19)

where λ2 is the second largest eigenvalue of the mixing matrix P and Ξ := E
∥∥(Q− P 2)W r−1,0

∥∥2
F

. In the
above, (a) follows from Lemma 1 and (b) follows from Lemma 2. Next, consider bounding the following

E
∥∥∥∂Φ̂

(
W r−1,τ)∥∥∥2

F
= E

N∑
k=1

∥∥∥∥∥∥∥
1
b

∑
j∈Br−1,τ

k

∇Φk,j
(

wr−1,τ
k

)∥∥∥∥∥∥∥
2

2

Jensen’s
≤ E

N∑
k=1

1
b

∑
j∈Br−1,τ

k

∥∥∥∇Φk,j
(

wr−1,τ
k

)∥∥∥2

2

(a)
≤ 2lmax

N∑
k=1

E
[
Φk
(

wr−1,τ
k

)]
, (20)

where (a) follows from the smoothness assumption and lmax := maxk,j lk,j . Recall from Lemma 1 that

E
[
Φk
(

wr−1,τ
k

)]
≤ 2L2

max

µmin
E
∥∥wr−1

k − wr−1∥∥2
2 + 2

µmin
E
∥∥∇Φk

(
wr−1)∥∥2

.

Substituting this in equation 20, and writing it in the matrix form, we get

E
∥∥∥∂Φ̂

(
W r−1,τ)∥∥∥2

F
= 4lmaxL2

max

µmin
E
∥∥∥W r−1,0

l −W r−1,0
∥∥∥2

F
+ 4lmax
µmin

E
∥∥∂Φ

(
W r−1,0)∥∥2

F
.

Using the above in equation 19

E
∥∥(Q− P )W r,0∥∥2

F
≤

(
1 + 1

ψ

)
E
∥∥(Q− P 2)W r−1,0∥∥2

F
+ η2λ4

2αT
2L2

maxDr−1,0

+η2λ4
2βT

2E
∥∥∂Φ

(
W r−1,0)∥∥2

F
, (21)

where β := 4lmax(1+ψ)
µmin

. First, let us consider bounding a part of the first term above, i.e.,
E
∥∥(Q− P 2)W r−1,0

∥∥2
F

. Using the fact that QP = Q and Q2 = Q, it follows that P 2 − Q = (Q − P )2.
Using this in equation 21, we get

E
∥∥(Q− P )W r,0∥∥2

F
≤

(
1 + 1

ψ

)
E
∥∥∥(Q− P )2

W r−1,0
∥∥∥2

F
+ η2λ4

2βT
2L2

maxDr−1,0

+η2λ4
2βT

2E
∥∥∂Φ

(
W r−1,0)∥∥2

F
.

Applying the results of Lemma 1 and 2, the first term in the above can further be bounded as,

E
∥∥(Q− P )W r,0∥∥2

F
≤

(
1 + 1

ψ

)
∥(Q− P )∥2 E

∥∥(Q− P )W r−1,0∥∥2
F

+ η2λ4
2βT

2L2
maxDr−1,0

+η2λ4
2βT

2E
∥∥∂Φ

(
W r−1,0)∥∥2

F

(a)
≤

(
1 + 1

ψ

)
λ2

2Dr−1,0 + η2λ4
2βT

2L2
maxDr−1,0 + η2λ4

2βT
2E
∥∥∂Φ

(
W r−1,0)∥∥2

F
, (22)
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where (a) follows by substituting the results from Lemma 2. The term E
∥∥∂Φ

(
W r−1,0)∥∥2

F
in the above is

bounded as follows

E
∥∥∂Φ

(
W r−1,0)∥∥2

F
= E

N∑
k=1

∥∥∇Φk
(
wr−1,0)∥∥2

2

(a)
≤ 2LmaxNE

[
Φ
(
wr−1,0)] ,

where (a) follows from smoothness assumption and using the fact that Φ
(
wr−1,0) = 1

N

∑N
k=1 Φk

(
wr−1,0),

and Lmax = maxk Lk. Using the above result in equation 22, we get

Dr,0 ≤
((

1 + 1
ψ

)
λ2

2 + η2λ4
2βT

2L2
max

)
Dr−1,0 + 2η2λ4

2βT
2LmaxNE

[
Φ
(
wr−1,0)] .

