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ABSTRACT

The quadratic complexity of self-attention mechanism presents a significant im-
pediment to applying Transformer models to long sequences. This work explores
computational principles derived from astrocytes—glial cells critical for biologi-
cal memory and synaptic modulation—as a complementary approach to conven-
tional architectural modifications for efficient self-attention. We introduce the
Recurrent Memory Augmented Astromorphic Transformer (RMAAT), an archi-
tecture integrating abstracted astrocyte functionalities. RMAAT employs a recur-
rent, segment-based processing strategy where persistent memory tokens propa-
gate contextual information. An adaptive compression mechanism, governed by a
novel retention factor derived from simulated astrocyte long-term plasticity (LTP),
modulates these tokens. Attention within segments utilizes an efficient, linear-
complexity mechanism inspired by astrocyte short-term plasticity (STP). Training
is performed using Astrocytic Memory Replay Backpropagation (AMRB), a novel
algorithm designed for memory efficiency in recurrent networks. Evaluations on
the Long Range Arena (LRA) benchmark demonstrate RMAAT’s competitive ac-
curacy and substantial improvements in computational and memory efficiency,
indicating the potential of incorporating astrocyte-inspired dynamics into scalable
sequence models.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has become foundational for sequence mod-
eling, particularly in natural language processing. A primary limitation, however, is the quadratic
computational and memory complexity (O(N2)) of its self-attention mechanism, hindering its ap-
plication to very long sequences (Tay et al., 2020; Beltagy et al., 2020). The predominant research
direction to overcome this focuses on modifying the Transformer architecture itself for greater ef-
ficiency. Techniques explored include sparse attention patterns (Child et al., 2019; Beltagy et al.,
2020), linear attention approximations (Katharopoulos et al., 2020; Peng et al., 2021), state-space
models (Gu et al., 2021; Gu & Dao, 2023), and various recurrent structures (Peng et al., 2023; Sun
et al., 2023; Yang et al., 2023; Bulatov et al., 2022). Alongside efforts to improve architectural
efficiency, research into brain-inspired computational principles is gaining interest, driven by the
potential for remarkable energy efficiency and novel processing mechanisms. However, similar to
the challenges faced by conventional architectures, developing neuro-inspired learning approaches
that robustly handle complex, long-range dependencies while being both computationally efficient
and biologically grounded remains a significant hurdle (Bal & Sengupta, 2024). Addressing this
challenge may require looking beyond purely neuronal models, as many brain-inspired computing
approaches focus predominantly on neuronal activity, often overlooking the computational roles of
other critical cell types.

Among these overlooked elements are astrocytes, a type of glial cells increasingly recognized not
just for support functions but for their active participation in modulating synaptic transmission, plas-
ticity, and memory processes critical for learning (Gibbs et al., 2008; Bohmbach et al., 2022; Perea
et al., 2009; Alberini et al., 2018). Given their established role in modulating temporal information
and memory consolidation within biological circuits, we build on the premise that principles de-
rived from astrocyte function are particularly well-suited to addressing the long-range temporal de-
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pendency challenges inherent in processing extended sequences. Despite their potential, astrocyte-
based computational principles remain severely underexplored in deep learning. This paper intro-
duces the Recurrent Memory Augmented Astromorphic Transformer (RMAAT), an architecture
that integrates specific, computationally abstracted astrocyte-inspired mechanisms related to tempo-
ral memory processing (inspired by astrocyte long-term effects) and attention modulation (inspired
by astrocyte short-term effects) within a recurrent transformer framework. Our goal is to leverage
these neuro-glial principles to create an efficient approach for long-context sequence processing.
We validate RMAAT’s effectiveness by demonstrating highly competitive results on the full Long
Range Arena (LRA) benchmark (Tay et al., 2020) and substantial gains in computational efficiency
compared to baselines. The remainder of this paper is organized as follows: Section 2 details our
main contributions and positions RMAAT relative to prior work. Section 3 describes the RMAAT
model architecture and its bio-inspired components. Section 4 presents experiments and results.
Section 5 discusses limitations and concludes the paper.

2 RELATED WORKS AND MAIN CONTRIBUTIONS

Significant research addresses the (O(N2)) complexity and long-context limitations of standard
Transformers (Vaswani et al., 2017). Early efficiency improvement efforts focused on sparse or
linear attention approximations (e.g., Longformer (Beltagy et al., 2020), Reformer (Kitaev et al.,
2020)). Others incorporated recurrence via state caching or compression (e.g., Transformer-XL
(Dai et al., 2019), Compressive Transformer (Rae et al., 2019)) and some utilized explicit mem-
ory tokens to carry context between segments (e.g., RMT (Bulatov et al., 2022), Memformer (Wu
et al., 2020)). More recently, highly efficient architectures like State-Space Models (e.g., S4 (Gu
et al., 2021), Mamba (Gu & Dao, 2023)) based on continuous-time systems, and RNN/Transformer
hybrids (e.g., RetNet (Sun et al., 2023), RWKV (Peng et al., 2023), GLA (Yang et al., 2023))
employing innovations like retention mechanisms or gating, have achieved strong results through
sophisticated architectural and mathematical advancements. However, developing methods that
integrate deeper biological principles, particularly for complex functions like long-term memory
integration, alongside computational efficiency remains an ongoing challenge. Separately, within
biologically-inspired computing, astromorphic approaches have explored leveraging astrocyte prin-
ciples (Kozachkov et al., 2023), particularly adapting attention mechanisms based on astrocyte non-
linearities and inherent plasticities (Mia et al., 2025). While valuable, these efforts have primarily
concentrated on the attention component itself. The potential for utilizing computational principles
derived from astrocyte temporal dynamics, such as those involved in long-term plasticity (LTP) re-
lated to memory formation and consolidation, to specifically address the challenge of long-range
context propagation in sequence models remains largely unexplored. To address these gaps, the
main contributions of our work are:

(i) A Distilled Computational Macro Model: We propose and utilize a novel macro model, dis-
tilled from detailed computational models of neuron-astrocyte LTP dynamics (Perea et al., 2009;
Alberini et al., 2018), which serves as the foundation for RMAAT’s recurrent memory system. (ii)
Astrocyte-Inspired Memory Mechanism: We introduce an integrated memory system featuring
persistent memory tokens inspired by astrocyte processes. This system incorporates a novel mem-
ory retention factor, derived from the macro model, to achieve biologically-motivated context
compression and propagation, differing significantly from architectures reliant on externally man-
aged memory (Bulatov et al., 2022; Wu et al., 2020). (iii) Efficient AMRB Training Algorithm:
We propose the Astrocytic Memory Replay Backpropagation (AMRB) algorithm, enabled by the
model’s memory structure, which significantly reduces the memory footprint and computational
overhead compared to standard BPTT or chunk-based backpropagation for recurrent training.

3 THE RMAAT MODEL

3.1 FOUNDATIONAL COMPUTATIONAL NEUROSCIENCE MODEL

RMAAT’s core mechanisms are derived from computational models of the tripartite synapse (Bohm-
bach et al., 2022; Perea et al., 2009; Alberini et al., 2018), describing neuron-astrocyte interactions.
We model key plasticity dynamics operating at different timescales, abstracting the principles into
our framework.
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Short-Term Plasticity (STP): To capture rapid synaptic adjustments and spatial context, we model
synaptic facilitation (sij) between a postsynaptic neuron i and a presynaptic neuron j, and the as-
sociated short-term astrocyte process parameter (psij). Their dynamics are conceptually governed
by interactions reflecting neuronal co-activation (θ(xi)θ(xj)), astrocyte modulation (ψ(psij)), decay
(β, γs), and coupling between astrocyte processes, operating on a faster timescale (τs, τsp ). Simpli-
fied representations highlighting key dependencies are:

τs
dsij
dt
∝ −βsij + θ(xi)θ(xj) + ψ(psij) (1)

τsp
dpsij
dt
∝ −γspsij +

N∑
k,l=1

Tijklψ(p
s
kl) (2)

Here, xi, xj represent neuronal activity, ψ(psij) represents local astrocyte modulation. In Equation 2,
the summation term captures the influence of other astrocyte process activities (pskl, associated with
neuron pairs k, l) on the specific process psij . The coupling tensor Tijkl represents the concentration
fluxes or strength of influence (e.g., via calcium diffusion) between the astrocyte process associ-
ated with synapse (i, j) and other processes associated with synapses (k, l). The magnitude of
these fluxes typically depends on the relative spatial positions and distances between the interacting
synapses within the astrocyte’s domain. Thus, the dynamics of psij are modulated by the spatial
context encoded in this flux pattern. The influence of these spatially dependent interactions on local
astrocyte dynamics provides the biological mapping for how RMAAT computes relative positional
information within its attention mechanism (detailed later).

