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ABSTRACT

Deep neural networks (DNNs) have been shown to be vulnerable to black-box
attacks in which small perturbations are added to input images without accessing
any internal information of the model. However, current black-box adversarial
attack methods are limited to attacks on entire regions, pixel-wise sparse attacks,
or region-wise attacks. In this paper, we investigate region-wise adversarial at-
tacks in the black-box setting, using automatic region selection and controllable
imperceptibility. Technically, we formulate the problem as an optimization prob-
lem with ℓG0 and ℓ∞ constraints. Here, ℓG0 represents structured sparsity defined on
one collection of groups G, which can automatically detect the regions that need
to be perturbed. We solve the problem using the algorithm of natural evolution
strategies with search gradients. If G is non-overlapping, we provide a closed-
form solution to the first-order Taylor approximation of the objective function
with the search gradient having ℓG0 and ℓ∞ constraints (FTASℓG0+∞). If G is over-
lapping, we provide an approximate solution to FTASℓG0+∞ due to its NP-hard
nature, using greedy selection on the collection of groups G. Our method consists
of multiple updates with the closed-form/approximate solution to FTASℓG0+∞. We
provide the convergence analysis of the solution under standard assumptions. Our
experimental results on different datasets indicate that we require fewer perturba-
tions compared to global-region attacks, fewer queries compared to region-wise
attacks, and better interpretability into vulnerable regions which is not possible
with pixel-wise sparse attacks.

1 INTRODUCTION

Deep neural networks (DNNs) have gained significant attention and are widely adopted in various
applications, including computer vision (He et al., 2017; 2016), security systems (Kang & Kang,
2016; Xibilia et al., 2020), natural language processing (Bahdanau et al., 2016; Joshi et al., 2019),
and autonomous driving (Bojarski et al., 2016; Levinson et al., 2011; Xiong et al., 2019). How-
ever, extensive experiments have revealed that DNNs are susceptible to adversarial attacks, where
well-designed small perturbations can deceive the models (Cai et al., 2021; Cheng et al., 2018; Su
et al., 2019; Zhao et al., 2019). The methods of adversarial attack can be classified into two main
categories: white-box and black-box attacks. White-box attacks assume access to the target model,
enabling the attacker to directly update adversarial examples using the gradients of the model (Dong
et al., 2020; Fan et al., 2020; Kazemi et al., 2023; Zhu et al., 2021). However, in numerous real-world
scenarios, models are inaccessible, rendering gradient calculations impossible. In such situations,
black-box attackers aim to approximate gradients by querying the target network to obtain output
predictions for input samples. This paper focuses on discussing black-box attacks.

Currently, there is a considerable amount of research dedicated to studying the adversarial vul-
nerability of networks in the black-box setting. The majority of these studies primarily focus on
developing attacks (Ilyas et al., 2018a;b; Tu et al., 2019; Zhao et al., 2020) that target entire re-
gions. Specifically, ZO-NGD (Zhao et al., 2020), which imposes an ℓ∞ constraint, incorporates
the zeroth-order gradient estimation technique and the second-order natural gradient to generate
imperceptible perturbations on the entire image. (Ilyas et al., 2018a) proposed a method based on
Natural Evolutionary Strategies to estimate the gradient under ℓ∞ constraint. In the next year, they
further proposed based on prior information to improve the query efficiency (Ilyas et al., 2018b).
However, since global perturbation alters the statistical characteristics of the entire image, it may in-
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Figure 1: A demonstration of adversarial examples and the corresponding perturbations generated by
our method, Patch-RS, and Square Attack. Our method effectively identifies the region containing
the target within the perturbed image and generates perturbations that align better with the target’s
location. Patch-RS drew a conspicuous patch on the image. Square Attack with ℓ∞ constraint does
not have any image structure, and the perturbation is obvious.

troduce abnormal visual effects. These effects have the potential to be detected not only by defense
mechanisms but also by human observers.

In addition to zeroth-order optimization to estimate gradient, there is also a heuristic search method
in the black-box attack. For instance, Square Attack (Andriushchenko et al., 2020) is based on a
random search scheme, which selects local square updates at random locations so that the perturba-
tion in each iteration is approximately located at the boundary of the feasible solution. But it can not
be ignored that it will cause more noise in the large region even the entire image, which potentially
makes the perturbations more visually apparent. Parsimonious Attack (Moon et al., 2019) divides
the image into some blocks according to some coarse grid. Then it performs a local heuristic search
in a low-dimensional space among the vertices of the ℓ∞ ball. Differently, pixel-wise sparse attacks
(de Vazelhes et al., 2022; Croce & Hein, 2019; Tian et al., 2022) focus on identifying pixels that
contribute significantly to the attack and independently applying perturbations to these pixels. Since
natural images often exhibit a local smoothness property from a statistical perspective, the addition
of perturbations usually disrupts this local smoothness property, rendering the perturbations more
easily detectable by defense mechanisms.

Recently, region-wise attacks have been proposed, allowing attackers to exploit vulnerabilities in
specific regions or input areas. By understanding the model’s behavior with specific regions, at-
tackers can design targeted perturbations to manipulate the model’s predictions in a desired manner.
However, existing black-box region-wise attacks usually achieve bad performance in terms of suc-
cess attack rate due to the nature of the black-box setting and unreasonable regional selection. For
instance, Croce et al. (Croce et al., 2022) perturb only the 2-pixel wide edges of the original image,
or add a patch at arbitrary locations based on a heuristic random search. Therefore, how to find the
region that can highly improve the success attack rate has become a crucial problem in region-wise
attacks.

To address this challenge, we propose an approach for black-box attacks, which automatically de-
tects the relevant regions based on a reliable standard instead of a fixed region or heuristics. As
shown in Fig. 1, we find that FTASℓG0+∞ produces perturbations that fit the target, outperforming
Patch-RS and Square Attack methods in terms of perturbation quality and suitability. Different from
heuristic-based approaches, we formulate the problem as an optimization problem with ℓG0 and ℓ∞
constraints technically. Here, ℓG0 represents structured sparsity defined on one collection of groups G,
which can automatically detect the regions that need to be perturbed. We solve the problem using the
algorithm of natural evolution strategies with search gradients. Specifically, if G is non-overlapping,
we provide a closed-form solution to the first-order Taylor approximation of the objective function
with the search gradient having ℓG0 and ℓ∞ constraints (FTASℓG0+∞). If G is overlapping, we provide
an approximate solution to FTASℓG0+∞ due to its NP-hard nature, using greedy selection on the col-
lection of groups G. In addition, we provide a geometric convergence rate in Theorem 2 under the
standard assumptions. We conduct experiments on different datasets that demonstrate the proposed
method requires fewer perturbations and queries compared to global-region and region-wise attacks
respectively, and provide better interpretability and insights into vulnerable regions than pixel-wise
sparse attacks.

2 ADVERSARIAL ATTACK WITH AUTOMATICAL REGION DETECTION

In this section, we begin with a concise overview of adversarial attacks. Subsequently, we present
our novel framework for adversarial attacks, which incorporates an automated region detection
mechanism. A visual comparison between ours and heuristic methods is shown in Fig. 2.
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Figure 2: Comparison between automatic region selection attacks and heuristic method in the Ima-
geNet dataset. The top half of the figure displays the perturbation sampled to determine the position
and color. The bottom half showcases our method, automatically selecting multiple subregions.

2.1 ADVERSARIAL ATTACK

Let C(x) : Rd → RK be a well-trained DNN classification model, where x ∈ [0, 1]d represents the
original sample (If x is an image, we have d = w × h × c, where w denotes the image width, h
denotes the image height, c denotes the number of color channels), and K denotes the number of
image classes. The goal of adversarial attacking is to find a small perturbation δ ∈ Rd for a given
image x0 belonging to class y0 ∈ {1, 2, · · · ,K} such that the model C classifies the new image
x0 + δ into a targeted class y (y ̸= y0). Formally, the objective is to find:

argmax
k=1,2,··· ,K

Ck(x0 + δ) = y s.t. ∥δ∥p ≤ ε, 0 ≤ x0 + δ ≤ 1

We denote by ε > 0 the maximal allowable perturbation under the ℓp norm. In practice, the ℓp norm
is often replaced by the ℓ2 or ℓ∞ norm (Carlini & Wagner, 2017; Ilyas et al., 2018a;b; Zhao et al.,
2020).

2.2 OBJECTIVE FOR ADVERSARIAL ATTACK WITH AUTOMATICAL REGION DETECTION

In this subsection, we propose a new objective function for adversarial attack with automatic region
detection. In order to detect the region automatically, an additional ℓG0 norm group constraint is
added. Then, the adversarial attack problem can then be reformulated as follows:

min
δ

f(x0 + δ, y) s.t.∥δ∥G0 ≤ k, ∥δ∥∞ ≤ ε, 0 ≤ x0 + δ ≤ 1, (1)

where f(·) is margin loss function (Carlini & Wagner, 2017), k is group sparsity of perturbation, ε
is the magnitude of the perturbation. In the targeted attack scenario, y is the targeted class (y ̸= y0),
which is the true class (y = y0) in the untargeted attack scenario. The definition of ∥δ∥G0 , the number
of non-zero groups in a vector, is as follows.
Definition 1. Suppose G = {G1, . . . , GM} is a set of M groups that can arbitrarily overlap,
Gi ⊆ [d] and ∪M

i=1Gi = {1, 2, . . . , d}. We use BM to represent the space of M -dimensional binary
vectors and define ι : Rd → BM , for any δ in Rd, ι(δ)i = 1 if δi ̸= 0 and ι(δ)i = 0 otherwise. We
define the incidence matrix AG ∈ Bd×M : AG

ij = 1 if i ∈ Gj and AG
ij = 0 otherwise. The group ℓG0

norm is defined as

∥δ∥G0 := min
a∈BM


M∑
j=1

aj : A
Ga ≥ ι(δ)

 , (2)

where AGa ≥ ι(δ) means that supp(δ) ⊆ ∪aj=1Gj .

3 PROPOSED METHOD

In this section, we introduce our proposed approach to address the problem (1). We outline the
key steps involved in our method. Firstly, we employ the natural evolutionary strategy to estimate
the gradient. Secondly, we reframe the objective problem by employing the first-order Taylor ap-
proximation. Lastly, we present a comprehensive algorithmic description, providing a step-by-step
account of our method.
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3.1 NATURAL EVOLUTIONARY STRATEGY

To develop an effective technique, one intuitive strategy is to employ gradient-based methods for
generating adversarial examples while minimizing query requirements. Thus, we use the Natural
Evolutionary Strategy (NES) (Wierstra et al., 2014), which is a derivative-free optimization approach
centered around a search distribution framework. Specifically, given a current point x, we utilize a
search distribution π(θ|x) to generate a new point θ from x based on this distribution. Instead of
directly minimizing the loss function f , we focus on minimizing the expected value F of the loss
function under the search distribution π(θ|x). This expected value is defined as follows:

F (x, y) := Eπ(θ|x)[f(θ, y)] =

∫
f(θ, y)π(θ|x)dθ,

Next, we can compute the gradient of F (x, y) with respect to x using the following approach (Ilyas
et al., 2018a):

∇xF (x, y) = Eπ(θ|x)[f(θ, y)∇x log(π(θ|x))]. (3)

Following the methodology employed in (Ilyas et al., 2018a; Wierstra et al., 2014; Ye & Zhang,
2019), we select a point near x by introducing Gaussian noise. Specifically, we employ the central
difference sampling method to reduce variance. By evaluating the gradient using these n samples,
we obtain a variance-reduced gradient estimation, which can be expressed as follows:

g =
1

n

n/2∑
i=1

f(x+ στi, y)− f(x− στi, y)

σ
τi,

where τ ∼ N (0, I), σ is the variance. It is evident that the gradient estimation g is an unbiased
estimate of ∇xF (x, y), meaning that E[g] = ∇xF (x, y).