C.1 Completing the Proof of Theorem 1

From L-smoothness assumption (see 1) of Φ (w), we have

Φ
(
wr,t+1) ≤ Φ

(
wr,t

)
+ ⟨∇Φ(wr,t),wr,t+1 − wr,t⟩ + L

2
∥∥wr,t+1 − wr,t

∥∥2
. (23)

Using step 7 of Algorithm 2, we have wr,t+1
i = wr,t

i − η
b

∑
j∈Br,t

i
∇Φi,j

(
wr,t
i

)
. Multiplying both sides by

pk,i and summing over i ∈ Nk, we get

wr,t+1
k = wr,t

k − η

b

∑
i∈Nk

pk,i
∑
j∈Br,t

i

∇Φi,j
(
wr,t
i

)
. (24)

Averaging on both sides over k ∈ [N ], we get

wr,t+1 = wr,t − η

bN

N∑
k=1

∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)
.

Substituting for wr,t+1 − wr,t from the above udpate in equation 23, we get

Φ
(
wr,t+1) ≤ Φ

(
wr,t

)
− η

〈
∇Φ

(
wr,t

)
,

1
bN

N∑
k=1

∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)〉
+ η2L

2b2N2

∥∥Gr,t
∥∥2
,

where Gr,t :=
∑N
k=1

∑
j∈Br,t

k
∇Φk,j

(
wr,t
k

)
. Taking expectation conditioning on wr,t

k and past, we get

E
[
Φ
(
wr,t+1)] ≤ E

[
Φ
(
wr,t

)
− η

〈
∇Φ(wr,t), 1

N

N∑
k=1

∇Φk
(
wr,t
k

)〉
︸ ︷︷ ︸

:=A1

+η2L

2

(
1

b2N2

N∑
k=1

∥∥∥∥∥∥
∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=A2

+ 1
b2N2

∑
k ̸=k′

〈 ∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)
,
∑
i∈Br,t

k

∇Φk′,i

(
wr,t
k′

)〉
︸ ︷︷ ︸

:=A3

)]
, (25)

First, consider the second term above, i.e., A2

A2 = 1
b2N2

N∑
k=1

∑
j∈Br,t

k

∥∥∇Φk,j
(
wr,t
k

)∥∥2 + 1
b2N2

N∑
k=1

∑
j ̸=j′

〈
∇Φk,j

(
wr,t
k

)
,∇Φk,j′

(
wr,t
k

) 〉
.
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Taking expectation, we get

E[A2] = 1
bN2

N∑
k=1

E∥∇Φk,j
(
wr,t
k

)
∥2 + b(b− 1)

b2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2. (26)

Similarly the term A3 in equation 25 can be bounded by taking expectation as follows

E[A3] = 1
N2

∑
k ̸=k′

〈
∇Φk

(
wr,t
k

)
,∇Φk′

(
wr,t
k′

)〉
(a)
≤ 1

2N2

∑
k ̸=k′

[
∥∇Φk

(
wr,t
k

)
∥2 + ∥∇Φk′

(
wr,t
k′

)
∥2
]

= 2(N − 1)
2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2

≤ 1
N

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2, (27)

where (a) follows from ⟨a, b⟩ ≤ 1
2 ∥a∥2 + 1

2 ∥b∥2. Next, we lower bound the term A1 in equation 25 as

A1 = 1
2∥∇Φ

(
wr,t

)
∥2 + 1

2∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − 1

2∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)
− ∇Φ

(
wr,t

)
∥2

Jensen + smoothness
≥ 1

2∥∇Φ
(
wr,t

)
∥2 + 1

2∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − L2

2N

N∑
k=1

∥wr,t
k − wr,t∥2. (28)

Substituting equation 26, equation 27 and equation 28 in equation 23, we get the following

E
[
Φ
(
wr,t+1)] ≤ E

[
Φ
(
wr,t

)
− η

2
∥∥∇Φ

(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+ ηL2

2N

N∑
k=1

∥∥wr,t
k − wr,t

∥∥2

+ η2L

2bN2

N∑
k=1

∥∥∇Φk,j
(
wr,t
k

)∥∥2

︸ ︷︷ ︸
:=A4

+
(
η2Lb(b− 1)

2b2N2 + η2L

2N

) N∑
k=1

∥∥∇Φk
(
wr,t
k

)∥∥2

︸ ︷︷ ︸
:=A5

]
. (29)

