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Abstract
This paper addresses the challenge of preserving
privacy in Federated Learning (FL) within cen-
tralized systems, focusing on both trusted and un-
trusted server scenarios. We analyze this setting
within the Stochastic Convex Optimization (SCO)
framework, and devise methods that ensure Dif-
ferential Privacy (DP) while maintaining optimal
convergence rates for homogeneous and hetero-
geneous data distributions. Our approach, based
on a recent stochastic optimization technique, of-
fers linear computational complexity, comparable
to non-private FL methods, and reduced gradient
obfuscation. This work enhances the practicality
of DP in FL, balancing privacy, efficiency, and ro-
bustness in a variety of server trust environments.

1. Introduction
Federated Learning (FL) is a novel framework in Machine
Learning (ML), enabling collaborative learning among myr-
iad of decentralized devices or systems (McMahan et al.,
2017; Kairouz et al., 2021b). Privacy is a paramount issue in
FL, underscoring the critical need to prevent the disclosure
of private information as a result of the training process.

To address this challenge, Differential Privacy (DP) has
emerged as a robust framework for quantifying and man-
aging privacy risks (Dwork et al., 2006a;b). DP offers a
formal guarantee that the outcome of a data analysis does
not significantly change when any single individual’s data is
added or removed, thereby ensuring that individual privacy
is maintained (Dwork & Roth, 2014). Implementing DP
guarantees in FL has been extensively studied e.g. in (Huang
et al., 2020; Wei et al., 2020; Girgis et al., 2021; Noble et al.,
2022; Lowy & Razaviyayn, 2023; Lowy et al., 2023), ne-
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cessitating a nuanced equilibrium between data obfuscation
and maintaining model accuracy. This intricate balance is
crucial to preserve the efficacy of the learning process while
ensuring privacy. The critical challenge arising in this con-
text is in ensuring the confidentiality of the model updates
transmitted over the distributed network.

FL differentiates between device-based learning, limited by
device availability and bandwidth, and silo-based learning,
involving full participation from all machines, often across
organizations (Kairouz et al., 2021b). This paper focuses
on silo-based learning, crucial for achieving accurate and
consistent models, and we shall refer to silos as ”machines”.

In this work, we investigate DP guarantees for FL within the
Stochastic Convex Optimization (SCO) framework, a corner-
stone in the design and analysis of ML algorithms (Shalev-
Shwartz et al., 2009; Shalev-Shwartz & Ben-David, 2014).
And we focus on centralized scenarios where a (central)
sever employs M machines in parallel. So far, this setting
has been mainly investigated in the context of finite-sum
problems (ERM), e.g. in (Huang et al., 2020; Wei et al.,
2020; Girgis et al., 2021; Noble et al., 2022). Nevertheless,
translating ERM guarantees to population loss guarantees
leads to sub-optimal bounds, see e.g. (Bassily et al., 2019).

Conversely, optimal guarantees for the population loss
in this context were recently substantiated in (Lowy &
Razaviyayn, 2023). This work provides different guaran-
tees, depending on the level of trust that machines have
in a central server. Concretely, for (i) untrusted server
scenarios, this work substantiates a convergence rate of
O
(

1√
nM

+
√
d

ϵn
√
M

)
, where M is the number of machines,

n is the number of samples used per machine during the
training process, d is the dimension of the problem, and ε
is the level of ensured DP. Conversely, (ii) for the case of
a trusted server, an improved rate of O

(
1√
nM

+
√
d

ϵnM

)
is

substantiated. (Lowy & Razaviyayn, 2023) also provide
a matching lower bound for these rates. These guarantee
is substantiated for the homogeneous case, where the data
distribution is identical across all machines.

Nevertheless, as we detail in Appendix F, the approach
of (Lowy & Razaviyayn, 2023) requires a computational
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complexity that is proportional to |S|3/2, where |S| is the
size of overall data used by all machines. This is sub-
stantially higher compared to standard non-private FL ap-
proaches that require only ∝ |S| computations. Moreover,
the above bounds are only substantiated for the homoge-
neous case; and slightly worse bounds are substantiated for
the more general heterogeneous case.

Our paper explores methods that ensure DP for centralized
FL scenarios, under the setting of SCO. Our contributions:

• Untrusted Server. In the case of untrusted server, we
provide an approach that ensures an optimal conver-
gence rate rate of O

(
1√
nM

+
√
d

ϵn
√
M

)
, with a level

ϵ of DP. Our bound applies simultaneously to both
homogeneous and heterogeneous cases.

• Trusted Server. In the case of trusted server, we pro-
vide an approach that ensures an optimal convergence
rate rate of O

(
1√
nM

+
√
d

ϵnM

)
, with a level ϵ of DP.

Our bound applies simultaneously to both homoge-
neous and heterogeneous cases.

• The computational complexity of our approaches is
linear in |S|; matching the complexity standard non-
private FL approaches (Dekel et al., 2012).

Our results build on a recent stochastic optimization tech-
nique named µ2-SGD (Levy, 2023), that combines two dif-
ferent momentum mechanisms into SGD. We customize this
approach to the centralized FL setting, and show it is less
sensitive to a change of a single sample in S compared to
standard SGD, which allows to obtain DP with substantially
less gradient obfuscation.

Remark. Our paper categorizes the FL environment into
trusted or untrusted server scenarios. Our definition of an
untrusted server mirrors that in (Lowy & Razaviyayn, 2023).
However, this latter work introduces a nuanced concept of a
trusted shuffler, capable only of shuffling but not aggregating
gradient message identities. We juxtapose this with our
trusted server scenario, essentially treating the shuffler and
server as a single entity. It is an interesting open question to
understand whether one can obtain the same guarantees that
we derive for the trusted server scenario, under the more
nuanced assumption of a trusted shuffler.

Related Work

SCO with DP guarantees. There exists a rich literature
in the context of differential privacy (DP) within stochastic
convex optimization (SCO). Foundational work in empirical
risk minimization (ERM) within the finite-sum problems
has been substantially contributed to by a series of stud-
ies, among are (Chaudhuri et al., 2011; Kifer et al., 2012;

Thakurta & Smith, 2013; Song et al., 2013; Duchi et al.,
2013; Ullman, 2015; Talwar et al., 2015; Wu et al., 2017;
Wang et al., 2018; Iyengar et al., 2019; Kairouz et al., 2021a;
Avella-Medina et al., 2021; Ganesh et al., 2023). Neverthe-
less, these works primarily focus on training loss (ERM);
and translating these results to population loss guarantees
via standard uniform convergence (Shalev-Shwartz et al.,
2009) leads to sub-optimal bounds as described in (Bassily
et al., 2019; Feldman et al., 2020).

The studies of (Bassily et al., 2014; 2019) have advanced our
understanding by establishing population loss guarantees
for DP-SCO, and the latter has provided optimal bounds;
albeit with super-linear computational complexity ∝ |S|3/2.
This was later improved by (Feldman et al., 2020), which
attained the optimal guarantees with a sample complexity
which is linear in |S|, but provides privacy only on the final
iterate.

FL with DP guarantees. We have already mentioned
previous works that analyze FL with DP guarantees under
the SCO setting. Another notable work in this context is
(Cheu et al., 2022), which obtains the optimal bounds for
the trusted server case, albeit using an expensive vector-
shuffling routine, that leads to a computational complexity
which is even larger than |S|3/2 (see Cor. B.11 therein).

2. Preliminaries
In this section, we provide the necessary background for
analyzing private learning in the context of the standard
(single machine) setting, and will touch upon the neces-
sary background towards the more complex federated (or
parallel) learning setting.

2.1. Convex Loss Minimization

We focus on Stochastic Convex Optimization (SCO) scenar-
ios where the objective function, f : K 7→ R, is convex and
takes the following form:

f(x) = Ez∼D [f(x; z)] (1)

here, K ⊂ Rd is a compact convex set, and D represents
an unknown data distribution from which we may draw
i.i.d. samples. A learning algorithm receives a dataset S =
{z1, . . . , zn} ⊂ Zn (Z is the set where the samples reside),
of n i.i.d. samples from D, and outputs a solution xoutput ∈
K. Our performance measure is the expected excess loss
R(xoutput), defined as:

R(xoutput) = E [f(xoutput)]−min
x∈K

{f(x)} (2)

expectation is taken w.r.t. the randomness of the samples, as
well as w.r.t. the (possible) randomization of the algorithm.
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We focus on first-order optimization methods that iteratively
employ the samples in S to create a sequence of query points,
culminating in a solution xoutput ∈ K. To elaborate, at each
iteration t, such iterative methods maintain a query point
xt ∈ K, calculated from previous query points and sam-
ples z1, . . . , zt−1. The subsequent query point xt+1 is then
determined using xt and a gradient estimate gt. This esti-
mate is obtained by drawing a fresh sample zt ∼ D (taken
from S), independently of past samples, and calculating
gt = ∇f(xt; zt), where the derivative is with respect to x.

The independence of the samples ensures that gt is an un-
biased estimator of ∇f(xt), in the sense that E [gt|xt] =
∇f(xt). It is useful to conceptualize the calculation of
gt = ∇f(xt; zt) as a sort of (noisy) Gradient Oracle. Upon
receiving a query point xt ∈ K, this Oracle outputs a vector
gt ∈ Rd, serving as an unbiased estimate of ∇f(xt).

Assumptions We will make the following assumptions.
Bounded Diameter: There exists D > 0 such that
maxx,y∈K ∥x− y∥ ≤ D
Convexity: The function f(·; z) is convex ∀z ∈ Supp{D}.

