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Abstract

Brains excel at robust decision-making and data-
efficient learning. Understanding the architectures
and dynamics underlying these capabilities can
inform inductive biases for deep learning. We
present a multi-region brain model that explores
the normative role of structured memory circuits
in a spatially embedded binary decision-making
task from neuroscience. We counterfactually com-
pare the learning performance and neural repre-
sentations of reinforcement learning (RL) agents
with brain models of different interaction archi-
tectures between grid and place cells in the en-
torhinal cortex and hippocampus, coupled with
an action-selection cortical recurrent neural net-
work. We demonstrate that a specific architecture—
where grid cells receive and jointly encode self-
movement velocity signals and decision evidence
increments—optimizes learning efficiency while
best reproducing experimental observations rela-
tive to alternative architectures. Our findings thus
suggest brain-inspired structured architectures for
efficient RL. Importantly, the models make novel,
testable predictions about organization and infor-
mation flow within the entorhinal-hippocampal-
neocortical circuit: we predict that grid cells must
conjunctively encode position and evidence for
effective spatial decision-making, directly moti-
vating new neurophysiological experiments.*

1. Introduction

Deep learning has advanced through the adoption of larger
datasets (Lin et al., 2014; Russakovsky et al., 2015; Schuh-
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mann et al., 2022) and deeper architectures (Dosovitskiy
et al., 2021; He et al., 2016; Jiang et al., 2023), frequently
emphasizing scale over the efficiency driven by biologi-
cally inspired models (Banino et al., 2018). To bridge this
gap, insights from neuroscience can inform more efficient
architectures by studying how biological systems process in-
formation to make robust and adaptive decisions in dynamic
and uncertain environments. The brain contains specialized
circuits including the hippocampal circuit (HPC), a key set
of brain areas critical for spatial, contextual, and associa-
tive learning and memory (O’Keefe, 1978; Dostrovsky &
O’Keefe, 1971; Squire, 1992; Scoville & Milner, 1957).
Meanwhile, cortical and subcortical regions play a central
role in evidence accumulation and decision-making (Pinto
etal., 2019; IBL et al., 2023).

Brain-scale neural recordings at cellular resolution, which
are only recently possible, open a window into how brain
regions interact with each other to perform complex tasks.
Here we focus on the accumulating tower task, a widely
adopted, interpretable benchmark in neuroscience for prob-
ing multi-region brain interactions underlying spatially em-
bedded evidence accumulation and decision-making (Pinto
et al., 2019; 2022; Nieh et al., 2021; Brown et al., 2024).

In the task, mice navigate an immersive virtual reality cor-
ridor, where they are stochastically presented with visual
towers on both sides. At the end of the corridor, they must
turn left or right depending on which side has more towers
(see Figure 1D). This task requires integrating evidence:
computing the difference in the total number of towers on
each side (“accumulated evidence’). Task standardization
enables reproducible experiments, and these in turn inform
theoretical models (Lee et al., 2024; Karniol-Tambour et al.,
2024) that generate testable predictions about behavior and
neural dynamics. We focus on this task to build a multi-
system brain model spanning memory, integration, spatial
navigation, and decision circuits.

During the task, the dorsal CA1 region of the hippocampus
encodes conjunctive cognitive maps of both the animal’s
location and accumulated evidence. Place fields in this
region are tuned not only to spatial position but also to
task-relevant accumulated evidence, meaning that individual
neurons fire selectively based on both variables (Nieh et al.,
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2021).

This finding is intriguing given that the task does not ex-
plicitly require spatial information for decision-making—the
correct choice depends only on the relative frequency of tow-
ers on each side. It raises several key questions: Why does
the hippocampus, typically associated with spatial naviga-
tion and episodic memory, represent accumulated evidence
in this task? Does this suggest that the hippocampus has
a broader functional role in spatially embedded decision-
making tasks, even when spatial information is unnecessary
for the decision? Furthermore, why are spatial and evi-
dence representations jointly encoded in the hippocampus?
These questions point to the potential involvement of the
hippocampus in coordinating computations across multiple
brain regions during decision-making.

Decision-making tasks are often modeled within a reinforce-
ment learning (RL) framework (Gershman & Niv, 2015;
Gershman & Daw, 2017). While these models excel in task-
level performance, they often overlook structured neural
architectures and dynamics observed in biological systems.
For instance, deep RL approaches applied to the accumulat-
ing tower task (Mochizuki-Freeman et al., 2023; Lee et al.,
2024) focus on optimizing performance post-training but
fail to capture the distributed computations across brain
regions and do not explain how natural systems perform
efficient and robust learning.

To address these gaps, we developed a multi-region brain
model that incorporates an architecturally and dynamically
prestructured circuit model of the hippocampal-entorhinal
system, Vector Hippocampal Scaffolded Heteroassociative
Memory (Vector-HaSH) (Chandra et al., 2025). Our model
extends Vector-HaSH by integrating it with cortical and sub-
cortical regions, abstracted as a recurrent neural network
(RNN) (Elman, 1990) to serve as the RL decision-making
actor. This integration enables the model to function as
a biologically grounded RL solver, leveraging structured
memory circuits to support spatially embedded decision-
making. Inspired by the vision for autonomous machine
intelligence outlined in LeCun (2022), we demonstrate that
integrating structured, content-addressable associative mem-
ory with neural representations is a promising approach for
efficient task learning and navigation. Specifically, our work
highlights the essential role of structured coding schemes,
such as grid cells, in forming world models (cognitive maps)
that support efficient task-solving.

We apply this framework to the accumulating tower task
and test counterfactual scenarios in which the entorhinal-
hippocampal networks receive different inputs. Our model
generates normative predictions about tuning in grid cells,
the role of entorhinal-hippocampal networks, and the con-
ditions that give rise to efficient learning and performance
of spatially embedded decision-making tasks. These find-

ings illuminate how the brain may coordinate computations
across its many substructures to flexibly and efficiently
tackle complex challenges.

The contributions of this paper are four-fold:

* We propose and demonstrate a multi-region brain
model framework that counterfactually tests the compu-
tational roles of entorhinal-hippocampal-neocortical in-
teractions during spatially embedded decision-making
tasks. Our framework makes novel experimentally
verifiable predictions for neuroscience.

* The model enables systematic exploration of how neu-
ral computations shape cognitive capabilities, offering
a tool to guide and interpret future neuroscience exper-
iments.

* We predict that conjunctive position-evidence tuning
in grid cells is essential to the emergence of experi-
mentally observed conjunctive position-evidence hip-
pocampal representations (Nieh et al., 2021).

* Finally, we demonstrate that conjunctive grid cell tun-
ing and non-grid sensory inputs to the hippocampus
are critical for learning spatially embedded contexts
(model M5).

2. Related Works

2.1. Biological Evidence and Gaps on
Entorhinal-Hippocampal-Neocortical Interactions

Hippocampal place cells (HPC), which encode spatial loca-
tions through their activity patterns (Dostrovsky & O’Keefe,
1971), form the basis of the cognitive map theory (O’Keefe,
1978; Fenton, 2015; Moser & Moser, 2016). This theory
provides a foundational framework for understanding how
flexible and intelligent behaviors arise from coordinated neu-
ronal populations (Fenton, 2024). Cognitive maps not only
enable flexible spatial navigation but also support memory
organization and the construction of coherent narratives of
personal experiences (O’Keefe, 1978; Tolman, 1948; Whit-
tington et al., 2022; Fenton, 2024). Furthermore, the HPC’s
ability to encode internal cognitive variables, such as accu-
mulated evidence and task-relevant information, highlights
its broader role as a model system for studying internally
generated cognition (Bostock et al., 1991; Nieh et al., 2021;
Olafsdéttir et al., 2015; Tavares et al., 2015).

Interactions between the HPC and the entorhinal cortex
(EC) are well documented as crucial for navigation (Mc-
Naughton et al., 1996; O’Keefe, 1978) and declarative mem-
ory (Scoville & Milner, 1957; Squire, 1992). Within the me-
dial entorhinal cortex (MEC), grid cells (Hafting et al., 2005)
provide a spatial metric through their periodic, hexagonal
firing fields (Krupic et al., 2012). These grid cells, along
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with hippocampal place cells, form the building blocks of
neural systems that support both physical navigation and
abstract cognitive functions. Recent hypotheses propose
that memory and planning mechanisms evolved from pro-
cesses originally adapted for physical navigation, suggesting
a shared computational framework for navigating both phys-
ical and mental spaces (Buzsdki & Moser, 2013). Moreover,
hippocampal-prefrontal interactions have been shown to
play a significant role in higher-order cognitive functions, in-
cluding decision-making and planning (Eichenbaum, 2017;
Preston & Eichenbaum, 2013). These established interac-
tions inform the design of our multi-region model to uncover
neural mechanisms underlying cognition.