The term A4 in equation 29 is bounded as follows

A4
(a)
≤

N∑
k=1

2
∥∥∇Φk,j

(
wr,t
k

)
− ∇Φk,j

(
wr,t

)∥∥2 +
N∑
k=1

2
∥∥∇Φk,j

(
wr,t

)∥∥2

(b)
≤ 2

N∑
k=1

l2k,j
∥∥wr,t

k − wr,t
∥∥2 + 4

N∑
k=1

lk,jΦk,j
(
wr,t

)
(c)
≤ 2l2max

N∑
k=1

∥∥wr,t
k − wr,t

∥∥2 + 4lmax
N∑
k=1

Φk,j
(
wr,t

)
,

where (a) follows by adding and subtracting the term ∇Φk,j (wr,t) and using the fact that, ∥a+ b∥2 ≤
2 ∥a∥2 +2 ∥b∥2, (b) follows from Assumption 3, and (c) follows from the fact that lmax := maxk,j lk,j . Taking
expectation, we get

E [A4] ≤ 2l2max
N∑
k=1

E
∥∥wr,t

k − wr,t
∥∥2 + 4lmax

N∑
k=1

E
[
Φk
(
wr,t

)]
. (30)
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The term A5 in equation 29 is bounded as

A5
(a)
≤ 2

N∑
k=1

∥∥∇Φk
(
wr,t
k

)
− ∇Φk

(
wr,t

)∥∥2 + 2
N∑
k=1

∥∥∇Φk
(
wr,t

)∥∥2

(b)
≤ 2

N∑
k=1

L2
k

∥∥wr,t
k − wr,t

∥∥2 + 4
N∑
k=1

LkΦk
(
wr,t

)
(c)
≤ 2L2

max

N∑
k=1

∥∥wr,t
k − wr,t

∥∥2 + 4Lmax
N∑
k=1

Φk
(
wr,t

)
, (31)

where (a) follows by adding and subtracting ∇Φk (wr,t), and (b) follows from Assumption 3 and (c) follows
from Lmax := maxk Lk. Substituting upper bounds from equation 30 and equation 31 in equation 41, we
get

E
[
Φ
(
wr,t+1)] ≤ E

[
Φ
(
wr,t

)
− η

2
∥∥∇Φ

(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+
(
ηL2

2N + η2Ll2max
bN2 + η2LL2

max

N2 + η2LL2
max

N

) N∑
k=1

∥∥wr,t
k − wr,t

∥∥2

+
(

2η2Llmax
bN

+ 2η2LLmax
N

+ 2η2LLmax

)
Φ
(
wr,t

) ]
. (32)

Now, using PL inequality (see definition 2), i.e., ∥∇Φ (w)∥2 ≥ µΦ (w) , ∀w ∈ Rd and rearranging, we get

E
[
Φ
(
wr,t+1)] ≤ E

[(
1 − ηµ

2 +
(

2η2Llmax
bN

+ 2η2LLmax
N

+ 2η2LLmax

))
Φ
(
wr,t

)
+
(
ηL2

2N + η2Ll2max
bN2 + η2LL2

max

N2 + η2LL2
max

N

)
1
N

N∑
k=1

∥∥wr,t
k − wr,t

∥∥2
]
.

Choosing η ≤ min
{

µ

4( 2Llmax
bN + 2LLmax

N +2LLmax) ,
L2

2
(
Ll2max
bN +LL2

max
N +LL2

max

)}, the above can be further bounded

as

E
[
Φ
(
wr,t+1)] ≤

(
1 − ηµ

4

)
E
[
Φ
(
wr,t

)]
+ ηL2

N

N∑
k=1

E
∥∥wr,t

k − wr,t
∥∥2 (33)

(a)
≤

(
1 − ηµ

4

)
E
[
Φ
(
wr,t

)]
+ 2ηL2

N

N∑
k=1

E
(∥∥wr,t

k − wr,t
k

∥∥2 +
∥∥wr,t

k − wr,t
∥∥2)

, (34)

In the above, (a) follows by adding and subtracting the term wr,t
k and using the fact that, ∥a+ b∥2 ≤

2 ∥a∥2 +2 ∥b∥2. First, let us consider the local drift term i.e.,
∑N
k=1

∥∥wr,t
k − wr,t

k

∥∥ in equation 34. Telescoping
the update from step 7 of Algorithm 1 we have,

wr,t
k = wr,0

k − η

b

t−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j (wr,τ
k ) . (35)