3.2 SEQUENTIAL APPROXIMATION AND SOLUTIONS TO EACH SUBPROBLEM

We now introduce an efficient approach to minimize F with ℓG0 and ℓ∞ constraints, utilizing our
gradient estimation to obtain an approximate or closed-form solution for F . Let’s assume that F is
a nonconvex function with smoothness. Given the current point x = x0 + δ, we have the following
relationship:

F (x0 + δ, y) ≤F (x0 + δt, y) +∇xF (x0 + δt, y)T (δ − δt) +
L

2
∥δ − δt∥22,

Obviously, to minimize the right-hand side of the inequality, we can solve the following sequential
subproblem for each given δt:

min
∥δ∥G

0 ≤k,l≤δ≤u

L

2
∥δ − SL(δ

t)∥22, where SL(δ
t) = δt − 1

L
∇F (x0 + δt, y). (4)

To simplify the objective, we combine the second and third constraints into a range δ ∈ [l, u], where
l = max(−ε,−x0) and u = min(ε, 1−x0) since they are both box constraint. And ∥·∥ denotes ∥·∥2
for simplify in this paper. Then, we discuss how to solve each subproblem (4) in the non-overlapping
and overlapping settings, respectively.

Non-overlapping groups. For non-overlapping groups, we provide a closed-form solution in the
Theorem 1. The details of the proof are given in the Appendix B.1. Note that, the closed-form
solution can also be obtained by Algorithm 2.

Theorem 1. Let Π[l,u](·) denote the projection onto [l, u]d. We define
−−→
DIS as a group of some

independent DISj , so we have

DISj = [Π[l,u](SL(δ
t))]2j − 2[Π[l,u](SL(δ

t))]jSL(δ
t)j ,

−−→
DIS := Π[l,u](δ)⊙ (Π[l,u](δ)− 2δ)⊙ IG.

π(·) denotes the indices that sort
−−→
DIS in increasing order as groups. The IG ∈ Rd is a boolean

map to indicate the position of a set of perturbations. It is denoted as IG(i) = 1, if i ∈ G, and 0
otherwise. The analytical solution under non-overlapping group sparse constraint can be obtained
that (i ∈ {1, 2, · · · ,M})

δt+1
Gi

=

{
[Π[l,u](SL(δ

t))]Gi
, i = π(1), π(2), · · · , π(k);

0, otherwise.
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Algorithm 1 FTASℓG0+∞

Input: Initial image x0, target class yt, classifier C(y|x), spar-
sity k, learning rate η, number of samples n, search vari-
ance σ

Output: Adversarial image xadv with ∥xadv − x0∥G0 ≤ k,
∥xadv − x0∥∞ ≤ ε

1: Init xadv, δ
0, t

2: while maxy C(y|xadv) ̸= yt do
3: for i = 1 to n/2 do
4: τi ← N (0, I)
5: gi =

1
2σ

(f(xadv +στi, yt)−f(xadv−στi, yt))τi
6: end for
7: g = 1

n

n∑
i=1

gi

8: δ̃t+1 = δt − ηg

9:
−−→
DIS = Π[l,u](δ̃

t+1)⊙ (Π[l,u](δ̃
t+1)− 2δ̃t+1)⊙ IG

10: ▷ ⊙ denotes the Hadamard product
11: δt+1 = Π[l,u](PG

k (
−−→
DIS, δ̃t+1)) ▷ Algorithm 2

12: xadv = x0 + δt+1

13: t = t+ 1
14: end while

Algorithm 2 PG
k (

−−→
DIS, δ)

Input: Group sparsity k, Perturbations af-
ter truncation v, Groups set G, Set of se-
lected groups Ĝ

Output: v

1: v = 0, Ĝ0 = ∅
2: for i = 1 to k do
3: Gi

opt = argminG∈G\Ĝi−1 DisG

4:
−−→
DIS =

−−→
DIS −−−→DISGi

opt

5: v = v + δGi
opt

6: δ = δ − δGi
opt

7: Ĝi = Ĝi−1 ⋃Gi
opt

8: end for

Overlapping groups. For overlapping groups, we propose an approximate solution outlined in
Algorithm 2. In each iteration of the greedy selection process, we choose a group based on the
−−→
DIS value as defined in Theorem 1. For instance, if a pixel is initially selected and belongs to
multiple groups, the

−−→
DIS value for other groups containing this pixel will be recalculated during

the subsequent steps. Additionally, to avoid redundancy, perturbation points that have already been
selected are not chosen again in subsequent iterations. The details of the proof are given in the
Appendix B.2.

3.3 ALGORITHM

In this section, we present our algorithm for solving problem (4), named FTASℓG0+∞ (First-order
Taylor Approximation Strategy with ℓG0 and ℓ∞ constraints). The pseudocode of FTASℓG0+∞ is
presented in Algorithm 1. In Line 1 in Algorithm 1, the initial value of δ is a random variable under
a uniform distribution, and then the desired k group of perturbations is selected according to

−−→
DIS.

Each iteration of our algorithm consists of two steps: (i) the NES gradient estimation step (Lines
3-7), and (ii) calculating the solution of each subproblem step, where the NES gradient estimation
step is the one described in subsection 3.1. Calculating the solution of each subproblem can also
be divided into three steps in implementation: (i) perform gradient updating on δk, (ii) calculate
−−→
DIS according to Line 9 of Algorithm 1, (iii) get the smallest k groups index according to the
value of

−−→
DIS, reserve the corresponding index δ̃t+1, and the others are 0, and (iiii) clip the result in

max{l,min{u, δ̃t+1}} to get the Π[l,u](δ̃
t+1). Details of the implementation of step (iii) are shown

in Algorithm 2. This ensures that all iterations of perturbations are under the k-groups sparsity and
within the ℓ∞ constraint. In Algorithm 2, we select the group with minimum

−−→
DIS greedily. For

non-overlapping groups, we can obtain the closed-form solution in Theorem 1.

On the other hand, given a vector δ ∈ Rd that requires projection onto the constraint set ∥δ∥G0 ≤ k
and l ≤ δ ≤ u, we encounter an NP-hard problem when G constrains arbitrary overlapping groups,
rendering it challenging to solve the problem (4). We can obtain an approximate solution from
Algorithm 2, and provide theoretical guarantees under the standard assumptions when applied to the
overlapping group sparsity problem. The convergence analysis is detailed in the Appendix C.

4 THEORETICAL PERFORMANCE BOUNDS

In the following, we present the convergence analysis for Algorithm 1. First, we give two important
assumptions used in our analysis.
Assumption 1. (RSC/RSS).The function f : Rd → R satisfies the restricted strong convexity
(RSC) and restricted strong smoothness (RSS) of order k∗ + k, which can be expressed as the
following : αk∗+kI ⪯ H(δ) ⪯ Lk∗+kI, where H(ω) is the Hessian of f at any δ ∈ Rd s.t.
∥δ∥G0 ≤ k∗ + k.
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RSC and RSS conditions have been widely studied in high dimensional statistical theory (Raskutti
et al., 2010; Loh & Wainwright, 2013; Agarwal et al., 2010). They guarantee that the objective func-
tion behaves like a strongly convex and smooth function over a sparse domain even if the function
is non-convex.
Assumption 2. f(x0+δ, y) is bounded on its domain, that is, there exists a generic constant B > 0
such that: ∀δ ∈ Rd, l ≤ δ ≤ u : |f(x0 + δ, y)| ≤ B.

Based on the above assumptions, we can now offer theoretical assurances for Algorithm 1:

Theorem 2. Let δ∗ denote the optimal solution to the problem (1), k∗ denotes ∥δ∗∥G0 , we can set
k̂ = O (k∗ log (∥δ∗∥ /ξ)) (to ensure that for all δ̃t ξ ≥ e−

k̂
k∗ ∥δ̃t∥2), η = 1

Lk+k∗ , under Assumptions
1 and 2 we have a geometric convergence rate, of the following form:

E∥δT − δ∗∥ ≤ ρTE∥δ0 − δ∗∥+ (
1

1− ρ
) · (a+ b+ c),

where ρ = (1 +
√

k∗

k−k̂
)(1− αk+k∗

Lk+k∗ ), a =
1+

√
k∗/(k−k̂)

Lk+k∗ · (
√
dLk+k∗σ +

√
dB√
nσ

), c =
√

k∗ξ

k−k̂
,

b =
1+

√
k∗/(k−k̂)

Lk+k∗ ·max{∥∇f(δ∗)G∥2 | G = ∪k̃
i=1Gji , Gji ∈ G, k̃ ≤ k + k∗}.

Remark 1. Let k = O(
L2

k+k∗

α2
k+k∗

k∗ + k̂) and set σ, n appropriately, then the output of Algorithm 1

after T = O(
L2

k+k∗

α2
k+k∗

· log 1
ξ ) iterations satisfies

∥δT − δ∗∥ ≤ 3ξ +
L2
k+k∗

α2
k+k∗

b.

The approximation errors of the quantity a in Theorem 2 are induced by two factors: the first one is
the approximation of the true function of f(x, y) by the function F (x, y), and the second one is the
approximation of ∇F (x, y) via sample average approximations. If argminδ f(x0 + δ, y) ∈ [l, u]d

and ∥ argminδ f(x0 + δ, y)∥G0 ≤ k, then b = 0. ξ comes from the greedy hard-threshold process
in Algorithm 2, in theory ξ can be arbitrarily small if we set k̂ = O (k∗ log (∥δ∗∥ /ξ)). And if G is
non-overlapped, c = ξ = 0. As we reduce ξ, the value of k̂ increases, so does k, which leads to an
increase in b. So there is a trade-off between the estimation error represented by ξ and the model
selection error indicated by b. We prove the theorem and the remark in the Appendix C.

5 EXPERIMENTS

In this section, we conduct a comprehensive comparison of our proposed method with black-box ad-
versarial attack methods in the targeted scenario (see Appendix D.6 for untargeted results). Firstly,
querying a model will cost expensive money and resources in the real world. Thus, we are interested
in query-efficient algorithms for generating adversarial examples. On the CIFAR10 and MNIST
datasets, we set the maximum number of queries to 10k for untargeted scenarios, 20k for targeted
scenarios, and 20k and 40k for the ImageNet dataset. Secondly, we also pay attention to the im-
perceptibility of perturbations. We add another ℓ∞ norm to control how visible perturbations are to
the human eye. Thus, our proposed method provides better structure and insights into vulnerable
regions compared to single-constrained attacks.

