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Abstract

Graph Neural Networks (GNNs) have achieved significant success across various domains
by leveraging graph structures in data. Existing spectral GNNs, which use low-degree
polynomial filters to capture graph spectral properties, may not fully identify the graph’s
spectral characteristics because of the polynomial’s small degree. However, increasing the
polynomial degree is computationally expensive and beyond certain thresholds leads to
performance plateaus or degradation. In this paper, we introduce the Piecewise Constant
Spectral Graph Neural Network (PieCoN) to address these challenges. PieCoN combines
constant spectral filters with polynomial filters to provide a more flexible way to leverage
the graph structure. By adaptively partitioning the spectrum into intervals, our approach
increases the range of spectral properties that can be effectively learned. Experiments on
seven benchmark datasets, including both homophilic and heterophilic graphs, demonstrate
that PieCoN is particularly effective on heterophilic datasets, highlighting its potential for a
wide range of applications.

1 Introduction

Graph Neural Networks (GNNs) (Wu et al., 2021; Zhou et al., 2020) have demonstrated remarkable performance
across various application domains. They have been successfully applied in areas such as social network
analysis (Panagopoulos et al., 2023), recommendation systems (Wu et al., 2019; Ying et al., 2018), drug
discovery (Jiang et al., 2021; Bongini et al., 2021), and materials modeling (Coley et al., 2019; Duval et al.,
2023), where data can naturally be represented as graphs. GNNs can be broadly classified into two types:
spatial and spectral GNNs. Spatial GNNs (Kipf & Welling, 2017; Velickovic et al., 2018; Chien et al., 2021)
use a message passing approach to learn node representations by collecting information from neighboring
nodes. This approach allows spatial GNNs to capture local structural information and adapt to varying
neighborhood sizes. On the other hand, spectral GNNs (Wang & Zhang, 2022; Defferrard et al., 2016; He
et al., 2021; Castro-Correa et al., 2024) use the graph’s spectral characteristics, such as the graph Laplacian’s
eigenvalues and eigenvectors, to transform node features. By leveraging the spectral domain, these models
can capture global structural patterns and apply graph convolution operations in the frequency domain.

Many existing spectral GNNs use low-degree polynomial filters, which approximate the filtering functions by
applying polynomials to the graph’s Laplacian matrix or other graph-shift operators (Wang & Zhang, 2022;
Defferrard et al., 2016; He et al., 2021). One disadvantage of these low-degree polynomial filters is that they
are continuous and, because of the low degree, may not give enough weight to specific eigenvalues, as the
change between closely spaced eigenvalues cannot vary significantly. This can be problematic, particularly in
real-world graphs where certain eigenvalues like zero1 have large multiplicities (Lu et al., 2024; Lim et al.,
2023).

In this paper, we propose the Piecewise Constant Spectral Graph Neural Network (PieCoN) to overcome
this limitation. Our approach combines constant spectral filters with polynomial filters to better capture
the spectral properties of the graph. The constant filters are defined by setting the values in the diagonal
eigenvalue matrix to ones within specific intervals and zeros elsewhere, effectively isolating different frequency
bands.

1Note that, for the Laplacian matrix, the multiplicity of eigenvalue zero corresponds to the number of connected components.
This correspondence does not hold for the normalized adjacency matrix we employ here.
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Figure 1: Comparison of JacobiConv and
PieCoN trained filters on the Chameleon dataset.

By partitioning the spectrum into intervals, PieCoN ex-
pands the range of spectral characteristics that can be
learned, improving the model’s performance.

Figure 1 compares the response of a JacobiConv fil-
ter (Wang & Zhang, 2022) versus the response of a
PieCoN filter across the spectrum. The figure shows
how polynomial filters produce a smooth response, while
piecewise constant filters can sharply focus on selected
intervals, capturing crucial spectral properties that poly-
nomial filters miss. For example, PieCoN can create a
sharp drop at eigenvalue 0, which is impossible to achieve
with low-degree polynomial filters like JacobiConv. This
sharp discontinuity is crucial because eigenvalue 0 often
has high multiplicity in real-world graphs (as detailed
in Table 1) and contains important structural informa-
tion. Our theoretical analysis provides important insights about spectral GNNs by establishing error bounds
for polynomial spectral filtering and proving that our model is invariant to eigenvector sign flips and ba-
sis changes. We validate our approach on standard benchmark datasets, showing improved performance,
particularly when handling graphs with multiple zero eigenvalues.

Our main contributions are as follows:

• We introduce a novel spectral GNN model (PieCoN) that uses piecewise constant filters combined
with polynomial filters to enhance learning from the spectral properties of graphs.

• We propose a new method to isolate frequency bands in the spectral domain by partitioning the
eigenvalue spectrum into intervals, allowing the model to focus on crucial spectral properties.

• We demonstrate, through experiments, that PieCoN outperforms or shows competitive performance
against spatial and spectral GNNs on real-world datasets.

2 Related Work

GNNs have evolved significantly since the early work by Bruna et al. (2014), who introduced the first modern
spectral-based graph convolution network using the graph Fourier transform. Later, Kipf & Welling (2017)
simplified this approach with the Graph Convolutional Network (GCN) model, which applies a first-order
approximation of spectral filters to make GNNs more scalable. Other important advancements include Graph
Attention Networks (GAT) (Velickovic et al., 2018), which use attention mechanisms to weigh neighboring
nodes differently, and GraphSAGE (Hamilton et al., 2017), which focuses on inductive learning by generating
node embeddings through sampling and aggregation techniques.

Message passing neural networks (MPNNs) (Gilmer et al., 2017) are a class of GNNs where nodes iteratively
exchange and aggregate information with their neighbors. Besides GCN and GAT, several other message-
passing approaches have emerged to address specific challenges. For instance, the Graph Isomorphism
Networks (GIN) model (Xu et al., 2019) is designed to be as powerful as the 1-WL test for distinguishing
non-isomorphic graphs, thus improving expressiveness.