We also make these assumption about f(·; z) ,∀z ∈ Z:
Lipschitz: There exists G > 0 such that:

|f(x; z)− f(y; z) | ≤ G ∥x− y∥ , ∀x, y ∈ K

This also implies that ∥∇f(x; z)∥ ≤ G,∀x ∈ K.
Smoothness: There exists L > 0 such that:

∥∇f(x; z)−∇f(y; z)∥ ≤ L ∥x− y∥ , ∀x, y ∈ K

Since these assumptions hold for f(x; z) for every z ∈
Supp{D} ⊂ Z , they also hold for f(x). The above Lips-
chitz and Smoothness assumptions imply the following:
Bounded Variance: There exist 0 ≤ σ ≤ G such that:

E ∥∇f(x; z)−∇f(x)∥2 ≤ σ2, ∀x ∈ K (3)

Bounded Smoothness Variance: ∃σL ∈ [0, L] such,

E ∥(∇f(x; z)−∇f(x))− (∇f(y; z)−∇f(y))∥2

≤ σ2
L ∥x− y∥2 , ∀x, y ∈ K (4)

For completeness, we provide a proof in Appendix B.1.
Notations: We will employ the following notation, Pro-
jection ΠK(x) = argminy∈K ∥x− y∥, the notation [n] =

{1, . . . , n}, the notation α1:t =
∑t

τ=1 ατ .

2.2. Differential Privacy

In order to discuss privacy, we need to measure how does
private information affects the outputs of an algorithm. The
idea behind Differential Privacy (DP) is to look at the output
of the algorithm with the private information and without
it, and measure the difference between these outputs. The

more similar they are, the more private the algorithm is. Con-
cretely, similarity is measured w.r.t. the difference between
the probability distributions of the (randomized) outputs.

Rényi Divergence Below is the definition of Rényi diver-
gence, a popular difference measure between probability
distributions, which is prevalent in the context of DP.

Definition 2.1 (Rényi Divergence (Rényi, 1961)). Let 1 <
α < ∞, and let P,Q be probability distributions such that
Supp{P} ⊆ Supp{Q}. The Rényi divergence of order α
between P and Q is defined as:

Dα (P∥Q) =
1

α− 1
log

(
EX∼P

[(
P (X)

Q(X)

)α−1
])

We follow with the convention that 0
0 = 0. If Supp{P} ⊈

Supp{Q}, then the Rényi divergence is defined to be ∞.
Divergence of orders α = 1,∞ are defined by continuity.

Notation: If X ∼ P, Y ∼ Q, we will use
Dα (P∥Q) & Dα (X∥Y ) interchangeably.

Adding Gaussian noise is a popular primitive in DP, and we
will therefore find the following lemma useful:

Lemma 2.2. Let P ∼ N (µ, Iσ2) and Q ∼ N (µ+∆, Iσ2),
two Gaussian distributions. Then, Dα (P∥Q) = α∥∆∥2

2σ2 .

For completeness we provide a proof in Appendix B.2.

Differential Privacy Definitions
Definition 2.3 (Differential Privacy (Dwork et al., 2006a;b)).
A randomized algorithm A is (ϵ, δ)-diferentially private, or
(ϵ, δ)-DP, if for all neighbouring datasets S, S′ that differs in
a single element, and for all events O, we have:

P {A(S) = O} ≤ eϵP {A(S′) = O}+ δ

The term neighbouring datasets refers to S, S′ being ordered
sets of data points that only differ on a single element.

In this paper, we would adopt a different and prevalent
privacy measure that relies on the Rényi divergence:

Definition 2.4 (Rényi Differential Privacy (Mironov, 2017)).
For 1 ≤ α ≤ ∞ and ϵ ≥ 0, a randomized algorithm A is
(α, ϵ)-Rényi diferentially private, or (α, ϵ)-RDP, if for all
neighbouring datasets S, S′ that differ in a single element,

Dα (A(S)∥A(S′)) ≤ ϵ

Curiously, it is known that RDP implies DP. This is estab-
lished in the next lemma:

Lemma 2.5 ((Mironov, 2017)). If A satisfies (α, ϵ)-RDP,

then for all δ ∈ (0, 1), it also satisfies
(
ϵ+ log(1/δ)

α−1 , δ
)

-
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DP. In particular, if A satisfies
(
α, αρ2

2

)
-RDP for ev-

ery α ≥ 1, then for all δ ∈ (0, 1), it also satisfies(
ρ2

2 + ρ
√

2 log(1/δ), δ
)

-DP.

For completeness we provide a proof in Appendix B.3.

2.3. Federated Learning

In federated learning (FL), multiple machines collaborate
together to solve a joint problem. We assume that there
exist M machines, and that each machine i ∈ [M ] may
independently draw i.i.d. samples from a distribution Di.
Similarly to the standard SCO setting, we can associate an
expected convex loss fi(·) with machine i ∈ [M ], which
is defined as fi(x) := Ezi∼Di

[
fi
(
x; zi

)]
. We denote the

joint objective of all machines by f : K 7→ R, where:

f(x) :=
1

M

∑
i∈[M ]

fi(x) :=
1

M

∑
i∈[M ]

Ezi∼Di

[
fi
(
x; zi

)]
Thus, the objective is an average of M functions {fi : K 7→
R}i∈[M ], and each such fi(·) can be written as an expec-
tation over losses fi

(
·, zi
)

where the zi are drawn from
some distribution Di which is unknown to the learner. For
ease of notation, in what follows we will not explicitly de-
note Ezi∼Di

[·] but rather use E [·] to denote the expectation
w.r.t. all randomization.

In order to collaboratively minimize f(·), the machines may
synchronize and communicate through a central machine
called the Parameter Server (PS). We will focus on the
most common parallelization scheme (Dekel et al., 2012),
where at every round t the PS communicates a query point
xt to all machines. Then, every machine performs a gradi-
ent computation based on its local data and communicates
gradient estimates back to the PS , which in turn aggregates
these estimates and updates the query point. Similarly to
the standard SCO setting, our performance measure is the
Expected loss w.r.t. f(·) (see Equation (2)). Moreover, we
shall assume that each machine i ∈ [M ] maintains and uti-
lizes a dataset Si of samples that are drawn i.i.d. from Di.
Finally, we assume that for every i ∈ [M ], the functions
{fi(·, z)}z∈Zi

are convex G-Lipschits and L-smooth, as
well as make bounded variance and smoothness variance
assumptions (see Equations (3) and (4)).

In the context of privacy, we explore the case where the
FL process should ensure DP guarantees individually for
every machine i ∈ [M ]. The challenge in this context arises
due to the fact that each machine communicates several
times with the PS which may uncover more information
regarding its private dataset. Concretely, we assume that
machines do not trust each other, and thus cannot allow other
machines to uncover private data. We deal with two cases:
(i) Untrusted Server. Here the PS may not uncover private

data, and we are therefore required to ensure DP-guarantees
w.r.t. information that the machines communicate to the PS
(i.e. gradient estimates). (ii) Trusted Server. In this case
all machines trust the PS and are therefore allowed to send
information that may expose their privacy. Nevertheless, we
still require that machines may not uncover private data of
one another from the information that is received from the
PS. Thus, for each machine i ∈ [M ], we are required to
ensure DP-guarantees w.r.t. information that is distributed
by the PS (i.e. query points).

3. Our Algorithm Mechanisms
Our approach builds on the standard gradient descent tem-
plate, that we combine with two additional mechanisms,
both are crucial to the result that we obtain. Next we elabo-
rate on these mechanisms, and in the next sections discuss
and analyze their combination.

3.1. µ2-SGD

The µ2-SGD (Levy, 2023) is a variant of standard SGD with
several modifications. Its update rule is of the following
form: w1 = x1 ∈ K, and ∀t > 1:

wt+1 =ΠK (wt − ηαtdt)

xt+1 =
α1:t

α1:t+1
xt +

αt+1

α1:t+1
wt+1 (5)

where {αt > 0}t are importance weights that may un-
equally emphasize different update steps. Concretely we
will employ αt ∝ t, which puts more emphasis on the more
recent updates. Moreover, the {xt}t’s are a sequence of
weighted averages of the iterates {wt}t, and dt is an esti-
mate for the gradient at the average point, i.e. of ∇f(xt).
This is different than standard SGD which employs es-
timates for the gradients at the iterates, i.e. of ∇f(wt).
This approach is related to a technique called Anytime-
GD (Cutkosky, 2019), which is strongly-connected to the
notions of momentum and acceleration (Cutkosky, 2019;
Kavis et al., 2019).

While in the natural SGD version of Anytime-GD, one
would employ the estimate ∇f(xt; zt), the µ2-SGD ap-
proach suggests to employ a variance reduction mechanism
to yield a corrected momentum estimate dt in the spirit
of (Cutkosky & Orabona, 2019). This is done as follows:
d1 := ∇f(x1; z1), and ∀t > 2:

dt = ∇f(xt; zt) + (1− βt)(dt−1 −∇f(xt−1; zt)) (6)

where βt ∈ [0, 1] are called corrected momentum weights.
It can be shown by induction that E [dt] = E [∇f(xt)],
nevertheless in general E [dt|xt] ̸= ∇f(xt) (in contrast
to standard SGD estimators). Nevertheless, it was shown
in (Levy, 2023) that upon choosing corrected momentum
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weights of βt := 1/t, the above estimates enjoy an error
reduction, i.e. E ∥εt∥2 := E ∥dt −∇f(xt)∥2 ≤ O(σ̃2/t)
at step t, where σ̃2 ≤ O(σ2 + σ2

LD
2). Implying that the

error decreases with t, contrasting with standard SGD where
the variance E

∥∥εSGD
t

∥∥2 := E ∥gt −∇f(xt)∥2 remains uni-
formly bounded by σ2.

3.2. Noisy-µ2-SGD

An additional mechanism that we utilize consists of adding
zero mean noise to the gradients, which in turn adds privacy
to the learning algorithm (Abadi et al., 2016). Combining
this idea with the µ2-SGD approach (Equation (5)) induces
the following update rule:

wt+1 = ΠK (wt − η(αtdt + Yt))

xt+1 =
α1:t

α1:t+1
xt +

αt+1

α1:t+1
wt+1 (7)

where dt is a corrected momentum estimate (Equation (6)),
and {Yt ∼ Pt} is a sequence of independent zero mean
noise terms. Curiously, there is a natural tradeoff in choos-
ing the noise magnitude: larger noise degrades the conver-
gence, but improves privacy.