Long-Term Plasticity (LTP): To model slower processes related to modulating temporal informa-
tion and memory consolidation, we consider the long-term astrocyte process parameter (plij). This
variable integrates the effect of sustained synaptic activity (sij) over a significantly longer timescale
(τ lp > τsp ), acting as a form of accumulating memory trace.

τ lp
dplij
dt
∝ −γlplij + κ(sij) (3)
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Figure 1: Conceptual illustration of RMAAT
processing through time unrolling. Process-
ing within each segment incorporates mech-
anisms inspired by STP. The recurrent prop-
agation of astrocytic memory tokens (memt)
integrates context across many segments,
drawing inspiration from LTP principles for
persistent memory.

The dynamics governed by Equation 3, represent-
ing the integration of synaptic history (sij) over
longer timescales via the plij variable, provides the
conceptual foundation for our subsequent develop-
ments. Specifically, we distill the principles captured
by these LTP dynamics into a computational Macro
Model (Contribution 1), which then informs the de-
sign of our Astrocyte-Inspired Memory Mecha-
nism (Contribution 2), including the derivation of a
memory retention factor for context compression of
memory tokens. The detailed derivation, simulation
results showing the characteristic behavior, and im-
plementation of this memory system are presented
in Section 3.3.

These equations represent the core conceptual model
adapted from foundational works (Kozachkov et al.,
2025; Wade et al., 2011). Full model details, param-
eters, and the underlying neural dynamics governing xi, xj are provided in Appendix A. The subse-
quent sections detail how RMAAT translates these principles into a computational architecture.

3.2 CORE ARCHITECTURE AND PROCESSING

RMAAT processes sequences using a recurrent Transformer architecture built upon segmented pro-
cessing and a bio-inspired attention mechanism with spatial encoding of relative position.

3.2.1 SEGMENTED PROCESSING AND BIOLOGICALLY INSPIRED MEMORY TOKENS

To address the quadratic complexity bottleneck of standard self-attention over long sequences,
RMAAT adopts a segmented processing approach. The input sequence is divided into non-
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overlapping, contiguous segments of a manageable maximum length Nseg . The core RMAAT lay-
ers process these segments sequentially, rather than operating on the entire sequence at once. A
key element enabling long-range dependency modeling across these segments is the incorporation
of dedicated Memory Tokens. Inspired by the capacity of biological systems, particularly astrocyte
networks, to maintain and integrate information over extended periods (as abstracted in Sec 3.1),
these memory tokens serve as a persistent, evolving state. Let the set of M memory tokens at the
start of processing segment t be denoted by memt. These tokens are processed alongside the actual
input tokens xt within the segment using the mechanisms described below (Sec 3.2.2 and Sec 3.2.3).
The output representations corresponding to these memory tokens after processing segment t form
the updated memory state, memt+1, which is then passed as the input memory to segment t + 1.
This recurrent flow, conceptually illustrated in Figure 1, allows contextual information within the
memory tokens to propagate across segments. This mechanism differs from approaches like RMT
(Bulatov et al., 2022) or Memformer (Wu et al., 2020), which often rely on externally managed
memory mechanisms or specific architectural additions for memory updates. In RMAAT, the up-
date of these memory tokens are intrinsically linked to the bio-inspired dynamics derived from our
computational macro model (detailed in Sec 3.3, involving a dynamically derived retention factor),
aiming for a more integrated and computationally distinct approach to memory management. The
processing within each segment, which updates both sequence and memory token representations,
relies on the astromorphic attention mechanism described below.

3.2.2 ASTROMORPHIC ATTENTION MECHANISM
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Figure 2: Overview of the Astromorphic Transformer
architecture. This diagram illustrates the integration of
bioplausible bidirectional feedback mechanisms within
a two-layered neuron-astrocyte network, emulating the
Self-Attention of the transformer encoder. The synap-
tic weights WK , WQ, and WV are corresponding to
key (K), query (Q) and value (V ) of the transformer
which are activated once the input (X) is received.
Write Mode (marked in brown): Hebbian plasticity
(H) between the pre and postneurons is denoted by
Hneuron and that between the postneuron and astro-
cyte is denoted by Hastro (dashed lines represent the
bidirectional connections among the elements of the
tripartite synapse). Hastro calculation involves the as-
trocytic parameter, R which is computed based on the
spatial positions of neurons quantified by Tijkl. The
calcium response of the astrocyte (C) is encoded from
the Ca2+ concentration in the astrocyte evoked by the
presynaptic action potential (K). Read Mode (marked
in red): Presynaptic plasticity (P ) is decoded by the
presynaptic action potential (Q) and the final weight
H ⊙P defines the synaptic weight between the hidden
(h) and the output layer (L).

Within each segment processed by
RMAAT (as described in Sec 3.2.1),
the standard computationally expensive
O(N2) self-attention is replaced by an
efficient Astromorphic Attention mech-
anism. Its design draws inspiration from
computational models of the tripartite
synapse (Mia et al., 2025; Kozachkov
et al., 2023) and specifically abstracts
principles from the STP dynamics out-
lined in Section 3.1. To implement
this mechanism computationally, we
conceptualize it using a two-layer neuron-
astrocyte network structure (input/hidden
layer and output layer), as depicted
abstractly in Figure 2 (Right). The mech-
anism operates in two consecutive modes
within this structure: Write and Read.
(See Appendix B for full details).

Let d be the model’s embedding dimen-
sion (input/output layer size) and m be the
hidden layer dimension. For a given seg-
ment t, the input X consists of the Nseq
sequence tokens (xt) concatenated with
the M memory tokens (memt), resulting
in a total of N = Nseq +M tokens pro-
cessed within the segment. First, the com-
bined input tokensX ∈ RN×d are linearly
projected into Keys (K), Queries (Q),
and Values (V ) using learnable weight
matrices WK ,WQ ∈ Rd×m (projecting
to the hidden dimension) and WV ∈
Rd×d (projecting to the output dimension),
such that K = XWK (Keys,RN×m),
Q = XWQ (Queries,RN×m), and V =
XWV (Values,RN×d). A non-linear acti-
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vation function ϕ (e.g., ϕ(x) = elu(x)+1, following (Katharopoulos et al., 2020; Mia et al., 2025)),
applied element-wise to K and Q, yields activated representations ϕ(K) and ϕ(Q), analogous to
activations in the hidden layer (presynaptic neurons).

The Write Mode then computes effective synaptic weights and states within this network structure,
encoding context based on Hebbian principles and astrocyte modulation. These represent learned
parameters or aggregated states within the network. Specifically: The Neuronal Hebbian Weight
component (Hneuron ∈ Rm×d) captures the direct correlation between activated keys ϕ(K) (hid-
den layer activations) and values V (output layer), representing baseline Hebbian plasticity summed
across the N tokens (conceptually linked to the θ(xi)θ(xj) co-activation term in Eq. 1). This
models the connection strength between the hidden (presynaptic) and output (postsynaptic) layers
based on direct neuron-neuron interaction. The Astrocyte-Modulated Hebbian Weight component
(Hastro ∈ Rm×d) incorporates the astrocyte’s modulatory influence, specifically integrating relative
positional information (conceptually linked to the astrocyte modulation term ψ(psij) in Eq. 1, where
psij dynamics are spatially modulated). Building on prior astromorphic transformer work (Mia et al.,
2025), it uses the activation of a relative positional encoding matrix R (astrocytic parameter), ϕ(R),
derived from STP dynamics (detailed in Sec 3.2.3)to represent the influence of relative positioning.
This models how astrocytes modulate the hidden-to-output layer connection based on spatial con-
text. Concurrently, the Presynaptic State (g ∈ R1×m) abstracts the non-linear astrocyte response
(e.g., calcium dynamics, denoted by C ∼ Ca2+ in Figure 2) to the cumulative presynaptic (key)
activity ϕ(K) within the segment. It aggregates the activated keys ϕ(kt) (where ϕ(kt) is the t-th row
of ϕ(K)) over the segment length N and applies a non-linearity controlled by parameter α. This
state g encodes recent activation history in the hidden layer, influenced by astrocyte dynamics (α),
relevant for feedback modulation in the Read Mode. These three components, representing learned
weights (Hneuron, Hastro) and an aggregated state (g) within the network, are calculated as:

Hneuron =
1

m
ϕ(K)TV Hastro =

1

m
ϕ(R)TV g =

(
N∑
t=1

ϕ(kt)

)α
(4)