Spectral GNNs leverage the eigenvalues and eigenvectors of the graph Laplacian to perform graph convolution
in the spectral domain. ChebNet (Defferrard et al., 2016) introduced the use of Chebyshev polynomials for
spectral filtering, improving the scalability of spectral GNNs. JacobiConv (Wang & Zhang, 2022) further
enhances this by employing orthogonal Jacobi polynomials to flexibly learn graph filters. Recent work by
Maskey et al. (2023) introduces a novel fractional graph Laplacian approach defined in the singular value
domain to address over-smoothing, providing theoretical guarantees for both directed and undirected graphs.
For heterophilic graphs with label noise, R2LP (Cheng et al., 2024) demonstrates that increasing graph
homophily can help mitigate the impact of noisy labels.
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While previous spectral GNNs have leveraged polynomial filters to approximate spectral properties of graphs,
they are limited by their lack of flexibility in handling critical eigenvalues because of the low degree of
the polynomial filters. DSF (Guo et al., 2023) addresses this by employing a shared network on positional
encoding to learn unique polynomial coefficients per node, highlighting the advantages of node-specific filters
over node-unified ones. NFGNN (Zheng et al., 2023) proposes a node-oriented spectral filtering approach that
learns specific filters for each node, better adapting to local homophily patterns. PP-GNN (Lingam et al.,
2022) also explores piecewise spectral filtering, but our approach differs in several key aspects. While PP-GNN
uses a fixed two-part partitioning with low-degree polynomials and continuity constraints, PieCoN implements
adaptive K-part partitioning with constant filters that allow for discontinuities between intervals. This design
enables PieCoN to better capture critical eigenvalues with sharper responses. Additionally, our approach
decomposes filters into positive and negative parts (Eq. (10)) and maintains invariance to eigenvector sign
flips and basis changes (Proposition 2).

3 Background

We consider an undirected graph G = (V, E , X) with n nodes. Here, V = {v1, v2, . . . , vn} is the set of nodes,
E ⊆ V × V (|E| = m) represents the set of edges, and X ∈ Rn×d is the node feature matrix. The adjacency
matrix A ∈ {0, 1}n×n of the graph is defined as Aij = 1 if there is an edge between nodes vi and vj , and
Aij = 0 otherwise. The degree matrix D = diag(d1, . . . , dn) is a diagonal matrix with the i-th diagonal
entry as di =

∑
j Aij , representing the degree of node i. The normalized adjacency matrix Â is defined as

Â = D− 1
2 AD− 1

2 . The normalized adjacency matrix is symmetric and can be decomposed as Â = UΛU⊤,
where Λ is a diagonal matrix containing the eigenvalues λi of Â, and U is an orthogonal matrix whose
columns are the corresponding eigenvectors ui. Let s be the number of distinct eigenvalues of Â, denoted by
λ′

1, λ′
2, . . . , λ′

s. For an eigenvalue λ, we define σ(λ) as the algebraic multiplicity of λ, which is the number of
times λ appears in the eigenvalues. A graph signal is a function that assigns a scalar value to each node in
the graph. Formally, a graph signal can be represented as a vector x ∈ Rn, where each entry xi corresponds
to the signal value at node vi.

3.1 Graph Neural Networks

Graph Neural Networks (GNNs) are deep learning architectures designed to learn from graph-structured data.
They can be broadly categorized into two types: spatial GNNs and spectral GNNs. Both approaches aim to
learn node representations by leveraging the graph structure and node features but differ fundamentally in
how they process graph information.

Graph Fourier Transform and Spectral GNNs. The graph Fourier transform (Ortega et al., 2018) of a
graph signal x ∈ Rn is defined as x̂ = U⊤x, and its inverse is given by x = Ux̂ (Shuman et al., 2013). This
transform projects a graph signal from the spatial domain (node space) to the spectral domain (frequency
space), similar to how the classical Fourier transform operates on time signals.

The spectral filtering of a signal x with a kernel v is defined as:

z = v ∗G x = U (v̂ ⊙ x̂) = UV̂ U⊤x, (1)

where V̂ = diag(v̂1, . . . , v̂n) represents the spectral kernel coefficients and ⊙ denotes element-wise multi-
plication. Spectral GNNs leverage this graph Fourier transform to define convolution operations in the
spectral domain. These models approach graph learning from a signal processing perspective, using the
eigendecomposition of graph matrices to define filtering operations.

To avoid the computationally expensive eigen-decomposition, polynomial functions h(Â) are often used to
approximate different kernels in spectral GNNs. Specifically, the spectral filter h(λ) is parameterized as a
polynomial of degree K:

h(λ) =
K∑

k=0
αkλk, (2)
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Figure 2: Overview of the PieCoN model. Our method processes an input graph through eigenvalue
segmentation (Alg. 1) to create constant filters, while separately applying polynomial filters. These filters are
trained and combined to create the final spectral filter.

where αk are learnable coefficients. Consequently, the filtering process can be reformulated as:

h(Â)x =
K∑

k=0
αkÂ

k
x = Uh(Λ)U⊤x, (3)

which allows efficient computation of the filtered signal using only matrix multiplications.

Spatial GNNs. Spatial GNNs, also known as message-passing neural networks (MPNNs), operate directly
on the graph structure by aggregating information from neighboring nodes (Gilmer et al., 2017). The general
form of message passing can be expressed as:

h(l+1)
i = UPDATE

(
h(l)

i , AGGREGATE
(
{h(l)

j : j ∈ N (i)}
))

, (4)

where h(l)
i represents the feature vector of node i at layer l, N (i) is the set of neighboring nodes of i,

AGGREGATE is a permutation-invariant function that combines information from the neighbors, and
UPDATE is a function that updates the node’s representation.

Popular examples include Graph Convolutional Networks (GCN) Kipf & Welling (2017), which can be
formulated as:

H(l+1) = σ
(

ÂH(l)W(l)
)

, (5)

where H(l) is the matrix of node representations at layer l, W(l) is a learnable weight matrix, and σ is a
non-linear activation function.

4 Piecewise Constant Spectral Graph Neural Network (PieCoN)

Current spectral GNNs often have limited flexibility in how they process graph structures due to their reliance
on polynomial filters. We propose PieCoN, a model that combines different types of spectral filters to process
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graph data in ways that complement the capabilities of polynomial filters. The key steps of our methodology,
illustrated in Figure 2, include: (1) partitioning the graph spectrum into intervals based on significant points
identified through spectral analysis, (2) constructing constant spectral filters for each interval to capture
global and local spectral properties, and (3) combining constant spectral filters with polynomial filters. Below,
we describe the methodology in detail. All the proofs are provided in Appendix A.

4.1 Identifying Significant Points in the Spectrum
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Figure 3: Using the derivative of eigenval-
ues to identify significant points which show
relatively high changes in the spectrum.

Understanding the spectral properties of a graph is crucial
for analyzing its structure. A key challenge is identifying sig-
nificant points in the eigenvalue spectrum, which can reveal
important structural insights (Figure 3). Algorithm 1 addresses
this by identifying large gaps in the eigenvalue spectrum, which
can indicate distinct frequency bands in the graph’s spectral
representation and highlight structural changes or regions of
high spectral variation (Luxburg, 2007; Fiedler, 1973; Chung,
1997). By adaptively partitioning the eigenvalue space around
these critical points, PieCoN can capture the most informative
spectral features of the graph.