Recent advances in experimental techniques, such as large-
scale neural recordings (Jun et al., 2017; Steinmetz et al.,
2021), have made it possible to investigate how thousands of
neurons across multiple brain regions coordinate to function
coherently (Bondy et al., 2024). However, despite these ad-
vances, understanding the mechanistic roles and interactions
of individual brain regions in cognition remains a challenge.
Our theoretical work bridges this gap by providing inter-
pretable, mechanistic model “testbeds” that complement
experimental findings and generate testable predictions to
guide future investigations.

2.2. Models of Entorhinal-Hippocampal Interactions

Prominent models of entorhinal-hippocampal interactions
include the Tolman-Eichenbaum Machine (TEM) (Whit-
tington et al., 2020), a statistical generative model, and
Vector-HaSH (Chandra et al., 2025), a biologically realis-
tic, mechanistic model. Vector-HaSH separates fixed-point
dynamics for pattern completion from content encoding,
leveraging grid-cell scaffolds to prevent catastrophic forget-
ting and memory capacity cliffs. Unlike generative models,
it provides a high-capacity, generalizable framework for
spatial and non-spatial memory, making it well-suited to
studying episodic and spatial representations.

In contrast to data-driven approaches, such as inferring
brain-wide interactions with constrained RNNs (Perich et al.,
2020) or disentangling shared and private latent variables
across regions (Koukuntla et al., 2024), our mechanistic
model provides interpretable hypotheses about entorhinal-
hippocampal interactions. By integrating Vector-HaSH with
multi-region dynamics, our approach bridges experimental
findings with theoretical predictions, advancing understand-
ing of distributed neural computations.

2.3. Bidirectional Insights Between Deep Learning and
Neuroscience

Machine learning-based frameworks are increasingly ap-
plied in neuroscience studies (Richards et al., 2019). For
instance, deep neural networks have emerged as plausible

models of the brain (Sacramento et al., 2018; Whittington
& Bogacz, 2017), mimicking representational transforma-
tions in primate perceptual systems (Bashivan et al., 2019;
Kell et al., 2018). These models often exhibit classic behav-
ioral and neurophysiological phenomena when trained on
tasks similar to those performed by animals (Banino et al.,
2018; Pospisil et al., 2018; Wang et al., 2018). Comple-
mentarily, Yamins & DiCarlo (2016) demonstrated corre-
lations between artificial neural network (ANN) represen-
tations and neuronal activity in the monkey visual cortex
during image classification tasks, informing the design of
brain-like ANNs (Kubilius et al., 2019; Zhuang et al., 2021).
Such brain-inspired approaches provide value to both neu-
roscience and machine learning. For example, while navi-
gation is fundamental for humans, it remains challenging
for ANNs (Mirowski et al., 2017). Leveraging grid cell-like
representations, critical for mammalian navigation, Banino
et al. (2018) developed a deep RL agent with navigation
abilities resembling those of primates.

3. Methods

3.1. Entorhinal-Hippocampal-Neocortical Spatial
Decision Model

Our multi-region brain model integrates a cortical circuit,
abstracted into an action-selection RNN policy, with a pre-
structured entorhinal-hippocampal circuit inspired by Chan-
dra et al. (2025), which incorporates bidirectional compu-
tations between grid cells and place cells to associate, en-
code, and learn environmental information. As shown in
Chandra et al. (2025) and Fig 1A (purple and orange), the
entorhinal-hippocampal memory scaffold features a bipar-
tite architecture comprising hidden (hippocampal) and label
(grid cell) layers. The scaffold’s design is based on estab-
lished and inferred recurrent connectivity patterns between
the MEC and HPC (Witter & Groenewegen, 1984; Amaral
& Witter, 1989; Witter & Amaral, 1991; Witter et al., 2017)
and among grid cells in the MEC (Burak & Fiete, 2009).

Connections from grid cells to the hippocampus (W},,) are
fixed and random, while connections from the hippocam-
pus to grid cells (W ;) are set through associative learn-
ing and remain fixed thereafter. Connections between the
HPC and non-grid lateral entorhinal cortex (LEC) (W
and Wy;,) are learned bidirectionally through associative
learning. The grid cell layer operates as a k-hot modular
vector, constrained by local recurrent inhibition, where k
reflects the number of one-hot grid modules. Each module
has a unique periodicity, and velocity inputs (e.g., position
and evidence) drive the phase progression of each module
within its 2D representational space (i.e., a 2D torus).

We build upon the architecture proposed by Chandra et al.
(2025) (Fig 1A), termed Vector-HaSH+ (Fig 1B). Unlike the
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Figure 1. Task schematics. (A) Schematic of Vector-HaSH (Chandra et al., 2025), the basis of our model architecture. (B) Schematic of
the Vector-HaSH+ circuit, which we propose to model and investigate the neural computation process for spatially embedded decision-
making tasks. The numbers in parentheses are the order of computation. (C) Schematic of grid cell code, for a specific example of an
agent moving 3 positions forward while encountering evidence value +1, —1, and +1. Here, we assume the grid state is initialized at the
top left corner, but the coding scheme is invariant regardless of the initial state. A joint grid representation (top) utilizes both axes of the
grid module 2D space for both task variables, position and accumulated evidence, yielding a wiggling activation pattern (red arrows). A
disjoint grid representation (bottom) encodes task variables in separate modules, such that each grid module only fires along one axis (red
arrows). The periodicity of each module is indicated by dashed gray arrows, as the representation space of a grid module is effectively a
2D torus. (D) Schematic of the RL setup in which an agent navigates a virtual T-maze with towers appearing on both sides, and a reward
is given when it turns to the side with more towers in the end. The agent has some field of view ahead, and the visual sensory information
is communicated to HPC through MEC and/or non-grid LEC. The HPC code is then mapped by an RNN policy (cortex) to select an
action. The action updates the agent’s position, which updates the sensory input and then the grid states. This process repeats until task

termination.

original Vector-HaSH, Vector-HaSH+ provides flexibility in
hippocampal readouts, allowing them to receive projections
from both grid cells and non-grid sensory inputs simultane-
ously or from just one source (Fig 1B, orange and green).
Grid states are updated by task-relevant velocity inputs, ei-
ther across all modules or selectively along specific axes in
some modules (see Fig 1C and Appendix A.1). A multi-
layer perceptron (MLP) processes sensory inputs to extract
evidence velocity (Fig 1B, yellow), which informs grid cell
updates. Similar to Hwang et al. (2023); Wang et al. (2024),
the resulting hippocampal vector is the input to the RNN
policy, which is trained using RL policy gradient method to
make action decisions (see Fig 1D and Appendix A.3 for a
detailed step-by-step procedure).

While the MEC, HPC, and LEC all interact with the cortex

biologically (Preston & Eichenbaum, 2013; Eichenbaum,
2017; Canto et al., 2008), we model the hippocampal vector
as the primary cortical input for simplicity. This simplifi-
cation assumes the hippocampal vector alone is sufficient
for learning the task, while allowing us to test hypotheses
about conjunctive hippocampal representations observed in
Nieh et al. (2021), providing a foundation for further inves-
tigations. For instance, future studies could evaluate the
computational benefits of various combinations of {MEC,
HPC, LEC} inputs to the cortex in enabling generalization
and efficient learning.

3.2. Model Setup

We describe the model formally in the context of the ac-
cumulating tower task. As the agent navigates in space
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at time ¢, it processes sensory information from the left
and right visual fields, fz and f;{, which is projected
through the dorsal visual stream to downstream processing
regions. This results in a sensory vector in LEC modeled by
5(t) = Wg - fr(t) + W, - fr(t), representing a weighted
integration of the two fields that can be used for further com-
putations. We assume a simple concatenation of fz (t) and
fr(t), but this setup provides flexibility for modeling abla-
tion studies, e.g., simulating the effects of optogenetically
inhibiting one hemisphere. The downstream computation
includes velocity prediction that updates grid cell states and
projection into HPC.

Following Chandra et al. (2025), the MEC layer of the model
contains k one-hot grid cell modules, each is a binary-valued
periodic function on a 2D discretized hexagonal lattice space
with periodicity A. Thus, each module state is a vector of
dimension A x A. The module states are concatenated to
form a collective grid state § € {0, 1}V, where the vector
length Ny =3>",, A3,

The grid cell state is updated through continuous attrac-
tor recurrence dynamics (Burak & Fiete, 2009), where a
module-wise winner-take-all mechanism, C AN|-], shifts
each grid module based on position and evidence velocity
signals v(t) informed by §(¢). We model the velocity esti-
mation as an MLP (Rosenblatt, 1958) that processes sensory
inputs for simplicity, representing a form of visual-vestibular
integration (DeAngelis & Angelaki, 2012). Following Chan-
dra et al. (2025), we assume this process occurs externally
to the entorhinal-hippocampal circuit. This simplification
does not affect our results and is beyond the scope of this
framework.

The grid cell state update at time ¢ is thus formalized as
gt +1) = can[g(t), v(t)]. (1)

The full implementation of CAN[-] is provided in Ap-
pendix A.S.