Further, consider the local average at node k, i.e., wr,t
k

wr,t
k =

∑
i∈Nk

pk,iw
r,t
i = wr,0

k − η

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∇Φi,j (wr,τ
i ) . (36)
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Now noting the fact that wr,0
k = wr,0

k and using equation 35 and equation 36, we can bound the drift term
as

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 =
N∑
k=1

E

∥∥∥∥∥∥ηb
t−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j (wr,τ
k ) − η

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∇Φi,j (wr,τ
i )

∥∥∥∥∥∥
2

(a)
≤ 2

N∑
k=1

E

∥∥∥∥∥ηb
t−1∑
τ=0

Gkj(r, τ)

∥∥∥∥∥
2

+

∥∥∥∥∥ηb
t−1∑
τ=0

∑
i∈Nk

pk,iGij(r, τ)

∥∥∥∥∥
2

(b)
≤ 2

N∑
k=1

E

η2t

b2

t−1∑
τ=0

∥Gkj(r, τ)∥2 + η2t

b2

t−1∑
τ=0

∥∥∥∥∥∑
i∈Nk

pk,iGij(r, τ)

∥∥∥∥∥
2
 ,

where Gij(r, τ) :=
∑
j∈Br,τ

i
∇Φi,j (wr,τ

i ). In the above, (a) follows from the fact that, ∥a+ b∥2 ≤ 2 ∥a∥2 +

2 ∥b∥2, and (b) follows from the fact that for any vector zi,
(∑N

i=1 zi

)2
≤ N

∑N
i=1(zi)2. The second term in

(b) can be further bounded using Jensen’s inequality as follows

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ 2
N∑
k=1

E

[
η2t

b2

t−1∑
τ=0

∥Gkj(r, τ)∥2 + η2t

b2

t−1∑
τ=0

∑
i∈Nk

pk,i ∥Gij(r, τ)∥2

]

≤ 2
N∑
k=1

E

η2t

b

t−1∑
τ=0

∑
j∈Br,τ

k

∥∥∥gr,τkj ∥∥∥2
+ η2t

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∥∥gr,τij ∥∥2


(a)
≤ 2

N∑
k=1

E

η2t

b

t−1∑
τ=0

∑
j∈Br,τ

k

2lk,jΦk,j (wr,τ
k ) + η2t

b

t−1∑
τ=0

∑
j∈Br,τ

k

∑
i∈Nk

pk,i2li,jΦi,j (wr,τ
i )


(b)= E

2η2t

b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

2lmaxΦk,j (wr,τ
k ) + 2η2t

b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

∑
i∈Nk

pk,i2lmaxΦi,j (wr,τ
i )

 ,
where gr,τkj := ∇Φk,j (wr,τ

k ). In the above, (a) follows from smoothness assumption and (b) follows from the
fact that the mixing matrix P preserves the average and lmax := maxk,j lk,j . Simplifying the above results
in

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ E

8η2tlmax
b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

Φk,j (wr,τ
k )

 .
Taking expectation, we get

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ 8η2tlmax

N∑
k=1

t−1∑
τ=0

E [Φk (wr,τ
k )] . (37)

From equation 16 of Corollary 1, we have, E [Φk (wr,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k − wr∥2
2 + 4Lmax

µmin
E [Φk (wr)]. Using

this in equation 37, we get

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ 8η2tlmax

N∑
k=1

t−1∑
τ=0

(
2L2

max

µmin
E ∥wr

k − wr∥2
2 + 4Lmax

µmin
E [Φk (wr)]

)
.

Simplifying the above results in

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ 16η2t2lmaxL
2
max

N∑
k=1

E ∥wr
k − wr∥2

2
µmin

+ 32η2t2lmaxLmax

N∑
k=1

E [Φk (wr)]
µmin

. (38)
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Next, let us consider the global drift term i.e.,
∑N
k=1

