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Abstract
This paper introduces a new global optimization algorithm that solves the threshold estimation
problem. In this active learning problem, underlying many empirical neuroscience and psychophysics
experiments, the objective is to estimate the input values that would produce the desired output
value from an unknown, noisy, non-decreasing response function. Compared to previous approaches,
ZOOM (Zooming Optimistic Optimization Method) offers the best of both worlds: ZOOM is
model-agnostic, benefits from stronger theoretical guarantees and faster convergence rate, and also
quickly jumps between arms, offering strong performance even for small sampling budgets.

1. Introduction

The Threshold Estimation Problem (TEP) is an active learning problem, where an agent is given an
interval of possible input values I, a desired output probability µ∗ ∈ [0, 1] , a sampling budget T, and
an unknown black-box non-decreasing response function ψ that can only be accessed through noisy
observations, where the noise can depend on the input value. The objective is to provide an estimator
ŝ of an input value that will produce a desired output value, i.e. ŝ ≈ s∗ ∈ ψ−1(µ∗).

The TEP is central to Psychophysics1 and in particular the evaluation of human perception,
which is generally assessed by performing psychometric experiments. During these, an experimenter
(in our setting, the agent) presents to an observer, a sequence of stimuli of varying intensities st,
1 ≤ t ≤ T (for instance, the contrast of a visual stimulus, see e.g. (Audiffren et al., 2022)). After
each stimulus, the observer signals to the experimenter whether she was able to see the stimulus –
which is modeled as a Bernoulli random variable whose mean (the probability of perception) is ψ(st),
i.e. the output of a black-box non-decreasing response function called the psychometric function.
The objective of many such experiments is to find the sensitivity threshold, where the stimulus is just
noticeable (Kontsevich and Tyler, 1999), which is often defined as µ∗ = 1

2 ,
2
3 or 3

4 , which correspond
respectively to the 50 %, 66.6 % and 75 % detection threshold.

Related Work. The staircase algorithm is arguably the most popular adaptive method to solve
the TEP and has been discussed and improved upon significantly in recent years (Wichmann and
Jäkel, 2018). However, this method can only be used for a very limited list of possible target
probability (such as µ∗ = 0.5) (Brown, 1996), and convergence is only guaranteed for specific shapes
of the psychometric function (Levitt, 1971). Parametric Bayesian adaptive algorithms (Kontsevich

1. Psychophysics is a research field that studies the relationship between physical stimuli and the perceptions they
produce
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and Tyler, 1999; Shen and Richards, 2012; Watson, 2017), whose purpose is generally to estimate
the entire function ψ, require prior knowledge of the response function parametric model, which
limits their applications. More recently, several works have proposed to use Gaussian Processes
(GP) to approximate ψ (Gardner et al., 2015a,b; Song et al., 2017). GP addresses some of the
shortcomings of the Bayesian methods by being more flexible, but these methods tend to be more
costly and require significantly more samples to approximate s∗. Arguably the closest method to
ours is DOS (Audiffren, 2021a). However, as the authors acknowledged themselves and observed in
their following works (Audiffren and Bresciani, 2022), DOS is very conservative in its estimates,
leading to subpar performance when the sampling budget T is small and the response function is
strongly smooth. This limits the usability of DOS in practical applications, in particular for some
experimental psychophysics experiments where T is very small (Averbeck et al., 2017).

Contributions. In this paper, we introduce and analyze ZOOM (Zooming Optimistic Optimization
Method), a new algorithm that solves the threshold estimation problem. ZOOM builds on DOS,
by taking inspiration from hierarchical bandits, where the agent uses concentration inequalities to
explore a hierarchical partition of the arm space, and global optimization of noisy black-box functions
of smoothness (see e.g. (Grill et al., 2015; Shang et al., 2019b)). Compared to previous approaches,
ZOOM offers the best of both worlds, as it is model-agnostic, has strong theoretical guarantees, and
shows optimal or close to optimal performance in all our experiments.