The grid cell layer and the non-grid sensory layer project
onto the HPC layer, such that the hippocampal activities are

—

Bamix (t 4+ 1) = ReLU[W g - 5(t) + W, - G(t +1)]. (2)

We also test the variants of hippocampal coding, in which
only the grid cell layer projects onto the HPC layer, such
that the hippocampal activities are

-

hnonmix (t + 1) = ReLU[Wy,, - g(t + 1)]. 3)

The connectivity between the HPC layer and the EC layer
is updated in both cases as pseudo-inverse (1) learned het-
eroassociative weights,

W, = HS™, 4)
W,, =SHT, 5)

Table 1. Overview of how model variants correspond to alternative
hypotheses of neural coding and information flow based on evi-
dence source. Our final model, M5, is marked with *.

Models of hypotheses
(Source of Evidence)

Not EC M1 M3
EC M2 M4, M5*

Not MEC MEC

Table 2. Summary of the neural coding and information flow in
each model variant. Our final model, M5, is marked with .

Model Grid cell code Place cell code | MLP input RNN input

MO - - S

MO+ - - s S & Vpos & Vewi

M1 pos. g - p

M2 pos. g&s - p

M3 joint pos. & evi. g s p

M4 disjoint pos. & evi. g&s s p

M5* joint pos. & evi. g&s S p

where H is a N}, X Npq4ts matrix with Npq¢¢5 hippocampal
states, each of length IVp,, and S is a N; X Npqus matrix
with columns as the encoded sensory inputs of length Ng.

We modeled variants with recurrence in the HPC layer
(namely, the CA3 recurrence (Sammons et al., 2024)) in
Appendix F, which does not alter the conclusions in the
main paper. The hippocampal state hin Eqn 2 (or Eqn 3) is
the readout of the entorhinal-hippocampal circuit to the cor-
tex (under the modeling rationale explained in Section 3.1),
which is an action-selection RNN policy trained through
policy gradient under reinforcement learning. Please re-
fer to Appendix A.3 for what one step of the agent in the
environment entails among the involved brain regions.

4. Alternative Multi-Region Interaction
Hypotheses

Nieh et al. (2021) observed conjunctive coding of both accu-
mulated evidence (cognitive variable) and position (physical
variable) in the hippocampus when mice perform the accu-
mulating tower task, suggesting that the hippocampus also
performs a general computation, rather than merely respond-
ing to features of external stimulus such as space (O’Keefe
& Burgess, 1996). This discovery highlights the need for
mechanistic modeling at an appropriate scale to explore
how interactions across multiple brain regions contribute
to internally generated cognition. Such processes enable
individuals to flexibly navigate spaces and organize, relate,
and integrate experiences, objects, and events.

We use the accumulating tower task as a minimal framework
to hypothesize three potential mechanisms underlying the
conjunctive HPC code of physical and cognitive variables:
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Figure 2. Model schematics. Counterfactual models of hypotheses on neural code and information flow, as detailed in Tables 1 and 2.

* Grid cells encode position, aligning with the prevailing
view (Moser et al., 2008), and the conjunctive encoding
in the HPC arises from sensory input provided by non-
grid LEC neurons (M2).

* Grid cells co-tune to both position and evidence, a
phenomenon that has not been extensively investigated
experimentally to the best of our knowledge. The LEC
pathway is neither necessary nor relevant (M3).

 @Grid cells co-tune to both position and evidence, and
the EC pathway contributes to the formation of the
conjunctive hippocampal code (M4, M5).

Notably, there are two possible mechanisms for grid cell
tuning of accumulated evidence and position:

¢ Joint Integration Model: Grid cell modules each en-
code a combination of evidence and position by lever-
aging their 2D toroidal attractor network. This implies
the simultaneous representation of spatial and cogni-
tive variables within the same grid modules (M3 & M5,
see Fig 1C top).

¢ Disjoint Integration Model: Individual grid cell mod-
ules each encode distinct task variables. Specifically,
some grid cell modules exclusively encode position,
while others exclusively encode evidence (M4, see
Fig 1C bottom).

Our framework provides a systematic approach to evaluate
the proposed hypotheses shown in Tables 1 and 2, and Fig 2.
This evaluation includes (a) quantitative analyses of learn-
ing performance and behavioral outcomes (Section 5.1) and
(b) qualitative alignment with experimental findings (Sec-
tion 5.2). Furthermore, we hypothesize the roles of individ-
ual brain regions in spatially embedded decision-making
tasks by analyzing neural representations (Section 5.3).

5. Results
5.1. Joint Integration Model Induces Efficient Learning

We compare the performance of different model variants
in terms of cumulative success rate and exploration effi-
ciency during training (Fig 3). Additionally, as shown in
Appendices G and H, our findings remain consistent after
tuning the learning rate or matching the number of param-
eters in MO and MO+ to that of M5. Our results show that
agents fail to solve the task when grid cells do not encode
evidence (Fig 3A, orange and green), highlighting the impor-
tance of MEC in integrating cognitive variables. Moreover,
RNN-only baselines (MO and MO+, in blue and black, re-
spectively), with the same number of neurons as M1-MS5,
perform poorly even when supplied with positional and
velocity information (MO+, in black), suggesting that the
EC-HPC network is critical for temporal integration. Addi-
tionally, models with jointly tuned grid cells (red and brown)
learn more efficiently than those with disjointly tuned grid
cells (purple). This phenomenon lacks an immediately clear
computational explanation, which we investigate in Sec-
tion 5.2.

Interestingly, when sensory information is projected to the
hippocampus (M4, M5), the learning performance becomes
more variable relative to M3 (Fig 3A), possibly because
mixing place codes with sensory signals complicates the
representation. However, including sensory information in
HPC increases exploration efficiency (brown in Fig 3B),
presumably because it captures the nuances in the envi-
ronment—such as wall positions—complement the rigid
information encoded by grid cells. In support of this view,
M3, a variant of M5 without sensory projections, requires
longer navigation times (red in Fig 3B). Please refer to
Appendix A.1 for implementation details.
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Figure 3. Learning performance measured by cumulative success rate and exploration efficiency over the course of training for all
model variants. We present the mean and standard deviation of these metrics across three trials. Baselines are indicated by dashed gray
lines. In (A), using a window size of 5, 000 episodes, we observe efficient learning in models with jointly tuned grid cells (M3, in red;
MS, in brown). In (B), with a window size of 10, 000 episodes, M5 demonstrates its ability to effectively leverage spatial information,
navigating the maze more quickly (brown). For clarity, data from the first 100 episodes are excluded due to initial instability.

5.2. Joint Integration Model Predicts Evidence-Position
Co-Tuning in Grid Cells

As shown among simulated hypotheses, joint tuning of po-
sition and evidence in the MEC promotes efficient learning,
while the sensory pathway enhances efficient navigation.
Here, we further analyze the relationship between grid cell
computations and place cell firing patterns. Our results re-
veal that model variants capable of efficient task learning
exhibit firing fields closely resembling the experimental ob-
servations in Nieh et al. (2021). This alignment makes a
clear prediction that the conjunctive grid cell representa-
tions give rise to the joint encoding of spatial and cognitive
variables in the HPC.

5.2.1. JOINT INTEGRATION MODEL EXHIBITS
EXPERIMENTALLY ALIGNED HPC FIELDS

Nieh et al. (2021) demonstrated experimentally that individ-
ual CA1 neurons encode both position and accumulated evi-
dence. This interdependence implies that trials leading to the
same final decision would evoke distinct hippocampal firing
sequences, as the agent traverses different tower/evidence
configurations (Fig 4, left). Consequently, smaller firing
fields would partition the evidence dimension within the
Evidence (E) x Position (Y) space of hippocampal activity.

We found that joint integration models (M5 in Fig 4, bottom
right; M3 in Appendix C) successfully replicate the £ x Y
place fields observed by Nieh et al. (2021). In contrast,
models lacking joint integration, such as M4 (Fig 4, top
right), fail to reproduce this behavior, instead exhibiting
stripe-like firing patterns indicative of independent repre-
sentations of position and evidence. In Appendix I, we
additionally demonstrate that smoothing hippocampal activ-
ity reveals more localized and stereotyped tuning, consistent
with experimental observations.
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Figure 4. Place cell tuning during the task. The schematic plot
(left, adapted from Nieh et al. (2021)), and the firing fields of
selective hippocampal neurons in models M4 (right, top) and M5
(right, bottom). The firing field of each hippocampal cell is de-
termined by averaging smoothed neural activity across trials and
normalizing within the cell. See Appendix C for raw firing fields
without smoothing and Appendix I for smoothing details using
01,02 = 1. In Nieh et al. (2021), since hippocampal cells have a
conjunctive code of evidence (E) and position (Y), smaller firing
fields effectively partition the evidence dimension in the E x Y
space. Notably, only models with jointly tuned grid cells exhibit
conjunctive place fields in the E x Y space (right, bottom).