Algorithm 1 identifies significant points in the eigenvalue spec-
trum by analyzing local patterns in the distribution of eigenval-
ues. For each position i in the sorted sequence of eigenvalues,
the algorithm quantifies how much eigenvalue λi deviates from
the statistical properties of its neighboring eigenvalues. Specifically, it computes the deviation of the discrete
derivative di = λi+1 − λi from the mean of derivatives within windows before and after position i, normalized
by their respective standard deviations. This normalization produces a significance score si that measures
how abnormal each eigenvalue gap is relative to its local context. Positions with the highest scores represent
points where the spectrum exhibits sudden changes, effectively identifying natural boundaries between
different structural components of the graph. The algorithm also handles eigenvalue multiplicity by assigning
zero significance to positions where consecutive eigenvalues are identical, ensuring that clusters of repeated
eigenvalues remain intact. The identified significant points serve as adaptive partitioning boundaries for
the spectrum, allowing PieCoN to focus computational resources on the most informative regions of the
eigenvalue distribution. This partitioning preserves sign and basis invariance (as proven in Section 5.2),
making our approach robust to different eigenvector calculation methods. A parameter sensitivity analysis
for Algorithm 1 is presented in Appendix B.

4.2 Construction of Constant Filters

For each interval [ak, ak+1), we construct a spectral filter T k, as shown in Fig. 4). The filter is defined as:

T k = UEkU⊤ = U [:,ak:ak+1]U
⊤
[:,ak:ak+1], (6)

where Ek is a binary diagonal matrix with non-zero entries corresponding to the eigenvalues within the k-th
interval and U [:,ak:ak+1] is the submatrix of U with columns ak to ak+1 − 1. Specifically, the matrix Ek for
an interval [ak, ak+1) is defined as:

Ek = diag(0, . . . , 1︸︷︷︸
ak

, 1, . . . , 1︸︷︷︸
ak+1−1

, . . . , 0). (7)

This construction ensures that Ek captures the eigenvectors in the specified interval, allowing the filter T k to
encapsulate the corresponding spectral properties. Our approach differs from traditional polynomial-based
spectral filters by enabling more flexible and tailored filtering of the graph’s spectral components.
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Algorithm 1 Thresholding Algorithm for Identifying Significant Eigenvalue Gaps
1: function Identify_Significant_Gaps(d, λ, w, K) ▷ d: Discrete derivative of eigenvalues, λ: Sorted

eigenvalues, w: Window size for averaging, K: Number of top indices (Number of spectral intervals)
2: ϵ← small constant ▷ A very small positive value to avoid division by zero
3: s← 0 ▷ Significance of each index
4: for i← w to n− w − 1 do
5: µp, σp ← mean(di−w:i), std(di−w:i) ▷ Mean and standard deviation before i
6: µn, σn ← mean(di+1:i+w+1), std(di+1:i+w+1) ▷ Mean and standard deviation after i

7: si ← |d−µp|
σp+ϵ + |di−µn|

σn+ϵ ▷ Sum of normalized distances to adjacent means
8: if λi = λi−1 then
9: si ← 0 ▷ Set to zero if no gap exists

10: end if
11: end for
12: a0 = 0, aK−1 = n + 1
13: a1, a2, . . . , aK−2 ← indices of the largest K − 2 values in s
14: return a0, a1, . . . , aK−1
15: end function
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Figure 4: Constant Filters.
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Figure 5: Polynomial Filters.

4.3 Polynomial Filters

In addition to the spectral filters T k, polynomial filters of the form Â
p

are used (Fig. 5). These filters provide
a way to incorporate local neighborhood information into the model. By adjusting the polynomial degree p,
we can capture varying scales of locality in the graph.

Using the distinct eigenvalues of Â we can get:

(Â− λ′
1I) · · · (Â− λ′

sI) = 0. (8)

This implies that polynomial filters have at most s free parameters because any polynomial of degree higher
than s can be reduced to a polynomial of degree s. The inclusion of polynomial filters complements the
constant spectral filters by providing a smooth interpolation between different spectral components. This
combination allows PieCoN to capture both sharp and gradual changes in the graph’s spectral properties.

4.4 Combining Constant and Polynomial Filters

The final embedding matrix of the nodes is computed by combining the constant spectral filters and polynomial
filters. As in Jacobi convolutions (Wang & Zhang, 2022), we consider independent filtering on each of the h
channels in X simultaneously, the multichannel filtering can be denoted as:

6



Under review as submission to TMLR

Z :l =
K−1∑
k=0

αklT kσ(XW 1)W 2
:l︸ ︷︷ ︸

Constant Filters

+
P∑

p=0
βplÂ

p
σ(XW 1)W 2

:l︸ ︷︷ ︸
Polynomial Filters

, (9)

where:

• Matrix:l is the lth column of the Matrix;
• X is the input feature matrix, representing the initial features of the nodes;
• W 1 and W 2 are weight matrices to be learned during training. W 1 maps the input features to an

intermediate space, and W 2 maps the intermediate representations to the embedding space;
• σ(·) is a non-linear activation function applied element-wise, introducing non-linearity into the model;
• αkl are learnable coefficients associated with the spectral filters T k for each dimension l;
• βpl are learnable coefficients associated with the polynomial filters Â

p
for each dimension l.

Each element of T k represents a similarity between two nodes in some range of frequencies. When we perform
the matrix multiplication MX for some similarity matrix M = T k, each entry M ij in the similarity matrix
M represents the weight or importance of node j in contributing to the feature vector of node i. If M
is non-negative, it means each node contributes either positively or not at all to the feature aggregation.
Negative values, on the other hand, would imply subtracting features from neighbors, which is typically not
meaningful in most graph-based learning contexts, where the goal is to aggregate features to enhance node
representations. Therefore, we separate T k into positive and negative parts, as follows:

Z :l =
K−1∑
k=0

α+
kl(T k)+σ(XW 1)W 2

:l︸ ︷︷ ︸
Positive Part

+
K−1∑
k=0

α−
kl(T k)−σ(XW 1)W 2

:l︸ ︷︷ ︸
Negative Part

+
P∑

p=0
βplÂ

p
σ(XW 1)W 2

:l︸ ︷︷ ︸
Polynomial Filters

, (10)

where α+
kl and α−

kl are learnable coefficients associated with the spectral filters T +
k and T −

k for each dimension
l. The superscripts + and - indicate coefficients for the positive and negative parts of the spectral filters,
respectively.