The Read Mode uses the current queriesQ (projected from inputX) to retrieve the context encoded
during the Write Mode in the combined Hebbian weight H = Hneuron +Hastro. This retrieval is
modulated by an astrocyte-inspired feedback mechanism operating within the network structure.
First, an interaction strength C ∈ RN×1 between the currently active queries ϕ(Q) (hidden layer
activations from queries) and the cumulative presynaptic state g (astrocyte state abstraction) is cal-
culated as C = ϕ(Q)gT . This represents the calcium response evoked by the presynaptic action po-
tential (Q). Inspired by biological modulation (e.g., saturation) (Mia et al., 2025), a feedback factor
P is derived, typically modeled as inversely related to this interaction strength, i.e., P = 1/C. This
represents the presynaptic plasticity decoded by the query (Q). The combined Hebbian weight ma-
trix H is then modulated element-wise (Hadamard product ⊙) by this feedback factor P . The final
weight H ⊙ P defines the synaptic weight between the hidden (h) and output layer (L). Activated
queries ϕ(Q) retrieve the relevant context by multiplying this modulated weight matrix (H ⊙ P ).
Finally, a standard residual connection adds the original input X to compute the Final Attention
Output (L), which represents the final activation of the output layer for this attention block (further
details are provided in Appendix B on how L maps to self-attention in transformer):

L = ϕ(Q)(H ⊙ P ) +X (5)

The resulting L ∈ RN×d represents the updated token representations for the segment. This com-
putation achieves O(N) complexity because the intermediate context aggregates (H and g) are
computed once per segment with dimensions independent of N , and the final steps involving the N -
dimensional query matrix ϕ(Q) consist of operations like matrix-vector products that scale linearly
with N , avoiding the quadratic cost of standard attention. The output L typically proceeds through
standard subsequent layers like Feed-Forward Networks (FFN) and Layer Normalization within the
overall Transformer block structure (Figure 2, left).

3.2.3 BIOLOGICAL GROUNDING OF RELATIVE POSITIONAL ENCODING BY STP DYNAMICS

Effective attention mechanisms in transformer architectures often benefit from incorporating rel-
ative positional information to understand sequence order (Shaw et al., 2018; Mia et al., 2025).
Common implementations define a base distance matrix—for instance, using an exponential decay
rij = exp(−∥posi − posj∥ × scale), where posi and posj represent token positions and scale is

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a tunable hyperparameter controlling the spatial range of influence. This base distance informa-
tion is then transformed using learnable projections to compute a final positional encoding matrix
R ∈ RN×m, with specific implementation details discussed in Appendix B and following prior
works like (Mia et al., 2025). While such methods are computationally effective, they often lack a
direct biological correspondence. Our work seeks to provide this biological grounding by mapping
the concept of relative positional encoding to principles observed in simulated astrocyte Short-Term
Plasticity (STP) dynamics, particularly the role of the concentration flux tensor Tijkl.

Our computational neuroscience simulations (Sec 3.1, Appendix C) investigate spatial interactions
among astrocyte processes. These simulations incorporate the distance-dependent coupling tensor
Tijkl (Eq. 2), reflecting how influence between processes diminishes with distance, akin to biological
signaling like calcium diffusion (Wade et al., 2011; De Pittà et al., 2009). A key outcome is that this
coupling naturally induces spatially modulated activity patterns in astrocyte processes (psij): those
near activity centers exhibit higher peak and sustained activity due to stronger integrated neigh-
borly coupling compared to peripheral processes. This inherent encoding of spatial relationships
within simulated STP dynamics provides a strong biological rationale for incorporating a similar
distance-based relative positional information scheme in our Astromorphic Attention. We translate
this observed principle into the Astrocyte-Modulated Hebbian Weight (Hastro) component via the
term ϕ(R), using the positional encoding matrix R (computed as described in the first paragraph).
Calculating Hastro = 1

mϕ(R)
TV (Eq. 4) thus integrates a form of spatial context whose use is

directly motivated by its analogy to simulated astrocyte STP behavior. This offers a flexible, learn-
able, and biologically-grounded method for incorporating relative positional context, distinct from
standard approaches lacking this neuro-glial justification. Having addressed this spatially-informed
component of attention, we now turn to the temporal memory mechanisms essential for processing
long sequences.

3.3 ASTROCYTE-INSPIRED MEMORY MECHANISM
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Figure 3: Simulation of the compu-
tational neuroscience model (3 × 3-
neuron network (9 connections), 300s
total time, 6× 50s STP cycles: STP cy-
cles are reset every 50s in the 300s sim-
ulation) illustrating temporal integration
for astrocyte-inspired memory. Dashed
lines show the long-term astrocyte pro-
cess (plij) integrating information and
gradually saturating across STP cycles.
Solid lines show the faster synaptic fa-
cilitation dynamics (sij) within each
STP cycle.

To effectively model long-range dependencies across the
segments processed by RMAAT (Sec 3.2.1), we require
a mechanism that not only propagates context but does
so efficiently, reflecting biological principles of memory
consolidation. We draw inspiration from the Long-Term
Plasticity (LTP) dynamics associated with astrocytes, par-
ticularly the behavior of the long-term astrocyte process
parameter (plij in Eq. 3), which integrates synaptic activ-
ity (sij) over extended timescales (τ lp).

Computational Macro Model (Contribution 1): We
leverage the detailed computational neuroscience model
of neuron-astrocyte interactions (Sec 3.1) to understand
the principles underlying LTP. Simulations of this de-
tailed model reveal essential characteristics of the LTP-
related state (plij): gradual integration of information
over successive Short-Term Plasticity (STP) cycles, con-
tinuous accumulation across these cycles, and eventual
saturation. Figure 3 illustrates this simulated behavior
for a 3 × 3 neuron network over 300 seconds (encom-
passing six 50s STP cycles). We distill these observed
characteristics—temporal integration and saturation—into a guiding computational macro model
principle that forms the foundation for RMAAT’s persistent memory mechanism.

Memory Retention Factor (Contribution 2): The saturation dynamic inherent in the macro model
principle—reflecting finite biological resources like intracellular calcium concentration—inspires
a mechanism for context compression. We derive a novel Memory Retention Factor from this
principle by analyzing the accumulation rate within the simulated LTP curve (like the one shown for
6 cycles in Figure 3).

The determination of the factor begins by normalizing the total information capacity—representing
the maximum integrated value the LTP state reaches at saturation (conceptually, the area under
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the dashed curve in Figure 3 until it flattens)—to 1 unit. We want to find out what fraction of
this total capacity is contributed or updated by each segment (STP cycle). To determine this re-
lationship generally, we can run simulations of the computational model assuming various an-
ticipated total sequence lengths (i.e., total number of segments). For any given assumed total
length (e.g., T segments), we simulate the LTP dynamics and measure the increase in the LTP
state during each segment t = 1, 2, ..., T . We then express the increase during a specific seg-
ment t as a fraction of the total normalized capacity (1 unit). This fraction yields the Mem-
ory Retention Factor for segment t when the total anticipated sequence length is T . This pro-
cess allows us to determine the retention factors for sequences of arbitrary anticipated lengths.
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Figure 4: Memory Retention Fac-
tor derived from simulating the
LTP macro model for different to-
tal sequence lengths (represented
as total number of STP cycles
from 2 to 8). The factor de-
creases per segment as the to-
tal sequence length increases, im-
plementing adaptive, bio-inspired
context compression.

Simulations indicate that each subsequent segment contributes
a diminishing fraction to the total memory capacity, with this
compressive effect intensifying for sequences anticipated to be
longer. Figure 4 illustrates this principle by showing the calcu-
lated factors for example total sequence lengths of 2, 4, 6, and
8 segments. This derived factor enables adaptive, bio-inspired
compression: the model adjusts how much it compresses in-
formation based on the expected length of the sequence, mim-
icking biological resource limits, which leads to older informa-
tion being gradually compressed more to accommodate newer
information.

Application to Memory Tokens: This Memory Retention
Factor is applied directly to RMAAT’s persistent Memory To-
kens memt ∈ RM×d (Sec 3.2.1), which carry context across
segments. As tokens are updated within a segment via As-
tromorphic Attention to produce the next state memt+1, the
factor corresponding to the current segment number and to-
tal sequence length (Figure 4) scales the updated state (e.g.,
memt+1 = RetentionFactor(t,TotalSegments) × mem′

t+1;
See Appendix D for details). This implements the adaptive compression dictated by the LTP macro
model principle, ensuring memory remains bounded by gradually compressing older information.
This contrasts with architectures like RMT (Bulatov et al., 2022) that often rely on fixed-size ex-
ternal memory slots updated via standard mechanisms, lacking this specific bio-inspired, adaptive
compression rationale derived from LTP dynamics. This integrated, astrocyte-inspired memory sys-
tem not only manages long-range context efficiently but also enables the resource-efficient AMRB
training algorithm detailed next (Section 3.4).