5.2.2. JOINT INTEGRATION MODEL EXHIBITS BOTH
CHOICE-SPECIFIC FIELDS & EVIDENCE FIELDS

Here, we demonstrate that only the joint integration model
aligns perfectly with the experimental findings, strongly
supporting its role in governing the neural computations un-
derlying place cell behaviors described in Nieh et al. (2021).
In this model, grid cells jointly encode evidence and posi-
tion, enabling the HPC to create integrated maps.

Only joint integration models exhibit choice-specific neu-
rons Nieh et al. (2021) observed that CA1 neurons exhibit
choice-specific place cell sequences when sorted by their
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Figure 5. Choice-specific place cell sequences & evidence fields. Only models with conjunctive grid code exhibit choice-specific place
cell sequences observed in Nieh et al. (2021). Activation is averaged and normalized in each cell. We compare results from (1) Nieh et al.
(2021), (2) disjoint integration model M4, and (3) joint integration model M5, respectively. (A) Choice-specific place cell sequences. Cells
are categorized into left-choice-preferring (top), right-choice-preferring (middle), and non-preferring (bottom) based on the significance
of mutual information; within each row, cells are sorted by peak activities of the respective neurons of preferred choices. (B) Firing fields
of place cells in accumulated evidence space, sorted by the positions of peak activities.

peak activity positions. To ensure a fair comparison, we
analyze our models using the same approach, computing the
mutual information (see Appendix B) between each cell’s
activity and the agent’s position during left- and right-choice
trials, and comparing these results to a shuffled dataset for
their significance. Our analysis illustrates that only joint in-
tegration models (M3, M5) have a subset of place cells that
are choice-specific under this metric (Fig 5, A3; Fig 9, B),
closely matching experimental observations (Fig 5, Al).
In contrast, the disjoint integration model does not exhibit
choice-specific place cell sequences (Fig 5, A2).

Place cells form firing fields in evidence space Similarly,
we measure the mutual information between accumulated
evidence and the neural activity of each place cell. As ex-
pected, when grid cells encode evidence, place cells then
form firing fields in evidence space, spanning small seg-
ments of evidence values, consistent with Fig 4, left. Con-
versely, place cells fail to form evidence fields in models
M1 and M2, where evidence information is either absent or
originates from the LEC instead of MEC (see Appendix D).

5.3. Only Joint Integration Model With Activated EC
Pathway Exhibits Well-Separated Low-Dimensional
Co-representation of Task Variables

We performed Principal Component Analysis (PCA) on hip-
pocampal and cortical activities to assess whether task vari-

ables form visually separable clusters in low-dimensional
principal component (PC) space. The presence of such low-
dimensional representations would provide insight into the
functional roles of specific brain regions and the computa-
tional strategies employed by different model variants.

We showed that only the joint integration model with an
activated LEC pathway (M5) exhibits distinct, visually sep-
arable clusters of hippocampal activity in PC space for both
position (Fig 6, B1) and local evidence velocity (#R-#L
towers at a position, Fig 6, B2). This contrasts sharply with
other model variants (Figs 6, Al, A2, and Appendix E).
Interestingly, we did not observe separability in accumu-
lated evidence within the first three PCs of hippocampal
activity. This is counterintuitive, given that grid cells en-
code and communicate accumulated evidence to the HPC.
Since hippocampal neurons are projection neurons (Fox &
Ranck Jr, 1975; 1981), the source and encoding mecha-
nism of local evidence velocity in the HPC warrant further
investigation. Future studies could analyze existing exper-
imental data to validate the predicted hippocampal role in
representing local evidence velocity and conduct ablation
studies using the proposed model to understand the under-
lying mechanisms. Together, these findings underscore the
importance of sensory inputs from the LEC in generating
cohesive, low-dimensional representations of task variables
in the hippocampus, which are critical for efficient learning
and spatial navigation (Fig 3).
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6. Discussion

Our work predicts that grid cells jointly encode spatial and
task-relevant information, and that this conjunctive coding,
along with LEC sensory input to the hippocampus, facili-
tates efficient decision-making in spatial contexts. More-
over, our findings indicate that conjunctive grid coding is
essential for replicating experimental results observed in
Nieh et al. (2021), offering new insight into the prevailing
view that grid cells primarily support spatial representa-
tions (Moser et al., 2008).

We derive this prediction by proposing and testing counter-
factual neural codes and information flow in variants of our
multi-region brain models, which integrate a prestructured
entorhinal-hippocampal circuit (Chandra et al., 2025) with
a cortical action-selecting recurrent neural network (RNN).
These models are evaluated based on their task performance
and hippocampal representations in the accumulating tower
task (Nieh et al., 2021), formulated as a RL problem.

While the CA3 region of the hippocampus is known to ex-
hibit recurrent dynamics (Sammons et al., 2024), we follow
Chandra et al. (2025) in assuming, based on anatomical
evidence (Donato et al., 2017), that structured, input-driven
coding in the MEC plays a primary role, as it matures first
and drives the development of hippocampal circuits. In
Appendix F, we test variants of models M2 and M4 incor-
porating CA3 recurrence and find that this modification
neither reproduces the experimentally observed conjunctive
hippocampal code in Nieh et al. (2021) nor alters the con-
clusions drawn in the main paper. Building on these results,
future studies could extend our framework by systematically

ablating models M1-M35 to test the computational roles of
CA3 recurrence and other mechanisms. Concurrently, we
are collecting neurophysiological data to directly test our
falsifiable predictions and assess whether CA3 recurrence
further refines hippocampal place cell tuning.

Taken together, our findings demonstrate that conjunctive
grid coding is fundamental to spatially embedded decision-
making, supporting the hypothesis (Buzsaki & Moser, 2013)
that spatial and cognitive processes are deeply intercon-
nected within the brain’s navigation and memory systems.
More broadly, neural algorithms that support path inte-
gration and spatial navigation may be repurposed for ab-
stract cognitive functions, suggesting that the hippocampal-
entorhinal network facilitates both physical navigation and
decision-making based on internal cognitive states.

In conclusion, we presented a comprehensive testbed for
exploring how the hippocampal-entorhinal-neocortical net-
work integrates physical and cognitive information to
build flexible neural representations that facilitate learning,
decision-making, and navigation. This framework provides
a foundation for future wet lab studies to test clear, falsifi-
able predictions while minimizing reliance on invasive and
resource-intensive animal experiments, offering a platform
to investigate the links between physical navigation and ab-
stract cognitive processes. Furthermore, it highlights the
mutual benefits of integrating machine learning and neuro-
science in advancing our understanding of neural phenom-
ena and guiding future research. This synergy underscores
the transformative potential of neuro-inspired artificial intel-
ligence.



A Multi-Region Brain Model to Elucidate the Role of Hippocampus in Spatially Embedded Decision-Making

Acknowledgments

Ila Fiete is supported by the Office of Naval Research,
the Howard Hughes Medical Institute (HHMI), and NIH
(NIMHMH129046). Carlos Brody and David Tank are sup-
ported by NIH (U19NS132720). We are grateful to Dr.
Sarthak Chandra, Dr. Manuel Schottdorf, and the BRAIN
CoGS community for their many insightful discussions. We
appreciate the constructive feedback received during our
presentations of preliminary results at the 2024 Conference
on Cognitive Computational Neuroscience and the 2025
Society for Neuroscience annual meeting.

Impact Statement

This work advances both machine learning and neuroscience
by presenting a biologically plausible multi-region brain
model as a computational framework for studying decision-
making in spatial contexts in mammals. The model is a
testbed for hypothesis generation, offering an efficient way
to explore neural mechanisms, such as the role of conjunc-
tive coding in hippocampal-entorhinal circuits, that are dif-
ficult to measure experimentally. By reducing the need for
invasive or resource-intensive experiments, our approach
has the potential to accelerate neuroscience discovery while
minimizing unnecessary animal studies. Additionally, the
structured neural architectures studied in this work may in-
form the design of more robust and interpretable machine
learning systems that leverage biological principles for real-
world decision-making tasks.

This work contributes to advancing the fundamental under-
standing of the brain and bridging the gap between neuro-
science and machine learning. We do not foresee significant
negative societal impacts from this research.

References

Amaral, D. G. and Witter, M. P. The three-dimensional
organization of the hippocampal formation: a review of
anatomical data. Neuroscience, 31(3):571-591, 1989.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T.,
Mirowski, P., Pritzel, A., Chadwick, M. J., Degris, T.,
Modayil, J., et al. Vector-based navigation using grid-like
representations in artificial agents. Nature, 557(7705):
429-433,2018.

Bashivan, P., Kar, K., and DiCarlo, J. J. Neural population
control via deep image synthesis. Science, 364(6439):
eaav9436, 2019.

Bondy, A. G., Charlton, J. A., Luo, T. Z., Kopec, C. D., Stag-
naro, W. M., Venditto, S. J. C., Lynch, L., Janarthanan,
S., Oline, S. N., Harris, T. D., et al. Coordinated cross-

10

brain activity during accumulation of sensory evidence
and decision commitment. bioRxiv, pp. 2024-08, 2024.