4.5 Computational Complexity

The computational complexity of our method is broken down as follows:

1. Eigendecomposition (precomputation): O(n3) for computing spectral components.
2. Filter construction and sparsification (precomputation): O(n3 + 2Kn2 log(m)) for constructing and

sparsifying TK filters, where K is the number of spectral intervals, and m is the edge count.
3. Model propagation: O((K + P )md) during training and inference, where P is the polynomial degree,

and d is the feature dimension. This matches the theoretical time complexity of JacobiConv (Wang &
Zhang, 2022) and GPRGNN (Chien et al., 2021), while being more efficient than BernNet’s (He et al.,
2021) O(P 2md). An empirical comparison of the computational efficiency between our approach and
the polynomial filtering method JacobiConv is provided in Appendix C.

5 Empirical and Theoretical Analysis

This section provides theoretical and empirical analyses to establish the advantages of piecewise constant
spectral filters over polynomial filters and validate the design choices of PieCoN. For the theoretical part,
we explain an error bound from polynomial approximation theory, which shows the limits of polynomial
spectral filtering when dealing with sharp changes in functions. We discuss the challenges with eigenvector
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representations, such as their invariance under sign flips and basis shifts, which can affect the generalization
of graph learning models. Additionally, in Appendix D, we analyze how specific graph structures influence
the eigenvalue spectrum, with a focus on the eigenvalue 0, and explain why separating constant filters into
negative and positive parts helps improve model performance and reduces approximation errors.

5.1 Error Analysis for Polynomial Approximation

To analyze the fundamental limitations of polynomial approximations in spectral filtering, we establish a
theorem characterizing the error bounds.
Theorem 1 (Approximation error for ϵ-dense eigenvalues). Let Â ∈ Rn×n be a normalized adjacency matrix
with spectrum {λi}n

i=1 where −1 ≤ λ1 ≤ · · · ≤ λn ≤ 1. Assume that these eigenvalues are ϵ-dense on [−1, 1].
Let f : [−1, 1]→ R be a filter function with ∥f∥∞ = supx∈[−1,1] |f(x)| = 1. For any polynomial p ∈ Pd(the
space of polynomials of degree at most d), the approximation error is:

E(p, f) =
n∑

i=1
|p(λi)− f(λi)| ≥ ∥p∥∞(1− d2ϵ)− 1. (11)

Generally, as n increases, the eigenvalues become more densely packed in [−1, 1], causing ϵ to approach
zero. This means d2ϵ will also approach zero, making the lower bound on the approximation error converge
to ∥p∥∞ − 1. Therefore, to minimize the error bound while maintaining sufficient approximation power,
setting ∥p∥∞ ≤ 1 is a natural choice since the target function satisfies ∥f∥∞ = 1. This normalization allows
for fair comparison between different polynomial approximations and simplifies the analysis. Hence, in the
following theorem, we specifically focus on polynomials with ∥p∥∞ ≤ 1 to analyze the particular challenge of
approximating functions with jump discontinuities.
Theorem 2 (Approximation error for functions with jump discontinuities). Let Â ∈ Rn×n be a normalized
adjacency matrix with spectrum {λi}n

i=1 where −1 ≤ λ1 ≤ · · · ≤ λn ≤ 1. Let f : [−1, 1]→ R be some filter
function with ∥f∥∞ = 1 that the model needs to find and suppose it has a jump discontinuity of magnitude
h > 0 between consecutive eigenvalues λR and λR+1 (|f(λR+1)− f(λR)| = h). For any polynomial p ∈ Pd(the
space of polynomials of degree at most d), satisfying ∥p∥∞ ≤ 1, the approximation error is:

E(p, f) =
n∑

i=1
|p(λi)− f(λi)| ≥ h− |λR+1 − λR| · d2. (12)

This result demonstrates a key limitation: For small d when |λR+1 − λR| ≪ h
d2 , the approximation error

E(p, f) ≥ E2 ≈ h. This is particularly problematic for spectral filtering where: (1) sharp transitions in the
filter response are often desired (h is large), (2) some eigenvalues may be very close together (|λR+1 − λR| is
small), and (3) using high-degree polynomials is computationally expensive.

In contrast, by using piecewise constant filters, we can add a constant filter only at point λR+1 with the value
h and eliminate the jump entirely. The ablation study in Table 3 demonstrates that adding constant filters
to polynomial filters improves performance. This theoretical result justifies combining polynomial filters with
constant filters in our approach.

5.2 Sign and Basis Invariance

Eigenvectors corresponding to a given eigenvalue can have multiple representations. For example, if λ = 0 is
an eigenvalue of the normalized adjacency matrix Â, any eigenvector ui associated with λ = 0 can be replaced
with its opposite −ui or any linear combination of eigenvectors for the same eigenvalue. This variability
introduces sign and basis ambiguity problems, which can lead to inconsistent or unpredictable results in
learning tasks.
Proposition 1 (This follows directly from (Lim et al., 2023)). Polynomial filters are invariant to sign
changes and basis choices.

8
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Table 1: Statistics of the datasets used for node classification.

Dataset Nodes Edges Classes Homophily Ratio σ(0)/Nodes
Chameleon 2,277 31,396 5 0.23 0.52
Squirrel 5,201 198,423 5 0.22 0.37
Actor 7,600 26,705 5 0.22 0.15
Amazon-Ratings 24,492 93,050 5 0.38 0.17
Texas 183 162 5 0.11 0.35
Cora 2,708 5,278 7 0.81 0.11
Citeseer 3,327 4,614 6 0.74 0.14
Amazon-Photo 7,650 71,831 8 0.83 0.02
Pubmed 19,717 44,324 3 0.80 0.61

The invariance of polynomial filters stems from the stability of eigenvector products UµU⊤
µ under different

basis representations. This property ensures that matrix powers Â
p

maintain consistent behavior regardless
of the specific eigenbasis chosen, making polynomial filters reliable for spectral graph operations.
Proposition 2. Constant filters are invariant to sign changes and basis choices.

Both polynomial and constant filters are robust to different eigenvector representations, ensuring that learned
representations are not affected by arbitrary sign changes or basis choices, thus improving model stability
and generalization. By leveraging filters with this characteristic, our model can produce consistent outputs
despite the inherent ambiguities in eigendecomposition.