5.1 BASELINE METHODS

In this section, we conduct a comprehensive evaluation of the performance between our proposed
method and various attack modes, including global, region-wise, and pixel-wise sparse attack
modes. Specifically, we consider two types of global attacks: gradient estimation methods and
heuristic methods. For gradient estimation, we compare with the Zeroth-Order Natural Gradient
Descent attack (ZO-NGD)(Zhao et al., 2020), which imposes an ℓ∞ constraint. On the other hand,
Parsimonious Attack (Moon et al., 2019) and Square Attack (Andriushchenko et al., 2020) with the
boundary of ℓ∞ constraint are used as heuristics to compare our algorithm. Both attacks operate on
the entire image region. We provide detailed analysis and results by comparing ASR, ℓ0, ℓ2, and ℓ∞
norm to demonstrate that we just need fewer perturbations at a similar success rate.
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Figure 3: Average query count and Attack Success Rate (ASR) achieved by our algorithm on MNIST
(M) and CIFAR10 (C) datasets under varying disturbance ratio, with ε = 0.1 on CIFAR10 datasets,
ε = 0.4 on MNIST datasets. The ℓ∞ constraints of other algorithms are the same as ours.

In addition to the global attacks, we also evaluate our proposed method under region-fixed and
region-wise attack modes. Specifically, we conduct Fixed-ZO-NGD, Fixed-Square, and Fixed-
Parsimonious, which focus on a fixed region of the image. We evaluate ASR, average, and median
queries to demonstrate that our method has a higher success rate with fewer queries than state-of-the-
art attack algorithms under fixed regions. Furthermore, we compare with the Patch-RS in Sparse-RS
(Croce et al., 2022) within the same perturb pixels, which heuristically found the location of the
patch. In addition, we utilize visual presentation to demonstrate the structure of our perturbation set
compared with pixel-wise sparse attack methods SZOHT (de Vazelhes et al., 2022).

Each of these attack types has its advantages and disadvantages, as summarized in Tab. ??. Our
evaluation provides insights into the effectiveness and better structure of our proposed method over
other different attack modes. Due to space limitations, we defer the results on the ImageNet dataset
and ablation experiments to Appendix D.7 and Appendix E.

Table 1: Characteristics of different types of attacks.

Attack Type Description Visibility Objective

Global Alters entire image uniformly. Highly Degrade overall image quality.
Regional Targets specific areas. Moderately Conceal or alter specific parts.

Sparse Pixel-wise Alters a few scattered pixels. Least Sparse and conspicuous disturbance.

5.2 RESULT AND ANALYSIS

As demonstrated in the previous section, we conduct a comprehensive comparison of global attack
methods including Parsimonious, Squareℓ∞, and ZO-NGD attacks. As shown in Tab. 2 and Fig. 3.
For region-wise attacks, we compare with region-fixed global algorithms and Patch-RS of Sparse-
RS. It was shown in Tab. 3 and Fig. 4. For pixel-wise sparse attack mode, we give a visual
presentation in Fig. 5.

Global attack mode: As shown in Tab. 2, we can obtain that our method exhibits a more significant
performance than other algorithms when the proportion of the disturbed image reaches 100%, that
is the global perturbation. And achieve a similar ASR to Squareℓ∞ and better than ZO-NGD at
a 30% ratio of perturbation. From Fig. 3, we can see that we need to strike a balance on the
constraint boundary to get low queries and high ASR. Before we reach a 100% perturbing ratio,
we can outperform other algorithms in ASR and Avg. query performance. We generate sparse and
imperceptible perturbations through controllable constraints, and under tight query budgets, we can
achieve higher ASR by perturbing fewer pixels than global perturbations.

Region-wise attack mode: In Tab. 3, Patch-RS achieved a great performance by heuristically
drawing a square patch on the image, but this patch is easily detectable to the human eye. Our
overlapping group algorithm performs better than others. From Fig. 4, we can see that when ε
reaches 0.5 ∼ 0.6, the performance of our overlapping group both in Avg. query and ASR exceeds
that of Patch-RS. As can be seen from the ℓ2 and ℓ∞ distance, the imperceptibility of our method is
stronger.

In the region-fixed attack mode, we maintain the same constraint, i.e., the same amount of pertur-
bation and the same magnitude of perturbation. As shown in Tab. 4, our algorithm is much better
than other region-fixed algorithms under the same strict constraints and query budget. For both the
MNIST and CIFAR10 datasets, the object of interest typically occupies a significant portion of the

7



Under review as a conference paper at ICLR 2024

Table 2: Comprehensive comparison of global attack algorithms with ℓ∞ constraints on CIFAR10
and MNIST, where ε = 0.4 in MNIST, ε = 0.1 in CIFAR10.

CIFAR10 MNIST
Algorithm ASR Avg. Med. ℓ0 ℓ2 ASR Avg. Med. ℓ0 ℓ2

Parsimonious 96.00% 1164.3 212.0 3061.0 5.4 88.74% 2318.4 65.0 227.7 5.5
Squareℓ∞ 90.69% 1405.5 103.0 3053.9 5.4 98.07% 419.5 103.0 478.6 8.3
ZO-NGD 75.20% 6105.2 707.0 3055.3 5.4 96.90% 522.9 101.0 469.6 8.2
Ours(N)100%d 99.40% 963.4 387.5 3051.4 5.1 98.66% 286.4 93.5 511.9 8.0
Ours(O)100%d 98.67% 980.9 379.0 3057.7 5.0 99.03% 412.9 104.5 541.0 7.8
Ours(N)30%d 90.13% 4684.3 1353.5 923.4 2.9 87.28% 4531.8 1076.0 197.9 5.3
Ours(O)30%d 91.61% 4999.0 1470.5 908.4 2.8 77.40% 6290.3 1581.0 176.4 4.9

* (N) Non-overlapping groups; (O) Overlapping groups; Number%d: the proportion of perturbed image features.

Table 3: Comprehensive comparison of Sparse-RS (Patch-RS) algorithms with ℓ0 constraints on
MNIST and CIFAR10. The perturbation ratio of the image is 10% of all features for all algorithms.

CIFAR10 MNIST
Algorithm ASR Avg. Med. ℓ2 ℓ∞ ASR Avg. Med. ℓ2 ℓ∞

Patch-RS 92.51% 1954.0 74.0 8.9 0.9 88.45% 2953.8 146.0 6.3 0.9
Ours(N)ϵ=1 93.16% 2386.7 1714.0 8.4 0.9 99.25% 931.2 373.5 7.9 1.0
Ours(O)ϵ=1 99.08% 1537.7 352.0 12.6 1.0 100.00% 359.3 142.5 10.7 1.0
Ours(N) 72.60% 8960.2 4822.0 2.8 0.2 82.00% 5450.5 1266.5 4.1 0.5
Ours(O) 84.58% 6638.4 3369.0 3.5 0.2 91.51% 3513.0 1009.0 4.9 0.5

* (N) Non-overlapping groups; (O) Overlapping groups; Our without footnotes indicates ε = 0.2 for CIFAR10,
ε = 0.5 for MNIST.

image. Consequently, selecting the attack region fixed at the center of the image yields better results
compared to other locations. To showcase the exceptional efficiency of our algorithm comprehen-
sively, we provide additional results for perturbations in other locations in the Appendix E.1.
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(b) ASR on M
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(c) Avg. queries on C
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Figure 4: Average query count and Attack Success Rate (ASR) achieved by our algorithm on MNIST
(M) and CIFAR10 (C) datasets under different disturbance amplitude. Only 10% of dimensions have
been perturbed on both datasets. The total number of maximum perturbed pixels is the same for all
algorithms.

Pixel-wise attack mode: In the last column of Fig. 5, we present the visual renderings of the
adversarial examples generated by SZOHT. It is evident that SZOHT introduces sparse perturbations
across global pixels. But intuitively, these perturbations may not exhibit a direct connection to the
target class.
Original FTASℓ𝟎+∞

𝓖 Patch-RS Square Fixed-Square Parsimonious Fixed-Parsimonious SZOHT

Figure 5: Adversarial examples and the corresponding perturbation on ImageNet datasets crafted by
all baseline methods when attacking the Inception-v3 model in the black-box setting with a random-
selected target.
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Table 4: Comprehensive comparison of region-fixed targeted attack algorithms with ℓ0+∞ con-
straints on MNIST and CIFAR10, where ε = 0.4 in MNIST, ε = 0.1 in CIFAR10. The perturbation
ratio of the image is 10% of all features for all algorithms.

CIFAR10 MNIST
Algorithm ASR Avg. Med. ASR Avg. Med.

Fixed-Parsimonious 26.00% 15062.5 20000.0 6.79% 18717.1 20000.0
Fixed-Squareℓ∞ 57.56% 11599.6 8754.0 17.38% 16630.1 20000.0
Fixed-ZO-NGD 33.50% 10688.3 20000.0 36.12% 14573.9 20000.0
Ours(N)10%d 63.77% 9944.6 7512.0 59.70% 9476.7 4768.0
Ours(O)10%d 60.65% 10488.5 7892.0 50.13% 11289.9 19936.5

* (N) Non-overlapping groups; (O) Overlapping groups; Number%d: the proportion of per-
turbed image features.

Region-wise attack on ImageNet:

In this study, we present the performance of region-wise adversarial attacks on the ImageNet dataset,
which are concisely summarized in the subsequent table. A detailed analysis can be obtained in
Part D in the appendix. It was observed that attacks targeting high-resolution images exhibit lower
success rates and necessitate a greater number of queries, particularly when subject to double con-
straints. The complexity of high-resolution images and intricate network architectures underscore
the need for more refined optimization strategies in adversarial attacks. Notably, in scenarios in-
volving non-overlapping groups, our proposed methodology demonstrates a distinct advantage by
offering a closed-form solution, in contrast to the heuristic approach.

Table 5: Performance of region-based attack patterns on the ImageNet dataset

Inception-v3 ViT-B/16
Algorithm ASR Avg. Med. ASR Avg. Med.