Bostock, E., Muller, R. U., and Kubie, J. L. Experience-
dependent modifications of hippocampal place cell firing.
Hippocampus, 1(2):193-205, 1991.

Brown, L. S., Cho, J. R., Bolkan, S. S., Nieh, E. H.,
Schottdorf, M., Tank, D. W., Brody, C. D., Witten, L. B.,
and Goldman, M. S. Neural circuit models for evi-
dence accumulation through choice-selective sequences.
bioRxiv, 2024. doi: 10.1101/2023.09.01.555612.

Burak, Y. and Fiete, I. R. Accurate path integration in
continuous attractor network models of grid cells. PLoS
computational biology, 5(2):¢1000291, 2009.

Buzséki, G. and Moser, E. I. Memory, navigation and theta
rhythm in the hippocampal-entorhinal system. Nature
neuroscience, 16(2):130-138, 2013.

Canto, C. B., Wouterlood, F. G., and Witter, M. P. What
does the anatomical organization of the entorhinal cortex
tell us? Neural plasticity, 2008(1):381243, 2008.

Chandra, S., Sharma, S., Chaudhuri, R., and Fiete, I.
Episodic and associative memory from spatial scaffolds
in the hippocampus. Nature, pp. 1-13, 2025.

DeAngelis, G. C. and Angelaki, D. E. Visual-vestibular
integration for self-motion perception. In Murray, M.
and Wallace, M. (eds.), The Neural Bases of Multisensory
Processes, chapter 31. CRC Press/Taylor & Francis, Boca
Raton, FL, 2012.

Donato, F., Jacobsen, R. 1., Moser, M.-B., and Moser,
E. I. Stellate cells drive maturation of the entorhinal-
hippocampal circuit. Science, 355(6330):eaai8178, 2017.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR, 2021.

Dostrovsky, J. and O’Keefe, J. The hippocampus as a spatial
map. preliminary evidence from unit activity in the freely
moving rat. Brain research, 34(1):171-175, 1971.

Eichenbaum, H. Prefrontal-hippocampal interactions in
episodic memory. Nature Reviews Neuroscience, 18(9):
547-558, 2017.

Elman, J. L. Finding structure in time. Cognitive science,
14(2):179-211, 1990.

Fenton, A. A. Coordinating with the “inner gps”. Hip-
pocampus, 25(6):763-769, 2015.



A Multi-Region Brain Model to Elucidate the Role of Hippocampus in Spatially Embedded Decision-Making

Fenton, A. A. Remapping revisited: how the hippocampus
represents different spaces. Nature Reviews Neuroscience,
pp- 1-21, 2024.

Fox, S. and Ranck Jr, J. Electrophysiological characteris-
tics of hippocampal complex-spike cells and theta cells.
Experimental Brain Research, 41(3):399-410, 1981.

Fox, S. E. and Ranck Jr, J. B. Localization and anatomical
identification of theta and complex spike cells in dorsal
hippocampal formation of rats. Experimental neurology,
49(1):299-313, 1975.

Gershman, S. J. and Daw, N. D. Reinforcement learning and
episodic memory in humans and animals: an integrative
framework. Annual review of psychology, 68(1):101-128,
2017.

Gershman, S. J. and Niv, Y. Novelty and inductive gen-
eralization in human reinforcement learning. Topics in
cognitive science, 7(3):391-415, 2015.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser,
E. I. Microstructure of a spatial map in the entorhinal
cortex. Nature, 436(7052):801-806, 2005.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Hwang, J., Neupane, S., Jazayeri, M., and Fiete, I. A grid
cell-place cell scaffold allows rapid learning and general-
ization at multiple levels on mental navigation tasks. In
CCN, 2023.

IBL, I. B. L., Benson, B., Benson, J., Birman, D., Bonac-
chi, N., Carandini, M., Catarino, J. A., Chapuis, G. A.,
Churchland, A. K., Dan, Y., et al. A brain-wide map of
neural activity during complex behaviour. Biorxiv, pp.
2023-07, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. L., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J.,
Bauza, M., Barbarits, B., Lee, A. K., Anastassiou, C. A.,
Andrei, A., Aydin, C., et al. Fully integrated silicon
probes for high-density recording of neural activity. Na-
ture, 551(7679):232-236, 2017.

Karniol-Tambour, O., Zoltowski, D. M., Diamanti, E. M.,
Pinto, L., Brody, C. D., Tank, D. W., and Pillow, J. W.
Modeling state-dependent communication between brain
regions with switching nonlinear dynamical systems. In
The Twelfth International Conference on Learning Repre-
sentations, 2024.

11

Kell, A.J., Yamins, D. L., Shook, E. N., Norman-Haignere,
S. V., and McDermott, J. H. A task-optimized neural net-
work replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy.
Neuron, 98(3):630-644, 2018.

Koukuntla, S., Julian, J. B., Kaminsky, J. C., Schottdorf,
M., Tank, D. W., Brody, C. D., and Charles, A. S. Unsu-
pervised discovery of the shared and private geometry in
multi-view data, 2024.

Krupic, J., Burgess, N., and O’Keefe, J. Neural represen-
tations of location composed of spatially periodic bands.
Science, 337(6096):853—-857, 2012.

Kubilius, J., Schrimpf, M., Kar, K., Rajalingham, R., Hong,
H., Majaj, N., Issa, E., Bashivan, P., Prescott-Roy, J.,
Schmidt, K., et al. Brain-like object recognition with
high-performing shallow recurrent anns. Advances in
neural information processing systems, 32, 2019.

LeCun, Y. A path towards autonomous machine intelligence
version 0.9. 2, 2022-06-27. Open Review, 62(1):1-62,
2022.

Lee, R. S., Sagiv, Y., Engelhard, B., Witten, I. B., and Daw,
N. D. A feature-specific prediction error model explains
dopaminergic heterogeneity. Nature neuroscience, pp.
1-13, 2024.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P,
Ramanan, D., Dollar, P., and Zitnick, C. L. Microsoft
coco: Common objects in context. In ECCV, 2014.

McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard,
K., Jung, M. W., Knierim, J. J., Kudrimoti, H., Qin, Y., Sk-
aggs, W., Suster, M., et al. Deciphering the hippocampal
polyglot: the hippocampus as a path integration system.
Journal of Experimental Biology, 199(1):173-185, 1996.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard,
A. J., Banino, A., Denil, M., Goroshin, R., Sifre, L.,
Kavukcuoglu, K., et al. Learning to navigate in complex
environments. In /CLR, 2017.

Mochizuki-Freeman, J., Maini, S. S., and Tiganj, Z. Char-
acterizing neural activity in cognitively inspired rl agents
during an evidence accumulation task. In IJCNN, 2023.

Moser, E. 1., Kropff, E., and Moser, M.-B. Place cells, grid
cells, and the brain’s spatial representation system. Annu.
Rev. Neurosci., 31(1):69-89, 2008.

Moser, M.-B. and Moser, E. I. Where am i? where am i
going? Scientific American, 314(1):26-33, 2016.

Nieh, E. H., Schottdorf, M., Freeman, N. W., Low, R. J.,
Lewallen, S., Koay, S. A., Pinto, L., Gauthier, J. L., Brody,



A Multi-Region Brain Model to Elucidate the Role of Hippocampus in Spatially Embedded Decision-Making

C. D., and Tank, D. W. Geometry of abstract learned
knowledge in the hippocampus. Nature, 595(7865):80—
84, 2021.

O’Keefe, J. The hippocampus as a cognitive map, 1978.

O’Keefe, J. and Burgess, N. Geometric determinants of the
place fields of hippocampal neurons. Nature, 381(6581):
425-428, 1996.

Olafsdéttir, H. F., Barry, C., Saleem, A. B., Hassabis, D., and
Spiers, H. J. Hippocampal place cells construct reward
related sequences through unexplored space. Elife, 4:
e06063, 2015.

Perich, M. G., Arlt, C., Soares, S., Young, M. E., Mosher,
C. P, Minxha, J., Carter, E., Rutishauser, U., Rudebeck,
P. H., Harvey, C. D., et al. Inferring brain-wide inter-
actions using data-constrained recurrent neural network
models. BioRxiv, pp. 2020-12, 2020.

Pinto, L., Rajan, K., DePasquale, B., Thiberge, S. Y., Tank,
D. W., and Brody, C. D. Task-dependent changes in the
large-scale dynamics and necessity of cortical regions.
Neuron, 104(4):810-824, 2019.

Pinto, L., Tank, D. W., and Brody, C. D. Multiple timescales
of sensory-evidence accumulation across the dorsal cor-
tex. Elife, 11:€70263, 2022.

Pospisil, D. A., Pasupathy, A., and Bair, W. ’artiphysiol-
ogy reveals v4-like shape tuning in a deep network trained
for image classification. Elife, 7:e38242, 2018.

Preston, A. R. and Eichenbaum, H. Interplay of hippocam-
pus and prefrontal cortex in memory. Current biology, 23
(17):R764-R773, 2013.