6 Experimental Evaluation

6.1 Datasets

We evaluate PieCoN on seven diverse node classification datasets with varying graph structures and homophily
ratios (Table 1). Cora, Citeseer, and Pubmed are citation networks where nodes are research papers and edges
represent citations. Photo is a product co-occurrence graph with nodes as products and edges representing
co-purchase relationships. Actor is a graph where nodes are actors and edges denote co-occurrence in films.
Chameleon and Squirrel are graphs derived from Wikipedia pages. Nodes represent web pages, and edges
denote mutual links. Texas is an academic web graph where nodes are webpages from the University of
Texas and edges represent hyperlinks between pages. Amazon-Ratings is a product co-purchasing network
where nodes are products and edges indicate frequent co-purchases, with the task of predicting product rating
classes. The ratio of eigenvalue 0 multiplicity to the number of nodes is shown in the last column of Table 1.

All datasets were randomly split into 60% training, 20% validation, and 20% test sets for 10 different seeds.
For each dataset, we report the average performance along with the 95% confidence interval. Details about
hyperparameter optimization and the running environment are provided in Appendix E.

6.2 Baseline Models

We compare PieCoN against several baseline models categorized into different groups based on their underlying
graph learning methodologies:

• Spatial-based GNNs: Graph Convolutional Network (GCN) (Kipf & Welling, 2017), Graph
Attention Network (GAT) (Velickovic et al., 2018), Higher-order GCN (H2GCN) (Zhu et al., 2020),
and GCNII (Chen et al., 2020).

• Spectral-based GNNs: UniFilter (Huang et al., 2024), LanczosNet (Liao et al., 2019), ChebyNet
(Defferrard et al., 2016), Generalized PageRank GNN (GPR-GNN) (Chien et al., 2021), BernNet (He
et al., 2021), PP-GNN (Lingam et al., 2022), ChebNetII (He et al., 2022), DSF-Jacobi-R (Guo et al.,

9
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Table 2: Results on real-world node classification tasks.
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Spatial-based GNNs
GCN 68.10∗∗∗

±1.20 50.11∗∗∗
±1.21 34.65∗∗∗

±0.68 48.80∗∗∗
±0.22 78.69∗∗∗

±1.80 87.18∗∗∗
±0.87 81.04±0.67 85.87∗∗∗

±0.83 87.31∗∗∗
±0.31

GAT 63.13∗∗∗
±1.93 44.49∗∗∗

±0.88 33.93∗∗∗
±2.47 50.28∗∗∗

±0.55 77.54∗∗∗
±0.98 88.03∗

±0.79 80.52±0.71 90.94∗∗∗
±0.68 87.29∗∗∗

±0.48
H2GCN 57.11∗∗∗

±1.58 36.42∗∗∗
±1.89 35.86∗∗∗

±1.03 48.17∗∗∗
±0.52 88.36±2.62 86.92∗

±1.37 77.07∗∗∗
±1.64 93.02∗∗∗

±0.91 88.93∗∗∗
±0.35

GCNII 63.44∗∗∗
±0.85 41.96∗∗∗

±1.02 36.89∗∗∗
±0.95 46.60∗∗∗

±1.20 89.18±4.43 88.46±0.82 79.97∗
±0.65 89.94∗∗∗

±0.31 89.68∗∗∗
±0.30

Spectral-based GNNs
Free eigenvalues 69.58∗∗∗

±1.31 59.76∗∗∗
±1.01 41.61∗∗∗

±0.63 44.28∗∗∗
±1.13 88.20±3.28 84.91∗∗∗

±0.89 77.39∗∗∗
±0.82 86.08∗∗∗

±0.81 86.07∗∗∗
±0.47

LanczosNet 64.81∗∗∗
±1.56 48.64∗∗∗

±1.77 38.16∗
±0.91 48.35∗∗∗

±0.40 76.39∗∗∗
±4.43 87.77±1.45 80.05±1.65 93.21∗∗∗

±0.85 84.41∗∗∗
±0.66

ChebyNet 59.28∗∗∗
±1.25 40.55∗∗∗

±0.42 37.61∗∗∗
±0.89 50.20∗∗∗

±0.52 77.21∗∗∗
±2.95 86.67∗∗∗

±0.82 79.11∗∗∗
±0.75 93.77∗∗∗

±0.32 90.11∗∗∗
±0.26

GPR-GNN 67.28∗∗∗
±1.09 50.15∗∗∗

±1.92 39.92±0.67 49.37∗∗∗
±0.71 88.53±3.36 88.57±0.69 80.12±0.83 93.85∗∗∗

±0.28 91.36±0.40
BernNet 68.29∗∗∗

±1.58 51.35∗∗∗
±0.73 41.79∗∗∗

±1.01 48.82∗∗∗
±0.20 89.02±3.45 88.52±0.95 80.09±0.79 93.63∗∗∗

±0.35 88.98∗∗∗
±0.46

PPGNN 69.45∗∗∗
±1.05 48.47∗∗∗

±2.51 39.65±0.66 47.96∗∗∗
±0.89 85.57±2.62 88.32±0.60 80.98±0.51 95.09∗

±0.31 90.11∗∗∗
±0.26

ChebNetII 71.37∗∗∗
±1.01 57.72∗∗∗

±0.59 41.75∗
±1.07 48.79∗∗∗

±0.21 89.11±3.43 88.71±0.93 80.53±0.79 94.92∗
±0.33 89.76∗∗∗

±0.32
JacobiConv 73.92∗

±1.07 57.38∗∗∗
±0.60 40.43±0.81 48.53∗∗∗

±0.96 89.02±2.79 88.69±1.03 81.650.46 95.36±0.24 87.83∗∗∗
±0.43

DSF-Jacobi-R 72.17∗∗∗
±0.79 55.84∗∗∗

±0.94 39.89±0.54 48.68∗∗∗
±0.34 89.18±3.44 88.31±0.89 81.11±0.63 94.90∗

±0.31 88.97∗∗∗
±0.39

OptBasisGNN 74.40∗
±0.90 63.98∗

±1.12 42.39∗∗∗
±0.52 48.80∗∗∗

±0.21 87.38±2.79 87.96∗
±0.71 80.79±1.35 94.71∗∗∗

±0.33 87.36∗∗∗
±0.41

Specformer 74.92±0.98 64.26±1.18 41.56∗
±1.25 OOM 83.60∗

±3.27 87.55∗
±0.87 80.98±0.79 95.29±0.30 OOM

UniFilter 74.11±1.68 63.52∗
±1.30 40.11±1.31 50.02∗∗∗

±0.70 86.72±3.77 89.10±1.07 81.21±1.66 94.96±0.74 91.36±0.45

PieCoN 75.75±0.96 65.67±0.82 39.79±0.56 52.37±0.50 89.34±3.11 89.16±0.64 80.98±0.57 95.65±0.34 91.39±0.41
∗p < 0.05 (significant difference from PieCoN)
∗∗∗p < 0.001 (highly significant difference from PieCoN)

2023), JacobiConv (Wang & Zhang, 2022), OptBasisGNN (Guo & Wei, 2023), and Specformer (Bo
et al., 2023).