4. Noisy-µ2-SGD for Differentially-Private FL
In this section we deal with the case of multiple machines,
as described in Section 2.3. Our parallelization approach,
appearing in Algorithms 1 and 2 is based on the well known
“minibacth-SGD” (a.k.a. “parallel-SGD”) algorithmic tem-
plate (Dekel et al., 2012). In this template the server sends a
query point to all machines. Then, every machine i ∈ [M ]
computes a gradient estimate based on its local data, and
communicate it back to the server. And the latter averages
these gradient estimates, and updates the models using a
gradient step.

Algorithmic Approach Our approach is depicted in Al-
gorithm 1 (untrusted server), and in Algorithm 2 (trusted
server). It can be seen that our approach is inspired by Noisy-
DP-µ2(Section 3.2), and therefore differs than the standard
minibacth-SGD in three different aspects: (i) the parameter
server queries the gradients at the averages {xt}t∈[T ], which
is in the spirit of Anytime-GD; (ii) Each machine i ∈ [M ]
maintains and updates a (weighted) corrected momentum
estimate qt,i := αtdt,i, which is an unbiased estimate of
αt∇fi(xt), in the spirit of µ2-SGD (Equations (5) and (6));
(iii) A synthetic noise is injected, either to the individual
estimates qt,i (in case of untrusted server, Algorithm 1),or
to the aggregated estimate qt :=

1
M

∑
i∈[M ] qt,i (in case of

trusted server, Algorithm 2).
Remark: Note that for the sake of establishing convergence
guarantees we need to assume that the samples in Si are
drawn i.i.d. from Di. Nevertheless, our privacy guaran-

tees do not necessitate this requirement, and for the sake
of DP guarantees we only assume Lipschitz continuity and
smoothness of fi

(
·; zi
)

for all i ∈ [M ], zi ∈ Zi.

Computational Complexity From the description of Al-
gorithms 1 and 2, it can be directly seen that at every round
t, each machine i ∈ [M ] employs a single sample zt,i which
is used to compute two noisy gradients estimates gt,i, g̃t−1,i.
Thus, the overall computational complexity of our approach
is linear in the dataset size |S|, where S := ∪i∈[M ]Si.

Next we provide a general sensitivity and error analysis
that applies to both Algorithms 1 and 2. Then we establish
privacy and convergence guarantees for each setting.

4.1. Gradient Error & Sensitivity Analysis

Here we present and discuss an analysis for the error of
the qt,i estimates, as well as analyze their sensitivity to a
single point in the dataset. This analysis applies to both Al-
gorithms 1 and 2, and will later serve us in deriving privacy
and convergence guarantees.

Prior to the analysis, we shall introduce some nota-
tion. We will define gt,i := ∇f(xt; zt,i) , g̃t,i :=
∇f(xt, zt+1,i) , ḡt,i := ∇f(xt,i). These notations allow
us to write the update rule for dt,i in Algorithm 1 (as well
as Algorithm 2 ) as follows:

dt+1,i =gt+1,i + (1− βt+1)(dt,i − g̃t,i)

=βt+1gt+1,i + (1− βt+1)(dt,i + gt+1,i − g̃t,i)

Using the notation qt+1,i := αt+1dt+1,i, we can rewrite the
above equation:

qt+1,i :=αt+1dt+1,i = αt+1βt+1gt+1,i

+(1− βt+1)αt+1((qt,i/αt) + gt+1,i − g̃t,i)

Since in Algorithm 1 (as well as Algorithm 2) we choose
αt = t and βt = 1/αt, we have (1 − βt+1)αt+1 = αt,
therefore:

qt+1,i = qt + gt+1,i + αt(gt+1,i − g̃t,i) (8)

Now, let us define two sequences {st,i}, {s̄t,i}: s1,i := g1,i,
and s̄1,i := ḡ1,i, and ∀t > 1,

st,i := gt,i + αt−1(gt,i − g̃t−1,i)

s̄t,i := ḡt,i + αt−1(ḡt,i − ḡt−1,i) (9)

Note that the definitions of st,i, s̄t,i and gt,i, g̃t,i, ḡt,i imply:

Et−1 [st,i − s̄t,i] = Et−1 [gt,i − ḡt,i] = 0

where Et−1 [·] denotes conditional expectation over
all randomization prior to time t, i.e. Et−1 [·] :=
E
[
·|{zτ,i}τ∈[t−1],i∈[M ], {Yτ,i}τ∈[t−1],i∈[M ]

]
. Thus, that
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above implies that the sequence {st,i− s̄t,i}t is a Martingale
difference sequence w.r.t. the natural filtration induced by
the data-samples and injected noises.

The next lemma shows that for our specific choices of
{αt, βt}, we can represent qt,i as a sum of {sτ,i}tτ=1. Im-
portantly, each such sτ,i terms is related to an individual
data sample zτ,i. Moreover, it shows that we can repre-
sent the error of the weighted gradient-estimate εt,i :=
qt,i − αt∇fi(xt) as sum of Martingale difference sequence
{sτ,i − s̄τ,i}tτ=1.

Lemma 4.1. The choices that we make in Algorithms 1
and 2, i.e. αt = t, and βt = 1/αt; imply:

qt,i =

t∑
τ=1

sτ,i & εt,i =

t∑
τ=1

(sτ,i − s̄τ,i)

We prove of the above lemma in Appendix C.1.

Our next lemma provides bound on the increments st,i:

Lemma 4.2. Let K ⊂ Rd be a convex set of diameter D,
and {fi

(
·; zi
)
}zi∈Zi

be a family of convex G-Lipschitz and
L-smooth functions. Also define S := G + 2LD, σ̃ =
σ + 2σLD, then:

∥st,i∥ ≤ S & E ∥st,i − s̄t,i∥2 ≤ σ̃2

Where the in expectation bound further assumes that the
samples in Si arrive from i.i.d. Di.

We prove the above lemma in Appendix C.2.

Lemmas 4.1 and 4.2 enable us to bound εt,i:

Lemma 4.3. Our algorithms ensure: E ∥εt,i∥2 ≤ σ̃2t.

We prove the above lemma in Appendix C.3.

Comparison to SGD Here we will make an informal
discussion of the guarantees of the above lemma in com-
parison to its parallel noise-injected SGD version that ap-
pears. Concretely, in SGD the contribution of a single
sample zt,i to the gradient estimate is encapsulated in
∇fi(wt; zt,i), and the magnitude of this contribution can be
of order O(G) (as per our bounded gradient assumption).
Moreover, in SGD the expected error of the gradient esti-
mate (without the injected noise Yt,i) is E

∥∥errSGD
t

∥∥2 =

E ∥∇fi(wt; zt,i)−∇fi(wt)∥2 ≤ σ2. Now, to make a
proper comparison with our algorithm, we will compare
these bounds to our (unweighted) gradient estimate, namely
dt,i. Recalling that dt,i = qt,i/αt and αt = t, Lem-
mas 4.1 and 4.2, imply that the contribution of a sin-
gle sample zτ,i to the gradient estimate dt,i is encapsu-
lated in sτ,i/αt (assuming τ ≤ t), and the magnitude
of this contribution can be of order O(S/t). Moreover,
E ∥errt∥2 = E ∥dt,i −∇fi(xt)∥2 ≤ σ̃2t/α2

t = σ̃2/t.

Algorithm 1 DP-µ2-FL for Untrusted Server
Inputs: #iterations T , #machines M , initial point x1,
learning rate η > 0, importance weights {αt = t}, cor-
rected momentum weights {βt = 1/αt}, noise distri-
butions

{
Pt,i = N (0, Iσ2

t,i)
}

, per-machine i ∈ [M ] a
dataset of samples Si = {z1,i, . . . , zT,i}
Initialize: set w1 = x1, and x0 = x1

for every Machine i ∈ [M ] do
set d0,i = 0

end for
for t = 1, . . . , T do

for every Machine i ∈ [M ] do
Actions of Machine i:
Retrieve zt,i from Si, compute gt,i = ∇f(xt; zt,i),
and g̃t−1,i = ∇f(xt−1; zt,i)
Update dt,i = gt,i + (1− βt)(dt−1,i − g̃t−1,i) and
qt,i = αtdt,i
Draw Yt,i ∼ N

(
0, Iσ2

t,i

)
Update q̃t,i = qt,i+Yt,i {each machine sends private
information}

end for
Actions of Server:
Aggregate q̃t = 1

M

∑M
i=1 q̃t,i {average after adding

the noise}
Update wt+1 = ΠK(wt − ηq̃t)
Update xt+1 = (1− αt+1

α1:t+1
)xt +

αt+1

α1:t+1
wt+1

end for
Output: xT

Thus, in comparison to SGD, the errors of our gradient
estimates decay with t, and a single sample zτ,i directly
affects all estimates {dt,i}t≥τ , but its affect decays with
t. Note that the property that E ∥dt,i −∇fi(xt)∥2 = σ̃2/t
was already demonstrated in (Levy, 2023), and we provide
its proof for completeness.

In the next sections we will see how Lemma 4.2 plays a key
role in deriving privacy guarantees for our DP-µ2approach
appearing in Algorithms 1 and 2.

5. Untrusted Server
In the untrusted server case, the server is not allowed to
access private information, thus each machine must apply
a privacy mechanism before sending the gradient estimate
to the server. Thus, each machine will have its own qt,i, but
send q̃t,i := qt,i + Yt,i instead. Since the server receives
protected information, the server does not need to apply
any privacy mechanism before sending the query point xt

to the machines. Algorithm 1 depicts our approach for the
untrusted server case.