2. The Threshold Estimation Problem

Notation. We borrow the notation and vocabulary of the multi-armed bandit version of the problem
introduced by (Audiffren, 2021a). Let T denote the time horizon (i.e. the sampling budget), I = [0, 1]
the bounded, closed input interval, ψ : I 7→ [0, 1] the continuous2, non-decreasing response function,
µ∗ ∈ ψ(I)o the target probability (i.e. µ∗ is in the interior of the image of ψ) and s∗

.
= ψ−1(µ∗) the

desired threshold3.

The objective of the TEP is to find an estimator ŝ of the sensitivity threshold s∗ with at most T
samples. I, T and µ∗ are known to the agent, but ψ is not. The process unfolds as follows. For each
round t ∈ [1, . . . , T ], the agent chooses an arm (i.e. chooses a value to sample) s ∈ I. Then the
environment draws an independent Bernoulli random variable with mean ψ(s), and communicates
the result to the agent. At time t = T, the agent returns the arm ŝ that is her best guess for the
threshold s∗. The performance of the agent is then evaluated using the simple regretR, defined as

R(ŝ) = |µ∗ − ψ(ŝ)|. (1)

2.1 Smoothness of the response function

Additional smoothness assumptions for ψ are required to provide theoretical guarantees for the
convergence of an estimator – this is to avoid the classical “needle in a haystack” problem of global
optimization of black box function (see e.g. (Valko et al., 2013)). As presented below, in this work we
assume that the Dini derivative of ψ on s∗ are finite and strictly positive, which is a mild assumption.

2. Note that to keep the notation simple, we assume here that ψ is continuous, but all of our results can easily be extended
to more general case where ψ is only measurable.

3. s∗ is unique and well defined when ψ satisfies Assumption 1.
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Dini Derivatives. The Dini derivatives are a generalization of the notion of derivative for real
valued functions. Let s ∈ I, the four different Dini derivatives of ψ on s are:

D−ψ(s) = inf
δ>0

sup
h∈[0,δ]

ψ(s− h)− ψ(s)
−h

D+ψ(s) = inf
δ>0

sup
h∈[0,δ]

ψ(s+ h)− ψ(s)
h

D−ψ(s) = sup
δ>0

inf
h∈[0,δ]

ψ(s− h)− ψ(s)
−h

D+ψ(s) = sup
δ>0

inf
h∈[0,δ]

ψ(s+ h)− ψ(s)
h

D−ψ(s), D+ψ(s), D
−ψ(s) and D+ψ(s) take value in [−∞,∞] and are always well defined for

any point of the function domain. Since in the TEP, ψ is assumed to be increasing, the Den-
joy–Young–Saks theorem (Saks, 1937) applies, and the Dini derivates of ψ are always positive and
finite almost everywhere. Hence in this work, we make the following mildly stronger assumption:

Assumption 1 (ψ Dini Derivatives on s∗)

∞ > D−ψ(s∗) ≥ D−ψ(s∗) > 0

∞ > D+ψ(s∗) ≥ D+ψ(s∗) > 0.

Interestingly, if ψ is differentiable on s∗ and ψ is strictly increasing on s∗, then ψ satisfies Assumption
1, as in this case D−ψ(s∗) = D+ψ(s∗) = D−ψ(s∗) = D+ψ(s∗) = ψ′(s∗) > 0.

3. Contributions

3.1 ZOOM strategy.

Let K ∈ N+ be a positive integer. ZOOM relies on a partition tree which is made of uniform grids
Gd,n, d ≥ 1, 0 ≤ n < Kd−1. Each grid contains K + 1 elements, and is of resolution 1/Kd:

Gd,n = {sd,n,0, sd,n,1, . . . , sd,n,K} where sd,n,k =
nK + k

Kd
(2)

When using ZOOM, the agent only samples arms that are part of a grid, that is to say the sd,n,K .
We denote by Nd,n,k(t) the the number of time the arm sd,n,k has been pulled at time t, and µ̂d,n,k(t)
the corresponding empirical average of its observations. Moreover we use µd,n,k = ψ(sd,n,k) and
∆d,n,k = |µd,n,k − µ∗|. The general idea of ZOOM can be summarized as follows: the agent starts
with the grid G1,0 = {0, 1/K, . . . , 1} that covers the entire input interval I = [0, 1] with resolution
1/K. Then, at each time t, the agent starts from first grid, i.e. d = 1; n = 0 and then :

1. Find the most promising interval k (see Section 3.1.2). If the agent is confident enough that
the desired input is in this interval, she “zooms” on the sub-grid which spawns this interval
(d← d+ 1, and n← nK + k) and repeat this step.