∥∥wr,t
k − wr,t

∥∥2
2 in equation 34, which can be rewritten

in matrix notation as Dr,t :=
∥∥W r,t

l −W r,t
∥∥2
F

. This term is bounded as

Dr,t
(a)= E

∥∥QPW r,t − PW r,t
∥∥2
F

(b)= E
∥∥(Q− P )W r,t

∥∥2
F

(c)= E

∥∥∥∥∥(Q− P )
(
W r,0 − η

t−1∑
τ=0

∂Φ̂ (W r,τ )
)∥∥∥∥∥

2

F

,

where (a) follows since QPW r,t = W r,t and PW r,t = W r,t
l , (b) follows from QP = Q, and (c) follows from

the update W r,t = W r,0 − η
∑t−1
τ=0 ∂Φ̂ (W r,τ ). Using the fact that ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 in the above,

we get

Dr,t ≤ 2E
∥∥(Q− P )W r,0∥∥2

F
+ 2η2t

t−1∑
τ=0

E
∥∥∥(Q− P )∂Φ̂ (W r,τ )

∥∥∥2

F

≤ 2E
∥∥(Q− P )W r,0∥∥+ 2η2t

t−1∑
τ=0

λ2
2E∥∂Φ̂ (W r,τ ) ∥2

F . (39)

The term E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2

F
in the above can be bounded as

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2

F
= E

N∑
k=1

∥∥∥∥∥∥1
b

∑
j∈Br,t

k

∇Φk,j (wr,τ
k )

∥∥∥∥∥∥
2

2

≤ E
N∑
k=1

1
b

∑
j∈Br,t

k

∥∇Φk,j (wr,τ
k )∥2

2

(a)
≤ 2lmax

N∑
k=1

E [Φk (wr,τ
k )] ,

where (a) follows from the smoothness assumption and the fact that lmax := maxk,j lk,j . Using equation 10
of Lemma 1, i.e., E [Φk (wr,τ

k )] ≤ 2L2
max

µmin
E ∥wr

k − wr∥2
2 + 2

µmin
E ∥∇Φk (wr)∥2 in the above, we get

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2

F
≤ 4L2

maxlmax
µmin

N∑
k=1

E ∥wr
k − wr∥2

2 + 4lmax
µmin

N∑
k=1

E ∥∇Φk (wr)∥2
.

The result above can be written in the matrix form as,

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2

F
= 4L2

maxlmax
µmin

Dr,0 + 4lmax
µmin

E
∥∥∂Φ

(
W r,0)∥∥2

F
.

Substituting the above result in equation 39, we get

Dr,t ≤ 2E
∥∥(Q− P )W r,0∥∥2

F
+ 4η2L2

maxλ
2
2γt

2Dr,0 + 4η2λ2
2γt

2E
∥∥∂Φ

(
W r,0)∥∥2

F
, (40)

where γ := 2lmaxN
µmin

. Now, consider

E
[
Φ
(
wr+1)] ≤

(
1 − ηµ

4

)T
E [Φ (wr)] +

2ηL2

N

T−1∑
τ=0

(
1 − ηµ

4

)τ N∑
k=1

E
(∥∥∥wr,T−1−τ

k − wr,T−1−τ
k

∥∥∥2
+
∥∥∥wr,T−1−τ

k − wr,T−1−τ
∥∥∥2
)
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where (a) follows from the fact that
∥∥∥wr,T−1−τ

k − wr,T−1−τ
k

∥∥∥2
= 0 and

∥∥∥wr,T−1−τ
k − wr,T−1−τ

∥∥∥2
= 0 for

τ = T − 1. Now choosing η < 4
µ and substituting equation 38 and equation 40 in equation 41, we get

E
[
Φ
(
wr+1)] ≤ E

[((
1 − ηµ

4

)T
+ 64η3T 3lmaxL

2Lmax
µmin

)
Φ (wr) + 4ηTL2

N

∥∥(Q− P )W r,0∥∥2
F

+

2ηTL2

N

[(
16lmaxη2T 2L2

max

µmin
+ 4λ2

2η
2γL2

maxT
2
)

Dr,0 + 4η2γT 2λ2
2
∥∥∂Φ

(
W r,0)∥∥2

F

]]
. (41)

Using the fact that
(
1 − ηµ

4
)T ≤

(
1 − ηµ

4
)
, the above can be further bounded as

E
[
Φ
(
wr+1)] ≤ E

[(
1 − ηµ

4 + 64η3T 3lmaxL
2Lmax

µmin

)
Φ (wr) + 2ηTL2

N

[
2
∥∥(Q− P )W r,0∥∥2

F
+(

16lmaxη2T 2L2
max

µmin
+ 4λ2

2η
2γL2

maxT
2
)