6
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5.1. Privacy Guarantees

Here we establish the privacy guarantees of Algorithm 1.
Concretely, the following theorem shows how does the pri-
vacy of our algorithm depends on the variances of injected
noise {Yt,i}t.
Theorem 5.1 (Privacy Guarantees for Algorithm 1).
Let K ⊂ Rd be a convex set of diameter D, and
{fi
(
·; zi
)
}zi∈Zi

be a family of convex G-Lipschitz and L-
smooth functions. Then invoking Algorithm 1 with noise
distributions Yt,i ∼ Pt,i = N

(
0, Iσ2

t,i

)
, and any learning

rate η > 0, ensures that for any machine i ∈ [M ], the

resulting sequences {q̃t,i}t∈[T ] is
(
α,

αρ2
i

2

)
-RDP for any

α > 1, where: ρi = 2S
√∑T

τ=1
1

σ2
τ,i

.

The full proof is in Appendix D.1.

Proof Sketch. First assume that Si and S′i are neighboring
datasets, meaning that there exists only a single index τ∗ ∈
[T ] where they differ, i.e. that zτ∗ ̸= z′τ∗ .

Now, recalling that we obtain q̃t,i by adding a Gaussian
noise Yt,i to qt,i, we may use Lemma 2.2 and obtain:

Dα (q̃t,i(Si)∥q̃t,i(S′i)) =
α∆2

t,i

2σ2
t,i

(10)

Using that fact that qt,i =
∑t

τ=1 sτ,i together with the
bound ∥sτ,i∥ ≤ S, which holds for any τ ∈ [T ] due
to Lemma 4.2, we show that ∆t,i ≤ 2S · I{t ≥ τ∗}, with τ∗

being the time step where zτ∗ ̸= z′τ∗ , and S := G+ 2LD.
We thus get:

Dα (q̃t,i(Si)∥q̃t,i(S′i)) ≤
2αS2

σ2
t,i

· I{t ≥ τ∗} (11)

Using the above together with Lemma A.3, gives:

Dα

(
{q̃τ,i(Si)}tτ=1∥{q̃τ,i(S′i)}tτ=1

)
≤ 2αS2

t∑
τ=1

1

σ2
τ,i

(12)

Using the definition of RDP concludes the proof.

5.2. Convergence Guarantees

Next we state our main theorem for this setting.

Theorem 5.2. Let K ⊂ Rd be a convex set of diameter D
and {fi(·; zi)}i∈[M ],zi∈Zi

be a family of G-Lipschitz and
L-smooth functions over K, with σ ∈ [0, G], σL ∈ [0, L]
as defined in Equations (3) and (4), define f(x; z) =
1
M

∑M
i=1 fi

(
x; zi

)
and G∗ := ∇f(x∗), where x∗ =

argminx∈K f(x), and S := G + 2LD, σ̃ := σ + 2σLD,
moreover let T ∈ N, ρ > 0.

Then upon invoking Algorithm 1 with αt = t, βt =

1/αt, η = min
{

ρD
√
M

2ST
√
d
, 1
4LT

}
, and σ2

t,i = 4S2T/ρ2, and

any starting point x1 ∈ K and datasets {Si ∈ ZT
i }i∈[M ],

then for all α ≥ 1 Algorithm 1 satisfies
(
α, αρ2

2

)
-RDP

w.r.t gradient estimate sequences that each machine pro-
duces, i.e. {q̃t,i}t∈[T ],i∈[M ].

Furthermore, if Si consists of i.i.d. samples from a distribu-
tion Di for all i ∈ [M ], then Algorithm 1 guarantees:

R(xuntrust
T ) := E

[
f
(
xuntrust
T

)]
−min

x∈K
f(x)

≤ 4D

(
G∗ + 2LD

T
+

2S
√
d

ρT
√
M

+
σ̃√
TM

)

The full proof is in Appendix E.1. Notably, the above
bounds are optimal. Moreover, similarly to the standard
minibatch-SGD analysis (Dekel et al., 2012), these bound
do not depend on the level of heterogeneity between ma-
chines. Which is due to the full synchronicity and symmetry
between machines, implying that the aggregated qt satisfies
E [qt] = αtE [∇f(xt)], as well as E ∥qt − αt∇f(xt)∥2 ≤
σ̃2t/M .

Proof Sketch. The privacy guarantees follow directly from
Theorem 5.1, and our choice of σ2

t,i. Regrading convergence:
in the spirit of µ2-SGD analysis (Levy, 2023), we show that:

α1:TR(xT ) ≤
D2

η
+ η

T∑
τ=1

E ∥Yτ∥2

+2αTDG∗ + 2D

T∑
τ=1

√
E ∥ετ∥2 (13)

where we denoted ετ := 1
M

∑
i∈[M ] ετ,i, and Yτ :=

1
M

∑
i∈[M ] Yτ,i. Then, by utilizing Lemma 4.3, we show

that E ∥ετ∥2 ≤ 1
ME ∥ετ,i∥2 ≤ σ̃2τ/M ; and similarly that

E ∥Yτ∥2 ≤ 1
ME ∥Yτ,i∥2 ≤ σ2

τ/M . Plugging these into the
bound above and using αt = t, and our choices of η and σt

implies the bound.

5.3. Experiments

We ran DP-µ2on MNIST using a logistic regression model
in the untrusted server case. The parameters are G =√
2 · 785 = 39.6, L = 785/2 = 392.5, D = 0.1, which

brings us S = 118.1. Our model has d = 10 · 785 = 7850
parameters. We kept M · T = 60, 000, and checked
M = 1, 10, 100 and ρ = 4, 8, 16. We show our results
in Table 1.

We can see that by increasing ρ, we improve the loss and
accuracy, as higher ρ means less privacy. By increasing

7
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Table 1. DP-µ2on MNIST with untrusted server
M=1, T=60,000 M=10, T=6,000 M=100, T=600

ρ Loss Accuracy Loss Accuracy Loss Accuracy

4 2.256 69.9% 2.267 69.4% 2.285 65.4%

8 2.253 70.2% 2.259 70.0% 2.274 69.8%

16 2.252 70.4% 2.255 70.1% 2.264 70.0%

M the loss and accuracy become worse, as the data is split
between different machine and cannot be used optimally
due to not trusting the server.

6. Trusted Server
In the trusted server case, the server is allowed to access
private information, therefore machines do not apply a pri-
vacy mechanism before sending the gradient estimate to
the server. And each machine maintains its own estimate
qt,i (an estimate of αt∇fi(xt)), and sends it without adding
noise. Since the server receives private information, it must
apply a privacy mechanism before sending the query point
xt to the machines. Algorithm 2 depicts our approach in the
trusted server case.

6.1. Privacy Guarantees

Here we establish the privacy guarantees of Algorithm 2.
Concretely, the following theorem shows how does the pri-
vacy of our algorithm depends on the variances of injected
noise {Yt}t.
Theorem 6.1 (Privacy Guarantees for Algorithm 2).
Let K ⊂ Rd be a convex set of diameter D, and
{fi
(
·; zi
)
}zi∈Zi

be a family of convex G-Lipschitz and L-
smooth functions. Then invoking Algorithm 2 with noise
distributions Yt ∼ Pt = N

(
0, Iσ2

t

)
, and any learning rate

η > 0; ensures that for any machine i ∈ [M ], the query

sequence {xt}t∈[T ] is
(
α, αρ2

2

)
-RDP for any α > 1, where:

ρ = 2S
M

√∑T
τ=1

1
σ2
τ
.

The full proof is in Appendix D.2.

Proof Sketch. Fix i ∈ [M ], and assume that Si and S′i are
neighboring datasets, meaning that there exists only a single
index τ∗ ∈ [T ] where they differ, i.e. that zτ∗,i ̸= z′τ∗,i. For
other machines j ̸= i assume that Sj are known and fixed.

Now, recalling that we obtain q̃t by adding a Gaussian noise
Yt to qt, we may use Lemma 2.2 and obtain:

Dα (q̃t(Si)∥q̃t(S′i)) =
α∆2

t

2σ2
t

(14)

Using that fact that qt = 1
M

∑M
i=1

∑t
τ=1 sτ,i together with

Algorithm 2 DP-µ2-FL for Trusted Server
Inputs: #iterations T , #machines M , initial point x1,
learning rate η > 0, importance weights {αt = t}, cor-
rected momentum weights {βt = 1/αt}, noise distribu-
tions

{
Pt = N (0, Iσ2

t )
}

, per-machine i ∈ [M ] a dataset
of samples Si = {z1,i, . . . , zT,i}
Initialize: set w1 = x1, and x0 = x1

for every Machine i ∈ [M ] do
set d0,i = 0

end for
for t = 1, . . . , T do

for every Machine i ∈ [M ] do
Actions of Machine i:
Retrieve zt,i from Si, compute gt,i = ∇f(xt; zt,i),
and g̃t−1,i = ∇f(xt−1; zt,i)
Update dt,i = gt,i + (1− βt)(dt−1,i − g̃t−1,i) and
qt,i = αtdt,i

end for
Actions of Server:
Aggregate qt =

1
M

∑M
i=1 qt,i {average before adding

the noise}
Draw Yt ∼ N

(
0, Iσ2

t

)
Update q̃t = qt + Yt {the server is the one to induce
privacy}
Update wt+1 = ΠK(wt − ηq̃t)
Update xt+1 = (1− αt+1

α1:t+1
)xt +

αt+1

α1:t+1
wt+1

end for
Output: xT

the bound ∥sτ,i∥ ≤ S, which holds for any τ ∈ [T ] due
to Lemma 4.2, we show that ∆t ≤ (2S/M) · I{t ≥ τ∗},
with τ∗ being the time step where zτ∗,i ̸= z′τ∗,i, and S :=
G+ 2LD. We thus get:

Dα (q̃t(Si)∥q̃t(S′i)) ≤
2αS2

M2σ2
t

· I{t ≥ τ∗} (15)

Combining the above with Lemma A.3:

Dα

(
{q̃τ (Si)}tτ=1∥{q̃τ (S′i)}tτ=1

)
≤ 2αS2

M2

t∑
τ=1

1

σ2
τ

(16)

Finally, we use the post processing lemma for RDPs (van Er-
ven & Harremoës, 2014), to bound the privacy of {xτ}tτ=1

with the privacy of {q̃τ}tτ=1.

6.2. Convergence Guarantees

Next we state our main theorem for this setting.