2. Once she has found a promising interval but where she can’t “zoom”, she samples the extremi-
ties of the interval for which she has the least amount of information (see Section 3.1.3).

The process is repeated until t = T and the sampling budget is elapsed. Then, the arm that was
pulled the most in the deepest reached subgrid is returned (see Section 3.1.4).
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Choice of the parameter K. K directly quantify the coarseness of the grid, and the larger the K,
the closer s∗ will be to one of the grid point. As stated by Theorem 1 (Section 3.2), the following
value of K, which is adaptive in T, leads to a fast convergence rate of the estimator:

K =

⌊√
T

log T log log T

⌋
(3)

Importantly ZOOM is model-agnostic, in the sense that it does not use prior knowledge regarding
ψ, such as the values of the Dini derivatives of ψ. Moreover, the choice of K defined by (3) lead to
favorable regret guarantees for all ψ satisfying Assumption 1 – a phenomenon that was confirmed in
our experiments (see Section 4).

3.1.1 CONFIDENCE INTERVALS

Let d ≥ 1 and n, k ≥ 0. Since ψ is assumed to be non-decreasing, we have s∗ ∈ [sd,n,k, sd,n,k+1]
i.f.f. ψ(sd,n,k) ≤ µ∗ ≤ ψ(sd,n,k+1). However, while the agent can observe if µ̂d,n,k ≤ µ∗, she can
never be sure if µd,n,k ≤ µ∗. To address this problem, our method uses a concentration inequality
derived from the Azuma-Hoeffding inequality, and is a confidence interval commonly used for the
optimism against uncertainty principle, see e.g. (Auer et al., 2007). In this case, the agent decides
that that µd,n,k ≤ µ∗ if µ̂d,n,k ≤ µ∗ and

|µ∗ − µ̂i(t)| > BT (Ni(t))
.
=

√
3 log T

2Ni(t)
, (4)

The second strategy is derived from the work of (Audibert et al., 2009), which was further
extended in (Garivier et al., 2022). Here, the agent decide that that µd,n,k ≤ µ∗ if µ̂d,n,k ≤ µ∗ and

kl(µ̂i(t), µ∗) > K(Ni(t))
.
= 2

log (T/Ni(t))

Ni(t)
. (5)

where kl denotes the Kullback-Leibler divergence. Contrarily to (4), this inequality is not related
to a concentration inequality that is true with a probability close to one. However, (Garivier et al.,
2022) have shown that by using this inequality, arms that are significantly worse than the optimal
arm are only pulled a small number of times, resulting in a lower cumulative regret than UCB (Auer,
2002). ZOOM uses the two inequalities (4) and (5) alternatively, to leverage the advantages of
both conditions: a strong theoretical guarantees (4) (Section 3.2), and better experimental results (5)
(Section 4).

3.1.2 FINDING THE MOST PROMISING INTERVAL

Let C be the condition used by ZOOM to reach a decision when comparing arms to the target
threshold s∗ (alternately (4) and (5)). To simplify the notation, in the following we use: sd,n,k ≪ s∗
if µ̂d,n,k < µ∗ and C is satisfied. By construction, sd,n,0 ≪ s∗ ≪ sd,n,K . Indeed, the agent zooms
on an interval only if she has deduced that s∗ is in the interior of the interval. For other values of
0 < k < K, if the arm has never been pulled, i.e. Nd,n,k = 0, then C is not satisfied and none of the
above notations apply.
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Let d ≥ 1, n ≥ 0. To find the most promising interval of Gd,n, the agent starts with its middle
element sd,n,K/2. If Nd,n,k = 0, then this interval is chosen. Otherwise, if µ̂d,n,k ≥ µ∗, then the
agent chooses the interval d, n, k′ such that

k′ = max {ℓ ≥ 0, s.t. Nd,n,ℓ = 0 or µ̂d,n,ℓ < µ∗} .