3.4 AMRB TRAINING ALGORITHM

Training recurrent architectures on long sequences via standard BPTT is often memory-prohibitive
due to storing activations for the entire sequence length. To overcome this while leveraging
RMAAT’s unique memory structure, we introduce the Astrocytic Memory Replay Backpropaga-
tion (AMRB) algorithm (Contribution 3), an efficient training approach inspired by techniques for
recurrent networks (Bellec et al., 2019; Meng et al., 2023)The core idea of AMRB is to avoid storing
all intermediate activations within each segment during the forward pass. Instead, it leverages the
persistent, compressed Memory Tokens (memt) described in Section 3.3. During the forward pass
through Tseg segments, only the sequence of memory token states (mem1,mem2, ...,memTseg+1)
passed between segments is stored in a replay buffer. During the backward pass, gradients are com-
puted segment by segment. To calculate the gradients for segment t, the algorithm first retrieves
the initial memory state memt from the buffer. It then recomputes the forward pass for segment t
only, starting from memt and using the input tokens xt. This recomputation generates the neces-
sary activations for calculating local gradients within segment t. The gradient flowing back from the
subsequent segment t + 1 (which is initialized using the stored memt+1) is then backpropagated
through the recomputed segment t, including the update path for memt. This process is repeated
backward for all segments. Algorithm 1 (Appendix D) provides a detailed pseudocode description.
The “replay” aspect refers to this recomputation of the forward pass for each segment during the
backward pass, using the stored astrocyte-inspired memory state as the starting point. AMRB offers
significant memory efficiency and potential speed advantages. Unlike standard BPTT, which stores
extensive activations, AMRB only caches the compact set of M memory tokens passed between
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the Tseg segments. Since M is typically small, the memory footprint is drastically reduced. While
AMRB involves recomputing activations during backpropagation, the associated memory saving of-
ten outweighs the recomputation cost for very long sequences, potentially leading to faster overall
training (further details in Section 4) compared to standard BPTT.

In summary, RMAAT introduces a novel astrocyte-inspired adaptive memory compression system.
This is realized through the Memory Retention Factor derived from simulated astrocyte LTP, provid-
ing a principled, non-learned method for compressing and propagating context between segments.
Our core hypothesis is that this principled compression enables a more efficient training strategy.
By structuring the flow of information into a compressed set of memory tokens, we can forgo
backpropagation through every token—the source of high memory costs in standard BPTT used
in RMT—and instead use our highly memory-efficient AMRB algorithm. Our ablation study in
Section 4.2 validates this critical synergy: removing the compression (a setup resembling RMT with
memory replay) causes a significant accuracy drop. This demonstrates that our bio-inspired com-
pression is crucial for making the memory-saving AMRB algorithm effective, and this combination
is directly responsible for RMAAT’s gains in both efficiency and accuracy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND RESULTS

Benchmark, Setup and Baselines: We evaluate RMAAT using the Long Range Arena (LRA)
benchmark (Tay et al., 2020). Models are implemented in PyTorch and trained from scratch (details
in Appendix E). We evaluate RMAAT against the standard Transformer and a selection of promi-
nent efficient Transformer models. While recent works have ventured into alternative frameworks
like State-Space Models (SSMs) Gu et al. (2021); Gu & Dao (2023), we include these established
efficient Transformers as they represent a direct lineage of architectural modifications for efficiency,
providing a relevant context for RMAAT’s approach which prioritizes deeper biological plausibility
over purely mathematical or structural innovations. For a focused comparison of its recurrent and
bio-inspired elements, we include key iso-architecture baselines. These are: Astromorphic Trans-
former (AT) (Mia et al., 2025), a non-recurrent model with astrocyte features but missing RMAAT’s
recurrence and memory; Recurrent Memory Transformer (RMT) (Bulatov et al., 2022), which pro-
cesses segments recurrently with memory tokens but uses standard attention and lacks RMAAT’s
specific memory compression or training; and Recurrent Linear Transformer (RLT), based on the
Linear Transformer (LT) (Katharopoulos et al., 2020), implemented with recurrent structure and
memory tokens as RMAAT but without RMAAT’s specific memory retention factor, AMRB train-
ing, or the enhanced positional encoding and non-linearity found in (Mia et al., 2025). These latter
models serve as important iso-architecture baselines to isolate the effects of RMAAT’s contributions.

Table 1: Accuracy and Memory Comparison on Long Range Arena (LRA) Benchmark Tasks.

Model ListOps (2K) Text (4K) Retrieval (8K) Image (1K) Pathfinder (1K) Average

Acc.(S.) Mem.* Acc.(S.) Mem.* Acc.(S.) Mem.* Acc.(S.) Mem.* Acc.(S.) Mem.* Acc.

Transformer (Vaswani et al., 2017) 36.4(1) 4.7 64.3(1) 6.7 57.5(1) 5.2 42.4(1) 7.8 71.4(1) 5.4 54.4
Sparse Trans.a(Child et al., 2019) 17.1(1) − 63.6(1) − 59.6(1) − 44.2(1) − 71.7(1) − 51.2
Longformera(Beltagy et al., 2020) 35.6(1) − 62.9(1) − 56.9(1) − 42.2(1) − 69.7(1) − 53.5
Linformera(Wang et al., 2020) 35.7(1) − 53.9(1) − 52.3(1) − 38.6(1) − 76.3(1) − 51.4
Reformera(Kitaev et al., 2020) 37.3(1) − 56.1(1) − 53.4(1) − 38.1(1) − 68.5(1) − 50.7
BigBirda(Zaheer et al., 2020) 36.1(1) − 64.0(1) − 59.3(1) − 40.8(1) − 74.9(1) − 55.0
LT (Katharopoulos et al., 2020) 16.1(1) 4.7 65.9(1) 5.7 53.1(1) 3.9 42.3(1) 6.2 75.3(1) 6.2 50.5
Performera(Choromanski et al., 2020) 18.0(1) − 65.4(1) − 53.8(1) − 42.8(1) − 77.1(1) − 51.4
FNetc(Lee-Thorp et al., 2021) 35.3(1) − 65.1(1) − 59.6(1) − 38.7(1) − 77.8(1) − 55.3
Nyströmformerc(Xiong et al., 2021) 37.2(1) − 65.5(1) − 79.6(1) − 41.6(1) − 70.9(1) − 59.0
Luna-256c(Ma et al., 2021) 37.3(1) − 64.6(1) − 79.3(1) − 47.4(1) − 77.7(1) − 61.3
AT (Mia et al., 2025) 18.1(1) 4.7 61.5(1) 5.8 77.3(1) 4.1 47.3(1) 6.2 77.9(1) 6.3 56.4

RMT (Bulatov et al., 2022) 37.4(8)b 20.4 65.0(8) 24 79.3(16) 18.3 54.6(2) 22.7 81.5(4) 12.7 63.6

RLT (Kozachkov et al., 2023) 18.4(8)b 14.4 64.8(8) 22.6 78.4(16) 12.1 55.0(2) 21.6 74.9(4) 13.6 58.3

RMAAT (Ours) 38.9(8)b 5.2 65.9(8) 5.1 83.2(16) 3.4 64.8(2) 5.3 87.1(4) 4.7 68.0

* Acc.(S.): Accuracy(%) (Segments used). Mem. (GB): Peak GPU Memory.
a These models might have varying sequence lengths in a single segment compared to others. Results are referenced from (Tay et al., 2020).
b ListOps (8K) length used for segment calculation, resulting in 8 segments each with 1024 sequence length.
c These results are referenced from paper (Gu et al., 2021).

Performance and Throughput Results: Table 1 presents the main accuracy and memory usage
results. It compares RMAAT against baselines across the five LRA tasks, showing accuracy per-
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centages (and segments used for recurrent models) alongside peak GPU memory consumption in
GB. RMAAT demonstrates competitive accuracy, particularly on longer context tasks like Retrieval,
while maintaining significantly lower memory usage compared to iso-architecture recurrent base-
lines.Table 2 details the training throughput. For non-recurrent models (LT, AT), speed is measured
relative to the standard Transformer baseline (1×). For recurrent models (RLT, RMAAT), speed is
measured relative to the iso-architecture RMT baseline (1×) to better isolate the impact of the atten-
tion mechanism and training algorithm within a recurrent framework. RMAAT exhibits significantly
faster training speeds compared to RMT, achieving up to 1.73× speedup on the Retrieval task. This
highlights the efficiency gains from the AMRB training algorithm combined with the O(N) com-
plexity of the astromorphic attention framework, compared to RMT’s standard BPTT and O(N2)
attention. To validate the contributions of RMAAT’s core components, we performed several ab-
lation studies, primarily focusing on the long-context Byte-Level Document Retrieval (8K) task,
supplemented by sensitivity analysis on other tasks (See Appendix F).