Patch-RS 92.29% 2968.6 685.5 86.90% 3572.8 1849.5
Ours(N)ϵ=1 98.95% 2756.8 312.0 98.89% 2682.5 1478.0
Ours(O)ϵ=1 98.02% 1927.4 406.5 99.84% 3896.7 1008.5
Fixed-Parsimonious 74.46% 9631.3 7543.0 85.36% 8248.5 4952.5
Fixed-Squareℓ∞ 75.53% 8893.3 2984.5 78.95% 8624.8 2286.0
Fixed-ZO-NGD 79.12% 7436.0 1500.0 80.98% 9426.0 3789.5
Ours(N)10%d,ϵ=0.1 76.89% 7202.8 5117.7 77.26% 6796.3 5470.0
Ours(O)10%d,ϵ=0.1 83.15% 5298.4 2965.0 89.40% 6300.5 3238.0

6 CONCLUSION

In conclusion, we presented a novel approach for region-wise adversarial attacks in the black-box
setting. By utilizing automatic region selection, and controllable imperceptibility, our proposed
method showed improved effectiveness and interpretability compared to existing attack modes. Ex-
perimental evaluations demonstrated that the method required fewer perturbations and queries while
achieving higher success rates. We provide valuable insights into understanding vulnerable regions
and enhancing the robustness of deep neural networks against adversarial attacks. Of course, we
acknowledge that different groupings will have a great impact on the results, and in the future,
we will explore the combination of this method with techniques such as image segmentation and
principal component analysis to explore the robustness and fragility of neural networks from more
perspectives.
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APPENDIX FOR “QUERY EFFICIENT BLACK-BOX ADVERSARIAL ATTACK
WITH AUTOMATIC REGION SELECTION”

The appendix contains several additional results that were excluded from the main body of the paper
due to space constraints, along with the proof process of the lemma and solutions. The organization
of the appendix is as follows:

Part A Related Work: This section provides a discussion and review of relevant existing work in
the field.

Part B Proof for Closed-form and Approximate Solution: Here, the appendix outlines the proof
for the closed-form and approximate solutions proposed in the paper.

Part C Proof of Convergence: This section provides a detailed proof procedure for convergence
analysis.

Part D Supplementary experiment: This section provides details of the setup of the experiment,
the performance of untargeted attacks on CIFAR10 and MNIST datasets, and the performance on
the ImageNet dataset.

Part E Ablation experiment: This section provides a comprehensive evaluation of region-fixed
algorithms that are fixed to different regions. In addition, there was an ablation assessment of the
size of the group window.

Part F Supplementary: This section provides confirmatory experiments on approximate solutions,
as well as histograms of frequency distributions for query distributions.

A RELATED WORK

In the previous adversarial work, designing imperceptible perturbations was the main goal. With the
deepening of our work, we find that exploring the vulnerable regions of the image is an important
part of the work. The exploration of the vulnerable region and explanatory properties of disturbances
remains at the empirical level. Indeed, exploring the interpretability of adversarial attacks and the
vulnerability of neural networks is indeed a novel and important research direction.

In recent years, some structural attacks have emerged in white-box attacks, which capture and lever-
age structural information hidden in the input (Kazemi et al., 2023; Xu et al., 2018; Zhu et al., 2021).
For instance, FWnucl (Kazemi et al., 2023) introduced nuclear norm regularization to promote struc-
tured sparsity in perturbations. By incorporating structure-enhancing algorithms, they investigated
distortion sets that exhibit enhanced structural properties. This work highlights the potential bene-
fits of incorporating structural information into adversarial attack methods. Homotopy-Attack (Zhu
et al., 2021) extends its algorithm to include group-wise sparsity and adapts the nmAPG solution.

Furthermore, StrAttack (Xu et al., 2018) introduced a structural loss term to generate perturbations
that preserve important image features. This was achieved through the partitioning of groups based
on coordinates, where perturbations within the same group are spatially continuous. By enforcing
this structural constraint, StrAttack produces perturbations that are visually meaningful and inter-
pretable. However, It cannot control the number of perturbed regions exactly since it uses the ℓ1
norm on the group norms while we use the ℓ0 norm. That means it will generate more perturbations
on the images and cause greater damage to images. Although it can use different thresholds to ad-
just how many groups to select, it needs to carefully tune the hyperparameters to get the appropriate
hyperparameter. This leads to a very high time complexity compared to our method.

To the best of our knowledge, there has been relatively limited research on black-box attacks specif-
ically aimed at exploring vulnerable regions within images. From a technical standpoint, black box
attacks present significant challenges as they inherently lack effective solutions, making the gener-
ation of interpretable perturbations a formidable task. This challenge arises from the complexities
involved in both optimization techniques and attack strategies.

In addition, there is also some work that continues to explore the performance of the physical world
of black-box adversarial attacks. They focus more on the meaning of methods in the physical world,
mainly in the areas of face recognition or traffic sign recognition. For instance, (Feng et al., 2022)
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proposed GRAPHITE that can automatically generate small masks and optimize with gradient-free
optimization. (Wei et al., 2022) proposed a method to simultaneously optimize the position and
perturbation for an adversarial patch in the black-box scenario.

B SOLUTION

B.1 PROOF FOR NON-OVERLAPPING GROUPS

Proof. We divide the proof into two steps below.

First step. Let’s first consider the following optimization problem for the non-overlapping fixed set
A, where A ⊆ G, |A| ≤ k. We define that lGi

≤ δGi
≤ uGi

if ∀Gi ∈ A, and δGi
= 0 otherwise.

Then the problem can be written as below:

min
δ

L

2
∥δ − SL(δ

t)∥2

s.t. δGi
= 0,∀Gi /∈ A; lGi

≤ δGi
≤ uGi

,∀Gi ∈ A
(5)

Let Gi be arbitrarily chosen. One can observe that the objective function and the constrained set of
problems are both separable. Using this fact, the problem (5) can be transformed as

min
l≤δ≤u

L

2

∑
Gi∈G

∑
j∈Gi

(δj − SL(δ
t)j)

2

= min
l≤δ≤u

L

2

∑
Gi∈A

∑
j∈Gi

(δj − SL(δ
t)j)

2 +
L

2

∑
Gi∈G\A

∑
j∈Gi

(δj − SL(δ
t)j)

2

= min
l≤δ≤u

L

2

∑
Gi∈A

∑
j∈Gi

(δj − SL(δ
t)j)

2 +
L

2

∑
Gi∈G\A

∑
j∈Gi

SL(δ
t)2j

It is obvious that the closed solution to the above-constrained optimization problem is (i ∈
{1, 2, 3, · · · ,M})

δ∗Gi
=

{
[Π[l,u](SL(δ

t))]Gi , Gi ∈ A;

0, Gi ∈ G \ A.

Second step. The next task, we need to find the optimal set A. The optimization problem can be
transformed as

min
A

L

2
[
∑
Gi∈A

∑
j∈Gi

([Π[l,u](SL(δ
t))]j − SL(δ

t)j)
2 +

∑
Gi∈G\A

∑
j∈Gi

SL(δ
t)2j ]

= min
A

L

2

∑
Gi∈A

∑
j∈Gi

[Π[l,u](SL(δ
t))]2j − 2[Π[l,u](SL(δ

t))]jSL(δ
t)j +

L

2

∑
Gi∈G

∑
j∈Gi

SL(δ
t)2j

We define
DISj = [Π[l,u](SL(δ

t))]2j − 2[Π[l,u](SL(δ
t))]jSL(δ

t)j ,

DISGi =
∑
j∈Gi

DISj ,

where i ∈ {1, 2, · · · ,M}. Since ∀j ∈ Gi, lj ≤ 0 and uj ≥ 0, we have

• if SL(δ
t)j ∈ [lj , uj ], then

DISj = −SL(δ
t)2j ≤ 0;

• if SL(δ
t)j < lj ≤ 0, then

DISj = l2j − 2ljSL(δ
t)j

= l2j − 2lj(lj + SL(δ
t)j − lj)

= −l2j − 2lj(SL(δ
t)j − lj) ≤ 0;
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• if SL(δ
t)j > uj ≥ 0, then

DISj = u2
j − 2ujSL(δ

t)j

= u2
j − 2uj(uj + SL(δ

t)j − uj)

= −u2
j − 2uj(SL(δ

t)j − uj) ≤ 0.

So in all cases, we have DISj ≤ 0, DISGi ≤ 0. Then we sort the values of DISGi in increasing
order π(·).

DISπ(1) ≤ DISπ(2) ≤ · · · ≤ DISπ(k) ≤ · · · ≤ DISπ(M) ≤ 0.

Thus, A = {Gπ(1), Gπ(2), · · · , Gπ(k)} can be obtained by truncating indexes of the smallest k
entires of DISGπ

, where Gπ = {Gπ(1), Gπ(2), · · · , Gπ(k), · · · , Gπ(M)} (k ≤ M ).

Conclusion. Through the above proof, the analytical solution under non-overlapping group sparse
constraint can be obtained that (i ∈ {1, 2, 3, · · · ,M})

δ∗Gi
=

{
[Π[l,u](SL(δ

t))]Gi
, i = π(1), π(2), · · · , π(k);

0, otherwise.

B.2 PROOF FOR OVERLAPPING GROUPS

From problem (4), let’s first consider the following optimization problem for the overlapping fixed
set A, where A ⊆ G, |A| ≤ k. We define that lj ≤ δj ≤ uj if ∀j ∈

⋃
Gi∈A Gi, and δj = 0

otherwise. Then the problem can be written as below:

min
δ

L

2
∥δ − SL(δ

t)∥2

s.t. δj = 0,∀j /∈ ∪Gi∈AGi; lj ≤ δj ≤ uj ,∀j ∈ ∪Gi∈AGi

(6)

Let Gi be arbitrarily chosen. One can observe that the objective function and the constrained set of
problems are both separable. Using this fact, the problem (6) can be transformed as

min
l≤δ≤u

L

2

∑
j∈

⋃
Gi∈A Gi

(δj − SL(δ
t)j)

2 +
L

2

∑
j∈[d]\

⋃
Gi∈A Gi

(δj − SL(δ
t)j)

2

= min
l≤δ≤u

L

2

∑
j∈

⋃
Gi∈A Gi

(δj − SL(δ
t)j)

2 +
L

2

∑
j∈[d]\

⋃
Gi∈A Gi

SL(δ
t)2j (7)

Obviously, the objective function and the constrained set of problems are both separable by index.
For the box constraint l ≤ δ ≤ u, we can obtain the optimal solution Π[l,u](SL(δ

t)). Then we
rewrite (7) as

min
A

L

2
[

∑
j∈

⋃
Gi∈A Gi

([Π[l,u](SL(δ
t))]j − SL(δ

t)j)
2 +

∑
j∈[d]\

⋃
Gi∈A Gi

SL(δ
t)2j ]

= min
A

L

2

∑
j∈

⋃
Gi∈A Gi

[Π[l,u](SL(δ
t))]2j − 2[Π[l,u](SL(δ

t))]jSL(δ
t)j +

L

2

∑
j∈[d]

SL(δ
t)2j .

This is equivalent to

min
A

∑
j∈

⋃
Gi∈A Gi

[Π[l,u](SL(δ
t))]2j − 2[Π[l,u](SL(δ

t))]jSL(δ
t)j .
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𝛿𝑡

𝛿𝑡+1
First-order

expansion contour

Objective function

𝛿𝑡
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Π[𝑙,𝑢](𝛿
𝑡+1)𝐺[𝑘]

ℓ∞ constraint

ℓ0
𝒢

constraint

First-order
expansion

Projection

Original Target

Figure 6: Algorithm Schematic diagram. The original problem is non-convex. The figure illus-
trates the iterative update process for finding the optimal δ∗ using NES gradient estimation. The
search process involves utilizing a first-order Taylor expansion followed by projection onto the im-
posed constraints. After projection, iterative updates are performed until either a successful attack
is achieved or the maximum query limit is reached.