• Free eigenvalues: A graph neural network that learns a spectral filter by directly parameterizing
the eigenspectrum Â = UΛU⊤, where Λ contains trainable eigenvalues.

6.3 Results

Table 2 shows the node classification accuracy of PieCoN compared to baseline models across various
datasets. We observe that PieCoN achieves the highest performance on seven datasets. Notably, the largest
improvements are observed on the heterophilic datasets Chameleon, Squirrel, and Amazon-Ratings, with
gains of 1.1%, 2.2% and 4.1%, respectively. This may be linked to the high multiplicity of the eigenvalue 0 in
the normalized adjacency matrix of these graphs (see Table 1), to which our method gives more importance.

We run t-tests comparing PieCoN with each baseline method to verify the statistical significance of our
results. Stars in Table 2 show when a baseline performs significantly different than PieCoN (* for p < 0.05,
*** for p < 0.001). Most baselines show significant differences on heterophilic datasets, confirming that our
gains are meaningful. For example, all methods except Specformer and UniFilter show significantly lower
performance on Chameleon. On homophilic datasets, several methods show no significant difference from
PieCoN, indicating competitive but not always superior performance.

For homophilic datasets, such as Cora, Amazon-Photo, and Pubmed, PieCoN also demonstrates competitive
performance, achieving slight improvements over existing methods. The smaller gains suggest that tradi-
tional GNNs already perform well in these settings, as they inherently align with homophilic assumptions.
Nonetheless, PieCoN remains robust, indicating that its spectral filtering approach does not hinder its ability
to learn from homophilic graphs. These results indicate that PieCoN is effective in both heterophilic and
homophilic settings.
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Table 3: Ablation study results.

Pos
. Par

t

Neg
. Par

t
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.
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Squirr
el

Acto
r
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Tex
as

Cor
a

Cite
se

er

Amaz
on

-P
hot

o

Pubmed

✗ ✗ ✓ 66.35∗∗∗
±0.88 48.39∗∗∗

±0.78 40.31±0.94 50.21∗∗∗
±0.87 88.69±3.28 88.74±0.77 80.33±0.85 95.57±0.35 91.24±0.40

✗ ✓ ✗ 67.26∗∗∗
±0.50 54.65∗∗∗

±0.72 32.07∗∗∗
±1.17 49.66∗∗∗

±0.71 90.66±2.30 84.30∗∗∗
±1.06 75.45∗∗∗

±0.68 92.70∗∗∗
±0.34 90.72∗

±0.39
✓ ✗ ✗ 73.61∗∗∗

±0.81 60.50∗∗∗
±1.03 38.98±0.78 47.35∗∗∗

±0.76 90.00±3.11 86.80∗∗∗
±1.16 81.72±0.58 94.95∗

±0.33 90.74∗
±0.48

✓ ✓ ✗ 74.77±1.01 65.00±1.12 39.02±0.54 49.28∗∗∗
±0.62 89.67±2.46 87.22∗

±1.12 81.54±0.63 94.76∗∗∗
±0.39 90.83±0.41

✓ ✓ ✓ 75.75±0.96 65.67±0.82 39.79±0.56 52.37±0.50 89.34±3.11 89.16±0.64 80.98±0.57 95.65±0.34 91.38±0.41
∗p < 0.05 (significant difference from full model)
∗∗∗p < 0.001 (highly significant difference from full model)

6.4 Ablation Study

We have performed an ablation study using Eq. (10) to evaluate the contribution of each component on
model performance. The results in Table 3 reveal several key findings. First, the full model incorporating all
three components (positive part, negative part, and polynomial filters) achieves the best performance on 7 out
of 9 datasets, with notable improvements on Chameleon (75.75%), Squirrel (65.67%), and Amazon-Ratings
(52.37%). The combination of positive and negative parts without polynomial filters also shows strong
performance, suggesting that these components capture complementary spectral information. For instance, on
Squirrel, adding the negative part to the positive part improves accuracy from 60.50% to 65.00%. Interestingly,
on the Actor dataset, using only polynomial filters yields the best performance (40.31%), while on Citeseer,
the positive part alone achieves optimal results (81.72%).

In a separate experiment, we also create a simple spectral method with the eigenvalues as parameters. The
results of this experiment are presented in Table 2 with the model name “Free eigenvalues”. However, this
approach may be less effective because the method does not receive any explicit structural information
associated with the eigenvalues.

7 Limitations

Our work has some limitations. The computational complexity of O(n3) for eigendecomposition presents
scalability challenges for large-scale graphs. Furthermore, the model’s performance is highly dependent on
how we partition the eigenvalue intervals, and our current approach using hard thresholding to identify
significant spectral changes may not be optimal. A more sophisticated approach using soft thresholding could
provide smoother transitions between intervals and potentially better capture the continuous nature of the
spectrum.

8 Conclusion

In this paper, we presented the Piecewise Constant Spectral Graph Neural Network (PieCoN), a new
approach to graph prediction tasks. Our method aims to address some limitations of existing spectral
GNNs by combining constant spectral filters with polynomial filters to capture a broader range of spectral
characteristics in real-world graphs. We introduced an adaptive spectral partitioning technique that analyzes
the derivative of sorted eigenvalues to identify significant spectral changes. This helps focus on the most
informative regions of the spectrum. PieCoN expands the search space of possible eigenvalue filters beyond
traditional polynomial-based filters, allowing for a more tailored capture of graph spectral properties. This
is particularly useful when dealing with graphs that have high eigenvalue multiplicity. By integrating
spectral filters with polynomial filters, our approach attempts to model both global graph structure and local
neighborhood information. Our experiments on nine benchmark datasets, covering both homophilic and
heterophilic graph structures, suggest that PieCoN performs well on both types of datasets.
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A Proofs

Theorem 1 (Approximation error for ϵ-dense eigenvalues). Let Â ∈ Rn×n be a normalized adjacency matrix
with spectrum {λi}n

i=1 where −1 ≤ λ1 ≤ · · · ≤ λn ≤ 1. Assume that these eigenvalues are ϵ-dense on [−1, 1].
Let f : [−1, 1]→ R be a filter function with ∥f∥∞ = supx∈[−1,1] |f(x)| = 1. For any polynomial p ∈ Pd(the
space of polynomials of degree at most d) the approximation error is:

E(p, f) =
n∑

i=1
|p(λi)− f(λi)| ≥ ∥p∥∞(1− d2ϵ)− 1. (13)