4.2 ABLATION STUDIES

Memory Retention Factor (Contributions 1 & 2): Removing the retention factor significantly
reduced accuracy on the Retrieval task (83.2% → 80.5%) without changing memory usage (3.4
GB), confirming its vital role in context compression derived from the LTP macro model.

Table 2: Detailed Throughput/Speed Comparison on Long
Range Arena (LRA) Tasks.

Model ListOps Text RetrievalImage Pathfinder

Transformer (Vaswani et al., 2017) 1× 1× 1× 1× 1×
LT (Katharopoulos et al., 2020) 1.24× 1.01× 1.03× 1.03× 1.03×
AT (Mia et al., 2025) 1.26× 1.26× 1.05× 1.08× 1.03×
RMT (Bulatov et al., 2022) 1× 1× 1× 1× 1×
RLT (Kozachkov et al., 2023) 1.05× 1.13× 1.37× 1.21× 0.95×

RMAAT (Ours) 1.5× 1.5× 1.73× 1.3× 0.95×

AMRB Training (Contribution
3): Replacing AMRB with stan-
dard BPTT for the Retrieval task
yielded similar accuracy but drasti-
cally increased peak memory usage
(∼ 4.4×, from 3.4 GB to 15.0 GB),
demonstrating AMRB’s substantial
memory efficiency benefits.
Applicability to Recurrent Ar-
chitectures: While the Memory
Retention Factor and AMRB could potentially offer memory savings if applied to recurrent ar-
chitectures like RMT (Bulatov et al., 2022), RMT’s reliance on O(N2) softmax attention creates a
forward pass bottleneck, limiting throughput gains. Furthermore, RMT would not benefit from the
speed improvements associated with the non-linearity and relative positional encoding inherent in
the astromorphic attention mechanism, as reported by Mia et al. (2025).
Total Sequence Length: Evaluating performance on shorter total sequence lengths by reducing the
number of segments (while keeping segment sequence length constant at 512) resulted in significant
accuracy drops in Retrieval task (e.g., 71.5% for 8 segments [4K total length], 65.3% for 4 segments
[2K total length] vs. 83.2% for the baseline 16 segments [8K total length]), demonstrating that the
model benefits from processing the full context length allowed by the segmentation strategy.
Other Hyperparameters: Further analyses in Appendix F investigate sensitivity to other hyperpa-
rameters: spatial range (scale) of the positional encoding and number of memory tokens (M ).

5 CONCLUSION

This work introduced the Recurrent Memory Augmented Astromorphic Transformer (RMAAT),
demonstrating an effective approach to efficient long-sequence modeling by integrating computa-
tionally abstracted principles from astrocyte function. By incorporating astrocyte-inspired mecha-
nisms for temporal memory compression and resource-efficient training (AMRB), RMAAT achieves
state-of-the-art average accuracy on the diverse Long Range Arena benchmark. This strong perfor-
mance, coupled with competitive memory efficiency compared to standard and recurrent baselines
(Table 1), validates the potential of leveraging neuro-glial principles for challenging sequence tasks.
While promising, the current evaluation is primarily focused on LRA; future work should explore
broader domains, larger model scales, and deeper theoretical analysis comparing RMAAT to related
sequence model formalisms. Investigating additional neuro-glial computational mechanisms (such
as astrocyte-astrocyte communication) and developing specialized hardware implementations also
present exciting avenues. In conclusion, RMAAT highlights the value of neuroscience-algorithm
co-design, suggesting that astromorphic computing is a promising direction for developing power-
ful and efficient AI systems capable of handling complex, long-range sequential data.
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A COMPUTATIONAL NEUROSCIENCE MODEL DETAILS

This appendix provides the detailed equations and parameters for the computational neuroscience
model of the neuron-astrocyte network, which forms the foundation for the mechanisms abstracted
in RMAAT, as discussed in Section 3.1. The model integrates dynamics across different timescales,
capturing key aspects of neuronal activity, synaptic plasticity, and astrocytic modulation.

A.1 NEURAL DYNAMICS

The membrane potential Vi(t) of neuron i is modeled using Leaky Integrate-and-Fire (LIF) dynam-
ics. The evolution of the membrane potential is given by:

τn
dVi(t)

dt
= −λ(Vi(t)− Vreset) + Ii(t) (S1)

where:

• τn: Neural membrane time constant (RmCm).
• Vi(t): Membrane potential of neuron i at time t.
• λ: Decay rate for the membrane potential.
• Vreset: Reset potential after a spike.
• Ii(t): Total input current to neuron i.

When Vi(t) reaches a threshold Vth, the neuron fires a spike, and Vi(t) is reset to Vreset. The
neuron’s activity level, xi, conceptually represents its firing rate or probability, influenced by Vi.

The input current Ii(t) is determined by synaptic inputs modulated by synaptic facilitation sij and
an intrinsic bias bi:

Ii(t) =

N∑
j=1

g(sij)Sj(t) + bi (S2)

where:

• g(sij): Effective synaptic weight, dependent on synaptic facilitation sij . Typically a non-
linear function, e.g., sigmoid or linear.

• Sj(t): Spike train from presynaptic neuron j, often modeled as
∑
k δ(t− t

j
k) where tjk are

spike times.
• bi: Intrinsic bias current for neuron i.
• N : Number of presynaptic neurons connected to neuron i.

A.2 SYNAPTIC DYNAMICS

Synaptic facilitation sij between postsynaptic neuron i and presynaptic neuron j captures short-term
changes in synaptic efficacy. Its dynamics are influenced by neuronal co-activation and astrocyte
modulation:

τs
dsij
dt

= −βsij + θ(xi)θ(xj) + ψ(psij) + cij (S3)

where:

• τs: Synaptic dynamics timescale.
• sij : Synaptic facilitation level between neurons i and j.
• β: Decay rate of synaptic facilitation.
• θ(x): Non-linear function representing neuronal activity contribution (e.g., thresholding or

sigmoid). xi, xj are activity levels of neurons i, j.
• ψ(psij): Contribution from the short-term astrocyte process psij (modulation). ψ is typically

a non-linear function (e.g., sigmoid, tanh).
• psij : Short-term astrocyte process parameter associated with synapse (i, j).
• cij : Baseline bias for synaptic facilitation.
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A.3 SHORT-TERM ASTROCYTIC PROCESS DYNAMICS (STP)

The short-term astrocyte process parameter psij , conceptually related to local intracellular Ca2+
dynamics near the synapse, evolves based on interactions with other astrocyte processes:

τsp
dpsij
dt

= −γspsij +
N∑

k,l=1

Tijklψ(p
s
kl) + dij (S4)

where:

• τsp : Timescale for short-term astrocyte dynamics.

• psij : Short-term astrocyte process state for synapse (i, j).

• γs: Decay rate for psij .

• Tijkl: Coupling tensor representing concentration fluxes or spatial influence between the
astrocyte process associated with synapse (i, j) and the process associated with synapse
(k, l). It depends on the relative spatial distance between these synapses. Specifically,
Tijkl ∝ exp(−distanceij,kl × scale). The term distanceij,kl refers to the Euclidean dis-
tance between the spatial midpoint of synapse (i, j) and the spatial midpoint of synapse
(k, l).

• ψ(pskl): Non-linear function representing the influence of astrocyte process pskl.

• dij : Baseline bias for the astrocyte process.

A.4 LONG-TERM ASTROCYTIC PROCESS DYNAMICS (LTP)

The long-term astrocyte process parameter plij integrates synaptic activity over longer timescales,
contributing to persistent changes and memory:

τ lp
dplij
dt

= −γlplij + κ(sij) (S5)

where:

• τ lp: Timescale for long-term astrocyte dynamics (τ lp ≫ τsp ).

• plij : Long-term astrocyte process state for synapse (i, j).

• γl: Decay rate for plij .

• κ(sij): Non-linear function representing the influence of sustained synaptic facilitation sij
on the long-term process.

A.5 PARAMETER VALUES FOR SIMULATION

The specific values used for the simulations presented in the main text (e.g., Figure 3) are listed in
Table S1.