Theorem 6.2. Assume the same assumptions as in Theo-
rem 5.2. Then upon invoking Algorithm 2 with αt = t, βt =

1/αt, η = min
{

ρDM

2ST
√
d
, 1
4LT

}
, and σ2

t = 4S2T/ρ2M2,

and any starting point x1 ∈ K and datasets {Si ∈

8
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Table 2. DP-µ2on MNIST with trusted server
M=1, T=60,000 M=10, T=6,000 M=100, T=600

ρ Loss Accuracy Loss Accuracy Loss Accuracy

4 2.256 69.9% 2.256 69.7% 2.258 69.5%

8 2.253 70.2% 2.253 70.1% 2.257 69.6%

16 2.252 70.4% 2.252 70.3% 2.256 69.7%

ZT
i }i∈[M ], then for all α ≥ 1 Algorithm 2 satisfies(
α, αρ2

2

)
-RDP for the query and gardient estimate se-

quences that the server produces, i.e. {xt}t∈[T ], {q̃t}t∈[T ].
Furthermore, if Si consists of i.i.d. samples from a distribu-
tion Di, then Algorithm 2 guarantees:

R(xtrust
T ) := E

[
f
(
xtrust
T

)]
−min

x∈K
f(x)

≤ 4D

(
G∗ + 2LD

T
+

2S
√
d

ρTM
+

σ̃√
TM

)

The full proof is in Appendix E.2.

Proof Sketch. The privacy guarantees follow directly from
Theorem 6.1, and our choice of σ2

t . Regrading convergence:
in the spirit of µ2-SGD analysis (Levy, 2023), we show that:

α1:TR(xT ) ≤
D2

η
+ η

T∑
τ=1

E ∥Yτ∥2

+2αTDG∗ + 2D

T∑
τ=1

√
E ∥ετ∥2 (17)

Where we denoted ετ := qt − αt∇f(xt). Then, by utiliz-
ing Lemma 4.3, we show that E ∥ετ∥2 ≤ 1

ME ∥ετ,i∥2 ≤
σ̃2τ/M . Plugging these into the bound above and using
αt = t, and our choices of η and σ2

t implies the bound.

6.3. Experiments

We ran DP-µ2on MNSIT using the same specification as the
previous section, but for the trusted server case. We show
our results in Table 2.

The First thing we can see, is that the results are the same
for both cases when M = 1, as this case in not federated,
and thus there is no difference between the trusted and
untrusted server cases. When M = 10, the loss doesn’t
change in a noticeable way, and the accuracy decreases
a little. When M = 100, the loss decreases a little, but
less than the untrusted server case, and the accuracy also
decreases. Another thing we can notice, is that with higher
value of ρ, the trusted and untrusted server cases give more
similar results. That is because with lower privacy, the
privacy type (trusted/untrusted) matters less.

7. Conclusion
We built upon the original µ2-SGD algorithm to accommo-
date differential privacy setting. We extended the algorithm
to the federated learning setting, and shown it is optimal
in both the untrusted server and trusted server setting. The
optimal convergence is satisfied with linear computational
complexity.
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A. Additional Theorems and Lemmas
Here we provide additional theorems and lemmas that are used for our proofs.

Theorem A.1 ((Cutkosky, 2019)). Let f : K → R be a convex function. Also let {αt > 0} and {wt ∈ K}. Let {xt} be the
{ατ}tτ=1 weighted average of {wτ}tτ=1, meaning: xt =

1
α1:t

∑t
τ=1 ατwτ . Then the following holds for all t ≥ 1, x ∈ K:

α1:t(f(xt)− f(x)) ≤
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩

Note that the above theorem holds generally for any sequences of iterates {wt}t with weighted averages {xt}t, and as a
private case it holds for the sequences generated by Anytime-SGD. Concretely, the theorem implies that the excess loss of
the weighted average xt can be related to the weighted regret

∑t
τ=1 ατ ⟨∇f(xτ ) , wτ − x⟩.

Proof of Theorem A.1. Proof by induction.
Induction basis: t = 1

α1(f(x1)− f(x)) ≤ α1 ⟨∇f(x1) , x1 − x⟩ = α1 ⟨∇f(x1) , w1 − x⟩

The inequality is from convexity of f , and the equality is because x1 = w1.
Induction assumption: for some t ≥ 1:

α1:t(f(xt)− f(x)) ≤
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩

Induction step: proof for t+ 1:

α1:t+1(f(xt+1)− f(x)) =α1:t(f(xt+1)− f(xt) + f(xt)− f(x)) + αt+1(f(xt+1)− f(x))

≤
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩+ α1:t(f(xt+1)− f(xt)) + αt+1(f(xt+1)− f(x))

≤
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩+ ⟨∇f(xt+1) , α1:t(xt+1 − xt) + αt+1(xt+1 − x)⟩

=

t∑
τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩+ αt+1 ⟨∇f(xt+1) , wt+1 − x⟩ =
t+1∑
τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩

In the first equality we rearranged the terms, and added and subtracted the same thing, we then used the induction
assumption, then used convexity of f on both pairs and added them together, and finally we used the update rule of xt+1:
α1:t+1xt+1 = α1:txt + αt+1wt+1, and added the last member of the sum to get our desired result.

Lemma A.2. Let {Zt} be a Martingale difference sequence w.r.t a Filtration {Ft}t, i.e. E [Zt|Ft−1] = 0, then:

E

∥∥∥∥∥
t∑

τ=1

Zτ

∥∥∥∥∥
2

=

t∑
τ=1

E ∥Zτ∥2

Proof of Lemma A.2. Proof by induction.
Induction basis: t = 1

E

∥∥∥∥∥
1∑

τ=1

Zτ

∥∥∥∥∥
2

= E ∥Z1∥2 =

1∑
τ=1

E ∥Zτ∥2
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Induction assumption: for some t ≥ 1:

E

∥∥∥∥∥
t∑

τ=1

Zτ

∥∥∥∥∥
2

=

t∑
τ=1

E ∥Zτ∥2

Induction step: proof for t+ 1:

E

∥∥∥∥∥
t+1∑
τ=1

Zτ

∥∥∥∥∥
2

= E

∥∥∥∥∥
t+1∑
τ=1

Zτ

∥∥∥∥∥
2

+ 2E

[〈
t∑

τ=1

Zτ , Zt+1

〉]
+ E ∥Zt+1∥2 =

t∑
τ=1

E ∥Zτ∥2 + E ∥Zt+1∥2 =

t+1∑
τ=1

E ∥Zτ∥2

The first equality is square rules, then we used the induction assumption and the fact that E [Zt+1|Z1, . . . , Zt] = 0, and
finally we added the last term into the sum.

Lemma A.3 ((Mironov, 2017)). If A1, . . . ,Ak are randomized algorithms satisfying (α, ϵ1)-RDP, . . . , (α, ϵk)-RDP,
respectively, then their composition (A1(S) . . . ,Ak(S)) is (α, ϵ1 + . . . ,+ϵk)-RDP. Moreover, the i’th algorithm Ai, can be
chosen on the basis of the outputs of the previous algorithms A1, . . . ,Ai−1.

Proof of Lemma A.3. Proof by induction.
Induction basis: k = 1

Dα (A1(S)∥A1(S
′)) ≤ ϵ1

Because A1 is (α, ϵ1)-RDP.
Induction assumption: for some k ≥ 1:

Dα

(
{Ai(S)}ki=1∥{Ai(S

′)}ki=1

)
≤

k∑
i=1

ϵi

Induction step: proof for k + 1

Dα

(
{Ai(S)}k+1

i=1 ∥{Ai(S
′)}k+1

i=1

)
=

1

α− 1
log

EAi∼Ai(S)

( P
{
{Ai(S)}k+1

i=1

}
P
{
{Ai(S′)}k+1

i=1

})α−1


=
1

α− 1
log

EAi∼Ai(S)

( P
{
Ak+1(S)|{Ai}ki=1

}
P
{
{Ai(S)}ki=1

}
P
{
Ak+1(S′)|{Ai}ki=1

}
P
{
{Ai(S′)}ki=1

})α−1


=
1

α− 1
log

EAi∼Ai(S)

( P
{
Ak+1(S)|{Ai}ki=1

}
P
{
Ak+1(S′)|{Ai}ki=1

})α−1


+
1

α− 1
log

EAi∼Ai(S)

( P
{
{Ai(S)}ki=1

}
P
{
{Ai(S′)}ki=1

})α−1


=Dα

(
Ak+1(S)∥Ak+1(S

′)|{Ai}ki=1

)
+ Dα

(
{Ai(S)}ki=1∥{Ai(S

′)}ki=1

)
≤ϵk+1 +

k∑
i=1

ϵi =

k+1∑
i=1

ϵi

The writing Ai ∼ Ai(S) means that the output of Ai is distributed in the case that the dataset is S. The first equation is the
definition of the Rényi divergence, next we use conditional probability rules, then we use the fact that the output of Ak+1

conditioned on the outputs of the previous algorithms is independent of the outputs of these previous algorithms, and let the
product out of the log as a summery. We then notice that each of the two members are divergences themselves, and finally,
we invoke both the the fact that Ak+1 is (α, ϵk+1)-RDP, and the induction assumption, and add them together to the same
sum.
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Lemma A.4 (Post Processing Lemma (van Erven & Harremoës, 2014)). Let X,Y be random variables and A be a
randomized or deterministic algorithm. Then for all α ≥ 1:

Dα (A(X)∥A(Y )) ≤ Dα (X∥Y )

We use this lemma to bound the privacy of {xτ}tτ=1 with the privacy of {q̃τ}tτ=1.