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y.,
Bogacz, R., Christensen, A., Clopath, C., Costa, R. P,,
de Berker, A., Ganguli, S., et al. A deep learning frame-
work for neuroscience. Nature neuroscience, 22(11):
1761-1770, 2019.

Rosenblatt, F. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chological review, 65(6):386, 1958.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. IJCV, 115(3):211-252,
2015.

Sacramento, J., Ponte Costa, R., Bengio, Y., and Senn, W.
Dendritic cortical microcircuits approximate the back-
propagation algorithm. Advances in neural information
processing systems, 31, 2018.

12

Sammons, R. P., Vezir, M., Moreno-Velasquez, L., Cano, G.,
Orlando, M., Sievers, M., Grasso, E., Metodieva, V. D.,
Kempter, R., Schmidt, H., et al. Structure and function of
the hippocampal ca3 module. Proceedings of the National
Academy of Sciences, 121(6):€2312281120, 2024.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models.
NeurIPS, 2022.

Scoville, W. B. and Milner, B. Loss of recent memory
after bilateral hippocampal lesions. Journal of neurology,
neurosurgery, and psychiatry, 20(1):11, 1957.

Skaggs, W., McNaughton, B., and Gothard, K. An
information-theoretic approach to deciphering the hip-
pocampal code. In Hanson, S., Cowan, J., and Giles,
C. (eds.), Advances in Neural Information Processing
Systems, volume 5. Morgan-Kaufmann, 1992.

Squire, L. R. Memory and the hippocampus: a synthesis
from findings with rats, monkeys, and humans. Psycho-
logical review, 99(2):195, 1992.

Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pa-
chitariu, M., Bauza, M., Beau, M., Bhagat, J., Bohm,
C., Broux, M., et al. Neuropixels 2.0: A miniaturized
high-density probe for stable, long-term brain recordings.
Science, 372(6539):eabf4588, 2021.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Tavares, R. M., Mendelsohn, A., Grossman, Y., Williams,
C. H., Shapiro, M., Trope, Y., and Schiller, D. A map
for social navigation in the human brain. Neuron, 87(1):
231-243, 2015.

Tolman, E. C. Cognitive maps in rats and men. Psychologi-
cal review, 55(4):189, 1948.

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala,
D., Soyer, H., Leibo, J. Z., Hassabis, D., and Botvinick,
M. Prefrontal cortex as a meta-reinforcement learning
system. Nature neuroscience, 21(6):860-868, 2018.

Wang, R., Hwang, J., Boopathy, A., and Fiete, I. R. Rapid
learning without catastrophic forgetting in the morris
water maze. In ICML, 2024.

Whittington, J. C. and Bogacz, R. An approximation of the
error backpropagation algorithm in a predictive coding
network with local hebbian synaptic plasticity. Neural
computation, 29(5):1229-1262, 2017.



A Multi-Region Brain Model to Elucidate the Role of Hippocampus in Spatially Embedded Decision-Making

Whittington, J. C., Muller, T. H., Mark, S., Chen, G.,
Barry, C., Burgess, N., and Behrens, T. E. The tolman-
eichenbaum machine: unifying space and relational mem-
ory through generalization in the hippocampal formation.
Cell, 183(5):1249-1263, 2020.

Whittington, J. C., McCaffary, D., Bakermans, J. J., and
Behrens, T. E. How to build a cognitive map. Nature
neuroscience, 25(10):1257-1272, 2022.

Witter, M. P. and Amaral, D. G. Entorhinal cortex of the
monkey: V. projections to the dentate gyrus, hippocam-

pus, and subicular complex. Journal of Comparative
Neurology, 307(3):437-459, 1991.

Witter, M. P. and Groenewegen, H. J. Laminar origin and
septotemporal distribution of entorhinal and perirhinal
projections to the hippocampus in the cat. Journal of
Comparative Neurology, 224(3):371-385, 1984.

Witter, M. P., Doan, T. P., Jacobsen, B., Nilssen, E. S., and
Ohara, S. Architecture of the entorhinal cortex a review
of entorhinal anatomy in rodents with some comparative
notes. Frontiers in systems neuroscience, 11:46, 2017.

Yamins, D. L. and DiCarlo, J. J. Using goal-driven deep
learning models to understand sensory cortex. Nature
neuroscience, 19(3):356-365, 2016.

Zhuang, C., Yan, S., Nayebi, A., Schrimpf, M., Frank, M. C.,
DiCarlo, J. J., and Yamins, D. L. Unsupervised neural net-
work models of the ventral visual stream. Proceedings of
the National Academy of Sciences, 118(3):e2014196118,
2021.

13



A Multi-Region Brain Model to Elucidate the Role of Hippocampus in Spatially Embedded Decision-Making

Appendix
A. Experimental Details

A.1. Model

For models M1-MS5, we use three grid modules with periodicities of 7,8, and 11, esulting in a grid cell layer dimension of
Ny =234 (= 7% + 8% + 11?). We simulate 800 hippocampal cells. Both the MLP and RNN models have a learning rate of
0.0005 and a hidden size of 32. The RNN consists of leaky units with oz = 0.025.

The grid coding scheme is hand-designed to test the counterfactual of joint versus disjoint coding, as illustrated in
Fig. 1C. In general, velocity inputs update the phases of each grid module via path integration, following the Vector-HaSH
implementation from Chandra et al. (2025). Evidence velocity for the grid cell modules is computed as the difference
between the number of towers on the right and the number on the left at the current position. This is predicted through an
MLP based on the current field of view (sensory inputs). Positional velocity, in contrast, is represented as either O (stationary)
or +1 (forward movement), without an MLP, as backward movement is not task-relevant (Nieh et al. (2021), behavioral
training). While an MLP could be used for positional velocity, we opted for a simplified approach since this modification
does not affect the results.

For the two standalone RNN baselines (M0 and M0+), we scale up the hidden size to 32 + N, + N, + N, = 1076 to
match the total number of neurons used in M1-MS5. The input to these RNN baselines consists of sensory information. The
MO+ variant additionally incorporates positional velocity (whether the agent has moved) and evidence velocity (predicted
by an MLP with the same setup as in M1-M5). We use a learning rate of 0.0001 with gradient clipping to a maximum
norm of 1. This adjustment was necessary because the large standalone RNNs failed to train with the 0.0005 learning
rate used in M1-MS5 due to learning instabilities (e.g., exploding or vanishing gradients). To address this, we conducted a
hyperparameter search and selected the settings that produced the best performance.

A.2. Environment

The accumulating tower task consists of an agent navigating a T-maze with towers positioned on both sides (Fig. 1C). The
agent must decide which direction to turn at the end of the corridor, aiming to turn toward the side with more towers to
receive a reward. The maze is divided into distinct regions: a start region (9% of the total length) with no towers, a cue
region (61%) containing towers, and a delay and decision region (the remaining portion) without towers. This structure
aligns approximately with the division used in Nieh et al. (2021). Each episode presents a unique configuration of towers,
requiring the agent to traverse the corridor step by step before reaching the T-junction and making a decision. The left and
right sides of the maze are encoded as vectors, where a value of 1 represents a tower, 0 indicates an empty position, and —1
denotes areas outside the maze. The agent has a limited field of view that allows it to perceive a certain number of positions
ahead.

In each episode, the rewarded side (i.e., the side with more towers) is chosen uniformly at random, with the number of
towers on that side, Zreward, is sampled from Uniform(1, K'), where K is the maximum allowable number of towers. The
non-rewarded side contains strictly fewer towers, with its count Zyon rewara drawn from Uniform (0, Zewara)- At each step,
the agent can take one of three possible actions: 1eft (0), right (1), or forward (2). Before reaching the T-junction,
the agent receives a small reward of 0.01 for moving forward and a penalty of —0.001 for any other action. Once at the
end of the maze, it receives a reward of 10 for making the correct turn, no reward for choosing the wrong direction, and
a penalty of —1 for attempting to move forward and colliding with the wall. The episode ends when the agent turns or
reaches the maximum number of decision attempts, the latter incurring an additional penalty of —5. For this study, we set
the maze sequence length to 20, dividing the start, cue, delay, and decision regions into segments of length {1,12,6, 1},
respectively. The agent has a field of view spanning five positions. Training is conducted using the REINFORCE algorithm
(policy gradient) (Sutton et al., 1999) until convergence.

A.3. Single step in the task

Each step in the accumulating tower task follows a structured sequence (Fig. 1C). First, the agent perceives sensory
information from its field of view. This information is processed by an MLP, which extracts an estimate of evidence velocity.
The evidence velocity, along with position velocity, is then used to update the grid cell state through path integration. The
updated grid representation is projected onto the hippocampal layer, alongside the non-grid sensory input, forming the
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agent’s internal state representation. The hippocampal code is then passed to the cortical RNN policy, which selects an
action—moving left, right, or forward. Once an action is executed, the agent’s position is updated accordingly. This new
position brings in fresh sensory input, which is implicitly processed by the grid cell subnetwork to update the grid state. The
updated grid state, along with the newly perceived sensory information, is then used to refine the hippocampal representation.
This iterative process continues, with the agent repeatedly updating its internal representations and selecting actions, until it
reaches the T-junction and makes a final turning decision. The agent’s behavior is governed by the reward scheme outlined
in Appendix A.2.