B ASTROMORPHIC ATTENTION MECHANISM DETAILS

This appendix provides an expanded description of the Astromorphic Attention mechanism em-
ployed within RMAAT segments (Section 3.2.2). This efficient mechanism, operating with O(N)
complexity, replaces the standard O(N2) self-attention. Its design is fundamentally inspired by
computational models of the tripartite synapse, involving interactions between neurons and astro-
cytes (Appendix A), and specifically draws from principles of Short-Term Plasticity (STP) dynam-
ics. We conceptualize the mechanism using a two-layer network structure (input/hidden and output
layers) modulated by astrocyte-like computations (Figure 2). The process unfolds in two distinct
operational phases: a Write Mode for context encoding and a Read Mode for context retrieval.
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Table S1: Computational Neuroscience Model Hyperparameters Used in Simulations.
Parameter Value

Network Details
Number of presynaptic neurons 3
Number of postsynaptic neurons 3
Number of astrocytes 1
Simulation Timescale 300 s
STP Cycle Duration 50 s
Timestep, dt 0.04 s

Neural Dynamics
Neural dynamics timescale, τn 0.5 s
Membrane potential threshold, Vth 1 mV
Reset potential, Vreset −1 mV
Decay parameter, λ 0.2
Bias parameter, bi 0
Non-linearity, ϕ tanh

Synaptic Dynamics
Synaptic dynamics timescale, τs 0.75 s
Decay parameter, β 0.25
Bias parameter, cij 0
Non-linearity, θ tanh

Astrocytic STP Dynamics
STP dynamics timescale, τs

p 1 s
Decay parameter, γs 0.2
Bias parameter, dij 0
Non-linearity, ψ tanh

Astrocytic LTP Dynamics
LTP dynamics timescale, τ l

p 6 s
Decay parameter, γl 0.1
Non-linearity, κ sigmoid

B.1 NETWORK STRUCTURE AND INITIAL PROJECTIONS

The core computation is conceptualized within a network architecture comprising three functional
layers: an input layer, a hidden layer, and an output layer. The input layer receives the segment’s
combined token representations X ∈ RN×d, where d is the embedding dimension. This input
X consists of Nseq sequence tokens (xt) concatenated with M persistent memory tokens (memt),
resulting inN = Nseq+M total tokens per segment. The hidden layer consists ofm processing units
(neurons), acting as an intermediate representation space. The output layer has d units, matching the
input embedding dimension, producing the final representation for the segment.

Initial processing involves linear projections of the input X to generate the standard attention com-
ponents: Keys (K), Queries (Q), and Values (V ). These projections are facilitated by learnable
weight matrices that map between the layers:

• WK ∈ Rd×m projects the d-dimensional input X to the m-dimensional hidden space,
producing Keys K = XWK ∈ RN×m. Keys represent the input signals as interpreted or
encoded by the hidden layer units (presynaptic neurons).

• WQ ∈ Rd×m similarly projects X to the hidden space, producing Queries Q = XWQ ∈
RN×m. Queries serve as the signals used later in the Read Mode to probe the encoded
context.

• WV ∈ Rd×d projects X directly to the output space dimension, producing Values V =
XWV ∈ RN×d. Values represent the content or features associated with each input token
relevant for constructing the output.

Following these projections, a non-linear activation function, ϕ (typically ϕ(x) = elu(x) + 1), is
applied element-wise to the Keys (K) and Queries (Q). The resulting ϕ(K) and ϕ(Q) represent
the activated states of the hidden layer neurons, signifying their non-linear response to the key and
query inputs, respectively. These activated states are central to the subsequent Write and Read mode
computations.

14
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B.2 WRITE MODE: ENCODING CONTEXT

The Write Mode encodes contextual information from the entire segment by computing effective
synaptic weights and an abstracted astrocyte state. Conceptually, this involves sequential updates as
each token is processed, integrating Hebbian principles with astrocyte-inspired modulation. For effi-
cient implementation, these sequential updates are typically realized through final matrix operations
performed once per segment.

Neuronal Hebbian Weight (Hneuron): This component represents the direct connection strength
between the hidden (presynaptic) and output (postsynaptic) layers, learned via Hebbian plasticity.

• Conceptual Per-Token Update: As each token t (from 1 toN ) is processed, its activated key
ht = ϕ(kt) (the t-th row of ϕ(K)) and corresponding value vt (the t-th row of V ) contribute
to the weight update: Hneuron,t = Hneuron,t−1 +

1
mh

T
t vt (assuming Hneuron,0 = 0).

• Matrix Implementation: The final weight after processing all N tokens is efficiently calcu-
lated as the sum of these outer products:

Hneuron =

N∑
t=1

1

m
hTt vt =

1

m
ϕ(K)TV ∈ Rm×d (S6)

This captures baseline Hebbian learning, linked to the θ(xi)θ(xj) term (Eq. S3).

Astrocyte-Modulated Hebbian Weight (Hastro): This component models the astrocyte’s influ-
ence on the hidden-to-output connection, incorporating spatial context via a relative positional
encoding matrix R ∈ RN×m. The computation of R itself, detailed in Section 3.2.3 and in-
spired by STP spatial dynamics (Tijkl in Eq. S4), involves transforming a base distance matrix
(rij = exp(−∥posi−posj∥×scale)) using learnable projectionsM andWrel (R =Wrel(MrMT )).

• Conceptual Per-Token Update: Similar to Hneuron, the astrocyte modulation associated
with token t, represented by the t-th row of the activated positional encoding ϕ(R) (let us
denote it as ϕ(rt)), updates the weight: Hastro,t = Hastro,t−1 + 1

mϕ(rt)
T vt (assuming

Hastro,0 = 0).
• Matrix Implementation: The final weight is calculated across all tokens:

Hastro =

N∑
t=1

1

m
ϕ(rt)

T vt =
1

m
ϕ(R)TV ∈ Rm×d (S7)

This functionally abstracts the astrocyte modulation term ψ(psij) (Eq. S3).

Presynaptic State (g): This vector abstracts the astrocyte’s internal state (e.g., calcium level) re-
sponding to cumulative presynaptic activity from the hidden layer. The following two-stage view
(linear accumulation of activated keys followed by a non-linear transformation on the total sum)
aligns with how astrocytes might integrate signals over a period and then exhibit a saturated re-
sponse.

• Conceptual Per-Token Accumulation: As each token t (from 1 to N ) is processed, its ac-
tivated key ht = ϕ(kt) (the t-th row of ϕ(K)) contributes to a running sum. If we denote
this accumulating sum as gacc, then gacc,t = gacc,t−1 + ht, starting with gacc,0 = 0. This
represents the linear integration of presynaptic signals before the astrocyte’s non-linear re-
sponse.

• Matrix Implementation and Incorporation of Astrocytic Non-linearity : For the entire seg-
ment, the total accumulated influence from all N tokens is first computed as the sum∑N
t=1 ϕ(kt). The non-linear saturation effect, modeled by the exponent α, is then applied

element-wise to this sum vector (which is of dimension 1×m) to yield the final presynaptic
state g ∈ R1×m for the segment:

g =

(
N∑
t=1

ϕ(kt)

)α
(S8)

This g mirrors the temporal integration property of astrocyte processes (psij) in Appendix A.
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Combined Hebbian Weight (H): The total effective synaptic strength, H ∈ Rm×d, is the sum of
the neuronal and astrocyte-modulated components:

H = Hneuron +Hastro (S9)

B.3 READ MODE: RETRIEVING CONTEXT

The Read Mode utilizes the activated queries ϕ(Q) to retrieve the context encoded in the final ag-
gregated weights (H) and state (g) computed during the Write Mode. This phase typically involves
parallel matrix operations across all N query tokens simultaneously.

Interaction Strength / Calcium Response (C): Calculates the interaction (C ∈ RN×1) between the
current active queries ϕ(Q) and the final presynaptic state g, representing the astrocyte’s response.

C = ϕ(Q)gT (S10)

Feedback Factor (P ): Derives a feedback factor (P ∈ RN×1), usually inversely related to C,
abstracting astrocyte feedback mechanisms.

P = 1/C (S11)

Final Attention Output (L): Queries ϕ(Q) retrieve context from H , modulated element-wise (⊙)
by the feedback P . A residual connection adds the original input X . The result L ∈ RN×d is the
final output of the attention layer.

L = ϕ(Q)(H ⊙ P ) +X (S12)

The expanded form is:

L = ϕ(Q)

((
1

m
(ϕ(K)T + ϕ(R)T )V

)
⊙
(
1

C

))
+X (S13)

(where C = ϕ(Q)
[(∑N

t=1 ϕ(kt)
)α]T

)

This formulation can be compared to standard linearized self-attention, often expressed as SA(X) =
ϕ(Q)(ϕ(K)TV ) normalized appropriately. As detailed previously, our equation for L (before the
residual connection) shares the core structure ϕ(Q)(. . . V ), ensuring linear complexity. However,
the astromorphic approach introduces two key modifications inspired by the tripartite synapse:
(1) The aggregated context includes both direct neuronal correlations (ϕ(K)TV ) and astrocyte-
modulated spatial information (ϕ(R)TV ) within H . (2) The retrieved context (H) is dynamically
modulated element-wise by the feedback factor P = 1/C, which depends on the interaction be-
tween the current query ϕ(Q) and the aggregated presynaptic state g. This astrocyte-inspired modu-
lation introduces a dynamic, context-dependent weighting absent in standard linear attention, while
preserving the overall O(N) complexity.