Proof. Let x0 ∈ [−1, 1] be a point where |p(x0)| = ∥p∥∞, i.e., the point where the polynomial p attains its
maximum absolute value on the interval [−1, 1]. Since the eigenvalues {λi}n

i=1 are ϵ-dense on [−1, 1], there
exists an eigenvalue λj such that |x0 − λj | ≤ ϵ. By Markov’s polynomial inequality(Sahoo & Riedel, 1998):

∥p′∥∞ ≤ d2∥p∥∞. (14)

Using the mean value theorem(Achiezer, 1992), there exists ξ ∈ [x0, λj ] (or [λj , x0] if λj > x0) such that:

|p(x0)− p(λj)| = |p′(ξ)| · |x0 − λj | ≤ ∥p′∥∞ · |x0 − λj | ≤ d2∥p∥∞ · ϵ. (15)

Therefore,
|p(λj)| ≥ |p(x0)| − |p(x0)− p(λj)| ≥ ∥p∥∞ − d2∥p∥∞ϵ = ∥p∥∞(1− d2ϵ). (16)

Since ∥f∥∞ = 1, we know that |f(λj)| ≤ 1. Then,

|p(λj)− f(λj)| ≥ |p(λj)| − |f(λj)| ≥ ∥p∥∞(1− d2ϵ)− 1. (17)

Since E(p, f) =
∑n

i=1 |p(λi)− f(λi)| ≥ |p(λj)− f(λj)|, we have:

E(p, f) ≥ ∥p∥∞(1− d2ϵ)− 1. (18)

This establishes the claimed lower bound on the approximation error.

Theorem 2 (Approximation error for functions with jump discontinuities). Let Â ∈ Rn×n be a normalized
adjacency matrix with spectrum {λi}n

i=1 where −1 ≤ λ1 ≤ · · · ≤ λn ≤ 1. Let f : [−1, 1]→ R be some filter
function with ∥f∥∞ = 1 that the model needs to find and suppose it has a jump discontinuity of magnitude
h > 0 between consecutive eigenvalues λR and λR+1. For any polynomial p ∈ Pd(the space of polynomials of
degree at most d), satisfying ∥p∥∞ ≤ 1, the approximation error is:

E(p, f) =
n∑

i=1
|p(λi)− f(λi)| ≥ h− |λR+1 − λR| · d2. (19)

Proof. By Markov’s polynomial inequality(Sahoo & Riedel, 1998):

∥p′∥∞ ≤ d2∥p∥∞ ≤ d2, ∀p ∈ Pd. (20)

Next using the mean value theorem(Achiezer, 1992), we find that ∃ ξxy ∈ [x, y] such that:

|p(x)− p(y)| = |p′(ξxy)| · |x− y| ≤ d2|x− y|, ∀ x, y ∈ [−1, 1]. (21)

Now, we define the local error at consecutive eigenvalues as:

E2 = |p(λR)− f(λR)|+ |p(λR+1)− f(λR+1)|. (22)

Applying the triangle inequality, we obtain:

E2 ≥ |f(λR+1)− f(λR)| − |p(λR+1)− p(λR)|
≥ h− |λR+1 − λR| · d2.

(23)

Since it holds that E(p, f) ≥ E2, the result follows.
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Proposition 1 (This follows directly from (Lim et al., 2023)). Polynomial filters are invariant to sign
changes and basis choices.

Proof. The key property we use is that the product UµU⊤
µ , where Uµ is a matrix of eigenvectors associated

with eigenvalue µ, remains invariant under sign changes and different choices of basis (Lim et al., 2023). This
implies that regardless of which orthonormal basis is chosen for a given eigenspace, the product UµU⊤

µ stays
the same.

Consider two orthonormal bases Uµ and V µ for the eigenspace corresponding to eigenvalue µ. There exists
an orthogonal matrix Q such that:

V µ = UµQ. (24)

Using this, we show the invariance:

V µV ⊤
µ = (UµQ)(UµQ)⊤ = UµQQ⊤U⊤

µ = UµU⊤
µ . (25)

where we used the fact that QQ⊤ = I since Q is orthogonal. This confirms that UµU⊤
µ is invariant under

the change of basis.

Now, consider the matrix power Â
p
, which can be expressed as:

Â
p

=
n∑

i=1
λp

i uiu
⊤
i =

s∑
i=1

(λ′
i)pUλ′

i
U⊤

λ′
i
, (26)

where λ′
i are the distinct eigenvalues, and Uλ′

i
are the corresponding eigenvector matrices.

Since each term Uλ′
i
U⊤

λ′
i

is invariant to basis choices and each term uiu
⊤
i = (−ui)(−ui)⊤ is invariant to

sign changes, it follows that Â
p

is also invariant to both.

Proposition 2. Constant filters are invariant to sign changes and basis choices.

Proof. Consider the constant filter T k defined over the interval [ak, ak+1) for some k. Let tk be the index
such that λ′

tk
= λak

, and thus λ′
tk+1−1 = λak+1−1.

Suppose l, r are indices such that λl−1 ̸= λl = λl+1 = · · · = λr−1 ̸= λr. According to Algorithm 1, no
significant point i will be selected with l < i < r, ensuring that constant eigenvalue intervals are not split.
Consequently, λ′

tk
̸= λak−1 when ak > 1, and λ′

tk+1−1 ̸= λak+1 when ak+1 ≤ n.

The distinct eigenvalues of Â within the interval [λak
, λak+1−1] are:

λ′
tk

, λ′
tk+1, . . . , λ′

tk+1−1. (27)

Using Equation 6, we express T k as:

T k = U [:,ak:ak+1]U
⊤
[:,ak:ak+1] =

ak+1−1∑
i=ak

uλi
u⊤

λi
=

tk+1−1∑
i=tk

Uλ′
i
U⊤

λ′
i
. (28)

Since each term Uλ′
i
U⊤

λ′
i

is invariant to basis choices and each term uiu
⊤
i = (−ui)(−ui)⊤ is invariant to

sign changes, it follows that T k is also invariant to both.

Proof. By Markov’s polynomial inequality(Sahoo & Riedel, 1998):

∥p′∥∞ ≤ d2∥p∥∞ = d2, ∀p ∈ Pd. (29)

Next using the mean value theorem(Achiezer, 1992), we find that ∃ ξxy ∈ [x, y] such that:

|p(x)− p(y)| = |p′(ξxy)| · |x− y| ≤ d2|x− y|, ∀ x, y ∈ [−1, 1]. (30)
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Figure 6: Effect of w on Chameleon
dataset performance with optimal K.
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Figure 7: Effect of K on Chameleon
dataset performance with optimal w.
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Figure 8: Effect of w on Cora dataset
performance with optimal K.
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Figure 9: Effect of K on Cora dataset
performance with optimal w.