Dr,0 + 4η2γT 2λ2
2
∥∥∂Φ

(
W r,0)∥∥2

F

]]
. (42)

The term E
∥∥∂Φ

(
W r,0)∥∥2

F
can be bounded as

E
∥∥∥∂Φ̂

(
W r,0)∥∥∥2

F
=

N∑
k=1

E ∥∇Φk (wr)∥2 (a)
≤

N∑
k=1

2LmaxE [Φk (wr)] = 2LmaxNE [Φ (wr)] ,

where (a) follows from the smoothness assumption and (b) follows from the fact that Φ (wr) =
1
N

∑N
k=1 Φk (wr). Using the above result in equation 42, we get

E
[
Φ
(
wr+1)] ≤ E

[(
1 − ηµ

4 + 64η3T 3lmaxL
2Lmax

µmin

)
Φ (wr) + 2ηTL2

N

[
2
∥∥(Q− P )W r,0∥∥2

F
+

(
16lmaxη2T 2L2

max

µmin
+ 4λ2

2η
2γL2

maxT
2
)

Dr,0 + 8η2λ2
2γT

2LmaxNΦ (wr)
]]

≤ E
[(

1 − ηµ

4 + 64η3T 3lmaxL
2Lmax

µmin
+ 16η3γT 3λ2

2L
2Lmax

)
Φ (wr) +

2ηTL2

N

([
16lmaxη2T 2L2

max

µmin
+ 4λ2

2η
2γL2

maxT
2
]

Dr,0 + 2
∥∥(Q− P )W r,0∥∥2

F

)]
.

Choosing η ≤ 1
8

(
µ

64T3lmaxL2Lmax
µmin

+16γT 3L2λ2
2Lmax

)1/2
in the above result in

E
[
Φ
(
wr+1)] ≤ E

[(
1 − ηµ

8

)
Φ (wr) + 2η3TL2

N

[
16T 2L2

maxlmax
µmin

+ 4λ2
2γL

2
maxT

2
]

Dr,0 + 4ηTL2

N

∥∥(Q− P )W r,0∥∥2
F

]
.

Again choosing η ≤

(
1

16T2lmaxL2
max

µmin
+4λ2

2γT
2L2

max

) 1
2

, the above results in

E
[
Φ
(
wr+1)] ≤

(
1 − ηµ

8

)
E [Φ (wr)] + 2ηTL2

N
Dr,0 + 4ηTL2

N
E
∥∥(Q− P )W r,0∥∥2

F
.

It is easy to see that E
∥∥(Q− P )W r,0

∥∥2
F

= E
∥∥∥W r,0

l −W r,0
∥∥∥2

F
= Dr,0. Using this above, gives us

E
[
Φ
(
wr+1)] ≤

(
1 − ηµ

8

)
E [Φ (wr)] + 6ηTL2

N
Dr,0. (43)

This completes the proof.

Next, we complete the proof by showing that the above inequality along with Lemma 2 results in the linear
bound of Theorem 1.
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C.2 Proof of Lemma 4

Let us recall the equations for Dr+1,0 and Φ
(
wr+1) from Lemma 2 and Theorem 1

Φ
(
wr+1) ≤ αΦ (wr) + ρDr,0, (44)
Dr+1,0 ≤ νDr,0 + χΦ (wr) , (45)

where α :=
(
1 − ηµ

8
)
, ρ := 6ηL2T

N , ν :=
(

1 + 1
ψ

)
λ2

2+η2λ4
2βT

2L2
max and χ := 2η2λ4

2βT
2LmaxN . To ensure ν <

1, we choose ψ = 2λ2
2

1−λ2
2

and any η ≤
√

1−λ2
2

4λ4
2βT

2L2
max

.Further, to ensure χ < 1, we choose η ≤
√

1
2λ4

2βT
2LmaxN

.
Now consider the following Lyapunov function for some constant θ > 0

Φ
(
wr+1)+ θDr+1,0 ≤ αΦ (wr) + ρDr,0 + θ (νDr,0 + χΦ (wr))

(a)
≤ (α+ θχ) Φ (wr) + (ρ+ θν) Dr,0, (46)

where (a) follows from equation 44 and equation 45. To show linear convergence we want the coefficients of
the first and second terms in equation 46 to satisfy the following inequalities