Denote
DIS := Π[l,u](SL(δ

t))⊙
(
Π[l,u](SL(δ

t))− 2SL(δ
t)
)
, (8)

where ⊙ denotes the Hadamard product. Then we can define a Boolean map IG ∈ Rd to indicate
the position of a set of perturbations. It is denoted as IG(i) = 1, if i ∈ G, and 0 otherwise. We
define

DISG = DIS ⊙ IG. (9)
To project k overlapping groups from G, we implement an iterative greedy method similar to IHT,
which projects one group at a time and updates the index set to avoid duplicate selection for the
same indexes. Thus, in iteration i(1 ≤ i ≤ k), we can find optimal group Gi

opt using

Gi
opt = argmin

G∈G\Ĝi−1

DISG, (10)

where Ĝi =
{
G1

opt, . . . , G
i
opt

}
denotes already selected groups after ith iteration, with initial value

∅ and Ĝk = A. The details can be found in Algorithm 2 with the geometric interpretation illustrated
in Fig. 6.

B.3 COST ANALYSIS

In this section, we will analyze the complexity of region selection and optimize the attack with the
current region in the case of overlapping groups. In our method, Algorithm 2 is used to determine
the region to be attacked which has the time complexity of P (k̂d). Algorithm 1 can be viewed
as optimizing the attack with the current region. The total complexity is O(Tnd). The following
table lists the detailed time complexity of each row in our algorithm according to Algorithm 1 and
Algorithm 2. In the table, T denotes the number of iterations, d denotes the dimension of data, n
denotes the population of each estimated gradient, and k̂ indicates the number of reserved groups in
the constraint.

Table 6: The complexity of optimizing the
attack with the current region.

Lines Time Complexity

3-6 O(nd)
7 O(n)

8-9 O(d)
12 Region Selection
16 O(d)
17 O(1)

Total O(Tnd)

Table 7: The complexity in the region selec-
tion process.

Lines Time Complexity

3 O(d)
4 O(d)
5 O(d)
6 O(d)
7 O(d)

Total O(kd)
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C PROOF OF CONVERGENCE

Algorithm 2 can be understood as a two-step projection in a simple way.

Step-1. We first select k̂ groups according to the following rules:

Gi = argmin
G∈G\∪i−1

n=0G
n

DisG,

where G ∈ G. We specify that G0 = ∅, and denote the greedy projection result δ∪k̂
i=1G

i as

PG
k̂
(δ).

Step-2. Projecting PG
k̂
(δ) onto [l, u]d, using Π[l,u](·) to represent the corresponding projection op-

erator.

C.1 NOTATIONS AND DEFINITIONS

For the sake of convenience, we give a review of the definitions provided before and defined some
new symbols.

• f(δ) denotes f(x0 + δ, y).

• F (·) denotes the Gaussian smoothing of f(·).
• ∇F (δt) denotes the gradient of F (·) at δt.

• gt denotes the variance-reduced gradient of F (·) at δt.

• δ̃t+1 = δt − ηgt.

• pt+1 denotes PG
k̂
(δ̃t+1).

• Π(·) : Rd → [l, u]d.

• δt+1 = Π(pt+1).

• δ∗ denotes the optimal solution to the problem (1).

• k∗ denotes ∥δ∗∥G0 .

•
−−→
DIS(δ,G) := Π[l,u](δ)⊙ (Π[l,u](δ)− 2δ)⊙ IG.

• DIS∗(δ,G) = ∥−−→DIS(δ,G)∥1.

C.2 LEMMAS

Lemma 1. For any vector g ∈ Rd, using Algorithm 2 to obtain its projection onto the space where
∥ · ∥G0 ≤ k, and suppose that X = {Gi1 , Gi2 , . . . , Gik̂

} is the set selected in order according to
Algorithm 2, and a set E ⊆ [d] such that there exists T = {Gt1 , Gt2 , . . . , Gtk∗} satisfying T ⊆ G
and E ⊆ ∪k∗

j=1Gtj , the following inequality must hold

DIS∗(g, X) ≥ (1− e−
k̂
k∗ )DIS∗(g, E).

Then, it is obvious that DIS∗(g, X) ≥ DIS∗(g, E) when G is non-overlapped and k̂ ≥ k∗.

Proof. It is obvious that the function DIS∗(g, ·) : 2[d] → R satisfies the inequality

DIS∗(g, Y \ S) ≥ DIS∗(g, Y \ T ),
DIS∗(g, S ∪ Y )− DIS∗(g, S) ≥ DIS∗(g, T ∪ Y )− DIS∗(g, T ),

where ∀S, T, Y ∈ 2[d], S ⊆ T . Let Tm = ∪m
j=0Gtj , Xn = ∪n

j=1Gij , and T0 and X0 as
empty sets. Then, based on the properties mentioned above, and the way X is selected (Gik =
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argminG∈G\∪k−1
n=1Gin

DISG), we have

DIS∗(g, Tk∗) ≤ DIS∗(g, Xn ∪ Tk∗)

= DIS∗(g, Xn ∪ Tk∗)− DIS∗(g, Xn) + DIS∗(g, Xn)

=

k∗∑
j=1

(DIS∗(g, Xn ∪ Tj)− DIS∗(g, Xn ∪ Tj−1)) + DIS∗(g, Xn)

≤
k∗∑
j=1

[DIS∗(g, Xn ∪Gtj )− DIS∗(g, Xn)] + DIS∗(g, Xn)

≤ k∗[DIS∗(g, Xn+1)− DIS∗(g, Xn)] + DIS∗(g, Xn).

Based on this recursive relation, we can obtain that

DIS∗(g, X) = DIS∗(g, Xk̂)

≥ [1− (1− 1

k∗
)k̂]DIS∗(g, Tk∗)

≥ [1− ((1− 1

k∗
)k

∗
)

k̂
k∗ ]DIS∗(g, Tk∗)

≥ (1− e−
k̂
k∗ )DIS∗(g, Tk∗)

= (1− e−
k̂
k∗ )DIS∗(g, T )

≥ (1− e−
k̂
k∗ )DIS∗(g, E).

For the third ≥, note that the (1− 1
k∗ )

k∗
is monotonically increasing, and its limit is 1

e , and k̂
k∗ ≥ 0.

Lemma 2. Let ω and ω∗ ∈ R s.t. ∥ω∗∥G0 ≤ k∗. Let S = supp(PG
k̂
(ω)), S∗ = supp(ω∗) and

M = S∗ \ S. Then the following holds

DIS∗(ω,M)

k∗
− ξ

k − k̂
≤ DIS∗(ω, S\S∗)

k − k̂
,

where k̂ = O(k∗log(∥w∗∥/ξ)), if G is non-overlapped , then ξ = 0 .

Proof. Let O = {Gi1 , Gi2 , . . . , Gik} be the k-groups selected when Algorithm 2 is applied to ω,
and let Q = {i1, i2, · · · , ik}. Then,

DIS∗(ω, Gij\ (∪1≤ℓ≤j−1Giℓ)) ≥ DIS∗(ω, Gi\ (∪1≤ℓ≤j−1Giℓ)), ∀1 ≤ j ≤ k, ∀i /∈ Q.

Now, as ∪1≤ℓ≤j−1Giℓ ⊆ S,∀1 ≤ j ≤ k, we have

DIS∗(ω, Gij\ (∪1≤ℓ≤j−1Giℓ)) ≥ DIS∗(ω, Gi\S), ∀1 ≤ j ≤ k, ∀i /∈ Q.

Let P = {ℓ1, . . . , ℓk∗} , s.t. supp(ω) ⊂ ∪1≤j≤k∗Gℓj
. Then, adding the above inequalities for all

ℓj s.t. ℓj ∈ P , we get

DIS∗(ω, Gij\ (∪1≤ℓ≤j−1Giℓ)) ≥
DIS∗(ω, S∗\S)

k∗
, (11)

where the above inequality also uses the fact that
∑

ℓj∈P DIS∗(ω, Gℓj\S) ≥ DIS∗(ω, S∗\S).
Adding (11) ∀(k̂ + 1) ≤ j ≤ k, we can get

DIS∗(ω, S)− DIS∗(ω, B) ≥ k − k̂

k∗
· DIS∗(ω, S∗\S),

where B = ∪1≤j≤k̂Gij . Moreover using Lemma 1, we get

DIS∗(ω, B) ≥ (1− e−
k̂
k∗ )DIS∗(ω, S∗),
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and if we set k̂ = O(k∗log(∥w∗∥2/ξ))(note:DIS∗(ω, S∗) ≤ ∥wS∗∥2)

DIS∗(ω,M)

k∗
≤ DIS∗(ω, S)− DIS∗(ω, B)

k − k̂

≤ DIS∗(ω, S)− DIS∗(ω, S∗) + ξ

k − k̂

≤ DIS∗(ω, S \ S∗) + ξ

k − k̂
,

and if G is non-overlapped ξ = 0 . Lemma now follows by a simple manipulation of the above-given
inequality.

Lemma 3. Under the Assumption1 and Assumption2 we can obtain, for all ∥x∥G0 ≤ k + k∗ the
following inequality must hold

Eui∼N(0,I)∥g(x)−∇f(x)∥ = Eui∼N(0,I)∥(∇F (x)−∇f(x)) + (g(x)−∇F (x))∥
≤ Eui∼N(0,I)∥∇F (x)−∇f(x)∥+ Eui∼N(0,I)∥g(x)−∇F (x)∥

≤
√
dLk+k∗σ +

√
dB√
nσ

.

Proof. For the first part see (Berahas et al., 2022), then we proof the second part. We define

g(x) =
1

2n

n∑
i=1

(
f(x+ σui)− f(x− σui)

σ
)ui

=
1

2n

n∑
i=1

f(x+ σui)

σ
ui +

1

2n

n∑
i=1

f(x− σui)

σ
(−ui)

=
1

2
(g+(x) + g−(x)),

then we have

Eui∼N(0,I)∥g(x)−∇F (x)∥ ≤ 1

2
Eui∼N(0,I)∥g+(x)−∇F (x)∥+ 1

2
Eui∼N(0,I)∥g−(x)−∇F (x)∥

= Eui∼N(0,I)∥g+(x)−∇F (x)∥

≤ (Eui∼N(0,I)∥g+(x)−∇F (x)∥2) 1
2

= (Eui∼N(0,I)∥
1

n

n∑
i=1

(
f(x+ σui)

σ
ui −∇F (x))∥2) 1

2

= (
1

n
Eu1∼N(0,I)(∥

f(x+ σu1)

σ
u1∥2 − ∥∇F (x)∥2) 1

2

≤ (
1

n
Eu1∼N(0,I)(∥

f(x+ σu1)

σ
u1∥2)

1
2

≤ (
B2

nσ2
Eu1∼N(0,I)(∥u1∥2)

1
2

=

√
dB√
nσ

.