Lemma A.5. Let η > 0, and K ⊂ Rd be a convex domain of bounded diameter D, also let {q̃t ∈ Rd}Tt=1 be a sequence of
arbitrary vectors. Then for any starting point w1 ∈ Rd, and an update rule wt+1 = ΠK (wt − ηq̃t) ,∀t ≥ 1, the following
holds ∀x ∈ K:

t∑
τ=1

⟨q̃τ , wτ+1 − x⟩ ≤ D2

2η
− 1

2η

t∑
τ=1

∥wτ − wτ+1∥2

Proof of Lemma A.5. The update rule wt+1 = ΠK (wt − ηq̃t) can be re-written as a convex optimization problem over K:

wt+1 = ΠK (wt − ηq̃t) = argmin
x∈K

{
∥wt − ηq̃t − x∥2

}
= argmin

x∈K

{
⟨q̃t, x− wt⟩+

1

2η
∥x− wt∥2

}
The first equality is our update definition, the second is by the definition of the projection operator, and then we rewrite it in
a way that does not affect the minimum point.

Now, since wt+1 is the minimal point of the above convex problem, then from optimality conditions we obtain:〈
q̃t +

1

η
(wt+1 − wt), x− wt+1

〉
≥ 0, ∀x ∈ K

Re-arranging the above, we get that:

⟨q̃t, wt+1 − x⟩ ≤ 1

η
⟨wt − wt+1, wt+1 − x⟩ = 1

2η
∥wt − x∥2 − 1

2η
∥wt+1 − x∥2 − 1

2η
∥wt − wt+1∥2

Where the equality is an algebraic manipulation. After summing over t we get:

t∑
τ=1

⟨q̃τ , wτ+1 − x⟩ ≤ 1

2η

t∑
τ=1

(
∥wτ − x∥2 − ∥wτ+1 − x∥2 − ∥wτ − wτ+1∥2

)
=

∥w1 − x∥2 − ∥wt+1 − x∥2

2η
− 1

2η

t∑
τ=1

∥wτ − wτ+1∥2 ≤ D2

2η
− 1

2η

t∑
τ=1

∥wτ − wτ+1∥2

Where the second line is due to splitting the sum into two sums, and using the fact that the first one is a telescopic sum, and
lastly, we use the diameter of K. This establishes the lemma.

Lemma A.6. If f : K → R is convex and L-smooth, and x∗ = argmin
x∈K

{f(x)}, then ∀x ∈ Rd:

∥∇f(x)−∇f(x∗)∥2 ≤ 2L(f(x)− f(x∗))

Proof of Lemma A.6. Let us define a new function:

h(x) = f(x)− f(x∗)− ⟨∇f(x∗) , x− x∗⟩

Since f is convex and L-smooth, we know that:

0 ≤ h(x) ≤ L

2
∥x− x∗∥2

The gradient of this function is:

∇h(x) = ∇f(x)−∇f(x∗)
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We can see that h(x∗) = 0,∇h(x∗) = 0, and that x∗ is the global minimum. The function h is also convex and L-smooth,
since the gradient is the same as f up to a constant translation. We will add to the domain of h to include all Rd, while still
being convex and L-smooth. Since h is convex then:

h(y) ≥ h(x∗) + ⟨∇h(x∗), y − x∗⟩ = 0, ∀y ∈ Rd

It is true even for points outside of the original domain, meaning that x∗ remains the global minimum even after this. For a
smooth function, ∀x, y ∈ Rd:

h(y) ≤ h(x) + ⟨∇h(x), y − x⟩+ L

2
∥y − x∥2

By picking y = x− 1
L∇h(x), we get:

h(x)− h(y) ≥ 1

2L
∥∇h(x)∥2

Rearranging, we get:

∥∇h(x)∥2 ≤ 2L(h(x)− h(y)) ≤ 2L · h(x)

By using x ∈ K we get:

∥∇f(x)−∇f(x∗)∥2 ≤ 2L(f(x)− f(x∗)− ⟨∇f(x∗) , x− x∗⟩

Since x∗ is the minimum point of f then:

⟨∇f(x∗) , x− x∗⟩ ≥ 0, ∀x ∈ K

Thus we get that:

∥∇f(x)−∇f(x∗)∥2 ≤ 2L(f(x)− f(x∗))

Lemma A.7. If At ≤ 1
2T

∑T
τ=1 Aτ + B,∀t ∈ [T ], then At ≤ 2B,∀t ∈ [T ].

Proof of Lemma A.7. Let’s sum the inequalities:

T∑
t=1

At ≤
T∑

t=1

(
1

2T

T∑
τ=1

Aτ + B

)
=

1

2

T∑
τ=1

Aτ + TB

The inequality is from the assumption, and the equality is because we sum constant values. If we rearrange this we get:

T∑
τ=1

Aτ ≤ 2TB

And then:

At ≤
1

2T

T∑
τ=1

Aτ + B ≤ B + B = 2B
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B. Proofs of Section 2
B.1. Proof of Equations (3) and (4)

Both claims use the same principle:

E ∥X − E [X]∥2 ≤ E ∥X∥2

And so:

E ∥∇f(x; z)−∇f(x)∥2 ≤E ∥∇f(x; z)∥2 ≤ G2

E ∥(∇f(x; z)−∇f(x))− (∇f(y; z)−∇f(y))∥2 ≤E ∥∇f(x; z)−∇f(y; z)∥2 ≤ L2 ∥x− y∥2

Thus σ ≤ G and σL ≤ L.

B.2. Proof of Lemma 2.2

Let us calculate Dα (P∥Q) by definition.

Dα (P∥Q) =
1

α− 1
log

(
EX∼P

[(
P (X)

Q(X)

)α−1
])

=
1

α− 1
log
(
EX∼P

[
e(α−1) 1

2σ2 (∥X−µ−∆∥2−∥X−µ∥2)
])

=
1

α− 1
log
(
EX∼P

[
e

α−1

2σ2 (∥∆∥2−2⟨∆,X−µ⟩)
])

=
1

α− 1
log

(
e

α−1

2σ2 ∥∆∥2+ 1
2σ

2 (α−1)2

4σ4 4∥∆∥2

)
=
∥∆∥2

2σ2
+

(α− 1) ∥∆∥2

2σ2
=

α ∥∆∥2

2σ2

The first equality is the definition of the Rényi divergence, in the second we input the values of P and Q, then we open
the norm, and then we calculate the expectation using the moment generating function of a Gaussian random vector
E
[
e⟨a,X⟩] = e⟨µ,a⟩+

1
2σ

2∥a∥2

, and finally the log and the exponent cancel each other, and we fix things up.

B.3. Proof of Lemma 2.5

We will start with the first part. To do it, we will show another property of the Rényi divergence. Holder’s inequality states that
for any p, q ≥ 1 such that 1/p+ 1/q = 1, we get ∥fq∥1 ≤ ∥f∥p∥g∥q . We will pick p = α, q = α

α−1 , f = P
Q1/q , g = Q1/q ,

and the norm to be on an arbitrary event A, and then:

P (A) =

∫
A

P (x)dx ≤
(∫

A

(P (x))α

(Q(x))α−1
dx

) 1
α
(∫

A

Q(x)dx

)α−1
α

≤
(
eDα(P∥Q)Q(A)

)α−1
α ≤ (eϵQ(A))

α−1
α

The equality is the definition of the probability of the event, the inequality is from Holder’s, next we expand the integral over
everything to get the Rényi divergence, and finally we bound the Rényi divergence by ϵ. We pick the event A to be A = O,
and then:

P {A(S) = O} ≤ (eϵP {A(S′) = O})1−
1
α

If (eϵP {A(S′) = O})1−
1
α ≤ δ then P {A(S) = O} ≤ δ. If (eϵP {A(S′) = O})1−

1
α > δ then (eϵP {A(S′) = O})−

1
α <

δ−
1

α−1 = e
log(1/δ)

α−1 , and then:

P {A(S) = O} ≤ eϵ+
log(1/δ)

α−1 P {A(S′) = O}

If we combine both cases, we showed that:

P {A(S) = O} ≤ max
{
eϵ+

log(1/δ)
α−1 P {A(S′) = O} , δ

}
≤ eϵ+

log(1/δ)
α−1 P {A(S′) = O}+ δ

Now for the second part. Since A is
(
α, αρ2

2

)
-RDP for every α ≥ 1, then it is also

(
αρ2

2 + log(1/δ)
α−1 , δ

)
-DP, for every

α ≥ 1, δ ∈ (0, 1). We will pick the value that minimize this expression α = 1 + 1
ρ

√
2 log(1/δ), and get that for every

δ ∈ (0, 1), A is
(

ρ2

2 + ρ
√
2 log(1/δ), δ

)
-DP.
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C. Proofs of Section 4
C.1. Proof of Lemma 4.1

First note that for t = 1 we have αt = 1, and therefore we have, s1,i := g1,i = d1,i = q1,i, which implies that the lemma
holds for t = 1. For that case of t > 1, our choices for {αt, βt} imply that βt+1αt+1 = 1, (1 − βt+1)αt+1 = αt, which
prove Equation (8). Unrolling the above equation yields qt+1,i =

∑t+1
τ=1 sτ,i, which establishes the first part of the lemma.

For the second part regarding εt,i, note that our choice αt = t, together with the definition of s̄t (Equation (9)) implies that
we can write s̄t,i = αtḡt,i − αt−1ḡt−1,i (where for consistency we denote α0 := 0). Therefore, for any t:

t∑
τ=1

s̄τ,i = αtḡt,i

Using the above together with qt =
∑t

τ sτ,i, immediately gives:

εt,i := qt,i − αtḡt,i =

t∑
τ=1

(sτ,i − s̄τ,i)

Which establishes the proof.

C.2. Proof of Lemma 4.2

Before we begin, we shall bound the difference between consecutive query points:

xt − xt−1 = xt −
α1:txt − αtwt

α1:t−1
=

αt

α1:t−1
(wt − xt)

Where the first equality is due to α1:txt = α1:t−1xt−1 + αtwt. Using the above enables to bound the following scaled
difference:

αt−1 ∥xt − xt−1∥ =

(
αt−1αt

α1:t−1

)
∥wt − xt∥ ≤ 2D (18)

Where we use that fact that αt = t, which implies αt−1αt = 2α1:t−1, as well as the bounded diameter assumption.