Now, we define the local error at consecutive eigenvalues as:

E2 = |p(λR)− f(λR)|+ |p(λR+1)− f(λR+1)|. (31)

Applying the triangle inequality, we obtain:

E2 ≥ |f(λR+1)− f(λR)| − |p(λR+1)− p(λR)|
≥ h− |λR+1 − λR| · d2.

(32)

Since it holds that E(p, f) ≥ E2, the result follows.

B Parameter Sensitivity Analysis of Algorithm 1

We further investigate the impact of the window size (w) and the number of limits (K) from Algorithm 1 on
model performance. To isolate the effect of each parameter, we conduct controlled experiments where we
fix one parameter at its optimal value while varying the other. Specifically, when examining window size
effects, we fix K at its optimal value for each dataset, and when studying the number of spectral intervals,
we fix w at its optimal value. As shown in Fig. 6 and Fig. 7, the Chameleon dataset exhibits distinctive
parameter sensitivities. Performance peaks at w = 20 with an accuracy of 76.30%, followed by a sharp decline
and stabilization around 74.70% for larger window sizes. For the number of spectral intervals, we observe a
dramatic performance increase from K = 2 to K = 10, with optimal performance in the range 10 ≤ K ≤ 15
(reaching 75.84%), followed by a gradual decrease as K increases further. In contrast, Cora (Fig. 8 and
Fig. 9) shows more stability across different window sizes with an optimal value at w = 40 reaching 89.13%
accuracy. For spectral intervals, Cora demonstrates a similar pattern to Chameleon but with less pronounced
differences, showing peak performance at 10 ≤ K ≤ 12.
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These results indicate that the number of spectral intervals (K) significantly influences model performance,
whereas window size (w) has a more limited effect. Too few partitions fail to capture important spectral
characteristics, while too many may introduce noise.

C Computational Efficiency Comparison

To evaluate the computational efficiency of our approach, we conduct a running time analysis comparing the
constant filter component of PieCoN with JacobiConv’s polynomial filters.
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Figure 10: Computation time of PieCoN vs. JacobiConv.

Figure 10 illustrates the average epoch
time (in seconds) as we increase the
number of spectral intervals (K) in
PieCoN compared to increasing the poly-
nomial degree in JacobiConv. For a fair
comparison, we disabled the polynomial
part in the PieCoN implementation for
this experiment. The results show that
PieCoN’s constant filters require less com-
putation time than high-degree polyno-
mial filters. At parameter value K = 100,
PieCoN takes approximately 0.05 seconds
per epoch compared to JacobiConv’s 0.13
seconds. This efficiency comes from our
direct spectral interval filtering approach,
which applies filters to specific eigenvalue intervals rather than performing sequential matrix multiplications
needed for higher-degree polynomials.

D Analysis of Graph Structure and Eigenvalue Zero

Figure 11: Simple graph with dupli-
cate subgraphs. After adding the du-
plicates, the multiplicity of eigenvalue
0 increases from 0 to 3.

The presence of eigenvalue 0 in graph spectra reveals important
structural properties that many polynomial-based GNN methods
overlook. Real-world datasets often exhibit high multiplicity of
eigenvalue 0 (Table 1), yet methods like JacobiConv(Wang & Zhang,
2022), Bernnet (He et al., 2021), and Chebynet (Defferrard et al.,
2016), which use low-degree polynomials of the normalized adjacency
matrix Â, do not adequately capture these properties.
Theorem 3 (Banerjee (2008)). Let JH be the graph obtained from
some graph J by adding a subgraph H with eigenvalue 0. A subgraph
H is a graph consisting of a subset of nodes {q1, q2, . . . , qm} of J
and the corresponding edges between them. In this construction, each
node qi ∈ V (H) is connected to every node r ∈ V (J) \ V (H) that is
a neighbor of some node ri ∈ V (J).

Then, the graph JH has an eigenvalue 0 with an associated
eigenvector(u) that is nonzero only at the nodes ri and qi. Fur-
thermore uri

= −uqi
.

Theorem 3 reveals that when a graph contains duplicate substructures,
it leads to eigenvalue 0 with eigenvector localized to specific node
sets. This localization property is particularly relevant for node classification and community detection tasks,
as nodes with similar structural roles often share the same labels (Figure 11).

In analyzing how the negative and positive parts of T k affect and change the structure of the graph, we
consider a simple graph with duplicate subgraphs, as illustrated in Figure 11. In this graph, nodes with the
same labels are duplicates. According to Theorem 3, these duplicates create eigenvalues equal to 0 in the
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Figure 12: Simple graph with added positive edges. Figure 13: Simple graph with added negative edges.

Table 4: Hyperparameter ranges used for optimization.

Hyperparameter Values
Learning Rate (lr) 0.0005, 0.001, 0.005, 0.01, 0.05
Weight Decay (weight_decay) 0.0, 5e-5, 1e-4, 5e-4, 1e-3
Feature Dropout (feat_dropout) 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Number of Layers (nlayer) 1, 2, 3, 4, 5
Hidden Dimension (hidden_dim) 16, 32, 64
Window size for Algorithm 1 (window_size) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
Number of spectral intervals (num_limits) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

eigendecomposition of the normalized Adjacency matrix. Let U0 denote the eigenvectors corresponding to
eigenvalue 0. We can decompose R0 = U0U0⊤ into its negative (R−

0 ) and positive parts (R+
0 ). Using these

parts, we construct two graphs by choosing the edges with the highest score in these matrices. The graphs
resulting from this process, including original and added edges, are shown in Figures 12 and 13.

From these graphs, we observe that both negative and positive edges identify connections between duplicate
motifs. The negative edges also reveal connections between duplicate nodes within these duplicate motifs,
highlighting their role in capturing structural similarities.

Another intuition to split T k is that for example the second eigenvector provides a direction that best
separates the graph into two groups while minimizing the connections cut between them. The positive and
negative values show two clusters that are internally connected but separated from each other (Fiedler, 1973;
Luxburg, 2007).

E Hyperparameter Optimization and Running Environment

All experiments were carried out on a Linux machine with an NVIDIA A100 GPU, Intel Xeon Gold 6230
CPU (20 cores @ 2.1GHz), and 24GB RAM. Hyperparameter tuning was performed using the Hyperopt
Tree of Parzen Estimators (TPE) algorithm (Bergstra et al., 2011) with the hyperparameter ranges shown in
Table 4.

The Adam optimizer was used for training with 2000 epochs. Hyperparameters were selected to achieve the
best performance on a validation set.
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