B.4 COMPUTATIONAL COMPLEXITY

The Astromorphic Attention mechanism achieves O(N) complexity per segment with respect to the
sequence length N , assuming the hidden dimension m and embedding dimension d are constants
relative to N . A detailed breakdown follows:

• Write Mode Complexity Analysis:
– Initial Projections (K, Q, V ): Calculating K, Q, and V involves matrix multiplica-

tions (XWK , XWQ, XWV ) with complexities O(Nmd), O(Nmd), and O(Nd2)
respectively. Activation ϕ adds O(Nm).

– Hebbian Weights (Hneuron, Hastro): Calculating Hneuron (ϕ(K)TV ) involves an
m × N by N × d multiplication, costing O(Nmd). Similarly, calculating Hastro

(ϕ(R)TV ), assuming R is computed efficiently, also costs O(Nmd).
– Presynaptic State (g): Summing N vectors of size m (

∑
ϕ(kt)) costs O(Nm). Ap-

plying the power α costs O(m).
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– Combined Weight (H): Addition costs O(md).
– Dominant Write Cost: The most significant terms scale linearly withN , dominated by
O(Nmd) and O(Nd2). Crucially, the intermediate results H and g have dimensions
independent of N .

• Read Mode Complexity Analysis:
– Interaction Strength (C): CalculatingC (ϕ(Q)gT ) is anN×m bym×1 matrix-vector

multiplication, costing O(Nm).
– Feedback Factor (P ): Calculating P (1/C) is element-wise on an N × 1 vector,

costing O(N).
– Final Output (L): The main computation involves ϕ(Q)(H ⊙ P ). The Hadamard

product H ⊙ P requires broadcasting P and costs approximately O(Nmd), if im-
plemented by multiplying each row of H by the corresponding element of P . The
subsequent multiplication by ϕ(Q) (N ×m by m× d) costs O(Nmd). The residual
addition is O(Nd).

– Dominant Read Cost: The matrix multiplication dominates, scaling as O(Nmd).
• Overall Complexity and Comparison:

– Both Write and Read modes are dominated by operations scaling linearly with N
(primarily O(Nmd)). Therefore, the total complexity per segment is O(N).

– This linear scaling provides a significant advantage over standard self-attention, where
the computation of the N ×N attention score matrix (QKT ) leads to an overall com-
plexity ofO(N2d). The Astromorphic mechanism avoids this quadratic bottleneck by
computing fixed-size intermediate representations (H, g) and using linear-time opera-
tions for context retrieval.

C Tijkl FORMATION AND VISUALIZATION
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Figure S1: Spatial layout of the N = 5 neu-
rons used in the simulation.

This appendix details the calculation and visual-
ization of the spatial coupling tensor Tijkl. This
tensor is crucial in the Short-Term Astrocytic Pro-
cess Dynamics (STP) described in Appendix A
(Eq. S4), where it models the distance-dependent in-
fluence between different astrocyte processes asso-
ciated with synapses (i, j) and (k, l). Understanding
its structure helps motivate the bio-inspired relative
positional encoding used in Section 3.2.3. The spe-
cific simulation results visualized in this appendix
(e.g., Tijkl slices and psij dynamics) were generated
using a network size of N = 5 and a neural bias parameter b = 0.1, run for a duration of 50 sec-
onds (representing one STP cycle), with all other model parameters set as detailed in Appendix A
(Table S1).

C.1 DISTANCE CALCULATION
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Figure S2: Calculated midpoint positions for all possi-
ble synapses between the N = 5 neurons.

For simulation purposes, we first define
the spatial layout of the neurons. For the
example shown, we consider N = 5 neu-
rons arranged linearly in a 1D space, as-
signed coordinates for visualization (see
Figure S1). A synapse (i, j) connects
postsynaptic neuron i and presynaptic
neuron j. We define the spatial position
of synapse (i, j) as the midpoint between
the coordinates of neuron i and neuron j.
This results in a grid of N ×N = 25 pos-
sible synapse locations for N = 5 neurons
(see Figure S2).
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C.2 SYNAPSE POSITION CALCULATION

Next, we calculate the pairwise Euclidean distance, distanceij,kl, between the midpoint coordi-
nates of every pair of synapses (i, j) and (k, l). This forms a distance matrix capturing the spatial
separation between all potential synaptic interaction sites (see Figure S3).

C.3 Tijkl FORMULA AND VISUALIZATION

(0
,0

)
(0

,1
)

(0
,2

)
(0

,3
)

(0
,4

)
(1

,0
)

(1
,1

)
(1

,2
)

(1
,3

)
(1

,4
)

(2
,0

)
(2

,1
)

(2
,2

)
(2

,3
)

(2
,4

)
(3

,0
)

(3
,1

)
(3

,2
)

(3
,3

)
(3

,4
)

(4
,0

)
(4

,1
)

(4
,2

)
(4

,3
)

(4
,4

)

Synapse Index (k, l)

(0,0)
(0,1)
(0,2)
(0,3)
(0,4)
(1,0)
(1,1)
(1,2)
(1,3)
(1,4)
(2,0)
(2,1)
(2,2)
(2,3)
(2,4)
(3,0)
(3,1)
(3,2)
(3,3)
(3,4)
(4,0)
(4,1)
(4,2)
(4,3)
(4,4)

Sy
na

ps
e 

In
de

x 
(i,

j)

Pairwise Distances Between Synapses

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
nc

e

Figure S3: Heatmap visualizing the pairwise Eu-
clidean distances between all synapse midpoints
for N = 5, i.e., distanceij,kl.

The coupling tensor Tijkl models the strength
of influence (e.g., via concentration fluxes like
calcium diffusion) between the astrocyte pro-
cess at synapse (i, j) and the process at synapse
(k, l). We model this influence using an expo-
nential decay based on the calculated distance:

Tijkl = exp(−distanceij,kl × scale) (S14)

Here, scale is a positive parameter that controls
the rate of spatial decay. A larger scale value
leads to a faster decay, meaning interactions are
more localized, while a smaller scale value al-
lows for longer-range interactions.

Visualizing slices of the Tijkl tensor helps to
understand the spatial interaction profile from a
specific source synapse (i, j) to all possible tar-
get synapses (k, l). Figure S4 shows examples
for source synapses located at the corner, edge,
and center of the 5 × 5 grid, for different val-
ues of scale. Brighter colors indicate stronger
influence (smaller distance or smaller scale). Notice how the spatial extent of the influence changes
significantly with the scale parameter.

C.4 IMPACT ON ASTROCYTE DYNAMICS AND LINK TO POSITIONAL ENCODING
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Figure S4: Visualization of Tijkl slices showing
interaction strength from different source synapse
locations (rows: center, corner, edge) to all target
synapses (k,l grid) for varying ‘scale’ parameters
(columns: 2.0, 5.0, 20.0).

The formulation of Tijkl as an exponential de-
cay of distance (Eq. S14) implies that closer
synaptic processes have a stronger potential
for direct influence. However, the ultimate
astrocytic response, represented by the short-
term process dynamics psij (Eq. S4), is not
solely determined by Tijkl. It results from
the complex interplay of neuronal activity
(xi, xj), synaptic facilitation (sij), and the in-
tegrated influence from all other astrocyte pro-
cesses (

∑
k,l Tijklψ(p

s
kl)). Therefore, while

Tijkl defines the strength of individual pair-
wise couplings, it is the simulation of the en-
tire neuron-astrocyte network that reveals how
these distance-dependent couplings translate
into spatially modulated astrocytic responses
over time.

As shown in Figure S5, these simulations
demonstrate that synapses located centrally in-
deed tend to exhibit different temporal dynam-
ics for psij (e.g., higher peak and sustained ac-
tivity) compared to those at corners or edges.
This occurs because central locations benefit
from a stronger integrated influence from a larger number of relatively closer neighbors, as dic-
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tated by the Tijkl coupling strengths. Changing the scale parameter in Tijkl further alters the range
and strength of these interactions, consequently affecting the resulting psij dynamics.
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Figure S5: Simulated temporal dynamics of the short-term as-
trocyte process parameter psij for synapses at different locations
(center, corner, edge) under different spatial coupling ‘scale’ val-
ues (2.0, 5.0, 20.0). Simulation uses N = 5, b = 0.1.