A.4. Further details on the biological grounding of Vector-HaSH

While the relevant biological groundings of Vector-HaSH are inherited from and addressed in Chandra et al. (2025), we
include a summary below on how the model enforces sparsity and spatial selectivity in place cells for completeness.

Sparsity As described in the main text, the projection matrix Wy, from grid cells to hippocampal (HPC) units is drawn
from a standard Gaussian distribution, consistent with classical random projection models (see Methods, Chandra et al.
(2025)). Due to the symmetry of the distribution, each entry has zero mean, and hence half the activations are expected to be
subthreshold. Moreover, each grid module encodes its position using a one-hot representation, enforcing input sparsity via
inductive bias. Nonlinear gating through ReLU is applied to i (Eqns. 2, 3), further ensuring that only a sparse subset of
HPC units are active for a given input. Importantly, the number of unique grid states (H i /\12) is much smaller than the total
number of possible HPC activation patterns (2¥#). As a result, only a very small subset of HPC units are active for any
given grid code, which enforces a highly sparse representation in the hippocampus.

Selectivity To ensure spatial selectivity, each sensory state is associated with a specific grid state. This is implemented by
updating the weights W, and W, during training, such that the sensory input strongly modulates only a small subset
of HPC units. Consequently, each sensory state drives a selective hippocampal code via its associated grid representation,
thereby grounding place field formation in both sensory and grid input pathways.

A.5. Continuous-attractor (CAN) update rule in Vector-HaSH

For completeness, here we make explicit the equations that govern the CAN () update used in Eqn. 1 (Burak & Fiete,
2009; Chandra et al., 2025) of the main text. Let g(t) € {0,1}"s denote the concatenated grid-code vector at time t
and v(t) € {—1,+1} the 1-D velocity signal. The CAN step is a velocity-dependent cyclic shift of each grid module,
implemented by a block-diagonal shift matrix M (v(t)):

gt +1) = cang(t), v(t)] = M(v(t)) g(t). ©6)

Example with two modules (\; = 3, A\; = 4) For illustration, consider two one-dimensional grid modules of periods
A1 =3and Ay =4 (N, = 7). Arightward velocity v = +1 is realized by the block-diagonal matrix U:

01 0 0
01 0

M(+1)=U = S3 0’ where 83:001784:0010

0[S, L0 o 00 0 1

1000

A leftward step (v = —1) is obtained with M(—1) = UT.
Formal definition Let \; be the periodicity of module k£ and X}, = Zle A; (with Xy = 0) the cumulative offset. For
indices ¢, j belonging to the same module (X1 < 17,5 < Xj) we set
1, if (j — Xk_l) mod A\, = (z + v) mod Ag,
Mi;(v) = @)
0, otherwise.

All cross-module blocks are zero, making M (v) block-diagonal.

Extension to 2-D For two-dimensional Vector-HaSH, we apply the same 1-D rule independently to the z- and
y-components and construct the full 2-D shift via a Kronecker product of the corresponding 1-D shift matrices.
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B. Mutual information

B.1. Mutual information analysis

We follow the mutual information analysis in Nieh et al. (2021). Here we reiterate this procedure for completeness. For each
neuron, we evaluate the mutual information metric defined in Skaggs et al. (1992),

A
1= [ Aayog, 2 pios
in which I is the mutual information rate of the neuron in bits per section, x is the spatial location (or accumulated evidence)

of the agent, A(z) is the mean firing rate of the neuron at location (accumulated evidence) x, p(x) is the probability density
of the agent occupying location (accumulated evidence)  and A = fx A(z)p(x)dz is the overall mean firing activity of the

neuron.

B.2. Scatterplots of mutual information

A1 M1 A2 M2 A3 wm3 A4 M4 A5 M5

3 ° ExY 2 O ExY 4 g ExY 5
A3 A4 A5
3 4 2 4 5
/ L
> > > >
X X X & x
e e ' <
0 ExY 3 0 ExY “ 0 ExY 2 0 ExY 4 0 ExY 5

Figure 7. Scatterplots of the hippocampal mutual information in £ X Ry space versus E/ X Y space (top row), and scatterplots of mutual
information in Rg X Y space versus £ X Y space (bottom row). We show data for all model variants M1 to M5, in the order of panel A
to E respectively. We observe evidence and position interact to provide meaningful information in M3, M4, and M5 (when grid cells
co-tune position and evidence), while M1 and M2 rely on information of position (when grid cells tune evidence only, and there is either
no or some sensory information projected into the hippocampus). Here, Ry is a randomized position, generated by randomly sampling
from the Y distribution that corresponds to the non-randomized E value of the cell. A similar procedure is performed for generating the
RE x Y variables. More details of the procedure are described in the Mutual Information Analysis section of Nieh et al. (2021).
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C. Hippocampal firing fields within £ x Y space in model variants
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Figure 8. Example hippocampal firing fields in E X Y space in M1 (A), M2 (B), M3 (C), M4 (D), and M5 (E). We observe that the firing
fields of M1 and M2 (A, B) do not depend on evidence with stripe patterns. M2 firing fields occasionally have some amount of gradient, a
potential artifact of sensory injection, similar to the firing fields of M4 and M5 (D, E). M3 (C) firing fields exhibit conjoint tuning of
position and evidence and have no apparent gradient artifacts.
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D. Hippocampal evidence and place fields in model variants

A1 I i A2 I o A3 ) . B L-choice trials R-choice trials
0 Normalized average activity 1 0 Normalized average activity 1 0 Normalized average activity 1

0 Cue period Delay Cue period Delay

Left

Neuron
Neuron
Neuron

Neuron preference
5 Right

None

Evidence Evidence Evidence 0 Positio}? Positiolg

Figure 9. Hippocampal firing fields in evidence (A) and in space (B), for M1 (A1), M2 (A2), and M3 (A3, B). We see M1 and M2 do not
have firing fields in evidence (A1, A2), while M3 does (A3). Furthermore, M3 contains choice-specific place fields (B) similar to M4
(Fig 5, A3), implying that joint tuning of position and evidence in grid cells is key to forming a conjoint hippocampal map.
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E. HPC and RNN PC representation in model variants
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Figure 10. Low-dimensional representation of hippocampal and RNN activities in PC space, shown for M1 (row A), M2 (row B), M3
(row C). We show the representations colored according to selective task variables, specifically position, local evidence velocity, and
action, in which M4 shows clear separation (in correspondence to Fig 6). Other variables visualized in HPC and RNN activity PC space

include accumulated evidence, position changes, left-/right-choice trials, total evidence of the trial, and ground truth action; we observe no
visual separation.
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Figure 11. Cumulative variance explained in percentage of hippocampal (orange) and RNN (blue) activities, by the number of principle
components (PCs), and low-dimensional representations of hippocampal activities in PC space, colored by accumulated evidence, shown
for M1 (column A), M2 (column B), M3 (column C), M4 (column D), and M5 (column E). The first two PCs in M5 explained the
most amount of variance in hippocampal representations (68%) in comparison to other model variants. We do not observe any visual
separability of accumulated evidence in the PC space of the first three PCs, as shown in the second row.
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F. Effect of CA3 Recurrence in M2 & M4

In this section, we demonstrate in M2 and M4, as a proof of concept, that the inclusion of CA3 recurrent connectivity in the
HPC layer does not affect the general conclusions presented in the main paper. Specifically, the inclusion of CA3 recurrence
in M2 or M4 does not induce the experimentally observed place cell phenomena (Nieh et al., 2021), producing similar
results as if recurrence was absent (see Figs 4, 5,7, 8, and 9).

To model CA3 recurrence, we incorporate additional recurrent connections within the HPC layer, Wy, updated through
hebbian-like associative learning using hmix (t) and hmix (t + 1), analogous to the learning update for Wy, and W, (see
Eqns. 4 and 5). The activity of mixed hippocampal cells is then described by:

Pnix (t 4+ 1) = ReLU[W - 5(£) + Wig - Gt + 1) + Wiy, - hanin (£)].- ®)

The rest of the setup remains consistent with Appendix A.1. The above changes would be the same for models with Djonmix (%)
and Nponmix (¢ + 1).

As shown in Fig. 12, the inclusion of the recurrent integration of positional information from MEC and sensory information
from non-grid EC does not result in the emergence of conjunctive place cells in M2. Similarly, Fig. 13 shows that the lack
of conjunctive place cells in M4 persists when the grid cell modules encode position and evidence disjointly.