Lemma 4. Q is a closed convex set, x∗ ∈ Q, we can obtain

∥y − x∗∥2 ≥ ∥PQ(y)− x∗∥2 .
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Lemma 5. Let supp (pt+1) = St+1, supp (δ
∗) = S∗, H = St+1 ∪ S∗,M = S∗\St+1, note

that (δ̃t+1)st+1
= (pt+1)st+1

,k̂ = O (k∗ log (∥δ∗∥ /ξ)) ,set η = 1/Lk+k∗ the following recursive
relationship holds:

E∥δt+1 − δ∗∥ ≤ ρE∥δt − δ∗∥+ a+ b+ c

where ρ = (1 +
√

k∗

k−k̂
)((1− αk+k∗

Lk+k∗ ); a =
1+

√
k∗/(k−k̂)

Lk+k∗ · (
√
dLk+k∗σ +

√
dB√
nσ

);

b =
1+

√
k∗/(k−k̂)

Lk+k∗ ·max{∥∇f(δ∗)G∥2 | G = ∪k̃
i=1Gji , Gji ∈ G, k̃ ≤ k + k∗}; c =

√
k∗ξ

k−k̂
.

Proof.

∥(Π(pt+1)−Π(δ̃t+1))H∥2 = ∥(Π(pt+1)−Π(δ̃t+1))St+1∪(S∗\St+1)∥
2

= ∥Π(pt+1)−Π(δ̃t+1))St+1
+ (Π(pt+1)−Π(δ̃t+1))(S∗\St+1)∥

2

= ∥(Π(pt+1))M − (Π(δ̃t+1))M∥2

= ∥(Π(δ̃t+1))M∥2.

By lemma2 and the definition of DIS∗(·, ·), we can obtain that

∥(Π(δ̃t+1))M∥2 = DIS∗(Π(δ̃t+1),M) ≤ k∗

k − k̂
DIS∗(Π(δ̃t+1), St+1\S∗) +

k∗ξ

k − k̂

=
k∗

k − k̂
∥(Π(δ̃t+1))St+1\S∗

∥2 + k∗ξ

k − k̂

=
k∗

k − k̂
∥(δ∗ −Π(δ̃t+1))St+1\S∗∥

2 +
k∗ξ

k − k̂

≤ k∗

k − k̂
∥(δ∗ −Π(δ̃t+1))St+1∪S∗∥2 +

k∗ξ

k − k̂

=
k∗

k − k̂
∥(δ∗ −Π(δ̃t+1))H∥2 + k∗ξ

k − k̂
.

so ∥(Π(pt+1)−Π(δ̃t+1))H∥ ≤
√

k∗

k−k̂
∥(δ∗ −Π(δ̃t+1))H∥+

√
k∗ξ

k−k̂
, then we obtain

∥δt+1 − δ∗∥ = ∥Π(pt+1)− δ∗∥ = ∥(Π(pt+1)− δ∗)H∥
= ∥(Π(pt+1)−Π(δ̃t+1))H∥+ ∥(Π(δ̃t+1)− δ∗)H∥

≤ (1 +

√
k∗

k − k̂
)∥(Π(δ̃t+1)− δ∗)H∥+

√
k∗ξ

k − k̂
.

By lemma 4 and δ̃t+1 = δt − ηgt then we obtain

∥δt+1 − δ∗∥ ≤ (1 +

√
k∗

k − k̂
)∥(δ̃t+1 − δ∗)H∥+

√
k∗ξ

k − k̂

= (1 +

√
k∗

k − k̂
)∥((δt − ηgt))− δ∗)H∥+

√
k∗ξ

k − k̂
.
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By the mean value theorem, assumption 1 and lemma 3

E∥(δt − ηgt − δ∗)H∥ ≤ E∥(δt − δ∗ − η(∇f(δt)−∇f(δ∗)))H∥+ ηE∥(∇f(δt)− gt)H∥
+ η∥(∇f(δ∗))H∥
≤ E∥δt − δ∗ − η(∇f(δt)−∇f(δ∗))∥+ ηE∥∇f(δt)− gt∥
+ η∥(∇f(δ∗)H∥
≤ E∥δt − δ∗ − ηH(θδt + (1− θ)δ∗) · (δt − δ∗)∥+ ηE∥∇f(δt)− gt∥
+ η∥(∇f(δ∗)H∥
≤ E∥(I − ηH(θδt + (1− θ)δ∗))∥ · ∥(δt − δ∗)∥+ ηE∥∇f(δt)− gt∥
+ η∥(∇f(δ∗)H∥

≤ (1− ηαk+k∗)E∥(δt − δ∗)∥+ η(
√
dLk+k∗σ +

√
dB√
nσ

)

+ η∥(∇f(δ∗)H∥,

where 0 ≤ θ ≤ 1. A detailed explanation of the last inequality: for a matrix A, its 2-norm is defined
as ∥A∥2 = max{∥Ax∥2 | x ∈ Rd, ∥x∥2 = 1}, and it is easy to check that the 2-norm of a positive
matrix is equal to its largest eigenvalue. We set η ≤ 1

Lk+k∗ , so 0 ⪯ I − ηH(θδt + (1 − θ)δ∗) ⪯
I − αk+k∗ηI . We assume that x is the unit eigenvector corresponding to the largest eigenvalue of
matrix I − ηH(θδt + (1− θ)δ∗)

1− αk+k∗η = ∥I − αk+k∗ηI∥
≥ ∥x∥ · ∥(I − αk+k∗ηI)x∥
≥ x⊺(I − αk+k∗ηI)x

≥ x⊺(I − ηH(θδt + (1− θ)δ∗))x

= ∥I − ηH(θδt + (1− θ)δ∗)∥.

It is obvious that Theorem 2 comes from Lemma 5.

D EXPERIMENT

In this section, we will detail the details of the experimental setup (D.1), the untargeted attack
performance of all baseline algorithms, and our algorithm on the CIFAR10 and MNIST datasets
(D.6), and the performance on the large dataset ImageNet (D.7).

D.1 EXPERIMENT SETTING

The experiments were conducted using Python 3.9 (Van Rossum & Drake, 2009) on a system run-
ning Ubuntu 22.04 with 4 NVIDIA GeForce 1080Ti GPUs. We used pre-trained models from both
TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) for evaluation. All attack algo-
rithms were implemented using Numpy (Harris et al., 2020) and PyTorch. The global random seed
was set to 0 in the experiment.

D.2 DATASETS AND MODELS

To assess the comprehensive performance of our method, we conducted experiments on three
datasets: MNIST, CIFAR10, and ImageNet(Krizhevsky et al., 2017). In addition, we evaluated
the performance of all baseline methods on a pre-trained Inception-v3 model and a pre-trained ViT-
B/16 model from Pytorch on ImageNet respectively, and we trained a CNN model on CIFAR10 and
MNIST datasets respectively. To this end, we randomly selected 100 images from the ImageNet
validation set, 1000 images from the CIFAR10 test set, and 1000 images from the MNIST test set to
generate our adversarial examples.
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The MNIST dataset consists of 60,000 training samples and 10,000 test samples, where each sample
is a 28×28 handwritten number with white letters on a black background. It contains the numbers 0
to 9(10 classes). The CIFAR10 dataset consists of 50,000 training samples and 10,000 test samples,
where each sample is a 32 × 32 color image belonging to one of ten distinct classes. We generated
adversarial examples by attacking a pre-trained Inception-v3 model (Szegedy et al., 2016), which
achieves a top-1 classification accuracy of 77.45% and a top-5 classification accuracy of 96% on
the ImageNet. Lastly, we evaluate the performance of our method in the Vision Transformer model,
ViT-B/16 (Dosovitskiy et al., 2021), which used 224× 224 as input size and 16× 16 as patch size.

D.3 EVALUATION METRICS

We utilized a range of evaluation metrics to comprehensively compare our approach’s attack success
rate, imperceptibility, and query efficiency. These metrics are detailed below.

1. Attack Success Rate (ASR): This metric measures the effectiveness of generating adver-
sarial examples. It is calculated by dividing the total number of successful attack samples
(Nadv) by the total number of all clean and correctly classified samples that are chosen
(Nall), that is, ASR = Nadv/Nall.

2. Imperceptibility: We used the ℓp norm to evaluate the imperceptibility of perturbations,
with lower values indicating better imperceptibility. If necessary, the ℓ0 and ℓ∞ norms
were employed as constraints in all algorithms.

3. Query Efficiency: In many cases, the attacker may be constrained by time or funding and
have a limited number of queries to the classifier. Lower queries effectively reduce costs
and resources. We evaluated the query efficiency of our approach by measuring the number
of times the classifier is queried during the attack process.

Table 8: Window size and stride setting

non-overlapping overlapping
window size stride window size stride

CIFAR10 / MNIST 2× 2 2 3× 3 2
ImageNet(Inception-v3) 13× 13 13 13× 13 10

ImageNet(ViT-B/16) 14× 14 14 14× 14 10

Table 9: Parameter setting. Constraints are shared among algorithms that use these constraints.

Parameter Meaning
ε Maximum disturbance radius of each pixel point
k Maximum group sparsity or pixel sparsity
n Number of Sampling in each gradient estimation
η Max learning rate
σ Search variance

D.4 METHODS SETTING

Experimental Settings of all baseline methods are as follows. Detailed Settings and parameter de-
scriptions of our methods are shown in Tab. 8 and Tab. 9.

1. Global Attack Mode: For Square Attack, we set p = 0.05 for the attack with ℓ∞ constraint.
For the Parsimonious attack, we set the initial block size to 4 for the CIFAR10 and MNIST
datasets and 32 for the ImageNet datasets. Besides, we fix the mini-batch size to 64. For
ZO-NGD, we set µ = 1, γ = 0.01 for all datasets.

2. Region-wise Attack Mode: In this mode, we take into consideration the structure of the
image, which is particularly relevant in image classification tasks. To focus on the image
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structure, we select the central region of each image for the attack. In Appendix E.1, we
provide additional results for perturbations in other locations. Our grouping method is to
divide groups from (Xu et al., 2018) by a fixed sliding window. It can generate different
perturbations by adjusting the window size and step size. The details of the specific window
size and stride are in Appendix E.2. In the Sparse-RS attack, we set α = 0.1 for MNIST and
CIFAR10 datasets for all attacks. Set α = 0.1 for targeted attacks α = 0.3 for untargeted
attacks on ImageNet datasets.

3. Pixel-wise Attack Mode: For SZOHT, we set the learning rate to 0.01, and the population
of gradient estimation is 100. We can adjust ℓG0 to maintain the same sparsity with SZOHT.
In the experiments, we set the perturb rate as 10% while setting ℓ0 to 78 for MNIST, 307
for CIFAR10, 26820 for Inception-v3, and 15052 for ViT-B/16, respectively.

D.5 NETWORK ARCHITECTURE

We present the network architectures for CIFAR-10 and MNIST datasets. Tab. 10 displays the
network architecture for CIFAR-10, while Tab. 11 provides the network architecture for MNIST.
For the model of the ImageNet dataset, we adopted the inception-v3 model provided by Pytorch’s
official website.