It is this simulated evi-
dence—that the distance-
dependent coupling encoded in
Tijkl, when integrated within
the full system dynamics, leads
to spatially modulated astro-
cytic STP responses (psij)—that
provides the biological motiva-
tion for incorporating relative
positional information in the
astromorphic attention mech-
anism. Specifically, the base
relative positional matrix r,
defined in Section 3.2.3, uses
the same exponential decay
exp(−distance × scale) allow-
ing the model to learn a suitable
spatial interaction range for
encoding positional context.

D AMRB ALGORITHM

This appendix provides the detailed pseudo-code for the Astrocytic Memory Replay Backpropaga-
tion (AMRB) algorithm, as described in Section 3.4. AMRB enables memory-efficient training of
the recurrent RMAAT architecture.

Algorithm 1: Astrocytic Memory Replay Backpropagation (AMRB)
Input: rollout = [x1, x2, ..., xT ]: List of input tokens for T time steps.
Input: m1: Initial memory state (input to step t = 1).
Output: mT+1: Updated memory state (output after step t = T ).

1 Initialize replay buffer ← [] Append m1 to replay buffer ; // Store initial
input state m1

/* Forward Pass */
2 for t = 1 to T do
3 m′

t+1 ← Model(xt,mt) ; // Compute intermediate state (no grad)
4 mt+1 ← RetentionFactor(t, TotalSegments)×m′

t+1 ; // Apply retention
factor

5 if t < T then
6 Append mt+1 to replay buffer ; // Store input state mt+1 for next

step’s recomputation

/* Backward Pass */
7 Initialize ∇mT+1 ← 0 ; // Init gradient for state after last step
8 for t = T to 1 do
9 Retrieve mt from replay buffer ; // Get input state for segment t

10 m′
t+1, ot ← Model(xt,mt) ; // Recompute segment t (track grads)

11 Compute loss Lt ← loss function(ot) ; // Compute loss for current step
12 Perform backpropagation: Lt.backward() ; // Compute param grads ∂Lt/∂θt,

etc.
13 m′

t+1.backward(gradient = ∇mt+1, retain graph=True) ; // Compute ∇mt via
chain rule

14 Save mT+1 for the next rollout’s update
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Notes:

• The indexing convention here follows t = 1...T , where mt is the input memory state to segment t, and mt+1 is the output
state.

• Model(xt,mt) represents the forward pass computation for segment t, producing an intermediate memory state m′
t+1 and a

segment output ot.

• Explanation of Line 13: Line 13, ‘m′
t+1.backward(gradient = ∇mt+1, retain graph=True)’, is responsible for backpropagat-

ing the gradient from the subsequent segments’ losses through the memory pathway of the current segment t.

– Context: During the backward pass, for each segment t (from T down to 1), we first compute gradients arising from the
local loss Lt of that segment (Line 12). This step, Lt.backward(), calculates ∂Lt

∂θt
(gradients for model parameters θt in

segment t) and also ∂Lt
∂mt

(gradient of local loss w.r.t. the input memorymt).

– ∇mt+1 (Upstream Gradient): This is the gradient of the total loss from all future segments (i.e., segments t+1 through
T ) with respect to mt+1. The term mt+1 is the memory state that segment t passes to segment t + 1, calculated as
mt+1 = RetentionFactor ×m′

t+1. For the first iteration of this loop (when t = T ), ∇mT+1 is typically initialized to
zero as the final memory state does not directly contribute to a subsequent loss term.

– Operation of Line 13: The command ‘m′
t+1.backward(gradient = ∇mt+1)’ applies the chain rule. It takes the

gradient ∇mt+1 (which is ∂Lossfuture
∂mt+1

, where Lossfuture = Lt+1 + Lt+2 + ... + LT ) and computes the gradients of

Lossfuture with respect to the inputs that formedm′
t+1. Specifically, it computes:

*
∂Lossfuture

∂mt
by backpropagating ∇mt+1 through the operations mt+1 = RetentionFactor ×m′

t+1 and m′
t+1 =

Model(xt,mt).

* Additional contributions to ∂Lossfuture
∂θt

by backpropagating through Model(xt,mt).

The automatic differentiation system handles the scaling by ‘RetentionFactor’ implicitly when applying the chain rule from
mt+1 tom′

t+1.

– Accumulation of Gradients: The gradients with respect to model parameters θt and input memorymt are accumulated.
The gradient ∇mt (which will be passed to segment t− 1 in the next timestep) becomes the sum of the gradient from the
local loss ( ∂Lt

∂mt
from Line 12) and the gradient from future losses ( ∂Lossfuture

∂mt
computed in Line 13). Similarly, parameter

gradients ∇θt are also accumulated from both backpropagation steps.

– retain graph = True: The computational graph for segment t (recomputed in Line 11) is used for two separate
backward calls: one for Lt (Line 12) and one form′

t+1 (Line 13). retain graph = True is necessary for the second
call because the first call would typically free the graph. This ensures that intermediate activations and graph structure are
available for both gradient computations within the current segment t.

E IMPLEMENTATION AND EXPERIMENTAL DETAILS

This appendix provides supplementary details regarding the experimental setup, hyperparameters,
hardware/software environment, and measurement methodologies used for the experiments reported
in Section 4.

E.1 HYPERPARAMETERS

Key hyperparameters for RMAAT across the evaluated LRA tasks are summarized in Table S2.
Consistent settings were used for iso-architecture baselines where applicable, with task-specific
adjustments primarily for sequence length handling (Number of Segments) and training schedule
(Epochs, Learning Rate). All models were trained from scratch using the AdamW optimizer and
CrossEntropyLoss where applicable.

E.2 HARDWARE AND SOFTWARE

The experiments were conducted on a server with the following specifications:

• OS: Ubuntu 22.04.5 LTS (Kernel: Linux 6.8.0-52-generic x86 64)

• CPU: Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz

• RAM: 503 GiB (approx. 512 GB)

• GPU: NVIDIA RTX A5000 (24GB Memory)

• Software: Models were implemented using PyTorch version 1.13.1 with CUDA version
11.7. Python version 3.10.13 was used.
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Table S2: Key Hyperparameters for RMAAT on LRA Tasks.
Hyperparameters ListOps (8K) Text (4K) Retrieval (8K) Image (1K) Pathfinder (1K)

Training Parameters
Batch Size 128 64 16 24 128
Max Seg Len (N ) 1024 512 512 512 256
Epochs 50 100 50 50 100

Learning Rate 5.0e−4 1.5e−5 5.0e−5 5.0e−4 3.0e−5

Model Architecture
Embedding Dim (d) 256 784 512 784 1024
Number of Heads 2 6 8 6 8
FFN Dim 1024 2048 2048 2048 2048
Number of Encoder Layers 1 1 1 3 1
Dropout 0.1 0.1 0.1 0.1 0.1

AMRB / Recurrence Parameters
Number of Segments (Tseg) 8 8 16 2 4
Number of Memory Tokens (M ) 8 32 4 32 4

Astromorphic Attention Parameters
Hidden Layer Neuron (m) 100 100 100 100 100
Non-linearity (α) 0.25 0.25 0.25 0.25 0.25

Positional Encoding Parameters
Rate of spatial decay (scale) 2.0 2.0 2.0 2.0 2.0

E.3 EFFICIENCY MEASUREMENT DETAILS

• Peak GPU Memory: Measured during the training process using standard GPU monitor-
ing tools (e.g., nvidia-smi or PyTorch’s memory management utilities) to capture the
maximum memory allocated on the GPU.

• Throughput/Speed: Measured in terms of training time per epoch or overall training time,
typically reported relative to a baseline (e.g., standard Transformer or RMT). Detailed re-
sults are in Table 2 (See Section 4).

F ADDITIONAL RESULTS

Table S3: RMAAT Accuracy (%) Sensitiv-
ity on ListOps (8K).

Parameter Value Accuracy (%)

scale

1.0 38.5
2.0 38.9
5.0 36.8
10.0 36.5

M (Mem Tokens)

2 37.9
4 37.9
8 38.9
16 38.6
32 38.4

This section provides additional details and sensitivity
analyses complementing the main component ablation
results summarized in Section 4.2. The above tables
explore the sensitivity of RMAAT’s performance (Ac-
curacy) to variations in the positional encoding spa-
tial range parameter (scale) and the number of mem-
ory tokens (M ) on the ListOps (8K) and Text (4K)
tasks. These sensitivity results illustrate the findings
mentioned in Section 4.2: performance generally de-
grades when deviating significantly from the optimal
values for scale and M , confirming the importance of
tuning these hyperparameters for each task.

Table S4: RMAAT Accuracy (%) Sensitivity on Text (4K).
Parameter Value Accuracy (%)

scale

1.0 65.4
2.0 65.9
5.0 65.1
10.0 65.2

M (Mem Tokens)

4 64.6
16 65.4
32 65.9
64 65.0
128 65.2
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