First part:

∥st,i∥ = ∥gt,i + αt−1(gt,i − g̃t−1,i)∥ ≤ ∥gt,i∥+ αt−1 ∥gt,i − g̃t−1,i∥
= ∥∇f(xt; zt,i)∥+ αt−1 ∥∇f(xt; zt,i)−∇f(xt−1; zt,i)∥
≤G+ αt−1L ∥xt − xt−1∥ ≤ G+ 2LD := S

The first equality is from the definition of st,i, then we use the triangle inequality, then explicitly employ the definitions of
gt,i, g̃t−1,i, next we use Lipschitz and smoothness, and finally, we employ Equation (18), and the definition of S.

Second part:

E ∥st,i − s̄t,i∥2 =E ∥(gt,i − ḡt,i) + αt−1((gt,i − ḡt,i)− (g̃t−1,i − ḡt−1,i))∥2

≤
(√

E ∥gt,i − ḡt,i∥2 + αt−1

√
E ∥(gt,i − ḡt,i)− (g̃t−1,i − ḡt−1,i)∥2

)2

≤ (σ + αt−1σL ∥xt − xt−1∥)2 ≤ (σ + 2σLD)2 := σ̃2

The first equality is by the definition of st,i − s̄t,i, then we use the inequality: E ∥X + Y ∥2 ≤
(√

E ∥X∥2 +
√

E ∥Y ∥2
)2

,

which holds since:

E ∥X + Y ∥2 = E ∥X∥2 + 2 ⟨X,Y ⟩+ ∥Y ∥2

≤ E ∥X∥2 +
√
E ∥X∥2 · ∥Y ∥2 + E ∥Y ∥2 =

(√
E ∥X∥2 +

√
E ∥Y ∥2

)2

Then, we use the bounded variance assumption as well as the bounded smoothness variance assumption (Equations (3)
and (4)), and finally, we employ Equation (18), and the definition of σ̃.

17



Efficient DP Strategies for Centralized Systems

C.3. Proof of Lemma 4.3

Using the previous lemmas will naturally allow us to bound εt,i:

E ∥εt,i∥2 = E

∥∥∥∥∥
t∑

τ=1

(sτ,i − s̄τ,i)

∥∥∥∥∥
2

=

t∑
τ=1

E ∥sτ,i − s̄τ,i∥2 ≤
t∑

τ=1

σ̃2 = σ̃2t

The first equality is Lemma 4.1, then we use Lemma A.2, and finally Lemma 4.2.

D. Proof of Privacy
Here we will provide the proof of the privacy of Algorithms 1 and 2.

D.1. Proof of Theorem 5.1

Let us look at a single machine i. Let Si, S′i be neighbouring datasets of T samples which differ on a single datapoint;
i.e. assume there exists τ∗ ∈ [T ] such that Si := {z1,i, z2,i, . . . , zτ∗,i, . . . , zT,i} and S′i := {z1,i, z2,i, . . . , z′τ∗,i, . . . , zT,i},
and zτ∗ ̸= z′τ∗ .

Notation: We will employ qt,i(Si), q̃t,i(Si), xt(S), st,i(Si) to denote the resulting values of these quantities when we
invoke Algorithm 1 with the datasets S, we will similarly denote qt,i(S

′
i), q̃t,i(S

′
i), xt(S

′), st,i(S
′
i).

First Part: Here we will bound the Rényi Divergence between q̃t,i(Si) and q̃t,i(S
′
i) conditioned on the values of

{x1, {q̃τ}t−1
τ=1}. Note that given {x1, {q̃τ}t−1

τ=1} we can directly compute the values of {wτ}tτ=1 and therefore also {xτ}tτ=1

(see Algorithm 1). Thus, we may assume that prior to the computation of qt,i, we are given {xτ}tτ=1.

Note that given the query history x1, . . . , xt, and the dataset Si, qt,i(Si) is known (respectively qt,i(S
′
i) is known given the

dataset S′i and the query history). Now, since we obtain q̃t,i by adding a Gaussian noise Yt,i to qt,i, we may use Lemma 2.2
and obtain:

Dα (q̃t,i(Si)∥q̃t,i(S′i)) =
α∆2

t,i

2σ2
t,i

Where σ2
t,i is the variance of the noise Yt,i, and ∆t,i := ∥qt,i(Si)− qt,i(S

′
i)∥.

Next, we will bound ∆t,i: First note that given x1, . . . , xt then by the definition of st,i (Equation (9)) it only depends on
zt,i, i.e.:

st,i =gt,i + αt−1,i(gt,i − g̃t−1,i) = ∇f(xt; zt,i) + αt−1(∇f(xt; zt,i)−∇f(xt−1; zt,i))

Thus, for any t ∈ [T ], then given x1, . . . xt we have:

st,i(Si)− st,i(S
′
i) = 0, ∀t ̸= τ∗

where we used the fact that the datasets Si, S′i only differ on the τ∗’th sample. Using the above together with the fact that
qt,i =

∑t
τ=1 sτ,i (see Lemma 4.1), implies the following ∀t:

∆t,i := ∥qt,i(Si)− qt,i(S
′
i)∥ = I{t ≥ τ} ∥sτ∗,i(Si)− sτ∗,i(S

′
i)∥

≤I{t ≥ τ∗}(∥sτ∗,i(Si)∥+ ∥sτ∗,i(S
′
i)∥) ≤ 2S · I{t ≥ τ∗}

Where I{t ≥ τ∗} denotes the indicator function (i.e. it equals zero if t < τ∗, and is equal to 1 otherwise). Moreover, we
also used Lemma 4.2 to bound the norms of sτ∗(S), sτ∗(S′). Using the above together with Equation (10) we can bound for
any t ∈ [T ]:

Dα (q̃t,i(Si)∥q̃t,i(S′i)) =
α∆2

t,i

2σ2
t,i

≤ 2αS2

σ2
t,i

· I{t ≥ τ∗}

Second Part: Here we will bound the Rényi Divergence of the sequence {q̃t,i}t∈[T ]. In Equation (11) we bound the Rényi
Divergence of the t’th step of our algorithm, which produces q̃t,i based on the previously computed {x1, {q̃τ,i}t−1

τ=1} as well

18
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as based on the dataset, and the injected noise Yt,i. We shall relate this t’th step update as a procedure, and denote by At.
Thus, the procedure At computes its output q̃t,i based on the outputs of the previous procedures A1, . . .At−1, as well as on
the dataset and the initialization point x1 (which does not depend on the dataset). This allows us to directly apply the RDP
Composition rule in Lemma A.3, together with Equation (11), yielding ∀t ∈ [T ]:

Dα

(
{q̃τ,i(Si)}tτ=1∥{q̃τ,i(S′i)}tτ=1

)
≤

t∑
τ=1

α∆2
τ,i

2σ2
τ,i

≤ 2αS2
t∑

τ=τ∗

1

σ2
τ,i

≤ 2αS2
t∑

τ=1

1

σ2
τ,i

(19)

Thus, the theorem follows as per Definition 2.4 of RDP, and by Equation (19).

D.2. Proof of Theorem 6.1

The proof follows the same steps as the proof of Appendix D.1. Since we obtain q̃t by adding a Gaussian noise Yt to qt, we
may use Lemma 2.2 and obtain:

Dα (q̃t(S)∥q̃t(S′)) =
α∆2

t

2σ2
t

Where σ2
t is the variance of the noise Yt, and ∆t := ∥qt(S)− qt(S

′)∥. Since qt =
1
M

∑M
i=1

∑t
τ=1 sτ,i and only zτ∗,i is

different between S, S′, we get:

∆t := ∥qt(S)− qt(S
′)∥ =

1

M
I{t ≥ τ} ∥sτ∗(S)− sτ∗(S′)∥

≤ 1

M
I{t ≥ τ∗}(∥sτ∗(S)∥+ ∥sτ∗(S′)∥) ≤ 2S

M
· I{t ≥ τ∗}

Using the above together with Equation (14) we can bound for any t ∈ [T ]:

Dα (q̃t(S)∥q̃t(S′)) =
α∆2

t

2σ2
t

≤ 2αS2

M2σ2
t

· I{t ≥ τ∗}

As before, we apply the RDP Composition rule in Lemma A.3, together with Equation (15), yielding ∀t ∈ [T ]:

Dα

(
{q̃τ (S)}tτ=1∥{q̃τ (S′)}tτ=1

)
≤

t∑
τ=1

α∆2
τ

2σ2
τ

≤ 2αS2

M2

t∑
τ=τ∗

1

σ2
τ

≤ 2αS2

M2

t∑
τ=1

1

σ2
τ

To bound the RDP of the {xt} sequence, recall from Algorithm 2 that given {x1, {q̃τ}t−1
τ=1} we can directly compute the

values of {wτ}tτ=1 and therefore also {xτ}tτ=1 (see Algorithm 2). This allows us to bound privacy of the queries {xτ}tτ=1

as follows for any t ∈ [T ]:

Dα

(
{xτ (S)}tτ=1∥{xτ (S

′)}tτ=1

)
≤ Dα

(
{q̃τ (S)}tτ=1∥{q̃τ (S′)}tτ=1

)
≤ 2αS2

M2

t∑
τ=1

1

σ2
τ

(20)

Where we have used the Post-Processing property of RDP appearing in Lemma A.4.

Thus, the theorem follows as per Definition 2.4 of RDP, and by Equation (20).