These findings confirm that the recurrent integration in HPC alone does not induce conjunctive coding, underscoring the
critical role of joint integration of position and evidence in grid cells for producing co-tuned place cells.
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Figure 12. Analysis of hippocampal code in M2 with CA3 recurrence. (A) Example hippocampal firing fields in £ x Y space. (B)
Scatterplots of the hippocampal mutual information in M2 with CA3 recurrence when only the position is randomized (B1), and when only
the evidence is randomized. The model shows higher mutual information in position only. See the caption of Fig B.2 for implementation
details. (C) Hippocampal firing fields in evidence in M2 with CA3 recurrence.
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Figure 13. Analysis of hippocampal code in M4 with CA3 recurrence.(A) Example hippocampal firing fields in £ x Y space. (B)
Scatterplots of the hippocampal mutual information in M4 with CA3 recurrence when only the position is randomized (B1), and when
only the evidence is randomized. The model shows higher mutual information in both position and evidence, consistent with the case
when the recurrence is not considered (Fig B.2, column D). See the caption of Fig B.2 for implementation details. (C) Hippocampal firing
fields in evidence in M4 with CA3 recurrence. We still observe evidence fields. (D) Hippocampal firing fields in space. We do not observe
choice-specific place fields shown in Nieh et al. (2021) after considering the CA3 recurrence in M4.

21



A Multi-Region Brain Model to Elucidate the Role of Hippocampus in Spatially Embedded Decision-Making

G. Learning Performance Under Hyperparameter Tuning

To evaluate the impact of hyperparameter choices on model learning, we conducted a sweep over learning rates (LR) for
all models, including [5e—5, le—4, be—4, le—3], except when a specific learning rate was already selected in the main
text, in which case we retained it without sweeping to ensure consistency with the main text. The performance curves with
hyperparameter tuning results are visualized in Fig. 14.

Table 3 reports the mean final success rate and average exploration time (measured at the last 100 episodes across
three independent trials), formatted as: success[%] £ standard deviation / steps per episode =+
standard deviation. The best-performing metrics for each model are highlighted in bold.

Table 3. Mean success rate + standard deviation and mean exploration time = standard deviation across 3 trials over the last 100 out of
17400 episodes. Only the best success rate and lowest exploration time per model are in bold. The maximum number of steps allowed per
episode is 200 steps. Our final model, M5, is fairly robust to learning rates as shown.

LR MO Mo+ M1 M2 M3 M4 MS
o5 Success (%) 59.33+11.73 72.00+4.97 49.3342.87 50.33+4.19 95.67+2.05 93.67+2.05 95.00+1.63
Steps/ep. 31.23+246  27.944320  24.77+066  21.33+080  28.91+068  26.09+167  25.71+0.70
le—4 Success (%)  68.67+15.46 81.67+4.03 47.33+3.40 49.00+3.56 97.00+2.45 99.33+0.94 99.00+0.82
Steps/ep. 25224176 22.95+118 23.97+081 23.01+066  29.83+145  25.52+087  27.65+1.45
Se_d Success (%) 8.00+11.31 0.00+0.00 51.33+4.64 49.00+2.45 96.33+125  76.67+16.54 97.00+4.24
Steps/ep. 193.48+922  200.00+0.00  23.31+038  29.144835  23.34+0.77  28.02+6.18 19.70+0.22
le—3 Success (%) 0.00+000 12.33+17.44 51.67+4.19 51.67+419 67.33+1746  83.33+19.48 90.00+8.29
Steps/ep. 200.00+0.00 193.36+939  25.81+135  24.86+213 33714349  28.79+402  30.74+285

Across models, we observe that the chosen hyperparameters in the main text (1e—4 for MO and MO; 5e—4 for M1-M5)
generally yielded near-optimal performance. For M4, an LR of 1e—4 mitigated instability noted in the main paper’s Fig. 3.
This updated choice is applied to generate Fig. 14.

Conclusion Although learning rate tuning helped stabilize M4, none of these modifications altered the qualitative
conclusions or key claims presented in the main paper. Section 5.1’s observations regarding learning efficiency and rapid
exploration in M5 remain unchanged.
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Figure 14. Updated Fig. 3 with optimized learning rate for each model, with a change to using a learning rate of 1le—4 for M4. The rest
remains consistent with Fig. 3, and this does not alter the claims made in the paper. The moving average setup is the same as Fig. 3,
including the window sizes used (5, 000 for A and 10, 000 for B) and the exclusion of the first 100 episodes.
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H. Results for Controlling Trainable Parameter Count in RNN Baselines

Here we provide additional ablations of the RNN baselines (MO and M0+) to address whether the later-onset performance
of MO and MO+ might simply reflect a larger number of weights to optimize. We conclude that the performance of RNN
baselines with the same number of parameters as M5, with or without additional velocity input, does not alter the conclusions
drawn in the main paper.

Parameter formula For a vanilla RNN with input dimension I, hidden dimension H, and output dimension O, the total
number of back-prop-trainable parameters, including biases, is

#params = (IH+HH+H) + (HO +0) = H> + HI+O0+1) + O. )
N—————

input & recurrent weights + hidden bias output weights + output bias

Matching MO or M0+ to M5 Model M5 (with an RNN of input size I = 800, hidden size Hj;5 = 32, output size O = 3)
contains

#Fparams ;5 ~ 26 755.
Solving Eq. (9) for H with Iyinimo = 10 and Iinimo+ = 12, as well as the same O = 3 yields

Hini-mo = 158, Hini-mor = 157,

so that the mini versions of MO and M0+ have the same order of trainable parameters as MS5.

Control experiment We trained these mini-models for three independent trials (learning rate 10~°). Figure 15 shows
their learning curves alongside the original MO/MO0+ and M5. The qualitative conclusion of the main paper is unchanged:
even when parameter counts are matched, MO and MO+ still lag behind M5 in both learning speed and final performance.
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Figure 15. Parameter count alone does not explain performance differences. Learning curves for parameter-matched mini-MO and
mini-MO+ (red and orange), compared with the original MO (blue), MO+ (black), and M5 (brown). (A) Cumulative success rate during
training. (B) Steps spent per episode (exploration time). The plotting setup and color conventions match Fig. 3.

Additional learning-rate sweeps We further trained the mini-models under alternative learning rates {le—3, 5e—4, 5e—5}.

The supplementary results (see Fig. 16) likewise show no qualitative change, reinforcing that parameter count alone does
not explain the performance gap.
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Figure 16. Mini-models consistently underperform across learning rates. Additional learning curves for parameter-matched mini-M0O
and mini-MO0+ trained with varying learning rates. (A) Cumulative success rate and (B) exploration time for mini-MO and mini-M0+ (red
and orange), which have approximately the same number of trainable parameters as M5 (brown). Original MO and M0+ (blue and black)
are shown for comparison. The plotting format and color scheme follow Fig. 3. Each row corresponds to a different learning rate used for
the mini-models, indicated above the legend: 1e—3 (top), 5e—4 (middle), and 5e—5 (bottom).
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I. Effect of smoothing on HPC tuning visualization

Here we provide additional clarification and visual evidence regarding the appearance of conjunctive tuning in the hippocam-
pus neurons, particularly in models M4 and M5.

It was noted that the tuning curves shown in Fig. 4 appear weaker and more diffuse than those observed in Nieh et al. (2021).
However, here we show that this difference can largely be attributed to differences in preprocessing and visualization—
particularly the use of smoothing.

Smoothing improves the appearance of conjunctive tuning Smoothing neural data is a fairly standard procedure
empirically, which is done in both Nieh et al. (2021) and Chandra et al. (2025). When we apply smoothing procedures, the
tuning curves become substantially more localized and stereotyped. Specifically, we follow the 2-stage filtering process
described in Nieh et al. (2021):

1. Apply a 1D Gaussian filter with standard deviation o;.

2. Threshold the result by zeroing all values below a fixed multiple of the standard deviation across time.

3. Apply a second 1D Gaussian filter with 5.

We show examples of tuning curves after smoothing in selected HPC units from models M4 and M5 in Fig. 17. As
anticipated, smoothing reveals structure that is otherwise obscured, making the tuning appear more consistent with findings
reported in experimental work, such as Nieh et al. (2021).
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Figure 17. Smoothing enhances visualization of conjunctive tuning. Tuning curves from selected hippocampal neurons in M5 (top
row) and M4 (bottom row) after applying a two-stage smoothing and thresholding procedure. Each row shows two example neurons (A,
B in M5; C, D in M4), with each neuron visualized under o1 = 1, then two different levels of secondary smoothing: o2 = 1 (left two
columns) and o2 = 2 (right two columns). Increased o2 leads to more diffuse but still conjunctive tuning. Smoothing reveals structure
that is less apparent in raw activity and produces hippocampal fields more consistent with experimental observations.
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Relation to overall findings While smoothing improves the interpretability of individual neuron tuning curves, our broader
conclusions regarding conjunctive representations are supported by quantitative measures such as mutual information
(Appendix. B.2) and the presence of both place fields and evidence fields in HPC (Figs 5, 9). Thus, the visual appearance
of raw tuning curves does not reflect a fundamental limitation of the model, but rather a visualization artifact that can be
addressed through appropriate preprocessing.
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