In the other case where µ̂d,n,k < µ∗, the agent chooses the interval d, n, k′ where

k′ = min {ℓ ≥ 0, s.t. Nd,n,ℓ = 0 or µ̂d,n,ℓ > µ∗} .

k′ is well defined in both cases as ℓ = 0 (resp. ℓ = K) always satisfies the aforementioned condition.
After the interval d, n, k′ is chosen, the agent decides to zoom on the interval, if and only if

sd,n,k ≪ s∗ ≪ sd,n,k+1, in which case the agent repeats the process using d← d+ 1, n← nK + k
and k = ⌊K/2⌋. Otherwise the agent moves to the next step of the algorithm (Section 3.1.3).

3.1.3 CHOOSING THE INTERVAL EXTREMITY

After the interval of interest d, n, k has been selected, the agent decides which endpoint – either
sd,n,k or sd,n,k+1 – to explore as follows. First, if sd,n,k ≪ s∗ (resp. s∗ ≪ sd,n,k+1), then the other
endpoint sd,n,k+1 (resp. sd,n,k) is sampled. This represents the case where the agent has already
enough information regarding one endpoint of the interval. Else, if Nd,n,k = 0 (resp. Nd,n,k+1 = 0),
then this endpoint sd,n,k (resp. sd,n,k+1) is sampled, as there is no information regarding this arm.
Finally, if none of the conditions above apply, the endpoint to sample is selected uniformly at random.

3.1.4 ZOOM OUTPUT ESTIMATOR

When the time horizon is reached (t = T ), then ZOOM outputs ŝ = sd∗,n∗,k∗ as its estimator, where

d∗ = max{d ≥ 0,∃n, k s.t. Nd,n,k > 0},
n∗, k∗ = argmax

n,k
{Nd∗,n,k} ,

with in case of equality, the agent chooses at random. In other words, the agent returns the arm that
was sampled the most among the deepest subgrid that can be reached using (4).

3.2 Regret Upper Bound

The following upper bound holds on the regret incurred by ZOOM (see the appendix for the proof).

Theorem 1 (Regret Upper Bound) Let T > 0, and ψ a response function that satisfies Assumption
1.Then, if ZOOM is run with parameter K as in (3), there exists a constant Cψ > 0, that only depends
on ψ, such that its regretRT is upper bounded with probability at least 1− 2/T by

RT ≤ Cψ

√
log T log log T

T
(6)

4. Experiments

In this section we perform an empirical evaluation of ZOOM. We compare ZOOM to Staircase
(Wichmann and Jäkel, 2018), QuestPlus (Watson, 2017), GP (Gardner et al., 2015a), DOS (Audiffren,
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Figure 1: Average of the regret incurred by ZOOM compared to state-of-the-art methods (DOS,
Staircase, POO, QuestPlus, GP) for multiple time horizons (T = 100, 300, 1000 and
3000) and response functions

(
ψi
)
1≤i≤2

. The regret is displayed on a log scale

2021a), using the implentation provided by (Peirce et al., 2019), and the parameters recommended by
their respective papers. We also study ZOM, a version of ZOOM that only relies of the concentration
inequality (4). For each experiment, we tested four different time horizons T = 100, 300, 1000 and
3000, three possible target values µ∗ = 0.5, 2/3 and 3/4, and two different functions ψ0 –the cdf of
N (µ, σ2 = 0.25)– and ψ1(s) = µ∗ − 5(s∗ − s)1s<s∗ + 20(s− s∗)1s>s∗ .4

Results. Figure 1 shows the results of our experiment. Interestingly the version of ZOOM that
uses only the Azuma- Hoeffding concentration inequality, denoted ZOM, performed substantially
worse than its counterpart for most time horizons and response functions. Staircase performed poorly
in our experiments, as mu∗ ̸= 0.5. It is a known limitation for the method, as its performance
tend to worsen in this case (Wichmann and Hill, 2001b). Questplus, a Bayesian method, converged
significantly slower than non-bayesian methods such as DOS or ZOOM. Moreover, Questplus is
unable to estimate the response function ψ2, as it significantly differs from its parametric model.
Conversely, GP and DOS were able to estimate all the tested response functions, but still suffers from
sub-optimal performance for small T – highlighting the slow rate of convergence of its more general
model. Overall this experiment highlights the advantage of ZOOM, which has the best – or close to
the best – regret in all settings for all considered time budgets.