E. Proof of Convergence
Here we will provide the proof of the convergence of Algorithms 1 and 2.

Our starting point is the following lemma regarding the update rule wt+1 = ΠK (wt − ηq̃t) that we employ in Algorithms 1
and 2. Employing Lemma A.5 together with the Anytime guarantees, i.e. Theorem A.1, and recalling that xt is a weighted
average of the {wt}t sequence, implies that we may bound the excess loss R(xt) := E [f(xt)]−min

x∈K
{f(x)} of Algorithms 1
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and 2 as follows:

α1:tR(xt) =α1:t(E [f(xt)]− f(x∗)) ≤
t∑

τ=1

E [ατ ⟨∇f(xτ ) , wτ − x∗⟩] =
t∑

τ=1

E [⟨q̃τ − ετ − Yτ , wτ − x∗⟩]

=

t∑
τ=1

E [⟨q̃τ , wτ − x∗⟩]−
t∑

τ=1

E [⟨ετ , wτ − x∗⟩]

=

t∑
τ=1

E [⟨q̃τ , wτ+1 − x∗⟩] +
t∑

τ=1

E [⟨q̃τ , wτ − wτ+1⟩]−
t∑

τ=1

E [⟨ετ , wτ − x∗⟩]

≤D2

2η
− 1

2η

t∑
τ=1

E ∥wτ − wτ+1∥2 +
t∑

τ=1

E [⟨q̃τ , wτ − wτ+1⟩]−
t∑

τ=1

E [⟨ετ , wτ − x∗⟩]

≤D2

2η
+

t∑
τ=1

E
[
⟨ατ∇f(xτ )− ατ∇f(x∗) + Yτ , wτ − wτ+1⟩ −

1

2η
∥wτ − wτ+1∥2

]
︸ ︷︷ ︸

(A)

+

t∑
τ=1

E [⟨ατ∇f(x∗) , wτ − wτ+1⟩]︸ ︷︷ ︸
(B)

+

t∑
τ=1

E [⟨−ετ , wτ+1 − x∗⟩]︸ ︷︷ ︸
(C)

The first inequality is due to Theorem A.1, the next one is due to q̃τ = ατ∇f(xτ ) + ετ + Yτ , then we use the fact that Yτ is
zero mean and is independent of wτ , and after that we add and subtract ±⟨q̃τ , wτ+1⟩, and then use Lemma A.5. Next, we
reuse the definition of q̃τ and move terms together plus adding and subtracting ±ατ∇f(x∗). Next we separately bound the
above terms (A), (B), (C).
Bounding (A) This term can be bounded as follows:

(A) :=
t∑

τ=1

E

[
⟨ατ∇f(xτ )− ατ∇f(x∗) + Yτ , wτ − wτ+1⟩ −

1

2η

t∑
τ=1

∥wτ − wτ+1∥2
]

≤η

2

t∑
τ=1

E ∥ατ (∇f(xτ )−∇f(x∗)) + Yτ∥2 =
η

2

t∑
τ=1

α2
τE ∥∇f(xτ )−∇f(x∗)∥2 + η

2

t∑
τ=1

E ∥Yτ∥2

First, we use Young’s inequality, and equality holds since Yτ is independent of xτ , and has zero mean.
Bounding (B) This term can be written as follows:

(B) :=
t∑

τ=1

E [⟨ατ∇f(x∗) , wτ − wτ+1⟩] =
t∑

τ=1

(ατ − ατ−1)E [⟨∇f(x∗) , wτ ⟩]− αtE [⟨∇f(x∗) , wt+1⟩]

=

t∑
τ=1

(ατ − ατ−1)E [⟨∇f(x∗) , wτ − wt+1⟩] ≤
t∑

τ=1

(ατ − ατ−1) ∥∇f(x∗)∥E [∥wτ − wt+1∥]

≤D ∥∇f(x∗)∥
t∑

τ=1

(ατ − ατ−1) = αtD ∥∇f(x∗)∥ = αtDG∗

The first equality is rearrangement of the sum while defining α0 = 0, then we put the last term into the sum, and use Cauchy-
Schwartz. Finally we use the diameter bound and telescope the sum. Note that we use the definition G∗ := ∥∇f(x∗)∥, and
that G∗ ∈ [0, G].
Bounding (C) This term is bounded as follows:

(C) :=
t∑

τ=1

E [⟨ετ , wτ+1 − x∗⟩] ≤
t∑

τ=1

E [∥ετ∥ · ∥wτ+1 − x∗∥] ≤ D

t∑
τ=1

√
E ∥ετ∥2
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The first inequality is Cauchy-Schwartz, and the second is using the bounded diameter and Jensen’s inequality w.r.t. concave
function

√
·. In total, we get that:

α1:tR(xt) ≤
D2

2η
+

η

2

t∑
τ=1

α2
τE ∥∇f(xτ )−∇f(x∗)∥2 + η

2

t∑
τ=1

E ∥Yτ∥2 + αtDG∗ +D

t∑
τ=1

√
E ∥ετ∥2 (21)

Using Lemma A.6, together with α2
τ = τ2 ≤ 2 τ(τ+1)

2 = 2α1:τ :

α2
τE ∥∇f(xτ )−∇f(x∗)∥2 ≤ 4α1:τLR(xτ )

Using the above and plugging it back into Equation (21) yields:

α1:tR(xt) ≤
D2

2η
+ 2ηL

t∑
τ=1

α1:τR(xτ ) +
η

2

t∑
τ=1

E ∥Yτ∥2 + αtDG∗ +D

t∑
τ=1

√
E ∥ετ∥2

We will now increase t to T in the right-hand-side (since the RHS is monotonically non-decreasing with t) and use our
choice of the learning rate which implies η ≤ 1

4LT , to get that for any t ≤ T ,

α1:tR(xt) ≤
1

2T

T∑
τ=1

α1:τR(xτ ) +
D2

2η
+

η

2

T∑
τ=1

E ∥Yτ∥2 + αTDG∗ +D

T∑
τ=1

√
E ∥ετ∥2

Now, using the Lemma A.7 with:

At =α1:tR(xt)

B =
D2

2η
+

η

2

T∑
τ=1

E ∥Yτ∥2 + αTDG∗ +D

T∑
τ=1

√
E ∥ετ∥2

We finally get:

α1:TR(xT ) ≤
D2

η
+ η

T∑
τ=1

E ∥Yτ∥2 + 2αTDG∗ + 2D

T∑
τ=1

√
E ∥ετ∥2

We can see that the bound depends on our learning rate η, the estimation error ετ and the injected noise Yτ .

Using Lemma 4.3, and the fact the {εt,i}i∈[M ] are independent given the queries {xτ}τ∈[t], since each of them depends on
a different dataset, we get that: E ∥εt∥2 ≤ σ̃2t

M . Now we can bound:

T∑
τ=1

√
E ∥ετ∥2 ≤

T∑
τ=1

√
σ̃2τ

M
≤ σ̃T 1.5

√
M

The bound on Yτ will be different between our two versions.

E.1. Proof of Theorem 5.2

Since we pick σ2
t,i =

4S2T
ρ2 and Yτ = 1

M

∑M
i=1 Yτ,i, then:

T∑
τ=1

E ∥Yτ∥2 =
1

M2

T∑
τ=1

M∑
i=1

E ∥Yτ,i∥2 =
1

M2

T∑
τ=1

M∑
i=1

dσ2
t,i =

4S2T 2d

ρ2M

When we put our bounds together in Equation (13) we get:

α1:TR(xT ) ≤
D2

η
+

4ηS2T 2d

ρ2M
+ 2αTDG∗ +

2Dσ̃T 1.5

√
M
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Finally, dividing by α1:T = T (T+1)/2 ≥ T 2/2 and recalling our choice η = min
{

ρD
√
M

2ST
√
d
, 1
4LT

}
, using η ≤ ρD

√
M

2ST
√
d
, 1
η ≤

2ST
√
d

ρD
√
M

+ 4LT , and that αT = T , yields the final bound:

R(xT ) ≤ 4D

(
G∗ + 2LD

T
+

2S
√
d

ρT
√
M

+
σ̃√
TM

)

Thus concluding the proof.

E.2. Proof of Theorem 6.2

Since we pick σ2
t = 4S2T

ρ2M2 , then:

T∑
τ=1

E ∥Yτ∥2 =

T∑
τ=1

M∑
i=1

dσ2
t =

4S2T 2d

ρ2M2

When we put our bounds together in Equation (17) we get:

α1:TR(xT ) ≤
D2

η
+

4ηS2T 2d

ρ2M2
+ 2αTDG∗ +

2Dσ̃T 1.5

√
M

Finally, dividing by α1:T = T (T +1)/2 ≥ T 2/2 and recalling our choice η = min
{

ρDM

2ST
√
d
, 1
4LT

}
, using η ≤ ρDM

2ST
√
d
, 1
η ≤

2ST
√
d

ρDM + 4LT , and that αT = T , yields the final bound:

R(xT ) ≤ 4D

(
G∗ + 2LD

T
+

2S
√
d

ρTM
+

σ̃√
TM

)

Thus concluding the proof.

F. Review of (Lowy & Razaviyayn, 2023)
In (Lowy & Razaviyayn, 2023) they propose an algorithm for private federated learning. In this paper they assume to have
M machines, and n is the size of the dataset used by each machine, and therefore the total dataset is of size |S| = nM .
Moreover, they denote by R to total number of update rounds, and by K the minibatch size used by each machine in every
round, totalling RKM gradient computations overall. In theorem D.2 of this paper we can see that for the convex case
of ISRL-DP (untrusted server) they use R = βD

√
M

L min
{√

n, ϵ0n√
d

}
+min

{
nM,

ϵ20n
2M
d

}
time steps, and batch size of

K ≥ ϵ0n

4
√

2R ln(2/δ0)
. The total number of gradient computations each silo use is RK, and the total number of computations

across all silos is RKM :

RKM ≥ ϵ0nM
√
R

4
√
2 ln(2/δ0)

=
ϵ0nM

4
√
2 ln(2/δ0)

√
βD

L

√
nM min

{
1,

ϵ0
√
n√
d

}
+ nM min

{
1,

ϵ20n

d

}
≥ ϵ0(nM)3/2

4
√
2 ln(2/δ0)

min

{
1,

ϵ0
√
n√
d

}
The first inequality is inputting K, then we input R, and then remove the first term under the square root. Thus in the
prevalent regime where ϵ0 ∈ Θ(1) and d ∈ O(n), then we can say that the total number of gradient computations is:

RKM ≥ Ω
(
(nM)3/2

)
= Ω

(
|S|3/2

)
Thus (Lowy & Razaviyayn, 2023) has computational complexity that is proportional to |S|3/2.
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