Table 10: Illustration of CIFAR-10 network ar-
chitecture.

type kernel size
output feature input size

Conv 3×3 32×32×3
Relu – 32×32×3
Conv 3×3 30×30×64
Relu – 30×30×64

MaxPooling 2×2 28×28×64
Conv 3×3 14×14×128
Relu – 14×14×128
Conv 3×3 12×12×128
Relu – 12×12×128

MaxPooling 2×2 10×10×128
Dense 256 3200
Relu – 256

Dense 256 256
Relu – 256

Dense 10 256
Softmax – 10

Table 11: Illustration of MNIST network archi-
tecture.

type kernel size
output feature input size

Conv 3×3 28×28×1
Relu – 28×28×1
Conv 3×3 26×26×32
Relu – 26×26×32

MaxPooling 2×2 24×24×32
Conv 3×3 12×12×64
Relu – 12×12×64
Conv 3×3 10×10×64
Relu – 10×10×64

MaxPooling 2×2 8×8×64
Dense 200 1024
Relu – 200

Dense 200 200
Relu – 200

Dense 10 200
Softmax – 10

D.6 UNTARGETED ATTACK ON CIFAR10 AND MNIST

In this section, we evaluate the untargeted attack performance of all experiments on CIFAR10 and
MNIST datasets. Tab. 12 shows the performance between our method and global attack methods.
We can see that our average and median queries are similar to those of other algorithms under the
same amount of perturbations. At 30% of the perturbation volume, we were able to maintain a high
ASR and lower detectability, despite sacrificing some queries, but these sacrifices were bearable. In
Tab. 13, our performance is on par with Patch-RS. In Tab. 14, the accuracy of our algorithm far
exceeds theirs under the same constraints. From Fig. 7, we can clearly see the adversarial samples
and perturbations generated by all the algorithms. Compared to global methods, the perturbations
generated by our method are more sparse and structured. Patch-RS drew an obvious patch on the
image, and although the disturbance range can be controlled by constraints, it is very easy to detect.
And, obviously, the smaller the disturbance range, the lower the success rate. For region-fixed
methods, focuses on a small area, which is less flexible than Patch-RS.

23



Under review as a conference paper at ICLR 2024

Table 12: Comprehensive comparison of global attack algorithms with ℓ∞ constraints on CIFAR10
and MNIST, where ε = 0.4 in MNIST, ε = 0.1in CIFAR10.

CIFAR10 MNIST
Algorithm ASR Avg. Med. ℓ0 ℓ2 ASR Avg. Med. ℓ0 ℓ2

Parsimonious 100.00% 91.2 82.0 3063.5 5.4 100.00% 36.4 38.0 260.8 6.5
Squareℓ∞ 100.00% 13.0 3.0 3054.3 5.4 100.00% 34.3 13.0 459.8 8.1
ZO-NGD 82.60% 2489.3 707.0 3055.8 5.4 99.30% 469.6 101.0 469.9 8.2
Ours(N)100%d 100.00% 52.4 9.0 3054.8 5.2 100.00% 42.6 90.0 506.7 7.8
Ours(O)100%d 100.00% 63.5 21.0 3062.0 4.6 100.00% 39.7 83.5 557.5 8.0
Ours(N)30%d 100.00% 290.1 64.0 923.4 3.0 99.47% 392.0 161.0 191.3 5.3
Ours(O)30%d 100.00% 344.2 65.5 911.7 2.9 98.06% 736.4 215.5 175.4 4.9

* (N) Non-overlapping groups; (O) Overlapping groups; Number%d: the proportion of perturbed image features.

Table 13: Comprehensive comparison of Sparse-RS (Patch-RS) algorithms with ℓ0 constraints on
MNIST and CIFAR10. The perturbation ratio of the image is 10% of all features for all algorithms.

CIFAR10 MNIST
Algorithm ASR Avg. Med. ℓ2 ℓ∞ ASR Avg. Med. ℓ2 ℓ∞

Patch-RS 100.00% 16.7 7.0 9.6 0.9 100.00% 30.8 12.0 7.0 1.0
Ours(N)ϵ=1 100.00% 39.5 6.0 10.1 0.9 100.00% 90.7 60.0 8.5 1.0
Ours(O)ϵ=1 100.00% 33.5 3.0 8.8 0.9 100.00% 36.9 15.0 9.4 1.0

* (N) Non-overlapping groups; (O) Overlapping groups.

Table 14: Comprehensive comparison of region-fixed targeted attack algorithms with ℓ0+∞ con-
straints on MNIST and CIFAR10, where ε = 0.4 in MNIST, ε = 0.1in CIFAR10. The perturbation
ratio of the image is 10% of all features for all algorithms.

CIFAR10 MNIST
Algorithm ASR Avg. Med. ASR Avg. Med.
Fixed-Parsimonious 74.00% 2871.5 349.0 40.44% 6009.6 10000.0
Fixed-Squareℓ∞ 72.04% 3079.4 75.0 54.72% 4601.6 259.0
Fixed-ZO-NGD 48.60% 5748.7 10000.0 45.80% 7965.9 10000.0
Ours(N)10%d 96.10% 1291.9 450.5 94.56% 1310.5 385.0
Ours(O)10%d 95.71% 1428.3 480.5 87.45% 1856.4 415.5

* (N) Non-overlapping groups; (O) Overlapping groups; Number%d: the proportion of perturbed
image features.
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Figure 7: Visualization results on the CIFAR10 and MNIST dataset.

D.7 PERFORMANCE ON IMAGENET

In this section, we investigate the effectiveness of untargeted attacks on the ImageNet dataset. We
comprehensively evaluate three modes including global attack, region-wise attack, and region-fixed
attack. The region-fixed attack method is the area of the attack fixed in the center of the image.
Through our extensive experiments, we uncover a significant decline in the performance of region-
fixed algorithms when applied to the ImageNet dataset. Notably, our method demonstrates a higher
success rate and requires fewer queries compared to other approaches, while maintaining the same
level of perturbation and query limit. Furthermore, Fig. 8 provides visual evidence of our findings.
By analyzing the figure, we observe more pronounced structural perturbations in the targeted regions
of the images, indicating the effectiveness and precision of our method in generating adversarial
examples on the ImageNet dataset.

Table 15: Comprehensive comparison of global attack algorithms with ℓ∞ constraints on Inception-
v3 and ViT-B/16 model, ImageNet dataset, where ε = 0.1.

Inception-v3 VIT
Algorithm ASR Avg. Med. ℓ0 ASR Avg. Med. ℓ0

Parsimonious 98.93% 1062.2 500.5 265273.3 100.00% 761.1 489.5 149019.5
Squareℓ∞ 100.00% 49.3 21.0 264788.7 100.00% 29.3 19.0 148679.6
ZO-NGD 72.97% 6180.0 600.0 265116.9 84.00% 4469.0 500.0 142752.4

Our(N)100%d 100.00% 329.1 143.0 264985.3 100.00% 447.0 182.0 148934.4
Our(O)100%d 100.00% 98.4 51.5 265397.0 100.00% 483.0 212.5 149007.7
Our(N)30%d 92.63% 3910.8 1302.0 80307.4 98.48% 3166.8 1502.0 45099.1
Our(O)30%d 96.88% 2811.1 587.5 79900.2 100.00% 2523.7 1766.0 44968.8

* (N) Non-overlapping groups; (O) Overlapping groups; Number%d: the proportion of perturbed image fea-
tures.
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Figure 8: Visualization results on the ImageNet dataset.

Table 16: Comprehensive comparison of Sparse-RS (Patch-RS) algorithms with ℓ0 constraints on
ImageNet. The perturbation ratio of the image is 10% of all features for all algorithms.

Inception-v3 VIT
Algorithm ASR Avg. Med. ℓ∞ ASR Avg. Med. ℓ∞

Patch-RS 92.29% 2968.6 685.5 1.0 86.90% 3572.8 1849.5 1.0

Our(N)ϵ=1 96.84% 3033.9 325.0 1.0 98.79% 3744.9 1542.0 1.0
Our(O)ϵ=1 97.89% 1935.2 427.0 1.0 99.84% 4031.8 1106.0 1.0
Our(N)ϵ=0.2 90.53% 7069.2 2118.0 0.2 96.84% 5120.5 2060.5 0.2
Our(O)ϵ=0.2 91.53% 7258.9 1571.0 0.2 92.63% 5602.1 3507.5 0.2

* (N) Non-overlapping groups; (O) Overlapping groups.

Table 17: Comprehensive comparison of region-fixed targeted attack algorithms with ℓ0+∞ con-
straints on ImageNet, where ε = 0.1 in ImageNet. The perturbation ratio of the image is 10% of all
features for all algorithms.

Inception-v3 VIT
Algorithm ASR Avg. Med. ASR Avg. Med.

Fixed-Parsimonious 74.46% 9631.3 7543.0 85.36% 8248.5 4952.5
Fixed-Squareℓ∞ 75.53% 8893.3 248.0 78.95% 8624.8 175.0
Fixed-ZO-NGD 79.12% 7436.0 1500.0 80.98% 9426.0 3700.0

Our(N)10%d 74.21% 9003.4 7261.0 74.74% 8495.4 6838.0
Our(O)10%d 81.88% 7157.8 4878.0 88.21% 8182.8 5971.5

* (N) Non-overlapping groups; (O) Overlapping groups; Number%d: the proportion of perturbed
image features.
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E ABLATION EXPERIMENT

E.1 REGION-FIXED IN DIFFERENT LOCATION

To comprehensively demonstrate the exceptional efficiency of our algorithm, we present additional
results involving perturbations in various locations, namely upper left, upper right, lower left, and
lower right. These results serve as a supplement to the central location analysis discussed in the
main text. Tab. 18 and Tab. 19 showcases the Attack Success Rate (ASR) and Avgerage queries of
Fixed-Parsimonious, Fixed-Square, and Fixed-ZO-NGD at these different locations. We randomly
selected 1000 examples from the CIFAR10 and MNIST datasets and 100 examples from the Im-
ageNet dataset for untargeted attacks. Consistent with our expectations, the attack achieves better
performance when targeted at the center of the image compared to almost any other location.