α+ θχ ≤
(

1 − ηµ

16

)
and (ρ+ θν) ≤ θ

(
1 − ηµ

16

)
. (47)

Now, consider the first inequality above. Substituting for α and χ and choosing

η ≤ µ

32θλ4
2βT

2LmaxN
,

ensures that the first inequality in equation 47 is satisfied. Next, substituting the values for ρ and ν in the
second inequality in equation 47, and simplifying results in

6ηL2T

N
+ θη2λ4

2βT
2L2

max + θηµ

16 ≤ θ

(
1 − λ2

2 − λ2
2
ψ

)
,

where the above quantity is non-negative by choosing ψ > λ2
2

1−λ2
2
. Now, picking η ≤ 1

θλ4
2βT

2L2
max

leads to

η

(
1 + θµ

16 + 6L2T

N

)
≤ θ

(
1 − λ2

2 − λ2
2
ψ

)
.

Choosing η ≤
θ

(
1−λ2

2−
λ2

2
ψ

)
(

1+ ηµ
16 + 6L2T

N

) ensures that (ρ+ θν) ≤ θ
(
1 − ηµ

16
)
. Finally, choosing

η ≤ min
{

4
µ ,

2
µmin

, µ
4ζ1
, L

2

2ζ2
, 1

8

(
µ

ζ3T 3

) 1
3
,
(

1
ζ4T 2

) 1
2
, µminζ5

,√
1−λ2

2
ζ6T 2 ,

√
1

ζ7T 2 ,
µ

ζ8T 2 ,
1

ζ9T 2 ,
θ(1−λ2

2−
λ2

2
ψ )(

1+ θµ
16 + 6L2T

N

)}, (48)

Substituting the conditions in equation 47 in equation 46, we get

Φ
(
wr+1)+ θDr+1,0 ≤

(
1 − ηµ

16

)
(Φ (wr) + θDr,0) .

for any constant θ > 0. Here, µmin := mink∈[N ]{µk}, lmax := maxk,j lk,j and Lmax := maxk Lk,

ψ = 2λ2
2

1−λ2
2
, γ := 2lmaxN

µmin
, β := 4lmax(1+ψ)

µmin
, and Dr,0 :=

∑N
k=1 E

∥∥∥wr,0
k − wr,0

∥∥∥2
. Moreover, in the above

ζ1 := 4
( 2Llmax

bN + 2LLmax
N + 2LLmax

)
, ζ2 := 2

(
Ll2max
bN + LL2

max

N + LL2
max

)
, ζ3 := 64lmaxLLmax

µmin
+ 16γLλ2

2Lmax,

ζ4 := 16lmaxL2
max

µmin
+ 4λ2

2γL
2, ζ5 := 2

[
lmaxLmax

b + L2
maxb(b−1)

b2

]
, ζ6 := 4λ4

2βL
2
max, ζ7 := 2λ4

2βLmaxN ,
ζ8 := 32θλ4

2βLmaxN and ζ9 := θλ4
2βL

2
max.
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C.3 Differences between strongly convex and our setting

In the following, we provide a very simple 1-D examples for strongly convex (f1(x) = log(x − 0.5 +√
1 + (x− 0.5)2) + (x − 0.5)2 + 0.25 + constant and f2(x) = 2x2), and non-convex settings (f1(x) =

x2 + 2 sin2(x) and f2(x) = 0 × 1{f1(x) ≤ 4} + f1(x)1{f1(x) > 4}), as shown in Figs. 9 and 10. Note
that in the strongly convex setting, both clients share the unique minima x∗ = 0 due to interpolation as-
sumption. In this case, both clients do not need to communicate since each client can run local rounds
to reach the global minima that minimizes the average, and hence making decentralized or collaborative
learning vacuous! On the other hand, for PL setting, multiple local rounds lead to different optimal points.
For example, running multiple rounds of GD results in client 1 reaching x∗

1 = 0 while client 2 reaches ≈ −1.3
or ≈ +1.3 depending on the initialization. However, the optimal point x∗ = 0. This simple scenario suggests
challenges while proving the results. For example, in the strongly convex setting ((Koloskova et al., 2020)),
one can start with the difference between global optimum and the local/global updates while we cannot use
this to prove our results.

Figure 9: Strongly convex losses in the overparameterized regime.

Figure 10: Losses satisfying PL inequality.
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