5. Conclusion
In this work, we introduced a new method for solving the threshold estimation problem, ZOOM.
Compared to previous methods, we showed that ZOOM has the best of both worlds: it has a
strong regret upper bounds, is model-agnostic and performed the best or close to the best in all
our experiments, even for small sampling budget. As a result, ZOOM has the advantages of other
approaches such as DOS without their drawbacks. Consequently, we argue that it is currently the
best off-the-shelf method to solve the threshold estimation problem.

4. Note that ψ1(s∗) = µ∗, that ψ1 is not differentiable on s∗ but satisfies Assumption 1. s∗ was chosen randomly for
each set of experiment.
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Appendix A. Regret Upper Bound: Proof of Theorem 1

We begin by proving some useful Lemmas.

Lemma 2 Let d, n, k ≥ 0. Then if µd,n,k ≤ µ∗,

P
(
µ̂d,n,k ≥ µ∗ + BT (Nd,n,k(t))

)
<

2

T 3

Proof
Note that

{µ̂d,n,k(T ) > µ∗ + BT (Nd,n,k(t))} ⊂ {µ̂d,n,k(T ) > µd,n,k + BT (Nd,n,k(t))}

Hence the resulting using the Chernoff Hoeffding concentration inequality .

In other words, Lemma 2 states that the probability of ZOOM to reach the wrong decision about an
arm is controlled. In the following, we examine the behavior of ZOOM on A∗, where by definition
ZOOM never reaches the wrong conclusion regarding arms comparisons when using (4). Formally,
let

A∗ .
= {∀t ≤ T, ∀i ≤ κ, |µd,n,k − µ̂d,n,k(t)| ≤ BT (Nd,n,k(t))} ,

Let PA∗ (·) .= P (·|A∗). We say that an event E isA∗ almost sure (A∗ a.s.) if PA∗(E) = 1. UnderA∗,
ZOOM never reach a wrong subgrid when using (4). Therefore ZOOM only explores one subgrid
per depth, and we can prove that the event A∗ has high probability.

Lemma 3 P (A∗) ≥ 1− 2
T .

Proof This directly results from Lemma 2 by taking the union bound.

In the following, we only refer to subgrids that are reached using (4), and we call d∗ the deepest grid
reached. As a consequence of the previous lemma, ZOOM only reaches one subgrid per level, and it
is the one that contains s∗. Since only one grid per level is reached, in the following the drop the n
from the notation to ease the reading : w denote by Gd, the subgrid of depth d reached, and sd,k its
arms. The convergence speed depends on the smoothness of ψ. The following Lemma details the
smoothness property of ψ.

Lemma 4 Let ψ be a response function that satisfies Assumption 1. Then ∃C1 > 0, such that:

∀s ∈ I, |ψ(s∗)− ψ(s)| ≤ C1|s∗ − s| (7)

Moreover ∃C2 > 0, such that:

∀s ∈ I, |ψ(s∗)− ψ(s)| ≥ C2|s∗ − s| (8)

Proof We start by proving (7). By definition of the Dini derivatives, we have :

lim
s→s∗

ψ(s)− ψ(s∗)
s− s∗

≤ max
(
D−ψ(s∗), D

+ψ(s∗)
)︸ ︷︷ ︸

D
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lim
s→s∗

ψ(s)− ψ(s∗)
s− s∗

≥ min (D−ψ(s∗), D+ψ(s∗))︸ ︷︷ ︸
D

Now by assumption D,D <∞. By definition of D, there exists δ > 0, s.t. ∀s ∈ [s∗ − δ, s∗ + δ]∣∣∣∣ψ(s)− ψ(s∗)s− s∗

∣∣∣∣ ≤ 2D.

Moreover, ∀s ̸∈ [s∗ − δ, s∗ + δ], we trivially have∣∣∣∣ψ(s)− ψ(s∗)s− s∗

∣∣∣∣ ≤ 1

δ
.