Table 18: Comparsion at different fixed locations on CIFAR10 and MNIST datasets

CIFAR10 MNIST
Algorithm Location ASR Avg. queries ASR Avg. queries

Fixed-Parsimonious

upper left 26.79% 7486.00 1.04% 9944.52
upper right 34.57% 6717.46 2.09% 9842.59
lower left 32.93% 6937.69 2.60% 9912.50
lower right 29.08% 7259.23 1.56% 9902.14
center 74.00% 2871.53 40.44% 6009.62

Fixed-Square

upper left 49.11% 5990.96 0.85% 9914.76
upper right 47.84% 6143.28 2.77% 9733.05
lower left 52.42% 5776.13 0.85% 9915.71
lower right 51.15% 5705.99 1.49% 9852.38
center 72.04% 3079.37 54.72% 4601.62

Fixed-ZO-NGD

upper left 17.00% 8517.15 39.50% 7952.84
upper right 26.80% 7701.17 31.20% 8546.25
lower left 50.00% 5665.59 30.97% 8715.36
lower right 37.60% 6849.63 27.69% 9812.94
center 48.60% 5748.72 45.80% 7965.90

Table 19: Comparsion at different fixed locations on ImageNet datasets

Inceptionv3 ViT-B/16
Algorithm Location ASR Avg. queries ASR Avg. queries

Fixed-Parsimonious

upper left 22.66% 17185.00 69.73% 10861.19
upper right 20.00% 17212.49 71.94% 9483.68
lower left 17.20% 16730.18 17.10% 16673.15
lower right 18.66% 16504.45 15.78% 16903.11
center 74.46% 9631.30 74.46% 9631.30

Fixed-Square

upper left 49.33% 13225.44 82.11% 5510.82
upper right 50.67% 11919.18 72.11% 5339.93
lower left 52.00% 12452.98 77.37% 4115.26
lower right 42.67% 13238.80 77.37% 3279.78
center 75.53% 5893.32 75.53% 8893.30

Fixed-ZO-NGD

upper left 24.29% 15685.71 54.29% 10431.42
upper right 38.75% 14637.50 68.75% 9880.00
lower left 43.75% 13346.25 67.50% 10062.50
lower right 38.75% 14506.25 71.25% 8977.50
center 79.12% 7436.00 79.12% 9003.40

E.2 GROUPPING

We conducted a comprehensive untargeted attack experiment, varying the window sizes and strides.
Our experiment involved 500 samples from the CIFAR10 and MNIST datasets, as well as 80 samples
from the ImageNet dataset. Additionally, we ensured that each sample retained a 10% level of
perturbation and attacked the Inception-v3 model for the ImageNet dataset.
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Tab. 20 presents the results of our experiment, highlighting the impact of different filter sizes on
the attack performance. From the table, it is evident that the choice of filter size significantly in-
fluences the effectiveness of the attack in MNIST and ImageNet datasets. A smaller window size
allows for more precise refinement of the target structure, resulting in better-formed and structured
perturbations. In contrast, larger windows tend to lose sensitivity to the intricate details of the image
structure. Consequently, the choice of window size directly affects the level of refinement and the
overall quality of the perturbations generated during the attack.

Table 20: Comparsion of different grouping

Non-overlapping Overlapping
FilterSize Stride k ASR FilterSize Stride k ASR

CIFAR10
2 2 20 99.63% 3 2 11 99.63%
4 4 5 98.63% 5 3 4 98.63%
6 6 3 95.89% 7 5 2 93.15%

MNIST
2 2 20 92.69% 3 2 10 93.01%
4 4 5 86.39% 5 3 3 87.24%
6 6 3 65.77% 7 5 2 65.77%

ImageNet
13 13 80 82.69% 13 10 80 94.23%
15 15 60 86.27% 15 10 60 92.31%
20 20 33 88.46% 20 15 33 86.54%

F SUPPLEMENTARY

F.1 VALIDATION ABOUT APPROXIMATE SOLUTION

The theory and time above suggest that as the number of selected groups increases, the discrepancy
between approximate and optimal solutions diminishes accordingly. To validate this lemma, we
conduct an experimental verification in this section. We define the optimal solution as a k-group
sparse selection. The image dimensions are (1, 40, 40), the filter size is 10, and the stride value is set
to 4. Consequently, we obtained 64 overlapping groups, with each group consisting of 100 points.

Fig. 9 provides a graphical representation of the results from the validation experiment. We vary the
value of k to be 10, 20, 30, and 40, respectively. As k̂ increases, we observe a gradual convergence
of the gap between the approximate and optimal solutions towards an upper bound. By observing
the figure, it is evident that during the initial stages of the projection process, the gap between the
approximate and optimal solutions decreases rapidly. As more groups are selected, the proportion
of non-overlapping parts in the remaining groups becomes smaller, resulting in a slower rate of
gap reduction. This pattern indicates that the impact of each subsequent group selection becomes
less significant as the algorithm progresses, leading to a gradual convergence of the gap toward a
minimum value.
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Figure 9: Validation experiment w.r.t different k.

F.2 QUERY DISTRIBUTION

We have included additional query distribution histograms for the CIFAR10, MNIST, and ImageNet
datasets in Fig. 10. This addition expands the scope of our analysis and provides insights into the dis-
tribution patterns of queries generated by our algorithm. Notably, we can observe that our algorithm
can generate a majority of adversarial examples using a relatively low number of queries. This find-
ing is particularly relevant in scenarios where there are limitations on the query budget. It suggests
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Figure 10: Query distribution. From top to bottom, the first row is the MNIST, where ε = 0.4 and
the second row is the CIFAR10, where ε = 0.1 and the last row is the ImageNet, where ε = 0.1.
For all graphs, k ≈ 10%d.

that our algorithm can be implemented effectively within various query budget constraints while
also reducing the likelihood of being detected by defenses designed to detect numerous queries.

F.3 DIFFERENT QUERY BUDGET

We set different query budget that is 5,000, 10,000, 15,000, 20,000, and 25,000 instead of a fixed
budget. Notwithstanding the inherent disparities in our respective problems, we divided three sets
of experiments for different problems (Global attack, Region-wise attack, Fixed attack). First, we
compared with global attack methods, i.e. Square attack, Parsimonious attack, and ZO-NGD attack,
with ℓ∞ constraints in Fig. 11(a,b). Thus, we set the same ℓ∞ constraint for all algorithms is 0.05.
Second, we compared the region-wise attack, i.e. Patch-RS, with a patch in Fig. 11(c,d). We set
the patch size of the patch to 80 in Patch-RS. The ℓ0 constraint is 19200(80 × 80 × 3). Finally, we
compared with the fixed-version of global attack algorithms in Fig. 11(e,f). For all algorithms, we
set the same double constraint, ℓ∞ is 0.1, ℓ0 is 26820 for the ImageNet dataset, Inceptionv3 model,
and ℓ∞ is 0.1, ℓ0 is 15052 for ImageNet dataset, vision transformer model. That is, for double
constraint, we perturb only 10% of the pixels.
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Figure 11: Demonstrate the attack strength of all algorithms under different query budgets.
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From the Fig. 11(a,b), all algorithms have ℓ∞ constraint 0.05. We can see that the success rate of
the attack will decrease significantly if the query is less than 15,000 for high-resolution image attack
tasks. When the query budget reaches 20,000, the success rate becomes stable. From Fig. 11(c,d),
all algorithms perturb up to 19200 of the pixels. Patch-RS is a heuristic attack method, it can be seen
from Fig. 11(d) ViT-B model that Patch-RS performs very poorly under a strict query budget. From
Fig 11(e,f), global attack algorithms with fixed regions perform poorly under different budgets.

F.4 SUPPLEMENTAL EXPERIMENTS ON CIFAR10

We evaluated the CIFAR10 dataset on two models, resnet18 and mobilenet-v2. The results of the
evaluation are shown in the table below. In this evaluation, we also adopted variance reduction
technology, and its query efficiency and attack success rate have been effectively improved.

Table 21: Performance of CIFAR10 dataset on Resnet18 and Mobilenet-v2 model.

Model Attack Type Overlap Condition ASR Avg. Med. ℓ2

Resnet18
untargeted

non-overlapping 99.59% 1249.0 315.0 1.64
overlapping 95.34% 1778.3 129.0 1.72

targeted
non-overlapping 74.93% 8081.9 5115.0 1.81

overlapping 88.41% 6040.4 4171.5 1.72

Mobilenet-v2
untargeted

non-overlapping 99.92% 1455.6 666.5 1.69
overlapping 96.73% 4679.0 927.0 1.70

targeted
non-overlapping 88.06% 6318.7 1246.5 1.84

overlapping 85.32% 8278.0 6502.5 1.73

F.5 MULTIPLE SUBREGION IN FIXED VERSION

We simply added a baseline, the modified fixed version. Detailly, we randomly generated 5 squares
with the same size on the image and fixed the 5 positions to attack. In order to ensure the con-
sistency of the experiment, we ensured that these 5 groups disturbed 10% of the dimension of the
whole image. The result is shown below. Fig. 12 shows the adversarial sample generated by Fixed-
Parsimonious, Fixed-Square, and Fixed-ZO-NGD. We can clearly see the disturbance generated by
Fixed-Parsimonious and Fixed-Square, while Fixed-ZO-NGD based on gradient is more impercep-
tible. From the results in Tab. 22, it can be seen that the Fixed Square attack gets better ASR, while
other algorithms do not improve significantly. It can be seen that the attack success rate is very sen-
sitive to the location of the region, which also prompts us to automatically select the more sensitive
region by optimization.

Table 22: Results with multiple fixed subregions on ImageNet dataset.

ASR Avg. Med. ℓ2

Fixed-Square Inceptionv3 78.79% 5390.17 3608.00 15.58
ViT-B/16 87.62% 6991.21 1699.50 11.49

Fixed-ZO-NGD Inceptionv3 69.00% 9167.00 4700.00 7.88
ViT-B/16 73.00% 9042.00 4900.00 6.12

Fixed-Parsimonious Inceptionv3 64.57% 13321.41 14942.00 15.75
ViT-B/16 71.91% 13723.41 13541.50 11.57

F.6 REGULAR TERM LOSS BASELINE

To evaluate the efficacy of an image adversarial attack algorithm under ℓ0 and ℓ∞ constraints, with
the addition of an ℓ2 loss term. We introduce an ℓ2 norm-based loss term into the optimization
problem. This addition aims to refine the adversarial perturbations by considering the Euclidean
distance in the perturbation space. We utilize a standard image dataset CIFAR10 for evaluating the

31



Under review as a conference paper at ICLR 2024

Queries: 3260 Queries: 5288Queries: 3823

Figure 12: Visualization in the fixed version of global SOTA algorithms. From left to right are
Fixed-Parsimonious, Fixed-Square, and Fixed-ZO-NGD, and these five sub-regions can be clearly
seen.

adversarial attacks. We set ℓ∞ constraint as 0.1, and perturb 10% pixels. We set the parameter of the
penalty term, i.e. c is 0.01, 0.1, 0.5, 1, 5, 10. As shown in Table 23. As c increases, the ℓ2 decreases.

Table 23: Comparison with different c

c Group type ASR Avg. Med. ℓ2

Non-overlapping

0.01 97.92% 926.06 439.50 1.67
0.1 93.49% 1449.11 434.50 1.62
0.5 72.40% 3298.92 699.00 1.31
1 56.25% 4839.60 2481.00 1.04
5 36.20% 6491.54 10000.00 0.67
10 33.85% 6724.81 10000.00 0.57

Overlapping

0.01 97.66% 785.43 264.50 2.05
0.1 92.71% 1248.11 237.50 1.97
0.5 72.40% 3207.38 323.50 1.54
1 55.47% 4731.00 1606.00 1.25
5 40.62% 6001.16 10000.00 0.87
10 40.36% 6018.25 10000.00 0.83
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