Hence (7) with C1 = max(2D, 1/δ). We now prove (8). By Assumption 1, we have D,D > 0.
Thus there exists δ > 0, s.t. ∀s ∈ [s∗ − δ, s∗ + δ]∣∣∣∣ψ(s)− ψ(s∗)s− s∗

∣∣∣∣ ≥ 1

2
D.

Moreover, ∀s ̸∈ [s∗ − δ, s∗ + δ], we trivially have∣∣∣∣ψ(s)− ψ(s∗)s− s∗

∣∣∣∣ ≥ δD

2
.

Hence (8) with C2 = min(D/2, δD/2).

Corollary 5 If Assumption 1 is true, then ∀d ≤ d∗,

PA∗

(
∆d,k ≤ C1K

−d+1
)
= 1 (9)

Proof This corollary is an immediate consequence of Lemma 4.

Finally, the following lemma provides bounds to the number of times that an arm will be pulled
under A∗

Lemma 6 ∀d, k ≥ 0, A∗ almost surely,

Nd,k ≤
3 log T

2∆2
d,k

.

Proof This directly result from the inequality (4) and the definition of BT .
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PROOF OF THEOREM 1

We are now ready to prove the regret upper bounds of Theorem 1. Note that since the regret is always
upper bounded by 1, Lemma 3 implies that it is only necessary to prove the upper bounds on A∗.

Proposition 7 Assume that ψ satisfies Assumption 1. Let C1, C2 as in Lemma 4. Let K =

⌊
√

T
(log T )(log log T )⌋. Then, there exists a constant Cψ > 0, that only depends on ψ, such that

A∗-almost surely,

RT ≤ Cψ

√
log T log log T

T

Proof Under A∗, only valid grids are reached, and thus ZOOM only explore one grid per depth. For
any d ≥ 1, let Gd be the valid subgrid of depth d, and sd,0, . . . , sd,K its arms. let d∗ be the largest
depth reached by ZOOM. First, if d∗ > 1, i.e. if the algorithm has zoomed, then all arms on the
deepest layers satisfy

|sd∗,k − s∗| ≤
1

K
,

and thus Corollary 5 implies that

∆d∗,k = |ψ(sd∗,k)− ψ(s∗)| ≤ C1|sd∗,k − s∗| ≤
C1

K
= C1

⌊√
T

log T log log T

⌋−1

. (10)

Now if d∗ = 1, the algorithm has never zoomed, and we will show that the arm that was pulled
the most (which is the arm returned by the algorithm when the time budget elapsed) is a good
estimator of s∗. To ease the notation, in the rest of the proof we will drop the d index (since d = 1).
For any 0 ≤ i ≤ K, let

Ki =
{
0 ≤ k ≤ K, s.t.

i

K
≤ |sk − s∗| <

i+ 1

K

}
Since the sk are an uniform grid over I of step 1/K, we have

∀0 ≤ i ≤ K, |Ki| ≤ 2 (11)

|K0| ≥ 1 (12)

Note that any arms in K0 satisfy (10) and there is at least one arm of K0. Now let K ≥ i > 0, and
k ∈ Ki. By definition of Ki, we have 0 < i

K ≤ |sk − s∗|, and thus using (8),

∆k ≥ C2
i

K

Now, by definition of A∗, BT (Nd,k − 1) > ∆k (otherwise ZOOM would have stopped to sample
sd,k before) and thus

Nk ≤
3 log T

2i2
(
C−2
2 K2

)
︸ ︷︷ ︸

.
=ni

.
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So the total number of pulls that ZOOM uses on the Ki, i > 1 is upper bounded by

K∑
i=1

∑
k∈Ki

Nk ≤
K∑
i=1

∑
k∈Ki

ni ≤ 2
K∑
i=1

ni

≤ 2

K∑
i=1

3 log T

2C2
2 i

2
K2 ≤ π2 log T

2C2
2

K2 ≤ π2T

2C2
2 log log T

= o(T )

Now since the algorithm has not zoomed, we have

T =
K∑
i=0

∑
k∈Ki

Nk ≤
∑
k∈K0

Nk +
π2 log T

2C2
2

K2︸ ︷︷ ︸
=o(T )

and thus for T large enough, ∑
k∈K0

Nk ≥ 2/3

and thus the conclusion using (11) and (10).
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